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Abstract: Quantifying the propagation time (PT) and trigger threshold (TR) from 20 

meteorological to soil moisture drought is critically important for drought early 21 

warning and precise defense. Nevertheless, existing propagation characteristics 22 

usually have a low temporal-spatial resolution, and their dynamics and related driving 23 

mechanisms (such as global warming and greening) are still incompletely understood. 24 

To fill the knowledge gap, this study proposes a drought propagation model based on 25 

the Bayesian causal analysis framework for quantifying the PT and TR with a high 26 

resolution. Taking Northeast China (NEC) as a case study, we further explore the 27 

dynamics of drought propagation characteristics in recent decades and possible 28 

driving mechanisms using the sliding window and Random Forest model. Results 29 

showed that: (1) the drought PT varies spatially and temporally in the study area, with 30 

long PT in the central plain and western high-altitude areas in the early growing 31 

season (typically over 200 days), while short in the middle and late growing season in 32 

most regions (less than one month in July and August), The TR is generally lower 33 

than 80mm in the western regions and do not change significantly with time; (2) the 34 

PT and TR in the vast central and western regions exhibit a downward trend in the 35 

late growing season, resulting in a strikingly increased risk of drought propagation; (3) 36 

Increasing vapor pressure deficit (VPD) due to warming, along with decreasing 37 

aridity index (AI) due to precipitation shortage are the main drivers on the accelerated 38 

drought propagation. Moreover, local greening has also played a critical role in 39 

accelerating propagation via transpiration that consumes soil water, which contributes 40 

more than 20% to propagation dynamics. Overall, this study sheds new insights into 41 
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drought propagation dynamics and mechanisms in a changing environment, providing 42 

a promising avenue for drought early warning and mitigation. 43 

Keywords: meteorological drought; soil moisture drought; propagation time and 44 

trigger threshold; propagation dynamics and mechanism; warming and greening; 45 

drought early warning 46 

1 Introduction 47 

Drought is an extreme water shortage phenomenon in the process of terrestrial 48 

hydrological cycle, which is usually hidden and difficult to forecast in advance 49 

(Mishra and Singh, 2011). In many cases, drought can be hardly realized until it has 50 

caused considerable losses to the ecological environment, agricultural production and 51 

social economy (Chen et al., 2022; Mahecha et al., 2022; Yao et al., 2022; Zhao and 52 

Wang, 2021). According to the affected objects, drought is generally classified into 53 

four categories: meteorological drought (i.e., rainfall deficit), agricultural drought (i.e., 54 

soil moisture deficit), hydrological drought (i.e., abnormal reduction of river 55 

streamflow) and socio-economic drought (i.e., imbalance of water supply and demand 56 

affecting economic development) (Zhang et al., 2022). Typically in nature, different 57 

types of drought rarely occur in isolation in the hydrological cycle, and their causative 58 

relationships are often entwined (Van Loon, 2015; Zhang et al., 2022). Drought signal 59 

generally starts from the abnormal decrease of precipitation (Mishra and Singh, 2010).  60 

For example, with the precipitation deficit persists, soil moisture stored in the early 61 

stage will be continuously dissipated by evapotranspiration, then the soil moisture 62 
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drought may be triggered. If the precipitation cannot be replenished in time, the 63 

drought signal may continue to propagate downward along the hydrological cycle, 64 

and eventually resulting in hydrological drought or even groundwater drought (Kumar 65 

et al., 2016; Tijdeman et al., 2022; Vicente-Serrano et al., 2020). The process of 66 

drought signals transmitting along the hydrological cycle is known as drought 67 

propagation (Apurv et al., 2017; Zhang et al., 2021a). Developing a holistic 68 

understanding of the propagation process of drought signals in the hydrological cycle 69 

system can reveal the formation principle of drought and provide a new path for 70 

drought early warning (Li et al., 2022).  71 

In general, meteorological drought is the precursor of other types of droughts, but 72 

the shortage of precipitation usually does not lead to other drought types immediately. 73 

There are obvious time accumulation and threshold effects in the evolution of drought. 74 

Taking meteorological to soil moisture drought as an example, the drought signal 75 

needs to continue for a period of time after the onset of meteorological drought to 76 

accumulate the shortage of precipitation. When this precipitation deficiency beyond a 77 

certain threshold, it may lead to a decrease in soil moisture, thereby triggering soil 78 

moisture drought. The time and threshold effects in the process of drought 79 

development are generally defined as drought propagation time (PT) and triggering 80 

threshold (TR) (Tijdeman et al., 2022; Wu et al., 2021). Having advance knowledge 81 

of the drought propagation characteristics (PT and TR) in a particular region is crucial 82 

for local water resource managers to timely understand the development status and 83 

severity of drought, estimate the amount of water resources required to alleviate it, 84 



5 
 

and determine when to take appropriate measures (Han et al., 2021). These key pieces 85 

of information are vital for early warning and risk management of drought. 86 

In recent years, the propagation between different types of droughts has received 87 

increasing attention in the hydrological community (Apurv et al., 2017; Zhang et al., 88 

2021). Earlier studies on the drought propagation commonly employed a relatively 89 

simple correlation coefficient method to identify and analyze the general relationship 90 

between different drought types (Barker et al., 2016; Huang et al., 2017; López-91 

Moreno et al., 2013). For example, the PT of meteorological drought to hydrological 92 

drought can be determined by using the cumulative scales of the Standardized 93 

Precipitation Index (SPI) that corresponds to the maximum correlation coefficient 94 

between different cumulative scales of SPI and the Standardized Streamflow Index 95 

(SSI) (Huang et al., 2017). In subsequent studies, the run theory was usually used to 96 

extract drought events in drought index series, and then identified the propagation 97 

process between droughts by matching different types of drought events (Bevacqua et 98 

al., 2021; Wu et al., 2018). However, the data length can limit the number of drought 99 

events that may be finally matched. Recently, some studies employed probability-100 

based methods to estimate the probability of soil moisture drought caused by 101 

meteorological drought and further analyzed the relationship between different types 102 

of droughts (Xu et al., 2021; Zhu et al., 2021). Additionally, hydrological models have 103 

also been used to investigate the propagation of droughts at the basin scale. Such 104 

methods have a sound physical basis (Zhang et al., 2021), and can simulate the 105 

changes in hydrological variables for analyzing how drought signals propagate. In 106 
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spite of these, the models often involve many parameters to be estimated and may 107 

suffer from the equifinality issue for different parameters, which complicates their 108 

usage. Furthermore, the quality and length of data in many regions are often 109 

insufficient to meet the requirement of the models, which also hinders their practical 110 

applications (Konapala and Mishra, 2020; Melsen and Guse, 2019; Zhang et al., 2022).  111 

These studies have provided valuable insights that improved our understanding of 112 

drought propagation processes in the hydrological cycle and the formation mechanism 113 

of drought disasters, but the research on drought propagation is still in the initial stage. 114 

In the process of drought propagation, PT and TR are two important characteristics 115 

determining whether or not the drought signal propagates downward, and as well as 116 

the key parameters for early warning and drought prevention (Guo et al., 2020). 117 

However, most of the current studies focus on the calculation and analysis of the PT 118 

between different droughts, while the drought TR, which indicates the precipitation 119 

deficit required for drought signal transmission, remains unclear. In addition, most of 120 

the current research investigated drought propagation processes only at the seasonal 121 

scale. However, quantitative studies for the months of the growing season are rare, 122 

and the unit of the PT is typically measured on a monthly scale, so the temporal 123 

resolution needs to be improved to meet the application requirements (Li et al., 2022). 124 

Furthermore, it is remains unclear whether the fluctuation of regional water and 125 

energy conditions in a warming climate will change the drought propagation process 126 

(especially in the cold regions of higher latitudes) (Peng et al., 2019). As a component 127 

of the terrestrial ecosystem, vegetation plays a significant role in the water and energy 128 
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exchange between land and atmosphere (Bonan, 2008; Cheng et al., 2022; 129 

Seneviratne et al., 2010), and is a bridge to connect and regulate the soil moisture-130 

atmosphere feedback process (Li et al., 2018; Zhao et al., 2022). Therefore, it will be 131 

necessary to investigate whether the dynamic change of vegetation (especially in the 132 

greening regions) will exacerbate the propagation of drought signals between 133 

meteorology and soil moisture (Guo et al., 2023). In the absence of studies addressing 134 

these topics, the driving mechanisms of drought propagation under changing 135 

environments remain largely unknown. 136 

Northeast China (NEC) is the main production base of corn, soybean and animal 137 

husbandry in China, which has an important impact on food security in China and 138 

even the world (Wan et al., 2022). In addition, NEC is also rich in forest resources. It 139 

is one of the major carbon sink areas in China and has important ecological functions 140 

(Ge et al., 2022). However, under the background of global warming, due to the 141 

relatively high latitude of NEC, the temperature in this region has risen significantly 142 

in recent decades (Zhang et al., 2022), and the drought has shown an increasing trend 143 

(Guo et al., 2017; Zhao et al., 2020). This will bring unprecedented challenges to 144 

agricultural production and ecological environment protection in NEC (Li et al., 145 

2022). 146 

To sum up, in order to effectively warn against soil moisture drought, this study 147 

attempts to address the following three scientific questions: (1) How to effectively 148 

estimate the temporal and spatial distribution of drought PT and TR throughout the 149 
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growing season; (2) How PT and TR respond to the warming and greening contexts; 150 

(3) Which factors dominate the drought propagation dynamics and what the 151 

propagation mechanisms that drive drought signals are. Taking NEC as the study area, 152 

the study used the SPI and standardized soil moisture index (SSMI) to characterize 153 

meteorological and soil moisture drought respectively. Based on the proposed drought 154 

propagation evaluation framework, five Cupula functions were utilized to establish 155 

the connection between precipitation and soil moisture, and the PT and TR required 156 

for soil moisture drought at various grades were extracted with a ten-days resolution. 157 

We further investigated the dynamic trend of drought propagation characteristics 158 

using a sliding window, and the important influencing factors were determined by 159 

using a Random Forest model. Finally, the driving mechanisms behind of drought 160 

propagation processes under changing environment were analyzed. Overall, this study 161 

is expected to provide a scientific basis for drought early warning and drought disaster 162 

management. 163 

The rest of this paper is organized as follows, Section 2 will introduce the overview 164 

of the study area and show the basic information of the data used, and Section 3 will 165 

explain the principle and procedure of the method used in this study; then Section 4 166 

will show and analyze the results obtained; Section 5 is the discussion part; and 167 

finally the main conclusions of this paper will be given in Section 6. 168 

2 Study area and data 169 

2.1 Study area  170 
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Northeast China (NEC) is located in the northeast of the Eurasian continent (115°171 

52′-135°09′E, 38°40′-53°56′). It covers four provinces and cities with a total area of 172 

about 1.25 million km2. Topographically, NEC features a plain surrounded by 173 

mountains on its three sides. In the middle of the study area is the Northeast Great 174 

Plain, which consists of Sanjiang Plain, Songnen Plain and Liaohe Plain. The Great 175 

Plain is surrounded by the Greater Khingan Mountains in the west, the Lesser 176 

Khingan Mountains in the north, and the Changbai Mountains in the east (Fig1(a)). 177 

The NEC has a temperate continental monsoon climate, which is warm and rainy in 178 

summer and cold and long in winter. From south to north, it crosses the middle 179 

temperate zone and the sub-frigid zone, where the annual average temperature drops 180 

from 11.7°C to -5°C. From east to west, the NEC crosses semi-humid, semiarid and 181 

arid areas, with the annual total precipitation gradually declining from 1000mm to 182 

less than 200mm (Fig1(b)). As the third largest black soil belt in the world, the 183 

Northeast Great Plain is rich in organic matter, with the total grain output accounting 184 

for more than 1/5 of the country (Wan et al., 2022). In addition, the mountains 185 

surrounding the plain are the largest distribution area of natural forests in China 186 

(Fig1(c)) (Ge et al., 2022). The high forest coverage can prolong ice and snow 187 

melting, which boosts local agriculture and forestry due to the forest snow storage. 188 

However, climate change has considerably increased the temperature (Zhang et al., 189 

2022), and exacerbated drought in NEC over the recent decades (Guo et al., 2017; 190 

Zhao et al., 2020), which is extremely unfavorable for rainfed agriculture in the region. 191 

 192 
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 193 

 194 

----------------------------------------------------- 195 

Place Fig. 1 here. 196 

Fig. 1. (a) The topography and elevation of the NEC. (b) The spatial distribution of 197 

annual average precipitation in the NEC. (c) Terrestrial ecosystems distributed in the 198 

study area. 199 

----------------------------------------------------- 200 

2.2 Dataset  201 

This study mainly used the long time series of precipitation and soil moisture data 202 

from 1962 to 2014 to establish the relationship between meteorological drought and 203 

soil moisture drought. The daily gridded precipitation is from the China National 204 

Meteorological Information Center (http://www.cma.gov.cn/2011qxfw/2011qsjgx/), 205 

which was produced by 2472 national meteorological observation stations by spatial 206 

interpolation, with a resolution of 0.5 ° × 0.5 °. This dataset has been widely verified 207 

as reliable and extensively used in the monitoring and evaluation of regional drought 208 

(Fang et al., 2019). Monthly soil moisture data were derived from Global Land Data 209 

Assistance System Version 2 (GLDAS-2.0) (https://disc.gsfc.nasa.gov/), with a spatial 210 

resolution of 0.25 ° × 0.25 °. This dataset has been verified in many regions of China 211 

as well, providing reliable soil moisture data for agricultural drought research (Wang 212 

et al., 2016; Zhang et al., 2017; Zhang et al., 2021). In addition, the potential 213 

evapotranspiration (PET) and vapor pressure deficit (VPD) were calculated using the 214 

http://www.cma.gov.cn/2011qxfw/2011qsjgx/
https://disc.gsfc.nasa.gov/
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meteorological variables (such as temperature, pressure, wind speed, radiation, and 215 

relative humidity) in the GLDAS-2.0 dataset (1962-2014), which were likewise 216 

widely applied in China (Han et al., 2021a; Li et al., 2022). Besides, we used the 217 

NDVI index (1981-2014) provided by the Global Inventory Monitoring and Mapping 218 

System (GIMMS-NDVI3g) (https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0) to 219 

analyze the impact of vegetation cover change on drought evolution in recent decades. 220 

In this study, monthly soil moisture and meteorological data with 0.25 °×0.25 ° 221 

resolution and monthly NDVI data with 8 km ×8 km resolution were upscaled to 0.5° 222 

×0.5° in order to match the spatial resolution of the precipitation dataset. 223 

3 Methods 224 

Fig. 2 illustrates the method framework of this paper, which consists of five main 225 

procedures: (1) calculating the standardized meteorological and soil moisture drought 226 

index, (2) establishing the relationship between soil moisture and precipitation, (3) 227 

quantifying the PT of soil moisture drought at different magnitudes, (4) quantifying 228 

the drought TR, and (5) driving force analysis of the possible trend in drought 229 

propagation characteristics. The details of the method framework are explained as 230 

follows. 231 

----------------------------------------------------- 232 

Place Fig. 2 here. 233 

Fig. 2. The framework of identification methods for the drought propagation process. 234 

----------------------------------------------------- 235 

3.1 Standardized drought indices 236 

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0
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In recent decades, many drought indicators have been proposed, among which the 237 

standardized drought indices constructed on the template of SPI have developed the 238 

most rapidly (Zhang et al., 2022). The principle of constructing such indices is to fit 239 

specific hydrological variables (e.g., precipitation, runoff and soil moisture) through 240 

appropriate probability distribution functions (e.g., Gamma and Gaussian distribution). 241 

After calculating the probability of each hydrological variable value under the target 242 

cumulative scale, the corresponding drought indices can be finally obtained through 243 

standard normalization of the probability values (Han et al., 2021a). This approach 244 

was first proposed by (McKee et al., 1993), and compared with traditional drought 245 

indicators (such as PDSI), these indices have variable time scales, allowing drought 246 

conditions to be evaluated flexibly on monthly, seasonal, or annual scales in 247 

accordance with the needs (Fang et al., 2019). In addition, due to the standardized 248 

processing, the indices are spatiotemporal comparable, and the calculation is also 249 

relatively straightforward with fewer data requirements. Because of these advantages, 250 

drought indices developed with this principle (e.g., SPI, SPEI, SSMI, and SSI) have 251 

gained widespread use in drought research worldwide (Bevacqua et al., 2021; 252 

Choudhury et al., 2021; Kalisa et al., 2020; Peng et al., 2020; Zhao et al., 2020). The 253 

SPEI is a drought index established based on the water balance of a certain region (the 254 

difference between potential evapotranspiration and actual precipitation). The main 255 

advantage of this index is that it can comprehensively consider the meteorological 256 

drought development status of a certain region from both precipitation and potential 257 

evaporation aspects, however the theme of this study is to establish a direct 258 
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relationship between atmospheric precipitation and soil moisture, and further 259 

investigate the propagation process of meteorological drought to soil moisture drought. 260 

In addition, the soil moisture drought triggering threshold calculated in this article is 261 

also expressed by the degree of actual precipitation deficit. Therefore, in 262 

characterizing meteorological drought, this article uses the SPI index which can 263 

directly reflect the surplus or deficit of precipitation, while considering potential 264 

evapotranspiration as an important driving factor in the drought propagation process. 265 

Then SSMI was used to characterize soil moisture drought. A ten-days cumulative 266 

unit was used as the minimum cumulative unit in calculating the SPI index for every 267 

month during the growing season (i.e., May to September) on the time scale of 1-36 268 

ten-days. By establishing the relationship between SPI at different cumulative scales 269 

and SSMI at monthly scales, the propagation characteristics from meteorological 270 

drought to soil moisture drought are further estimated (see Section 3.2). Here the 271 

calculation steps of SPI and SSMI will be skipped, which can be referred to (Han et 272 

al., 2021a; Li et al., 2022) for more details. The grading criteria for standardized 273 

drought indices are shown in Table 1. 274 

----------------------------------------------------- 275 

Place Table. 1 here. 276 

Table. 1. Drought classification standard of SPI and SSMI 277 

----------------------------------------------------- 278 

After obtaining the standardized drought indices, in order to the preparation for the 279 

next step to establishing the joint distribution between precipitation and soil moisture, 280 
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we calculated the Pearson correlation coefficients between the SPI and SSMI in 281 

respective scales (Eq. (1)), to analyze the spatial and temporal distribution of the 282 

dependence of soil moisture on the precipitation series at different scales. 283 

  ,ij ij jr corr SPI SSMI  (1) 284 

where i denotes the cumulative scale of SPI (i=1,2, ..., 36 ten-days), j denotes the 285 

month in the growing season (from May to September), and rij is the Pearson 286 

correlation coefficient between the monthly scale SSMI series in month j and SPI 287 

series with accumulated scale of i ten-days. 288 

3.2 Quantification of drought propagation time and trigger threshold 289 

3.2.1 Constructing joint distribution based on the Copula theory 290 

How to construct a multidimensional joint distribution is the premise and core of 291 

studying the interdependent structure of hydrological variables. Traditionally, the joint 292 

distribution functions were built through multidimensional probability distributions 293 

(e.g., multidimensional Gaussian distribution or exponential distribution). However, 294 

the approach generally demands specific distributions for the marginal distribution of 295 

variables, which greatly limits its applicability. The proposal and improvement of 296 

Copula function provide a new solution to the above problem (Fang et al., 2019; Wu 297 

et al., 2021). Basically, the Copula function is used to describe the multidimensional 298 

correlation structure, which connects the marginal distribution functions. Due to 299 

unrestricted forms of marginal distribution, as well as the flexibility and diversity of 300 

Copula function, this approach has been widely used in the hydrological community 301 
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to analyze the relationship between different hydrometeorological variables (Fang et 302 

al., 2019; Wu et al., 2021; Zhao et al., 2020). 303 

In this study, five two-dimensional Copula functions commonly used in the field of 304 

hydrology (see Table 2) were selected to establish the joint distribution of monthly 305 

SSMI and SPI at different time scales. Regardless of which Copular function is used, 306 

the joint distribution ( ,iSPI SSMIF ) of SPI and SSMI series is calculated as follows:  307 

 
   

    
, , ,

                             ,
i

i

SPI SSMI i

SPI SSMI

F spi ssmi P SPI spi SSMI ssmi

C F spi F ssmi

  


 (2) 308 

where 
iSPIF  and SSMIF  represent the marginal distribution functions of SPI and SSMI 309 

sequences, respectively, i denotes the cumulative scale of SPI and its value is 1to36 310 

ten days, C is the one of the five Copula functions. In this study, the optimal Copula 311 

function for each grid was determined by the least Squared Euclidean Distance (SED).  312 

----------------------------------------------------- 313 

Place Table. 2 here. 314 

Table 2. An overview of the five candidate Copulas 315 

----------------------------------------------------- 316 

3.2.2 Identification of the drought propagation time 317 

The drought PT was determined by the conditional probability of meteorological 318 

drought leading to soil moisture drought, which was calculated by a Bayesian causal 319 

analysis framework. The specific procedures are as follows: 320 

(1) Firstly, the conditional probability of meteorological drought leading to different 321 
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grades of soil moisture drought under different time scales is calculated as 322 

follows: 323 

 

 
 

 
    

 

|

,
  

,
  j ji

i

ji j j i

j j i

j i

SSMI SPI

SPI

P P SSMI ds SPI ds

P SSMI ds SPI ds

P SPI ds

C F ds F ds

F ds

  

 






 (3) 324 

where ds denote different drought grades, the values are -0.5, -1, and -1.5 325 

represent mild, moderate, and severe soil moisture drought scenarios, respectively, 326 

jiP  indicates the probability of soil moisture drought above ds grade caused by 327 

meteorological drought with a cumulative scale of i (ten-days) in month j, C 328 

represents the joint distribution function using the optimal Copula function. 329 

(2) Based on the probability value ( jiP ) calculated by Eq. (3), the drought 330 

propagation probability matrix Pm as follows: 331 

 

1,36 2,36 3,36 4,36 5,36

1,2 2,2 3,2 4,2 5,2

1,1 2,1 3,1 4,1 5,1

m

P P P P P

P
P P P P P
P P P P P

 
 
 
 
 
 

 (4) 332 

where each row of the matrix represents the probability of causing soil moisture 333 

drought at one of the 36 (ten-days) accumulation scales, and each column 334 

represents one of the five months in the growing season (i.e., from May to 335 

September). Fig. 3 schematically illustrates the calculation of the probability 336 

matrix. Then a probability threshold (PI) is selected to determine the PT from the 337 

probability matrix. If the matrix contains a probability greater than the threshold, 338 
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the meteorological drought cumulative scale i that first reaches the threshold will 339 

be regarded as the PT from meteorological drought to soil moisture drought 340 

(PT=i). Here the threshold is configured as 0.6, and the details will be discussed 341 

in Section 5.2. 342 

----------------------------------------------------- 343 

Place Fig. 3 here. 344 

Fig. 3. Schematic diagram of probability matrix calculation steps. 345 

----------------------------------------------------- 346 

3.2.3 Quantifying drought trigger threshold 347 

Based on obtaining the PT, TR (i.e., the total amount of precipitation deficit 348 

required to trigger soil moisture drought within the duration of a continued water 349 

shortage period of PT) can be further identified. The basic idea for quantifying TR is 350 

to first establish the joint distribution between the soil moisture series of each month 351 

and the accumulated precipitation series under the corresponding PT. Then, using 352 

conditional probability formula (Eq. (5)), calculate the probability of soil moisture 353 

drought occurrence under different levels of precipitation deficits, and finally select 354 

the TR for drought propagation based on this probability. The specific procedures are 355 

as follows: 356 

Firstly, the probability of soil moisture drought caused by different precipitation 357 

intervals under the PT accumulation scale is calculated with following equation: 358 
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 
 

 
   

   
         
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| 1

, 1
  

1

, , 1
  

1
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j j pt j j pt

j pt j pt
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SM Pr SM Pr

Pr Pr

P P SM sm pr Pr pr

P SM sm pr Pr pr

P pr Pr pr

P SM sm Pr pr P SM sm Pr pr

P Pr pr P Pr pr

C F sm F pr C F sm F pr

F pr F pr
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   


  

     


   

 


 

 (5) 359 

where pt is the drought PT in month j, j ptPr  represents the total amount of precipitation 360 

within the duration range of PT. jSM  represents the status of soil moisture in month j, 361 

sm refers to the soil moisture content corresponding to the occurrence of drought at 362 

the ds grade. pr is a looping variable whose initial value represents the total 363 

precipitation amount (accumulated within the PT time range) corresponding to the 364 

occurrence of meteorological drought at the ds grade. jP  refers to the probability of 365 

triggering soil moisture drought under the state range of precipitation total within [pr-366 

1, pr]. 367 

Next, the precipitation interval [pr-1, pr] will be iteratively reduced by a step of 368 

1mm, and Eq.5 will be used to calculate the probability values of soil moisture 369 

drought caused under different precipitation intervals. When the probability value 370 

exceeds the preset threshold of 0.8 (to ensure that TR has higher reliability, we set a 371 

probability threshold higher than that of PT), the iteration is stopped. At this point, TR 372 

is equal to the difference between the multi-year average precipitation in the PT time 373 

range and the pr value at the end of the iteration ( TR Pr pr  , where Pr  is the 374 

multi-year average precipitation). In other words, TR represents the total precipitation 375 
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deficit relative to normal state that is required to trigger soil moisture drought, and its 376 

unit is millimeters. 377 

3.3 Exploring drought propagation dynamics and possible drivers 378 

In order to identify the dynamic trend of the propagation characteristics in the 379 

changing environments, we segmented the original data using a sliding window with a 380 

length of 31 years, and then calculated each window independently by the method 381 

described in Section 3.2 to determine how drought PT and TR have changed over 382 

recent decades. To test the significance of the trend, the Mann-Kendall trend test 383 

method (MK) with a significance level of 0.05 was used (Burn and Hag Elnur, 2002). 384 

This study used Random Forest model to evaluate the importance of different 385 

predictors for identifying possible drivers of the trend in propagation characteristics. 386 

The Random Forest model is one of machine learning algorithms, which was first 387 

proposed by Breiman (2001) and has been widely used to solve classification and 388 

regression problems (Giri et al., 2023; Rosecrans et al., 2022). The model is 389 

essentially a classifier with multiple decision trees, its operation step is to first use the 390 

Bootstrap resampling method to randomly extract multiple samples from the original 391 

data, then train and fit each Bootstrap sample to build a regression tree, and finally the 392 

final result is obtained by averaging with the prediction results of all regression trees 393 

(Jing et al., 2020; Xie et al., 2021). It is a nonlinear modeling tool that has a reliable 394 

result for solving multivariate prediction problems and has a good tolerance to outliers 395 

and noise (Chagas et al., 2016; Guo et al., 2015; Zhang et al., 2017). In this study, we 396 
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established a Random Forest model consisting of 500 regression trees. The CART 397 

method was used to split the decision tree, and the minimum terminal node size was 398 

defined as 5. Then, we used the permutation importance method to rank the 399 

importance of each influencing variable.  The specific approach is to randomly shuffle 400 

the normal time sequence of the detection variables, and re-inputting the broken 401 

variables into the model for calculation. The importance of the variables is evaluated 402 

based on the degree of decrease in model prediction accuracy, with greater decreases 403 

indicating a larger impact of the variable on the dependent variable (Pham and Brabyn, 404 

2017). We use the Random Forest model to rank the importance of the main driving 405 

factors (such as Aridity index (AI), precipitation change (P), Vapor pressure deficit 406 

(VPD) and Normalized difference vegetation index (NDVI)), and to identify the 407 

dominant factors that affect the drought propagation characteristics. For more details 408 

about the Random Forest algorithm can refer to the literature (Huang et al., 2022; Xie 409 

et al., 2021). In addition, the introduction and calculation method of AI and VPD are 410 

shown in Appendix S1. 411 

4 Results  412 

4.1 Dependence of soil moisture on precipitation in growing season 413 

Before establishing the joint distribution between soil moisture and precipitation in 414 

the study area, the correlation of soil moisture and precipitation at different 415 

cumulative scales was analyzed. As shown in Fig. 4 (a), the maximum correlation 416 

coefficient between SPI and SSMI series was selected to draw the spatial-temporal 417 
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distribution diagram. In general, the soil moisture and precipitation showed a positive 418 

correlation in each month of the growing season. From the time perspective, the 419 

correlation in the early growing season (i.e., May to June) is slightly lower than in the 420 

middle and late periods (i.e., July to September). This difference is probably 421 

associated with the snow cover and frozen soil melting that weaken the link between 422 

soil water and precipitation during the early growing season (Chen et al., 2022; Wang 423 

et al., 2015). From the perspective of spatial distribution, the correlation is relatively 424 

high in the western part of the NEC, while lower in the central region. For the western 425 

part, the lack of rains making a strong link between soil moisture and precipitation. In 426 

contrast, the central region occupies mostly low-lying alluvial plains, where farmland, 427 

wetlands, and marshes are widely spread. The soil moisture content is thus higher 428 

than that in other regions, with a relatively weak natural connection to precipitation. 429 

In addition, the optimal response time of the soil moisture to the precipitation (i.e., 430 

SPI accumulation time corresponding to the maximum correlation coefficient) is 431 

shown in Fig. 4 (b). In the early stage of the growing season, the response time is 432 

longer and gradually shortens as the month progresses. During the early growing 433 

season when temperature is generally low, evaporation and dissipation capacity of soil 434 

water are limited, and early snowfall and frozen soil dissolution can further replenish 435 

soil moisture. As a result, soil moisture is relatively weakly dependent on precipitation 436 

and responds slowly to the possible precipitation deficits. At the later stage of the 437 

growing season, however, with the increase in temperature and evapotranspiration, the 438 

connection between soil moisture and precipitation is strengthened, which reduces the 439 
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response time. In general, soil moisture in the NEC depends heavily on precipitation 440 

in the growing season, which is the precondition to establishing the joint distribution 441 

of soil moisture and precipitation and calculating the drought PT. 442 

----------------------------------------------------- 443 

Place Fig. 4 here. 444 

Fig. 4. Natural dependence between soil moisture and precipitation, (a) spatial 445 

distribution of the maximum Pearson correlation coefficients between the monthly 446 

SSMI and SPI at contrasting timescales varying from 1 to 36 tendays for the period 447 

1962–2014, (b) optimal response time of the soil moisture to the precipitation series. 448 

----------------------------------------------------- 449 

4.2 Propagation time from meteorological to soil moisture drought 450 

Fig. 5 shows the spatiotemporal distribution of drought PT in the study area, and 451 

Fig. 8 (a) summaries the spatial average of drought PT for grids under different 452 

drought grades in each month of the growing season. 453 

In terms of time, the PT in the early growing season (i.e., May to June) is relatively 454 

long (generally exceeding 200 days), while it shortens in the middle and late growing 455 

seasons (i.e., July to September) (Fig. 8 (a)). In most regions of the study area, the PT 456 

in July and August is typically less than 30 days, the shortest level of the entire 457 

growing season, while the PT in September is slightly longer roughly from 40 to 100 458 

days (Fig. 5). As seen from space, the PT is longer in the central plain, western 459 

plateau area and northern high-latitude coniferous forest areas than it is elsewhere. It 460 
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is further obvious that the PT required progressively increases as soil moisture 461 

droughts worsen (Fig. 8 (a)). The blank part in Fig. 5 indicates that the probability of 462 

soil moisture drought caused by meteorological drought does not exceed the 463 

predefined probability threshold (i.e., 0.6 in the case). Note that with the drought 464 

severity increases, more grids fail to meet the requirement of probability, especially in 465 

the central region. 466 

----------------------------------------------------- 467 

Place Fig. 5 here. 468 

Fig. 5. PT from meteorological drought to soil moisture drought under different 469 

grades in growing season, from top to bottom, each row in the figure represents the 470 

PT required to cause soil moisture drought with over mild, moderate and severe 471 

grades. 472 

----------------------------------------------------- 473 

The above temporal and spatial patterns of the PT are largely related to the water 474 

and heat conditions during the growing season, as well as the topography and 475 

underlying surface conditions. When it comes to a mild soil moisture drought, for 476 

example, in the early growing season (i.e., May to June), the temperature is relatively 477 

low (Fig. 6(a)) and the evaporation is also weak, so the soil water cannot dissipate as 478 

readily. In addition, plant leaves are not fully developed in the early growing season 479 

(Fig. 6(d)), which reduces the demand for soil water and vapor that can pass through 480 

stomata (Hao et al., 2021). The relatively high latitude of NEC and the long cold 481 

winter that resulted in the large amount of snow and frozen soil melting in the western 482 
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and northern regions can also contribute to soil moisture (Peng et al., 2016; Wang et 483 

al., 2019; Xu et al., 2022). In light of the above reasons, soil moisture loss can be 484 

slower during early growing season when precipitation is lacking, and soil water can 485 

be replenished to some extent, resulting in a relatively difficult propagation of signals 486 

from the meteorological drought to the soil moisture and thus relatively long PT. 487 

However, even though the precipitation of soil replenishment increased in the summer 488 

(see Fig. 6(b)), as the temperature and solar radiation reached their highest level of the 489 

whole growing season, soil water evaporation accelerated. Meanwhile, the plant 490 

leaves have been fully developed, thus the water vapor dissipated by the vegetation 491 

has also enhanced (Zhang and Zhang, 2019). Therefore, when the meteorological 492 

drought comes, the water stored in the soil will be quickly dissipated through the soil 493 

surface and foliar under the promotion of high temperature, causing the soil moisture 494 

drought to occur and the shortest PT in July and August. In September, the dissipation 495 

rate of soil moisture decreased along with the decrease in temperature and vegetation 496 

greenness, prolonging the drought PT slightly. 497 

From the perspective of spatial distribution, the central, northern, and western 498 

regions of the study area have longer PT than other regions (especially in July), which 499 

may be explained by the terrain and underlying surface conditions in the region. The 500 

area with a long PT in the central region of the study area is mainly located in the 501 

Songnen Plain, which is mainly formed by erosion and alluviation of the Songhua 502 

River and Nenjiang River. This region has relatively low terrain, a dense river 503 

network, and a high soil moisture content (Fig. 6(c)), which makes the connection 504 
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between soil moisture and precipitation relatively weak (it can be seen from the low 505 

correlation between soil moisture and precipitation in the central region of Fig. 4 (a)). 506 

Consequently, meteorological droughts usually take a longer PT to cause soil moisture 507 

droughts in the region. Western and northern parts of the NEC, on the other hand, are 508 

located in the Inner Mongolia Plateau and the Greater Khingan Mountains, 509 

respectively. Both have high altitudes, especially in the western region, where the 510 

average altitude exceeds 2,000 m (Fig. 2(a)). The resulting low temperatures may 511 

weaken the relationship between soil moisture drought and meteorological drought. 512 

Further, the northern region is dominated by coniferous forest (Fig. 2 (c)). As 513 

compared to broad-leaved forests distributed in other mountains in the study area, 514 

coniferous forests have smaller leaf areas and weaker transpiration (Ouyang et al., 515 

2021), and their soil water demands are also lower than broad-leaved forests. As a 516 

result of above factors, soil moisture consumption rates are relatively low when 517 

meteorological drought occurs, which may explain the longer PT in both regions. 518 

Furthermore, when the soil moisture drought grades grow, meteorological droughts 519 

often require accumulating for a longer period to cause higher grades. In the 520 

meanwhile, the grid that is capable of reaching the trigger probability will also 521 

decrease, which is more evident in areas with a weak dependence between soil 522 

moisture and precipitation (see Fig. 4 (a) and Fig. 5). 523 

----------------------------------------------------- 524 

Place Fig. 6 here. 525 

Fig. 6. Meteorological and underlying surface conditions in the study area, (a) 526 
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temperature distribution in each month of the growing season, (b) precipitation 527 

distribution in each month of the growing season, (c) soil moisture distribution map in 528 

each month of the growing season, and (d) spatial and temporal distribution of NDVI 529 

index in the study area. 530 

----------------------------------------------------- 531 

Overall, the drought PT in the vast areas of the NEC is usually the shortest in July 532 

and August. In this case, soil moisture drought caused by meteorological drought is 533 

often less than one month, which leaves little time for people to prepare and respond. 534 

It is therefore extremely unfavorable for early warning of droughts, which should be 535 

of great concern to water resources managers. 536 

4.3 The trigger threshold of meteorological drought driving soil moisture drought 537 

Fig. 7 illustrates the spatial distribution of TR required to trigger different grades of 538 

soil moisture drought, and Fig. 8 (b) shows the regional average of the TR to trigger 539 

different grades of soil moisture drought during the growing season. In the figures, it 540 

is clear that TR distribution has remained relatively constant over time, while it is 541 

lower in the western region than in the central and eastern regions (generally below 542 

80mm), which is mainly because of the relatively low precipitation in the western 543 

region (Fig. 2(b)). In addition, as soil moisture drought intensify, the TR required to 544 

trigger soil moisture drought also increases. For mild soil moisture droughts, a 545 

precipitation deficit around 80mm is needed, while moderate and severe droughts 546 

require a TR exceeding 120 and 140mm, respectively (Fig. 8 (b)). Furthermore, the 547 
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TR has different temporal pattern compared to PT, and it does not show an obvious 548 

downward trend in the middle and late growing season (Fig. 8), in which case the 549 

temporal pattern of precipitation plays a large role. The precipitation in NEC is 550 

mainly concentrated in the middle and late growing seasons (summer) (Fig. 6(b)). 551 

Despite the short PT, due to the large amount of precipitation, a higher TR can be 552 

accumulated rapidly. However, in the early growth season, the precipitation 553 

accumulation range when calculating TR is mainly in spring and winter. In spite of 554 

the long PT in this case, the low precipitation limits the total amount of precipitation 555 

accumulated, so there is no significant difference between TR in the early and late 556 

growing seasons. 557 

Note that the TR was calculated by directly analyzing precipitation and soil 558 

moisture without standardized processing, which made the soil moisture drought 559 

states of the regional grid reflected by the TR cannot be directly compared in space. It 560 

is possible, however, to combine TR with the drought PT to provide important 561 

reference information for the regional drought warning and prevention. Taking a 562 

specific month of the growing season as an example. First, the time range for 563 

detecting precipitation status can be determined in advance according to the drought 564 

PT of that month, and then the deficit between the current precipitation and the 565 

historical average within this cumulative scale can be calculated, which can be further 566 

compared with the TR in that month. If the actual precipitation deficits that exceed the 567 

drought TR, indicate that a soil moisture drought is likely to occur in that month. The 568 

water gap needed to block the propagation of drought signal from meteorological to 569 
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soil moisture drought can be also obtained by subtracting actual precipitation deficits 570 

from TR. By comparing the water gap with the current available water, the severity of 571 

soil moisture drought and economic losses can be probably estimated in advance. 572 

Therefore, according to the above methods, using the PT and TR under different 573 

drought grades, an early warning system for soil moisture drought in each month of 574 

the growing season can be developed to prevent and control drought precisely. 575 

Furthermore, more drought information can be obtained by adjusting the extraction 576 

probability thresholds of PT and TR (details will be elaborated in the Discussion 577 

section). 578 

----------------------------------------------------- 579 

Place Fig. 7 here. 580 

Fig. 7. The distribution of TR from meteorological drought to different grades of soil 581 

moisture drought in the growing season. 582 

----------------------------------------------------- 583 

 584 

----------------------------------------------------- 585 

Place Fig. 8 here. 586 

Fig. 8. Average distribution of PT and TR for different grades of soil moisture drought 587 

in the growing season. 588 

----------------------------------------------------- 589 

4.4 The dynamics of drought propagation characteristics in a changing 590 

environment 591 

In recent studies, NEC has been presented a significant warming trend (Zhang et al., 592 
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2022). A major focus of the study is how the propagation from meteorological drought 593 

to soil moisture drought will be affected by the changing environment, especially in 594 

terms of the PT. In this study, 31-year sliding windows were used to segment the 595 

original data, and the PT under each window was calculated to obtain the sequence of 596 

dynamic changes in the PT, then the Mann-Kendall method was used to test its 597 

significance. 598 

Fig. 9 shows the dynamic change trend of the drought PT in recent decades. A 599 

darker red in the figure indicates a more pronounced shortening of PT, while blue 600 

represents the opposite (grids with a dot indicate a significant trend (α=0.05)). During 601 

the early growing season (i.e., May and June), the drought PT showed a significant 602 

prolonging trend in the whole study area except for a few grids in the western region. 603 

As of July, however, the overall prolonging trend of PT started to weaken, and the 604 

central and eastern regions even showed a significant shortening trend. During the late 605 

growth season (i.e., August and September), the overall dynamics of PT shifted from 606 

an early prolonging trend to a significant shortening trend, especially in the central 607 

and western regions. 608 

----------------------------------------------------- 609 

Place Fig. 9 here. 610 

Fig. 9. Dynamic trend of drought PT in recent decades under the changing 611 

environment background. 612 

----------------------------------------------------- 613 

Several factors affect the propagation process of drought signals from the atmosphere 614 
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to the soil moisture system along the hydrological cycle, but they can be divided into 615 

two basic categories according to the cycle process of soil moisture: source and 616 

expenditure. Therefore, precipitation (P), the main source of soil water, together with 617 

the Aridity index (AI) and vapor pressure deficit (VPD), which affect soil moisture 618 

consumption, were selected as the potential drivers of the changing PT. Their 619 

importance was evaluated using a Random Forest model, the importance of different 620 

influencing factors to PT in each month of the growing season was evaluated. Fig. 10 621 

shows the spatial distribution of the two factors that have the greatest impacts on the 622 

PT. Obviously, PT in most regions in May is mainly affected by VPD and 623 

precipitation, whereas in June, precipitation dominates the north of the study area with 624 

VPD dominating the west and southeast. In comparison, as of July, the area with 625 

significantly shortened PT was mainly affected by VPD, while the area with a 626 

prolonging trend is mainly affected by precipitation in the southeast region. In August 627 

and September, the area where the PT is shortened was primarily affected by the VPD 628 

and AI. 629 

In early growing season (May and June), drought PT is characterized by a 630 

prolonged trend. The above analysis indicates that VPD might be an important factor, 631 

but could be also associated with the rising trend in temperature that makes the VPD 632 

rise in the study area (Fig. S1(a) and S1(d)). As a result of the high latitude of NEC, 633 

the soil surface still stores more snow and frozen soil in the early growing season 634 

(Chen et al., 2022; Wang et al., 2015). The residual snow and frozen soil in winter and 635 

spring supplement soil water can more rapidly in a warming climate, which alleviates 636 
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the soil moisture drought (Wang et al., 2019). Furthermore, precipitation in most areas 637 

also increased (Fig. S1(b)), which further supplemented soil moisture to reduce the 638 

impact of drought. Therefore, although the VPD shows an upward trend in the early 639 

growing season, the PT is prolonged due to snow melting and increased precipitation. 640 

As of July, the significant shortening trend of PT in the central and eastern regions of 641 

the study area was mainly due to an increase in VPD. This is because the snow and 642 

frozen soil have dissolved at that time, and the higher VPD caused by the rising 643 

temperature will increase the water demand of the atmosphere (Fig. S1(d)), which will 644 

directly accelerate the actual evaporation consumption from the soil. In the southeast 645 

region, the prolonging of PT may be due to increased precipitation, which replenishes 646 

soil moisture and slows down the formation process of soil moisture drought. 647 

Following the late growing season, the drought PT in most regions was significantly 648 

shortened, mainly due to the changing of VPD and AI. As can be seen from Fig. S1(a), 649 

the temperature of the whole region in the study area showed a significant rise in the 650 

late growing season, resulting in an increase in VPD and potential evapotranspiration 651 

(Fig. S1(d)). When the meteorological drought occurs, therefore, soil moisture will 652 

dissipate more rapidly in evapotranspiration triggering quick soil moisture drought. In 653 

addition, precipitation in the late growing season also shows a downward trend 654 

throughout most of the study area (Fig. S1(b)), leading to a reduction of soil water 655 

supplement and AI index, a drying trend in the regional climate, and eventually 656 

accelerated drought propagation. Besides, the slight prolongation of drought PT in the 657 

southeast of the study area may be related to the local increased precipitation. 658 
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----------------------------------------------------- 659 

Place Fig. 10 here. 660 

Fig. 10. The dominant factors of drought PT in each month of the growing season, (a) 661 

and (b) are the first and second important factors respectively. 662 

----------------------------------------------------- 663 

It should be noted that the PT in the central and western regions is initially short in 664 

the late growing season. In this case, the shortened PT will make the reserved warning 665 

time become tenser, which will further aggravate the drought resistance challenge 666 

during the period. In addition to precipitation, VPD, and AI, vegetation also has a 667 

significant indirect impact on the trend in drought propagation, which will be 668 

discussed in detail in Section 5.1. 669 

Furthermore, based on the PT under each sliding window, we further calculated the 670 

change sequence of TR, and analyzed its dynamic trend likewise using the Mann-671 

Kendall method. As shown in Fig. 11, the change of TR is generally consistent with 672 

that of PT. Early growing season (i.e., May and June), drought TR has a significant 673 

prolonging trend, but by the middle and late growing season (i.e., from July to 674 

September), the drought TR begins to decline, especially in the central and western 675 

regions. The drought TR trend is largely affected by the change of drought PT. For 676 

example, the shortening of drought PT will shorten the precipitation accumulation 677 

scale, which will reduce drought TR, and vice versa in areas where drought PT is 678 

prolonged. Late in the growing season, both PT and TR were declining in the vast 679 

central and western regions, which means that when meteorological drought strikes, it 680 
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will take less time and lower precipitation deficit to trigger soil moisture drought. This 681 

case will lead to a greater risk of propagation between droughts, invalidating drought 682 

control and prevention efforts, and probably further deteriorating drought impacts. 683 

 684 

 685 

----------------------------------------------------- 686 

Place Fig. 11 here. 687 

Fig. 11. Dynamic trend of drought TR in recent decades. 688 

----------------------------------------------------- 689 

5 Discussion 690 

5.1 The driving force analysis of drought propagation characteristic dynamics 691 

Previous studies have shown that warming plays an important role in the 692 

hydrological cycle, as the rise of temperature may aggravate the loss of water and lead 693 

to regional dryness and droughts (Trenberth et al., 2014).The significant warming in 694 

NEC leads to rise in VPD in the late growth season, thereby increasing the demand 695 

for water in the atmosphere, thus promoting the evaporation consumption of soil 696 

moisture (Li et al., 2020; Zhang et al., 2022; Zhou et al., 2020). Warming is also 697 

expected to increase potential evapotranspiration, together with the decreasing 698 

precipitation in the late growing season, resulting in a decline in the AI index and 699 

regional climate showing a drying trend. The above factors will significantly promote 700 

the actual evaporation of soil water and accelerate soil moisture drought, and 701 
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shortening PT in the late growth season. 702 

In addition to precipitation, VPD and AI, vegetation also plays a critical role in the 703 

propagation of drought signals. Being the medium for water and energy exchange 704 

between soil and atmosphere systems, vegetation has significant impacts on regional 705 

water cycle and drought evolution (Gao et al., 2018; Huang et al., 2018). On the one 706 

hand, the sustained increase of vegetation coverage can increase soil water 707 

consumption in a certain area, which may exceed the water resource carrying capacity 708 

of the area, causing a decrease in soil water and making it more prone to soil moisture 709 

drought (Lian et al., 2020; Zhang et al., 2021). On the other hand, with the increase of 710 

vegetation greenness, when facing meteorological drought, as the VPD rises, soil 711 

water can evaporate quickly into the atmosphere through the stomata of vegetation 712 

leaves (Jiao et al., 2021), accelerating the rate of soil moisture consumption and 713 

ultimately shortening the propagation time from meteorological drought to soil 714 

moisture drought. Previous studies have also found that vegetation greening increases 715 

soil water loss by transpiration from an expanded leaf area (Chen et al., 2019; Zeng et 716 

al., 2018), and exacerbates the risk of regional drought (especially in arid and 717 

semiarid areas) (Deng et al., 2020; Zhang et al., 2022). In this study, the NDVI index 718 

was used to analyze the dynamic changes in the vegetation cover in NEC since 1982. 719 

It was found that the vegetation cover in the study area increased significantly in the 720 

late growing season, while in the early period, most of the areas mainly showed a 721 

downward trend (Fig. 12). NDVI series and hydrometeorological factors (P, VPD and 722 

AI) were introduced into the Random Forest model by using 19 sliding windows to 723 
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further quantify the impact of different factors on drought PT. Fig. S5 shows the 724 

spatial distribution of two factors that have the most significant impact on the drought 725 

PT. It can be seen that the vegetation cover change in some regions even exceeds the 726 

direct impact of hydrometeorological factors on drought propagation. With the 727 

vegetation greening in the late growing season, when meteorological drought occurs, 728 

soil water may be rapidly evaporated and consumed through vegetation channels, 729 

which accelerates the propagation process of drought signals in the atmosphere and 730 

soil moisture. After normalizing the influences of various factors on drought 731 

propagation processes, we found that the relative importance of NDVI could reach 732 

more than 20% of the total importance (Fig.13), and the change of vegetation cover 733 

had a significant impact on drought propagation. In addition, we found that vegetation 734 

also has an impact on the drought propagation in the early growing season (May to 735 

June), which is mainly related to the decline of large area vegetation cover in the 736 

central and eastern regions (Fig. 12). With the decline of vegetation cover, its demand 737 

for water decreased, indirectly alleviating soil moisture consumption and prolonging 738 

the drought PT during this period. However, the increase of vegetation cover in the 739 

western edge regions in the early growing season may accelerate the consumption of 740 

soil water and shorten the drought PT in this area.  741 

----------------------------------------------------- 742 

Place Fig. 12 here. 743 

Fig. 12. Dynamic trend of NDVI in growing season from 1982 to 2014. 744 

----------------------------------------------------- 745 



36 
 

 746 

----------------------------------------------------- 747 

Place Fig. 13 here. 748 

Fig. 13. Relative contribution rate of different influencing factors to drought 749 

propagation trend. 750 

----------------------------------------------------- 751 

5.2 Sensitivity analysis of some important results regarding threshold and sliding 752 

window length set 753 

In this study, the dynamic change trend of drought PT and TR from 1962 to 2014 754 

was evaluated by using a 31-years sliding window. In order to avoid the influence of 755 

the length of the selected sliding window on the results, different lengths (i.e., 19, 23, 756 

27, and 35 years) were used for verification respectively. The results show that the 757 

dynamic trend of PT and TR is basically independent of the length of the sliding 758 

window, and the change trend under different windows is largely consistent (Fig. S3 759 

and S4), which indicates the robustness of the results. 760 

When determining the drought PT and TR, we set different extraction probability 761 

thresholds. Fig. S2 shows the conditional probability matrix of soil moisture drought 762 

in the calculation of drought PT with 15 randomly selected grids. The vertical 763 

coordinate in the figure represents the time cumulative scale of SPI, and the horizontal 764 

coordinate represents each month of the 15 grids in the growing season. It can be seen 765 

from the figure that it often requires a longer time accumulation in the early growing 766 

season to make the probability of soil moisture drought to reach a higher level, while 767 
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the time required in the late growth season is relatively short. The probability value of 768 

each month increases continuously with the rising of cumulative time, and gradually 769 

remains unchanged after reaching a higher level. When extracting the drought PT, we 770 

did not choose the meteorological drought accumulation scale corresponding to the 771 

highest probability of soil moisture drought, but instead took 0.6 as the probability 772 

threshold. The reason for this is that the PT extracted under the highest probability is 773 

generally extensively long, and the cumulative time before the maximum probability 774 

is also prone to causing soil moisture drought (Li et al., 2022). We therefore selected a 775 

medium probability (0.6) to extract the drought PT so as not to ignore the short 776 

drought PT. In addition, when determining the TR, we set a higher probability 777 

threshold (0.8) than the extraction of PT to further ensure the credibility of causing 778 

soil moisture drought. 779 

In addition, in the practical drought warning operation, the probability threshold for 780 

extracting propagation time can be flexibly adjusted to obtain different lengths of PT, 781 

which can be combined with the TR to grasp the development status of drought and 782 

respond in a timely manner. Taking the drought warning of a certain month as an 783 

example, first collect precipitation data from the preceding month and obtain a longer 784 

PT by increasing the probability threshold (e.g., 0.65, 0.7, 0.8). PT. Next, calculate the 785 

total precipitation within the time range of the PT, subtract it from the long-term 786 

average to obtain the actual precipitation deficit. Finally, compare the precipitation 787 

deficit with the drought TR of that month. If the precipitation deficit exceeds TR, it 788 

indicates a high possibility of triggering soil moisture drought. At this time, water 789 
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resource managers should take timely measures to block the propagation chain of 790 

drought by reasonable allocation of water resources. On the contrary, if the 791 

precipitation deficit does not exceed TR, it indicates a lower possibility of soil 792 

moisture drought occurring at this time. The probability threshold of PT can then be 793 

lowered to obtain a shorter drought PT, and the precipitation deficit within the new 794 

time accumulation range should be checked again to see if it exceeds the TR value. 795 

Therefore, by repeatedly adjusting and testing the possibility of drought occurrence, 796 

we can timely understand the development status of drought and try to avoid biases 797 

and misjudgments caused by a single judgment as much as possible. Based on the 798 

drought early warning system described above, reliable PT and TR can be used to 799 

obtain key drought-resistant information. For example, by subtracting TR from the 800 

actual precipitation deficit, we can determine the necessary water quantity for 801 

alleviating soil moisture drought, and compare this water deficit with the currently 802 

available water resources to estimate the potential range of drought impact and 803 

possible economic losses in advance. 804 

5.3 Comparison analysis between some findings of this study and previous studies   805 

Drought PT is an important characteristic of drought signal propagation between 806 

atmospheric and soil moisture system (Zhang et al., 2021). Moreover, accurate PT is a 807 

prerequisite to estimating the TR of soil moisture drought. In this study, using the 808 

Bayesian causal analysis framework, the conditional probability of soil moisture 809 

drought was used to determine the PT. Compared to the traditional correlation 810 

coefficient method, the conditional probability method can directly separate the 811 
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propagation signal from the dependency relationship between precipitation and soil 812 

moisture to avoid the interference from non-drought information (Dai et al., 2022; Wu 813 

et al., 2021). Additionally, the propagation process can be analyzed under different 814 

drought grades (Li et al., 2022; Zhu et al., 2021). This study, shows that the PT is long 815 

in the early growing season (spring and early summer), and relatively short in the 816 

middle and late growing period (summer and autumn), which is consistent with the 817 

seasonal distribution of drought PT in previous studies (Xu et al., 2021; Zhang et al., 818 

2022). However, the PT in the early growing season (May and June) in NEC is longer 819 

than previous research findings, possibly associated with the geography of the region. 820 

The study area is located in the northernmost part of China. Compared with other 821 

regions in the same period, its higher latitude results in lower temperature and 822 

relatively weak evaporation capacity, and it has plenty of natural forest land, which 823 

can prolong the melting time of ice, snow, and frozen soil (Wang et al., 2015; Wang et 824 

al 2019). The solid water melted into the soil during the early growing season as the 825 

temperature increased, alleviating the soil moisture drought, slowing the propagation 826 

of drought, and making PT from meteorological to soil moisture drought over 270 827 

days (Fig. 8(a)). In the same period, however, the PT in the Loess Plateau, located in 828 

the inland region of northwest China, generally does not exceed 6 months (Dai et al., 829 

2022; Li et al., 2022). Furthermore, the drought PT and TR in most areas of NEC 830 

have shown a significant downward trend during the late growing season, which will 831 

exacerbate the risk of drought propagation, accelerate the formation of soil moisture 832 

droughts, and ultimately increase the possibility of ‘flash drought’ in these areas (Xu 833 



40 
 

et al., 2021; Zhu et al., 2021). The literature, revealed that the frequency, duration, and 834 

intensity of ‘flash drought’ in NEC increased from 1961 to 2016 (Zhang et al., 2022), 835 

which is agrees with our findings. 836 

6 Conclusion 837 

In this study, PT and TR of meteorological drought to the soil moisture drought 838 

with different drought grades were determined using the Copula functions and a 839 

Bayesian causal analysis framework. We also assessed the dynamic trend of drought 840 

propagation characteristics in recent decades under the warming and greening 841 

background and identified the possible driving factors on the drought propagation, the 842 

main conclusions of this study are as follows: 843 

(1) In early growing season (i.e., May and June), the PT required to cause soil 844 

moisture drought is longer, with an average of more than 200 days. And after 845 

entering the middle and late growing season (i.e., from July to September), PT 846 

began to shorten, and the shortest PT in July and August was generally less than 847 

30 days. The temporal and spatial distribution of drought PT is mainly related to 848 

the water and energy characteristics in each month of the growing season and the 849 

regional underlying surface conditions. In addition, with the aggravation of soil 850 

moisture drought, the PT required to cause soil moisture drought also increased. 851 

(2) The distribution of TR in the NEC has remained relatively constant over time. 852 

Spatially, the TR in the western region of the study area is relatively low, 853 

generally below 80mm, while it is high in the central and eastern regions. This is 854 
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mainly related to the overall pattern of precipitation showing more in the east and 855 

less in the west in the study area. Furthermore, the TR required to trigger soil 856 

moisture drought also have an increasing trend with the increasing grades of 857 

drought. 858 

(3) Dynamic trend analysis of drought propagation characteristics indicates that the 859 

drought PT in the early growing season (i.e., May and June) shows a prolonging 860 

trend in most regions of the study area, which may be related to the accelerated 861 

dissolution of snow cover and frozen soil and the decline of vegetation cover 862 

during this period. However, in the late growing season (i.e., from July to 863 

September), the situation began to reverse, the PT and TR showed a significant 864 

downward trend in the central and western regions of the study area. And the 865 

analysis found that the temperature showed a significant rising trend in the late 866 

growing season, which driving the increase of VPD and the decrease of AI, and 867 

the vegetation greening also played an important role in this period. These factors 868 

together increased the rate of soil water consumption and accelerated the 869 

propagation of drought signals. 870 

It should be noted that in the late growing season, due to the dual impacts of 871 

warming and vegetation greening, the risk of drought propagation is greatly increased, 872 

resulting in both the PT and TR showed a significant downward trend in the central 873 

and western regions of the NEC, which will make these regions faster and easier to 874 

cause soil moisture drought after the meteorological drought occurs, and the response 875 
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time reserved for people will be shortened. Furthermore, the drought PT and TR can 876 

be used together to obtain important drought resistance information in advance. This 877 

method is relatively simple and can be used in other regions to help policy makers, 878 

water resources managers, and local stakeholders develop proactive drought 879 

mitigation, response, and preparation plans in a timely manner. 880 
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Table. 1. Drought classification standard of SPI and SSMI 

Drought grade SPI/SSMI 

Mild drought -1.0＜SPI/SSMI≤-0.5 

Moderate drought -1.5＜SPI/SSMI≤-1.0 

Severe drought -2.0＜SPI/SSMI≤-1.5 

Extreme drought SPI/SSMI≤-2.0 

 

 

 

 

Table. 2. An overview of the five candidate Copulas 

name Equation Generator Parameter  
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