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23 Abstract

24 The phenolic compounds in the leaves of 12 species of birch trees of the subgenera Neurobetula, 

25 Betulenta, and Betula were biochemically profiled using HPTLC (De Jong, 1993). The duration 

26 of the vegetation period was found to be significantly related to the content of total phenols (r = 

27 0.74) and flavonoids in leaves (r = 0.65). The correlations for Neurobetula plants were 0.86 and 
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2

28 0.91, respectively. The relationship between the duration of the growing season and the 

29 concentration of phenolic compounds in Betula plants was inverse (r = -0.84). A cluster analysis 

30 of phytochemical profiles revealed that the studied birch species form groups that coincide with 

31 the subgenera proposed by De Jong (1993) due to an affinity with the qualitative composition of 

32 phenolic compounds. A multiple correlation analysis confirmed the relationship between the 

33 qualitative composition of phenolic compounds and the morphological characteristics of the 

34 leaves. The results of phytochemical profiling revealed that the qualitative composition of 

35 polyphenols in the leaves of 12 birch species is quite specific, allowing the use of individual 

36 compounds as additional differential biochemical characters in identifying species and hybrids 

37 and studying their potential role in plant adaptation to habitat conditions.

38 Keywords: Betula, chemosystematics, introduction, flavonoids, tannins

39

40 Introduction

41 The plants of the genus Betula L. play an important role in the flora of the temperate 

42 forest zone, as well as the Boreal and Sub-arctic zones (Furlow, 1990). Birches have a significant 

43 morphological polymorphism. This is due to the level of ploidy, as well as interspecific 

44 hybridization and plant variability under the influence of environmental factors. The ability of 

45 Betula plants to cross and spontaneously polyploidize with a relatively small number of species-

46 specific morphological features makes identification and development of the nomenclature 

47 system at the section level difficult; as a result, the genus Betula remains taxonomically difficult 

48 (Li et al., 2007; Salojärvi et al., 2017). There are currently multiple viewpoints on the number of 

49 taxa and the integration of species into distinct sections or clades. (Winkler, 1904; De Jong, 1993; 

50 Skvortsov, 2002; Ashburner, McAllister, 2013). According to genetic analysis of polymorphism 

51 of sequences of internal transcribed spacers (ITSs) of ribosomal genes, most Betula species form 
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52 a common clade (Wang et al., 2016; Tarieiev et al., 2021). However, the phylogenetic 

53 relationships based on ITSs between the four sections of the subgenus Betula remain 

54 controversial and uncertain. The Costatae (Regel) Koehne section is closely related to the Betula 

55 section (Wang et al., 2016). The Betula section is thought to have separated from Costatae during 

56 the evolution process. This is demonstrated by the presence of fertile hybrids and an incomplete 

57 reproductive barrier (Parkhomenko, 2011), particularly between Betula pubescens Ehrh. and 

58 Betula ermanii Cham., and between Betula pendula Roth and Betula ermanii (Johnsson). 

59 Hybridization and adaptive introgression are also common in the subgenus Betula (Thorsson et 

60 al., 2010). This is especially important in terms of hybrid distribution, naturalization, and 

61 invasion of new territories (Wang et al., 2016), including after their introduction.

62 The origin of the plant determines the qualitative composition of SMs (Deepak et al., 

63 2018). Their synthesis is closely linked to the provision of essential plant functions. The 

64 concentration of phenols in the plant body, for example, is determined by the available resources 

65 required to balance plant growth and SM synthesis. It can also vary significantly under stressful 

66 conditions depending on environmental factors (Winkel-Shirley, 2002; Mattson, 2005; Churilov 

67 et al., 2020). Plants from southern origin have a higher concentration of highly hydrophobic 

68 flavonoids in their leaves. The high adaptability and morpho-physiological plasticity of most 

69 Betula species and hybrids is due to the composition of secondary metabolites (SMs), which 

70 includes phenolic compounds (Lattanzio, 2013). This highlights the significance of chemotypes 

71 as plant adaptation reserves. The phytochemical profiles of closely related taxa's SMs indicate the 

72 presence or absence of specific biochemical features (phenes), which are also important in 

73 chemophenetics, species ecology, and the formation of individual chemoraces. At the same time, 

74 M. Wink (2003) claims that the individual inconsistency of SM profiles means that the value of 

75 phytochemical features for taxonomy, like traditional morphological markers, is open to 
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76 interpretation. At the population level, the flavonoid content of the leaves can also be quite 

77 variable. Simultaneously, trees with high chemical similarity have been discovered among 

78 polymorphs within a single population (Stark et al., 2008). Differential expression of the 

79 corresponding genes, recombination of features during crossing, hybridization, diploid-tetraploid 

80 introgression, and natural polyploidization of plants explain the differences in SM profiles in 

81 different species of birches (Thomson et al., 2015; Zohren et al., 2016; Wang et al., 2021). 

82 The absence of individual flavonoids or changes in their total amount can be attributed to 

83 the plant's ploidy. However, there are differing perspectives on the effect of ploidy on plant 

84 productivity and stability (Patrushev, Minkevich, 2008). In Betula species with high levels of 

85 ploidy, a general pattern of increasing genome size dispersion (1Cx) is found, possibly due to 

86 deletions (Buggs et al., 2012) or an increase in the number of retrotransposons in the genome 

87 (Bennetzen et al., 2005; Piegu et al., 2006). Polyploids have advantages when it comes to 

88 adapting to stressors and moisture deficiency (Li et al., 1996; Balcar, 2001). Polyploidization, 

89 particularly allopolyploidization, can slow development due to the relatively large size of the 

90 genome (Lavergne et al., 2010), a lack of nitrogen and phosphorus (Knight et al., 2005), and low 

91 temperatures to which cells with more chromosomes are sensitive (Grime and Mowforth, 1982). 

92 The latter assumption is supported to some extent by the fact that the most common in Eurasia 

93 are low-ploidy birches of the subgenus Betula (B. pendula, B. nana L., and B. glandulosa 

94 Michx.) (Wang et al., 2016). Thus, the Asian white birch (Parkhomenko, 2011), which is usually 

95 diploid (2n = 28) (Keinanen, 1999), is the most cold-resistant of the birches of Eastern Siberia. 

96 Meanwhile, low-invasive the subgenus Aspera species with high ploidy (Betula insignis Franch., 

97 B. megrelica Sosn., B. globispica Shirai, and B. fargesii Franch.) have narrow ranges, have been 

98 attributed to their slow growth (Wang et al., 2016). These polyploid birches are found in areas 

99 dominated by relict species. Their small populations could be remnants of relict flora that once 
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100 inhabited much larger habitats (Wang et al., 2016). The reference genome of Betula pendula was 

101 sequenced, and it revealed several duplicate genes involved in plant responses to the 

102 environment. Their appearance is the result of ongoing tandem duplication processes rather than 

103 polyploidy. Such duplicates have recently been extensively studied in terms of organism 

104 adaptations at the inter-population level (Salojärvi et al., 2017). 

105 Flavonoids are highly active compounds that have regulatory, protective, and adaptive 

106 properties in plants (Agati et al., 2007; Charles et al., 2010; Likhanov et al., 2019; Thitz et al., 

107 2020). Betula's main phenolic compounds are flavonoid glycosides, myricetin, and quercetin 

108 derivatives (Pawlowska, 1983). There are various data on qualitative and quantitative indicators 

109 of phenolic compound content in birch tree vegetative organs. According to Riipi (2002), the 

110 concentration of soluble proanthocyanidins in B. pendula leaves increases during the growing 

111 season, while the concentration of cell wall-associated galotannins and flavonoid glycosides 

112 decreases after leaf growth. Other researchers report a large variation in total phenol content in 

113 birch (B. pendula) leaves during the growing season (Stark et al., 2008). Furthermore, the 

114 synthesis of phenolic compounds in silver birch leaves is affected by the duration and intensity of 

115 UV radiation exposure (Tegelberg et al., 2001; Keski-Saari et al., 2005). Secondary metabolite 

116 profiles in silver birch populations are sensitive markers of oxidative stress in the presence of 

117 elevated ozone levels in the air (Kontunen-Soppela et al., 2007). Additionally, some broad trends 

118 have emerged: variability in the content of secondary metabolites on the surface of silver birch 

119 leaves is primarily determined by plant genotypes, but their qualitative composition is also 

120 influenced by geographical origin (Deepak et al., 2018). Taken together, quantitative and 

121 qualitative analysis of secondary metabolites may be useful for development of a nomenclatural 

122 system for the genus Betula. 
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123 The aim of this study (i) is to identify species and new hybrids of the close subgenera 

124 Neurobetula, Betulenta, and Betula using phytochemical profiles, as well as (ii) to identify 

125 potentially important markers of ecological plasticity in plants. This goal is especially important 

126 given that the studied species are grown in cultivation at botanical gardens, where they can 

127 hybridize spontaneously.

128 Materials and methods 

129 Samples and data collection 

130 Twenty species of birches from various natural habitats, belonging to two evolutionarily 

131 and genetically related sections with incomplete reproductive barriers, were chosen to study the 

132 composition of the SMs from the collection of the arboretum of the Department of Dendrology 

133 and Park Studies of the M.M. Gryshko National Botanical Garden of the National Academy of 

134 Sciences of Ukraine: 

135 - Subgenus Neurobetula: Betula davurica Pall.; B. ermanii; B. schmidtii Regel; B. costata 

136 Trautv.; B. raddeana Trautv.;

137 - Subgenus Betula: B. pendula; B. platyphylla Sukaczev; B. pubescens; B. oycoviensis 

138 Besser; B. papyrifera Marshall; B. szechuanica (C. K. Schneid.) C.-A. Jansson; 

139 - Subgenus Betulenta: B. grossa Siebold & Zuss (table 1).

140 The vast majority of the species chosen were collected in the Far East, Primorsky Krai, 

141 Central and Eastern Europe, and the Caucasus. The paper birch (Betula papyrifera) is a 

142 representative of North American flora, and the silver birch (B. pendula) and downy birch (B. 

143 pubescens) are the two most common species of the subgenus Betula in Eurasia.

144 Dr. Parkhomenko identified Betula species in the arboretum using classical morphological 

145 characteristics and compared them to herbarium specimens from the Komarov Botanical Institute 
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146 of the Russian Academy of Sciences (Parkhomenko, 2011). The ploidy of birch species is given 

147 after Pawlowska (1983) and Keinanen et al. (1999).

148 Methods of sample collection:

149 For phytochemical studies of the phenolic complex of the leaves, three reproductive trees 

150 (n = 3) up to 50 years old were used. Leaves (n = 10) were collected from the lower part of the 

151 crown at a height of 2.0-2.5 m in June (2017 and 2018).

152 The leaf samples were ground after being dried at 37°C until constant weight. The dry 

153 powder that resulted was sieved through a No. 40 sieve (425 µm). To determine the total phenolic 

154 content in the dry leaves, 1 g of each sample received 10 mL (1/10) of 80% methanol. 70% 

155 ethanol was used to extract flavonoids. For 24 hours, the extraction was carried out at 20°C. 

156 The extracted samples were centrifuged at 8000 g for 10 minutes before being analyzed. Prior to 

157 phytochemical analysis, the samples were stored in a freezer (-20 °C).

158 Determination of the phenolic content in leaves

159 The total content of phenolic compounds (Ph) in the leaves was determined using UV–Vis 

160 spectrophotometry (Optizen Pop, South Korea) by means of Folin-Ciocalteu's phenol reagent 

161 (Singleton et al., 1999). Briefly, 100 µL of extract was mixed with 500 µl of Folin-Ciocalteu's 

162 reagent (10 fold diluted) and kept for 3 min at 23 °C. Later, 400 µL of 1M sodium carbonate 

163 solution (Na2CO3) was added to the reaction mixture, and kept for 2 hours in the thermostat at 23 

164 °C. The absorbance was measured at 760 nm. A calibration curve (R2 = 0.999) was performed 

165 using gallic acid (0–100 µg mL-1).

166 Determination of total flavonoid content

167 The total flavonoid (Fl) content in the leaves was determined using the Romanian 

168 Pharmacopoea (2005) with some modifications for spectrophotometry. To 100 µL of aqueous 

169 ethyl alcohol (70%) extract (1/10), 200 µL of a 0.1 M solution of aluminum chloride (AlCl3), 300 
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170 µL of 1 M sodium acetate (CH3COONa), and 400 µL of bi-distilled water were added. After 15 

171 min incubation, the reaction mixture was measured at =419 nm. The calibration curve (R2 = 

172 0.998) was performed using quercetin (Sigma, Germany). 

173 Determination of chlorophyll a and b and carotenoids

174 In methanol extracts, the concentration of plastid pigments in the leaves was determined. The 

175 quantitative content of chlorophyll (Cа and Cb) and carotenoids (C(x+c)) was calculated by UV–

176 Vis spectrophotometry using the following formulas (Wrolstad et al., 2005):

177 Са (mg/mL) = 16.72А665.2 – 9.16А652.4

178    Сb (mg/mL) = 34.09А652.4 – 15.28А665.2

179 С(x+c) (mg/mL) = (1000А700 – 1.63Са – 104.96Сb) / 221 

180 Spectrophotometric analyses of pigments, phenolic compounds, and flavonoids in plant leaves 

181 were carried out in four biological samples.

182 Investigation of the phenolic complex by high-performance thin layer chromatography. 

183 Biochemical profiling of vegetative organs of birch plants was performed by HPTLC on silica gel 

184 G60 (Merck) plates. The general phenolic compounds and flavonoids were separated using the 

185 following solvent systems: ethyl methyl ketone/ethyl acetate/methanol/water (v / v / v/ v — 30: 

186 20: 5: 5); ethyl acetate/formic acid/acetic acid/water (v / v / v /v — 100: 11: 11: 25).

187 The standard (quercetin, rutin and chlorogenic acid) solutions (3.0 µL of each at a 

188 concentration of 1 mg mL-1) were applied to the plates. The derivatization was performed with a 

189 0.5% NP reagent (1.0 g diphenylborinic acid 2-aminoethyl ester dissolved in 200 mL of ethyl 

190 acetate) and 1% PEG 400 (polyethylene glycol), followed by heating (5 min at 105°C). The 

191 detection of phenolic substances on the chromatogram was carried out in UV at 366 nm. The 

192 retention factor (Rf) of individual compounds was determined photodensitometrically using the 
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193 software Sorbfil TLC ver. 2.3.0.2994 (JSC Sorbopolymer). The Rf value is equal to the distance 

194 travelled by the individual compound divided by the distance travelled by the mobile phase front.

195 Morphometric analysis of Betula spp. leaves

196 The study included 300 leaves from 12 birch species (n=25 leaves from each species). The 

197 leaves were pressed, dried, and scanned with the Epson Perfection V33 Scanner (at 600 dpi 

198 resolution in JPEG format). For morphometric analysis, we used the length of the petiole (Pl), the 

199 area of the leaf blade (Ar), the perimeter of the leaf blade (Pr), the width of the leaf blade (W), 

200 the length of the petiole with length of the leaf blade (Lp), the number of pairs of veins (V), the 

201 length of the leaf blade (L), the ratio of the length and width of the leaf blade (L / W), the ratio of 

202 the perimeter of the leaf blade. These measurements were performed with the computing 

203 software ImageJ 1.52u (Wayne Rasband (NIH), USA). 

204 Statistical data processing. The difference between Betula species in plastid pigments, 

205 total phenols and flavonoids was assessed using the Kruskal–Wallis test. Dunn's post hoc test was 

206 used to compare the pigment and flavonoid content of Betula species. The control plant was 

207 Betula pendula, which is native to Ukraine. The statistical tests were run in R 4.1.0 (R Core 

208 Team, 2021). The XLSTAT program (Addinsoft Inc., USA, 2010) was used to perform the 

209 cluster and principal component analyses. The correlation analysis (Pearson correlation 

210 coefficient) was used to investigate the effect of flavonoids and phenols on the morphometric 

211 measurements of the leaf blade. This analysis was performed in R 4.1.0 (R Core Team, 2021). 

212 Correlations were plotted using the package “Corrplot” (0.92) (Wei et al., 2021).

213 Results

214 Plant phenols are multifunctional metabolites that have a variety of adaptive functions. The 

215 rate of accumulation of secondary metabolism products in the assimilation organs is directly 

216 proportional to photosynthesis activity. The vast majority of Neurobetula and Betula species are 
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217 photophilous plants. The extremely shade-tolerant Betula costata and the shade-tolerant species 

218 B. grossa and B. ermanii are the exceptions. The highest concentration of green pigments was 

219 found in the leaves of the very photophilous Betula pendula, B. papyrifera, and B. szechuanica, 

220 as well as the photophilous B. oycoiensis, B. schmidtii, and B. raddeana. However, the 

221 chlorophyll content of B. pubescens leaves was relatively low (Table 2).

222 Carotenoids were found in the highest concentrations in the leaves of the introduced species 

223 Betula schmidtii and B. costata, which are drought-resistant. The chlorophyll a/b ratio was 

224 relatively constant across the species studied. It had a higher value in the leaves of Betula 

225 szechuanica, B. oycoiensis, and B. davurica, where the relative amount of chlorophyll b was 

226 significantly lower. These species had the highest ratios of total chlorophylls to carotenoids (5.45, 

227 4.27, and 4.40, respectively). Betula costata had the lowest ratio (2.90), owing to its high 

228 carotenoid content. In general, there is no clear relationship between the content and ratio of 

229 photosynthetic pigments in the leaves and the light requirements of the birch species studied. The 

230 amount of phenols and flavonoids in the leaves contributed to distinguishing the subgenera 

231 (Table 3). Total phenol content was highest in the leaves of the subgenus Neurobetula. Flavonoid 

232 synthesis was more active in plants of the subgenus Betula, which is thought to have originated 

233 from the Neurobetula. This is demonstrated by the flavonoids-to-total-phenols ratio (Fl/Ph). This 

234 indicator's informative value lies in determining the priority of individual metabolic pathways in 

235 the plant body that are involved in the implementation of the plant's adaptive strategy.

236 According to the results of the analysis of variance with pairwise comparison, the 

237 difference in the content of total phenolic compounds in the leaves of Betula pendula and the 

238 studied species was significant for Betula schmidtii, B. costata, B. ermanii from the subgenus 

239 Neurobetula, and B. grossa from the subgenus Betulenta. Interestingly, the flavonoid content of 
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240 B. pendula leaves was significantly higher than that of the polyploid species Betula pubescens 

241 and the closely related B. papyrifera from the subgenus Betula.

242 The inverse relationship (r = –0.91, p < 0.05) between the ratio of the number of flavonoids 

243 in the leaves to the total content of phenols and the ploidy of the plants brought interesting 

244 results. A significant correlation was observed between the duration of vegetation period, the 

245 content of total phenols (r = 0.74, p <0.05) and flavonoids (r = 0.65, p < 0.05) in the leaves. The 

246 levels of correlation between the duration of the growing season and the content of total phenols 

247 and flavonoids in the leaves of Neurobetula birches were 0.86 and 0.91, respectively. This is 

248 significantly higher than for plants in the subgenus Betula.

249 Only the duration of the vegetation season and the concentration of phenolic compounds 

250 were found to have a reliable relationship in Betula plants. In contrast to plants in the subgenus 

251 Neurobetula, this relationship was negative (r = -0.84). This diametrically opposed relationship 

252 between phenological and phytochemical parameters in representatives of different sections 

253 necessitates a thorough examination and additional research. The observed effect could be related 

254 to plant ploidy because the ratio of flavonoids to phenolic compounds decreased significantly in 

255 polyploid birch species (all the Neurobetula species studied). The phytochemical profiling of 

256 phenolic compounds revealed that the qualitative composition of flavonoids, coumarins, and 

257 oxycinnamic acid conjugates is quite specific in the leaves of the studied birch species. This 

258 enables the compounds to be used for species identification as well as research into the potential 

259 role of individual compounds (phenes) in the processes of adaptation to habitat conditions. The 

260 species of the subgenus Betula have very similar biochemical profiles (Fig. 1). Three flavonoids, 

261 for example (Rf ~ 0.58; 0.63; 0.73) were discovered in six species in this section. The presence of 

262 13 flavonoids in the leaves of the subgenus Betula confirms the findings of other researchers 

263 (Keinanen et al., 1999). 
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264 The phytochemical profiles of representatives of Far Eastern natural flora (Betula 

265 szechuanica, B. schmidtii, and B. costata) revealed a significant amount of flavonols with Rf 

266 values ranging from 0.73 to 0.81. Significant amounts of rutin (quercetin-3-O-rutinoside) were 

267 discovered in the leaves of Betula davurica and B. raddeana. A medium polar flavonol (Rf ~ 

268 0.63) was discovered in eight of the birch species studied. The biochemical profile of Betula 

269 ermanii leaves revealed flavonoids with Rf ~ 0.38-0.63. At the same time, B. ermanii was 

270 distinguished from other species by the presence of four products that fluoresced bright blue 

271 (after processing the chromatogram with NP-reagent and UV, λ = 366 nm). A phytochemical 

272 profiling cluster analysis confirmed that the birch species form groups based on the composition 

273 of phenolic compounds, which mostly correspond to the system proposed by de Jong, 1993 (Fig. 

274 2). The species of the subgenus Betula are divided into three subclusters (Ia, Ib, and Ic) in the 

275 first cluster. Betula papyrifera and B. pubescens are members of Subcluster Ia. Betula pendula 

276 and B. oycoviensis are both members of Subcluster Ib. Six common phenes were discovered in 

277 their chromatographic profiles. This discovery is explained by the fact that Betula oycoviensis is a 

278 hybrid of B. pendula and B. szaferi Jent. -Szaf. ex Stasz. R. Linda. There were no significant 

279 morphological or genetic differences between Betula pendula and B. oycoviensis (Linda et al., 

280 2020), so B. x oycoviensis is proposed as B. pendula var. oycoviensis. This hybrid is currently 

281 found primarily in the south of Poland, the Czech Republic, and the north-east of Hungary, but its 

282 range is gradually shrinking. Betula platyphylla and B. szechuanica are combined in the 

283 subcluster Ic. The taxa's ecobiomorphological similarity confirms their extraordinary affinity. 

284 According to modern classification, the latter species is Betula platyphylla, with the synonymous 

285 name B. platyphylla var. szechuanica (Miq.) H. Hara. In terms of the complex of phenolic 

286 compounds (nine flavonoids and chlorogenic acid), these species are the closest among all the 

287 plants of the genus Betula used in this study.
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288 The second cluster combines the highly phenolic species of Betula schmidtii and B. costata. 

289 These are representatives of the flora of the Far East and Northwest China. They are commonly 

290 found in dry oak groves alongside Quercus mongolica Fisch. ex Ledeb and have extremely 

291 strong wood.

292 In the third cluster, four species were combined: photophilous Betula davurica and B. 

293 raddeana, which have similar phenolic compounds profile, as well as shade-tolerant B. ermanii 

294 and B. grossa. The latter two are very similar morphologically and ecologically, although Betula 

295 grossa is more thermophilic than the Erman’s birch.

296 A PCA (principal component analysis) of biochemical profiles confirmed the close 

297 relationship between the complex of flavonoids and oxycinnamic acid conjugates (especially the 

298 chlorogenic and neochlorogenic acids) and the ecological characteristics of birch species. These 

299 phytochemical phenes are linked to plant ploidy, resistance to low temperatures, and moisture 

300 deficiency (Fig. 3).

301 Individual compounds in the flavonoid complex of the genus Betula are highly informative 

302 markers of biochemical variability within the subgenus. Six of the isolated flavonoids (Rf ~ 0.49; 

303 0.57; 0.63; 0.73; 0.87; 0.95) were found to be synthesized in the leaves of Betula plants. In the 

304 dimensional plane of the principal components, they form a group that includes Betula pendula, 

305 B. szechuanica, B. platyphylla, B. oycoviensis, and B. pubescens. B. papyrifera, an introduced 

306 species, is located somewhat separately in that dimensional plane with the greatest distance along 

307 PC2 and has a biochemical profile like B. pubescens.

308 Betula schmidtii and B. costata are the closest species to the subgenus Betula in the PC1 

309 and PC2 dimension planes. The phytochemical profiles of Betula davurica and B. raddeana 

310 contributed the most to the total dispersion of PC1 and are the most distant from the subgenus 

311 Betula along the axis of this component. 
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312 The phytochemical profiles of plants were used to analyze species within three subgenera, 

313 and the results generally agreed with the general clustering. Five species from the subgenus 

314 Neurobetula, one from the subgenus Betulenta, and six from the subgenus Betula were grouped 

315 into clusters in pairs (Fig. 4, b, d). Rutin and chlorogenic acid were detected in the profiles of 

316 Betula davurica and B. raddeana, and these species differed in phenolic compounds with Rf ~ 

317 0.23 and 0.92, respectively (Fig. 4, a). Betula ermanii had a flavonoid marker with Rf ~ 0.40, and 

318 B. grossa had a flavonoid marker with Rf ~ 0.67. The first cluster, which included Betula 

319 schmidtii and B. costata, had two flavonoids with Rf ~ 0.73 and 0.81 as markers. This group is 

320 related to two species in the subgenus Betula: B. pendula and B. platyphylla, both of which have 

321 these flavonoids in their biochemical profiles.

322 Adaptive reserves of Neurobetula birch species support their growth in mountainous 

323 conditions. Species in clusters II and III (Fig. 4, b) represent the flora of mountain forests in 

324 North America, as well as mountain systems in the Caucasus and East Asia. As previously stated, 

325 phenolic compounds that actively absorb light in the UV spectrum play an important role in plant 

326 resistance to increased insolation (Keski-Saari et al., 2005; Zhang et al., 2011).

327 Multiple correlation analysis between the qualitative composition of phenolic compounds 

328 and the morphological characteristics of the leaves of the studied species also suggests the 

329 existence of such relationships. The results of the analysis confirmed significant positive 

330 relationships between the presence of phenolic substance with Rf ∼ 0.20 and the perimeter of the 

331 leaf blade, the number of veins (r = 0.71, p = 0.01), and the ratio of the perimeter to the area of 

332 the leaf blade (r = 0.71, p = 0.003) (Fig. 5). The petiole length was negatively correlated with the 

333 phenolic substance; Rf ∼ 0.92 (r = – 0.66, p = 0.019). For rutin (Rf ∼ 0.43), this correlation 

334 coefficient was higher (r = – 0.81, p = 0.002). Furthermore, a positive correlation was found 

335 between a flavonoid (Rf ~ 0.78) and the area and perimeter of the leaf blade (r = 0.68, p = 0.02; r 
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336 = 0.63, p = 0.03, respectively). A negative correlation was found between the ratio of leaf blade 

337 length to width and the ratio of flavonoids to total phenols (r = – 0.75, p = 0.05). This suggests 

338 that the content of flavonoids in the total pool of phenolic compounds decreases in species with 

339 more elongated leaf blades. Flavonoids contributed the most to this relationship, with Rf values 

340 of ~ 0.63, 0.57, and 0.49 (r = – 0.70, p = 0.01; r = – 0.67, p = 0.02; and r = – 0.85, p = 0.001, 

341 respectively).

342 Discussion

343 Studies of plants from different geographical origins but growing under similar conditions, 

344 such as in botanical gardens, are of great interest in understanding the role of individual 

345 metabolites and their complexes in the adaptation strategies of species within sections or 

346 subgenera. In order to understand the secondary synthesis of birch, it is necessary to first 

347 understand the composition and ratios of the pigment complex and its components, because the 

348 secondary synthesis is dependent on its condition and functionality. Deepak et al. (2020) found 

349 that chlorophyll content was the only leaf trait that differed by plant provenance when studying 

350 the reflection properties of birch leaves in the visible/near-infrared spectrum. The total content 

351 and ratio of chlorophyll a and b in the leaves of 12 birch species were found to be relatively 

352 balanced in this study. Betula szechuanica, B. oycoiensis, and B. davurica had higher chlorophyll 

353 ratios despite having significantly lower chlorophyll b content in their leaves. We were unable to 

354 establish a clear relationship between the content and ratio of photosynthetic pigments in leaves 

355 and the light regime requirements of the plants among the birch species studied. This could imply 

356 that the quantitative and qualitative composition of plastid pigments in birch leaves is a rather 

357 plastic trait that varies according to plant sensitivity to environmental conditions.

358 The quantitative and qualitative analysis of phenolic compounds in the leaves of 12 birch 

359 species revealed two major plant groups, which are shown in pairs in Fig. 3. According to De 
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360 Jong (1993), the subgenus Neurobetula is the most closely related to the subgenus Betulenta. In 

361 the principal component coordinates (PC) spatial plane, Betula schmidtii and B. costata are 

362 closest to the subgenus Betula. The profiles of flavonoids and other phenolic substances in the 

363 leaves of Betula schmidtii and B. pendula were found to be largely consistent in this study. This 

364 is consistent with Keinänen's (1999) findings, as well as the composition of secondary stem 

365 metabolites (Julkunen-Tiitto et al., 1996). This is supports the suggestion that this member of the 

366 subgenus Neurobetula is more closely related to the subgenus Betula than to Betulenta species 

367 (Keinänen et al., 1999). However, the results of network analysis based on ITS (internal 

368 transcribed spacer) do not support the species' relationship. Betula schmidtii differs from other 

369 birch species in terms of ITS2 secondary structure, and it should be classified as a separate 

370 subgenus, according to Bina et al. (2016). 

371 Birch trees of the subgenera Neurobetula and Betulenta were classified into clusters II and 

372 III (Fig. 4b). In terms of dendrogram dissimilarity, Betula grossa (also known as B. ulmifolia 

373 Siebold & Zucc.) of the subgenus Betulenta is ecomorphologically closest to B. ermanii (the 

374 subgenus Neurobetula), which is also known as B. ulmifolia var. grandulossa (H.J.P. Winkl). 

375 Betula ermanii, like B. grossa, is found in eastern Siberia, Primorskii Territory, the Amur region, 

376 the Korean peninsula, and the Japanese islands of Hokkaido, Shikoku, and Honshu, where it 

377 grows in mixed forests. The spread of Betula grossa has spread to several Japanese islands 

378 (Kyushu, Shikoku, and Honshu). Betula grossa is most likely the result of allopolyploidization 

379 between members of the subgenera Betula and Asperae, according to genetic analyses (Wang et 

380 al., 2016). The results of genetic analysis using AFLP markers indicate that Betula costata, 

381 Betula ermanii, and B. davurica should be assigned to the subgenus Betula (Schenk et al., 2008). 

382 The existence of hybrids between these species and the species of the subgenus Betula, according 

383 to the authors, confirms the Asian origin of these species. 
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384 With the exception of Betula raddeana, the amount of total phenols in this section was 

385 significantly higher, reaching 10% of the leaf dry weight (Table 3). This backs up previous 

386 findings about the relatively high content of gallotannins in young birch leaves (Osipov et al., 

387 1997). Birch phenols are primarily composed of tannins, both condensed (proanthocyanidins) and 

388 hydrolyzable (gallotannins and ellagitannins). Tannins perform numerous ecophysiological 

389 functions (Kraus et al., 2003). They play a key role in plant resistance to increased insolation 

390 (Tegelberg et al., 2001). Tannins actively absorb UV light and protect assimilating organs from 

391 damage. This characteristic promotes plant growth on stony soils, hillsides, and high in the 

392 mountains. Plants have thus been subjected to natural selection for this trait for a long time. 

393 Obviously, the "high-phenolic" individuals have gained an advantage, and the additive genetic 

394 variability for this trait has decreased. The qualitative composition of phenolic substances in 

395 birch leaves may also be influenced by clinal variability, such as increased content of more 

396 hydrophobic flavonoids in plants of southern origin (Deepak et al., 2018). This could explain 

397 why species of the subgenus Neurobetula, which was introduced into central Ukraine, 

398 accumulate more phenols in their leaves than native species. This isn't always good for the plants. 

399 The activity of oxidases, which regulate hormonal status and are involved in lignin synthesis, is 

400 significantly affected by phenolic compounds (Mierziak et al. 2014). Tannin synthesis is 

401 generally negatively correlated with tree growth rate (Stevens et al., 2007). This explains the 

402 insufficient maturation of young shoots in birch trees, their later entry into winter dormancy, and, 

403 as a result, winter damage caused by low temperatures. Thus, the high polyphenol content of 

404 Betula schmidtii and B. costata leaves has had a negative impact on the plants. The findings 

405 support the hypothesis that the composition of phenolic compounds, including those found in 

406 Betula pendula, is genetically controlled (Klaper et al., 2001; Laitinen et al., 2005; Deepak et al., 

407 2018).
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408 Tannins are antioxidants that protect plants from excessive light energy. They have 

409 antifeedant properties and can inhibit pathogen development (Saleem et al., 2010). At various 

410 stages of leaf development, different tannin classes have been found to provide protection against 

411 phytophages. For example, in Betula pubescens subsp. czerepanovii (Orlova) Hämet-Ahti, the 

412 high content of gallotannins and ellagitannins is related to the low fitness of young leaves to 

413 herbivorous Lepidoptera. Proanthocyanidins perform this function in mature leaves (Henriksson 

414 et al., 2003). Tannins, on the other hand, do not appear to harm phytophages (Kopper et al., 2002; 

415 Kraus et al., 2003; Barbehenn, R., & Constabel, C., 2011). Plants can withstand insect damage if 

416 it is not catastrophic and does not occur over a long period of time. As a result, tannins in birch 

417 leaves play a role other than protecting plants from pest damage.

418 What, then, is the role of tannins aside from protection against harmful factors? The 

419 importance of tannins in providing essential nutrients to plants is well known (Northup et al., 

420 1998; Madrich, M., & Lindroth, R., 2015). Changes in the concentration of condensed tannins 

421 have been shown to be closely related to nitrogen recovery by plants after insect-induced 

422 defoliation. Birch trees from the subgenus Neurobetula had the highest phenolic content in our 

423 studies. These polyploid species are found primarily in mountainous areas. Only Betula 

424 papyrifera had a relatively high phenolic content among the subgenus Betula birch species. This 

425 species' hexaploids (2n = 84) are common in the Rocky Mountains and northwestern Canada (Li, 

426 1996). As a result, there is a link between birch trees' ability to root and grow on rocky slopes in 

427 the mountains and their high tannin content. The amount of organic matter on stony substrates in 

428 the mountains, on mountain slopes, and in mountain river valleys is insignificant when compared 

429 to forested gentle hillsides in valleys. This has an impact on overall biodiversity, trophic group 

430 structure, and the number of soil microbes. Tannin-producing plants are related to mycorrhizal 

431 fungi, which can grow in polyphenol-rich environments (Joanisse et al., 2009). Micromycetes 
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432 associated with Betula ermani, for example, vary in diversity and species composition along an 

433 altitudinal gradient (Osono, T., & Hirose, D., 2009). Under these conditions, plants' ability to 

434 extract nutrients and trace elements from the mineral part of substrates on their own is critical, 

435 and they have it. Polyphenols can form complexes with metals and participate in chemical 

436 weathering processes, as previously demonstrated (Cruz et al., 2000; Kraal et al., 2006). Most 

437 metal ions can be chelated by hydrolysed tannins containing several o-dihydroxy and trihydroxy 

438 aromatic rings. Tannins, as a result, have an effect on the mobility and bioavailability of trace 

439 elements in soil (Tiarks et al., 1989). Mineral weathering provides rock nutrients to 

440 microorganisms and plants. The impulse supply of significant amounts of aromatic compounds 

441 from fresh leaf litter temporarily increases the rate of microbial decomposition of soil organic 

442 matter (priming effect). Thus, the type of chemical weathering and its congruence are influenced 

443 by soluble organic matter (Fang et al., 2023). This property is especially important for birch trees 

444 growing in poor stony soils because the plants are deficient in important macro- and 

445 micronutrients. 

446 An important feature of the birch trees of the subgenus Neurobetula is their ability to 

447 accumulate and release significant amounts of tannins into the environment, which have several 

448 important functions for growing in mountain systems: protection against ultraviolet radiation, 

449 which is especially important for the young organs (leaves, stems, and flowers), protection 

450 against low and high temperatures, and providing mineral nutrients to plants and soil 

451 microorganisms.

452 The subgenus Betula members are widespread on the Eurasian plains. They grow in moist, 

453 rich soils. Compared to the subgenus Neurobetula, trees of the subgenus Betula had 1.8–2.5 times 

454 fewer phenolic compounds in their leaves, and their phenolic compound class ratio (F1/Ph) was 

455 shifted towards flavonoids (Table 2). We discovered positive correlations between the levels of 
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456 individual flavonoids in the leaves (Fig. 5). The degree of consistency in their composition was 

457 greater than that of the phenolic acids. Previously, Deepak et al. (2018) described such 

458 consistency in the synthesis and deposition of various groups of secondary metabolites on the 

459 surface of silver birch leaves. Flavonoids accumulate primarily in the leaf epidermis of vegetative 

460 organs (Deepak et al., 2018). Their synthesis is malleable and responsive to environmental cues. 

461 The amount of flavonoids in leaves increases in response to increased UV exposure (Kanazawa et 

462 al., 2012). They effectively shield vulnerable young plant tissues from UV radiation. Flavonoids 

463 can sensitize photoactive molecules and receive and transmit light energy (Sisa et al., 2010). 

464 Some flavonoids interact with protein ATP-binding sites (Arrighi et al., 2006). These 

465 polyphenols inhibit the activity of membrane NADPH oxidase, which is involved in the 

466 formation of superoxide anion radicals (Hodnick et al., 1994). The presence and position of 

467 hydroxyl groups in the aromatic A and B rings determines flavonoids' ability to neutralize free 

468 radicals in cells and protect membrane phospholipids from peroxidation (Heim et al., 2002). In 

469 comparison to kaempferol, the higher antioxidant activity of myricetin found in many birch 

470 species (Pawlowska, 1983) is explained by the greater number of hydroxyl groups in the aromatic 

471 B ring (Arora et al, 1998). Flavonoid molecules' chemical structure allows them to be 

472 incorporated and distributed in the lipid phase of cell membranes. As a result, they have an effect 

473 on their selective properties, act as ionophores, and are stable at low temperatures.  As a result, 

474 flavonoids have the functional ability to increase plant cold and frost resistance (Kaplan, 2004; 

475 Korn et al., 2008). This is especially important for Betula species that grow in areas with frequent 

476 thaws and frosts. 

477 Flavonoids (including quercetin and its glycosides) are known to play a role in auxin 

478 transport by regulating specific transport proteins (Murphy et al., 2000; Brown, 2001; Peer et al., 

479 2004; Taylor, Grotewold, 2005; Santelia, 2008). In Arabidopsis, a mutation that reduces 

Page 20 of 41Botany (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

B
ot

an
y 

D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
M

A
R

T
IN

-L
U

T
H

E
R

-U
N

IV
E

R
SI

T
A

E
T

 o
n 

06
/1

2/
23

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



21

480 flavonoid synthesis increases auxin transport activity significantly. This results in phenotypic 

481 changes and structural abnormalities in the plant (Buer et al., 2009). The morphological 

482 characteristics of species rich in dihydroxyflavonoids or monohydroxyflavonoids differ 

483 (Mathesius, 2001; Potters et al., 2009; Mierziak et al., 2014). These and other flavonoid functions 

484 help to explain their role in plant adaptation at the cellular and tissue levels.  As a result, there is 

485 reason to look for a link between flavonols and the shape of leaves and other organs, which is 

486 used to identify birch species in particular. The multiple correlation analyses presented above 

487 confirm the relationship between individual phenolic compounds, flavonoids/total phenols ratio, 

488 and leaf morphometric parameters (Fig. 5).

489 Thus, the previously established taxonomic system based on a complex of ecological and 

490 biomorphological characters (bark structure, leaf blade shape, fruit structure, etc.) is confirmed at 

491 the level of biochemical phenes in this study. The relatively high flavonoid content of the leaves 

492 of the birch subgenus Betula may attest to the evolution of a new, more perfect, adaptive strategy 

493 aimed at maintaining homeostasis through the development of a system of complex biochemical 

494 regulation of metabolism. This is realized at the ecosystem level through the active interaction of 

495 plants with endophytic and soil microorganisms via flavonoids (Dixon and Steele, 1999). The 

496 wide range of the white birch, which covers almost the entire territory of Eurasia and North 

497 America, attests to the efficacy of this strategy.

498 Conclusions

499 The analysis of phenolic compounds in native and introduced birch species of the 

500 subgenera Betula and Neurobetula confirms the hypothesis that there is a close relationship 

501 between phenolic compounds, morphogenesis, and plant adaptive abilities. Except for Betula 

502 papyrifera (0.05), the ratio of flavonoids to total phenols (Fl/Ph) in the leaves of the subgenus 

503 Betula trees was relatively high (0.11–0.18). This index was lower in plants of the subgenera 

Page 21 of 41 Botany (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

B
ot

an
y 

D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
M

A
R

T
IN

-L
U

T
H

E
R

-U
N

IV
E

R
SI

T
A

E
T

 o
n 

06
/1

2/
23

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



22

504 Neurobetula (0.04–0.10) and Betulenta (0.03), indicating subgeneric differences in polyphenol 

505 synthesis priorities. Given flavonoids' multifunctional role in redox reactions, auxin transport, 

506 and the enzymatic activity of individual metabolic pathways, as well as plant interactions with 

507 soil microorganisms, there is reason to believe that an increase in the proportion of flavonoids in 

508 birch leaves of the subgenus Betula is adaptive, allowing plants to expand their area of growth in 

509 today's climatic conditions. At the same time, the increased total phenol content in the leaves of 

510 Neurobetula birches may be indicative of their adaptation to the low nutrient conditions typical of 

511 the high mountains. 

512
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Table 1.  Location of the original birch planting material for the arboretum of the 
M.M. Gryshko National Botanic Garden (Kyiv, Ukraine)

Species Distribution Country Year
Subgenus Betula

B. pendula The Botanical Garden of NULES, Kyiv Ukraine 1948
B. platyphylla State Natural Biosphere Reserve 

"Kedrovaya Pad", Primorsky Krai
Russia 1949

B. szechuanica Yelizovsky District, Kamchatka Krai Russia 1944
B. oycoiensis Warsaw Poland 1950
B. pubescens Rivne region Ukraine 1980
B. papyrifera Ottawa Canada 1949

Subgenus Neurobetula
B. schmidtii State Natural Biosphere Reserve

"Kedrovaya Pad", Primorsky Krai,
Russia 1949

B. costata Primorsky Krai Russia 1950
B. ermanii Headwaters of the Kamchatka river Russia 1949
B. davurica State Natural Biosphere Reserve 

"Kedrovaya Pad", Primorsky Krai
Russia 1948

B. raddeana O.V. Fomin Botanical Garden of Taras 
Shevchenko National University, Kyiv

Ukraine 1950

Subgenus Betulenta
B. grossa Kornik Poland 1950
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Table 2.  Content of plastid pigments (mg·g-1 of dried mass) and their ratio in the leaves of 

plants of the genus Betula (x ± SE, n = 4)

Species *Chla Chlb Chla/b Chla + Chlb Kr 
Subgenus Betula

B. pendula 4.41 ± 0.14 1.39 ± 0.06 3.16 ± 0.08 5.80 ± 0.19 1.46 ± 0.05
B. platyphylla   3.37 ± 0.18 b  0.94 ± 0.01 b 3.57 ± 0.16   4.32 ± 0.19 b 1.32 ± 0.02
B. oycoiensis 4.45 ± 0.21 1.07 ± 0.04   4.18 ± 0.21 b 5.51 ± 0.23 1.29 ± 0.02
B. pubescens   2.99 ± 0.15 c   0.76 ± 0.07 c   3.97 ± 0.27 a   3.76 ± 0.21 c 1.00 ± 0.04 b

B. szechuanica 4.02 ± 0.17   0.94 ± 0.02 b   4.29 ± 0.14 b 4.96 ± 0.18  0.91 ± 0.03 b

B. papyrifera 4.29 ± 0.20 1.31 ± 0.02 3.27 ± 0.20 5.60 ± 0.18 1.48 ± 0.02
Subgenus Neurobetula

B. schmidtii 4.42 ± 0.20 1.43 ± 0.03 3.09 ± 0.15 5.84 ± 0.19 1.76 ± 0.04
B. costata 3.82 ± 0.19 1.17 ± 0.03 3.26 ± 0.20 4.98 ± 0.19   1.72 ± 0.03
B. ermanii   3.23 ± 0.16 b 1.05 ± 0.04 3.06 ± 0.04   4.29 ± 0.20 a   0.98 ± 0.04 b

B. davurica   3.69 ± 0.14 a   0.96 ± 0.06 b   3.89 ± 0.33 a   4.65 ± 0.14 a    1.13 ± 0.02 a

B. raddeana 4.41 ± 0.20 1.36 ± 0.04   3.24 ± 0.05 5.76 ± 0.24 1.31 ± 0.03
Subgenus Betulenta

B. grossa   3.60 ± 0.12 a   0.97 ± 0.05 a 3.73 ± 0.31   4.57 ± 0.10 a 1.15 ± 0.02
* Chla; Chlb — chlorophylls а and b, respectively; Kr — carotenoids; the Dunn’s post hoc test 

for comparisons with B. pendula, the pairwise differences are statistically significant: a – p-values ≤ 
0.05,  b – p-values ≤ 0.01, c – p-values ≤ 0.001 
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Table 3.  The content of total phenols, flavonoids (mg·g-1 of dried mass) and their ratio in the leaves 

of plants of the genus Betula (х ± SE, n = 4)

Species 2n*              Ph      Fl Fl/Ph
Subgenus Betula

B. pendula 28   81.2 ± 1.26 14.3 ± 0.32 0.18
B. platyphylla 28   87.5 ± 1.39   9.5 ± 0.41 0.11
B. oycoiensis 28   78.0 ± 1.74   9.6 ± 0.45 0.12
B. pubescens 56   58.6 ± 1.36     6.3 ± 0.33 a 0.11
B. szechuanica 28   84.9 ± 1.71 14.2 ± 0.71 0.16 

B. papyrifera 56, 70, 84 117.1 ± 1.56     5.8 ± 0.30 a   0.05 c

Subgenus Neurobetula
B. schmidtii 28 199.3 ± 1.72 b 19.7 ± 0.71 0.10
B. costata 28 256.8 ± 3.93 b 23.0 ± 0.38   0.09 a

B. ermanii 56,112 139.3 ± 2.44 a   7.5 ± 0.31   0.05 b

B. davurica 56, 84, 112 119.1 ± 1.02     4.7 ± 0.30 b   0.04 c

B. raddeana 84   61.9 ± 1.14     3.8 ± 0.28 b   0.06 b

Subgenus Betulenta
B. grossa 84 139.7 ± 2.03 a     3.5 ± 0.28 c   0.03 c

Ph — phenolic compounds, Fl — flavonoids, Fl / Ph — the ratio of flavonoids to total phenols; 
Dunn’s post hoc test for comparisons with B. pendula, the pairwise differences are statistically 
significant: a — p-values ≤ 0.05, b — p-values ≤ 0.01, c — p-values ≤ 0.001; * plant ploidy according 
to Pawlowska, 1983; Li et al., 1996; Keinanen et al., 1999; Wang et al., 2016
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Fig. 1. Chromatographic profiles of leaf extracts of plants of the genus Betula 
Figure legends: 1 – Betula pendula; 2 – B. platyphylla; 3 – B. oycoviensis; 4 – B. papyrifera; 5 – B. 

pubescens; 6 – B. szechuanica; 7 – B. schmidtii; 8 – B. costata; 9 – B. davurica; 10 – B. raddeana; 11 – B. 
ermanii; 12 – B. grossa; S1 – rutin, S2 – chlorogenic acid, S3 – quercetin 

303x138mm (300 x 300 DPI) 
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Fig. 2. Dendrogram of affinity of species of the genus Betula by the qualitative composition of phenolic 
compounds in the leaves and their position in subgenera by De Jong (1993) 

Figure legends: a (0.15-0.21), b (0.08-0.14), c (0.01-0.07) – high, medium and low ratio of flavonoids to 
total phenols in the leaf, respectively; (species ploidy according to Pawlowska, 1983; Keinanen et al., 1999; 

Wang et al., 2016) 
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Fig. 3. The results of principal component analysis on the polyphenol profiles 
of birch leaves of the subgenera Neurobetula, Betulenta and Betula 

199x129mm (300 x 300 DPI) 
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Fig. 4. Distribution of birch species in the subgenera Neurobetula, Betulenta (a, b) and Betula (c, d) by 
coordinates of principal components (PCA) and in clusters according to the results of analysis of the 

qualitative composition of phenolic compounds in the leaves 
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Fig. 5. Correlation matrix of phytochemical and morphological phens of birch leaves of 
the subgenera Neurobetula, Betulenta and Betula 

Figure legends: Ph — phenolic compound, Fl — flavonoid, Fl / Ph — the ratio of the content of flavonoids to 
total phenols; Pl — the length of the petiole, Ar — the area of the leaf blade, Pr — the perimeter of the leaf 
blade, W — the width of the leaf blade, Lp — the length of the petiole with length of the leaf blade, V — the 
number of pairs of veins, L — the length of the leaf blade, L / W — the ratio of the length and width of the 

leaf blade, P / A — the ratio of the perimeter of the leaf blade and square root of leaf area; * — p < 0.05, ** 
 — p < 0.01, *** — p < 0.001 
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