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Abstract:  35 

Modeling accurate and detailed soil spatial information is essential for environmental modeling, 36 

precision soil management and decision-making. In this study, we integrated long-term optical 37 

(Sentinel-2) and radar (Sentinel-1) satellite observations via the Google Earth Engine (GEE) 38 

platform for high-resolution national-scale digital mapping of soil organic carbon (SOC) and total 39 

soil nitrogen (TSN) in Austria. Our soil predictive models based on boosted regression tree (BRT) 40 

and regression kriging (RK) methods were constructed from 449 soil samples (0-20 cm) covering 41 

the study area in the LUCAS soil database and Sentinel observations synthesized with different 42 

time intervals. The different input predictors of these soil predictive models resulted in seven 43 

modeling scenarios, and their prediction performance was evaluated by a cross-validation 44 

technique. Comparative analysis indicated that satellite sensors, modeling techniques, and SAR 45 

data acquisition configurations greatly affected the model outputs. Cross-polarization and 46 

co-polarization had similar performance in TSN and SOC predictions, and their combination 47 

improved the prediction accuracy. Predictive models based on Sentinel-1 with the 48 

"ASCENDING" orbits outperformed the models involving the "DESCENDING" orbits; the 49 

prediction accuracy of the former was comparable to models involving two orbital data. The 50 

models built by Sentinel-1 and Sentinel-2 performed similarly in predicting SOC (R2 = 0.51 vs. R2 51 

= 0.52, respectively) and TSN (their R2 were both 0.42); their synergistic utilization improved the 52 

prediction results. Models involving more years of Sentinel observations on the GEE platform 53 

provided more accurate modeling results. The best soil predictive models explained 55% and 45% 54 
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of soil variability for SOC and TSN, respectively, both constructed from long-term Sentinel-1/2 55 

observations using the RK method. The overall trends of the mapping results of the models 56 

constructed by Sentinel-1 and Sentinel-2 and their combinations were consistent. The predicted 57 

digital soil maps displayed high spatial heterogeneity: SOC and TSN—shared similar spatial 58 

patterns—were greater in high-altitude central and western regions than other regions. This study 59 

provides valuable information for revealing the effects of satellite sensors, modeling techniques 60 

and SAR configurations on mapping SOC and TSN. 61 

Keywords: digital soil mapping; Cloud computing; soil properties; Sentinel-1; Sentinel-2 62 

1. Introduction 63 

Humanity is facing grand global challenges such as land degradation, climate change, biodiversity 64 

decline, sustainable land management and food security (Fu et al., 2021; Musche et al., 2019). Soil, 65 

as the center of the terrestrial ecosystem, provides agricultural needs, supports food production, 66 

regulates greenhouse gases, and promotes plant and animal health (Ma et al., 2017; Nussbaum et al., 67 

2018; Zhang et al., 2017). As such, there is an urgent demand for accurate and detailed soil spatial 68 

information from local to global scales to respond to the above-mentioned challenges. Information 69 

from conventional soil surveys is helpful in this regard, but have been criticized for their subjective 70 

and qualitative nature because sustainable management requires quantitative soil information 71 

(Fathololoumi et al., 2020; Zeraatpisheh et al., 2019; Zeraatpisheh et al., 2022). 72 
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The advances in remote sensing, statistics and geographic information technology have created 73 

great potential for improving soil mapping (McBratney et al., 2003; Odhiambo et al., 2020). In this 74 

context, digital soil mapping techniques have emerged as a powerful method for producing soil 75 

maps at different scales (Azizi et al., 2022; Minasny and McBratney, 2016; Naimi et al., 2022b). 76 

Digital soil mapping techniques create spatial soil information systems based on the relationship 77 

between soil observations and predictors to predict soil properties at unsampled locations (Wadoux 78 

et al., 2019). Environmental data obtained from various sources could be linked to soil properties by 79 

digital soil mapping techniques, including digital elevation model (DEM) and its derivatives, 80 

satellite imagery, climate and topographic data (Asgari et al., 2020a; Asgari et al., 2020b; Naimi et 81 

al., 2022a; Zhou et al., 2020). Currently, the amount and availability of environmental data is 82 

growing rapidly, especially for Earth observation (EO) data, which is driving a major shift in soil 83 

mapping (Tziolas et al., 2020). 84 

Optical images that are easily accessible and familiar to users are the most commonly used 85 

EO data for the digital mapping of soil properties (Poggio and Gimona, 2017). However, the 86 

availability of optical images is usually affected by cloud cover and hinders their application in 87 

soil mapping. Synthetic aperture radar (SAR) images are not affected by cloud cover, but their 88 

application in digital soil mapping has not been well developed (Zhou et al., 2020). Recently, 89 

several scholars have explored the feasibility of SAR sensors for soil organic carbon (SOC) and 90 

total soil nitrogen (TSN) mapping and demonstrated their usefulness (Yang et al., 2019; Zhou et 91 

al., 2022). Moreover, the synergistic advantages of SAR and optical sensors in digital mapping of 92 



5 

 

soil properties have been found by several researchers (Nguyen et al., 2022; Wang et al., 2020b; 93 

Zhou et al., 2020), who reported that the application of multi-source sensors improved the 94 

mapping accuracy of soil properties. However, this is not the case in a study that synergistically 95 

exploited SAR and optical data for SOC mapping (Shafizadeh-Moghadam et al., 2022); and the 96 

accuracy of the above SOC predictive models constructed from SAR data is relatively low e.g. in 97 

Zhou et al. (2020) (R2 = 0.22) and Wang et al. (2020b) (R2 = 0.20). The differring mapping 98 

accuracy of these soil predictive models may be caused by the utilization strategies of the SAR 99 

data.  100 

The interaction of the SAR signal with the surface depends on various radar system 101 

parameters such as band frequency, polarization mode and angle of incidence (Mahdianpari et al., 102 

2017). The band frequency is related to the penetration depth of ground targets, with longer 103 

wavelengths penetrating deeper. The sensitivities of SAR systems in different bands to soil and 104 

plant parameters vary (Mengen et al., 2021). There are differences in the backscattering 105 

characteristics of ground targets under different polarization modes of the SAR system. 106 

Multi-polarization SAR systems are able to provide more information about the surface scattering 107 

mechanism with the help of different polarization modes in the target area (Kumar et al., 2022). 108 

Scientists when using SAR data for soil mapping could be confused by the various possible 109 

configurations of these data, such as polarization, band frequency and orbital direction, especially 110 

since the configuration affects the ability to predict soil properties. In this context, many scholars 111 

have emphasized the importance of studying the impact of SAR data acquisition configuration on 112 
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SAR data modeling (DeVries et al., 2020; Hethcoat et al., 2021; Hosseini et al., 2015; Rapinel et 113 

al., 2020). However, the relative impact of each acquisition configuration on digital mapping of 114 

SOC and TSN remains unknown. 115 

The advent of the big data era for EO and improvements in computing power are facilitating 116 

the development of large-scale soil mapping methods (Luo et al., 2022c; Tziolas et al., 2020). The 117 

newly released Copernicus satellite series (Sentinel-1/2) provides an excellent opportunity for 118 

digital soil mapping to include a comprehensive dataset of high-resolution spatiotemporal 119 

information on the land surface (d’Andrimont et al., 2021; Loiseau et al., 2019). Some studies 120 

have explicitly suggested that long-term satellite observations may be more powerful than 121 

single-date data for soil prediction due to their ability to capture changes in land surface 122 

characteristics over time (Fathololoumi et al., 2021; Guo et al., 2021). The inclusion of abundant 123 

satellite observations increases model computation time and thus reduces computational efficiency. 124 

The complexity of SAR preprocessing, especially long-term SAR satellite observation data, 125 

presents an obstacle to its adoption (DeVries et al., 2020). Sentinel satellite sensors have made 126 

some contributions to the efficient modeling of soil properties (Agyeman et al., 2023; Zhou et al., 127 

2021), but few studies have used long-term optical and radar Sentinel satellite observations to 128 

achieve this goal due to the difficulties in accessing and processing such a large number of 129 

satellite imagery.  130 

Cloud-based platforms, such as Google Earth Engine (GEE), can greatly improve the 131 

efficiency of image analysis, allowing for the relatively easy integration of disparate satellite data 132 
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sources. The advent of GEE allows users to access the entire archive of EO data and avoid the 133 

need to download and store large amounts of data locally (DeVries et al., 2020; Zhang et al., 134 

2019). The GEE platform can use Google’s computational infrastructure to process geospatial data 135 

simultaneously, thereby reducing computational time (Tamiminia et al., 2020). The GEE platform 136 

has made substantial progress in environmental analysis from regional to global scales, but its 137 

application in soil property mapping is still in its infancy (Luo et al., 2022c). The cloud computing 138 

platforms like GEE and the open data policies of the Copernicus Project, are now poised to 139 

facilitate exploration of the vast datasets of multiple satellite missions to improve soil predictive 140 

models based on satellite observations. 141 

In this study, we integrated long-term optical (Sentinel-2) and microwave (Sentinel-1) 142 

satellite observations in Austria with the help of GEE to: (1) evaluate the effects of SAR data 143 

utilization strategies on soil predictive models (i.e., SOC and TSN); (2) investigate the prediction 144 

performance of different satellite sensors and whether optical-SAR data fusion improves mapping 145 

accuracy; and (3) evaluate the optimal time window for SOC and TSN mapping in Austria based 146 

on long-term satellite observations.  147 

2. Materials and Methods 148 

2.1. Study area 149 

Austria is located in southern Central Europe and the temperate climate zone with a total area of 150 

83,879 km² (Fig. 1). The elevation of Austria is between 115 and 3797 m a.s.l. The west and south 151 
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are dominated by mountainous landscapes, while the north and northeast are lowland and hilly areas. 152 

The mean annual precipitation ranges from 400 mm in the eastern lowlands to nearly 3000 mm in 153 

the western Alps (Surer et al., 2014). The mean annual temperature is between 8 and 10°C (Sleziak 154 

et al., 2016). About 50% of Austria's area is occupied by forest land, which is primarily dominated 155 

by coniferous species (Müller et al., 2013). Agricultural area accounts for about one-third of the 156 

country's land area and is mainly composed of cultivated land, permanent grassland and meadow. 157 

Cultivated land is mainly located in the east with wheat as the main crop, followed by maize, while 158 

the grasslands are mostly in the west. Cambisol, Leptosol and Luvisol are the main soil types 159 

(Gentile et al., 2009). 160 

 161 

Fig. 1. Long-term composite images of dual-polarized Sentinel-1 with "ASCENDING" orbits (period 162 

1: January–February 2018) and distribution of soil samples. 163 
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2.2. Soil dataset 164 

We collected SOC and TSN data from the LUCAS Topsoil Database covering Austria, which was 165 

provided from the European Soil Data Center (Orgiazzi et al., 2018; Tóth et al., 2013). As a module 166 

of the LUCAS Survey project, LUCAS soil is the largest and most comprehensive soil database 167 

representing European soil (Yigini and Panagos, 2016). LUCAS included the soil module for the 168 

first time in 2009, providing approximately 20,000 topsoil samples (0-20 cm) collected on different 169 

land use types covering 25 Member States (MS) of the European Union (EU) (Fernández-Ugalde et 170 

al., 2020b). The sampling locations were selected to represent the landscape features of Europe, 171 

with a density of about 1 per 199 km2 (Schiefer et al., 2016). In the LUCAS 2018 Topsoil Survey, 172 

approximately 27,000 soil sampling locations were initially identified, while the final soil module 173 

dataset contained data for 18,984 locations; 16,556 sites from the LUCAS 2015 surveys were 174 

revisited; part of the new points in the 2015 survey were located at altitudes of 1,000-2,000 m, 175 

beyond the scope of the LUCAS 2009/2012 survey (Fernández-Ugalde et al., 2020a; 176 

Fernandez-Ugalde et al., 2022). The selection of sample points, soil sampling and analysis methods 177 

of soil properties were described in detail by Orgiazzi et al. (2018). The LUCAS soil database 178 

records various basic soil properties such as SOC, TSN and pH. (Castaldi et al., 2018). As the most 179 

harmonized soil dataset at European scale, the LUCAS soil database has been used to carry out 180 

prediction studies of soil properties at different scales (Ballabio et al., 2016; Wadoux, 2019; Wang 181 

et al., 2020b). We extracted all soil samples (n = 449) covering Austria from the LUCAS 2018 soil 182 

dataset to predict SOC and TSN (Fig. 1).  183 
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2.3. Remote sensing data and pre-processing   184 

Sentinel-1 and Sentinel-2 satellites provide C-band SAR images and optical imaging data, 185 

respectively. The Sentinel-1 (6-day revisit) satellite supports four operating modes with different 186 

resolutions and coverage areas (Yagüe-Martínez et al., 2016). Interferometric Wide Swath Mode 187 

(IW) is the main operating mode over land, with a high spatial resolution (5 m × 20 m) and a wide 188 

coverage (250 km) (Huang et al., 2018). The Sentinel-2 sensor provides multispectral image (13 189 

spectral bands) data with high spatial resolution (10-60 m) and wide area coverage (swath width of 190 

290 km) at a 5-day interval (Murphy et al., 2016).  191 

We used IW-mode Sentinel-1 SAR imagery with dual polarization (vertical transmit/vertical 192 

receive (VV) and vertical transmit/horizontal receive (VH)). All available Sentinel-1 images (from 193 

the beginning of dataset availability until 2018) in Austria were accessed and preprocessed on the 194 

GEE platform to generate backscatter coefficient in decibels (dB). In the GEE platform, we 195 

filtered Sentinel-1 data according to the orbital direction to get Sentinel-1 data with 196 

"DESCENDING" and "ASCENDING" orbitals. More details on the steps taken by the GEE 197 

platform to process Sentinel-1 data can be found in Singha et al. (2020). To evaluate the optimal 198 

time window for soil prediction, all acquired Sentinel-1 images were synthesized in multi-year (all 199 

Sentinel-1 images by 2018) and single-year (Sentinel-1 images in 2018) time windows, 200 

respectively. We applied a median function to the acquired Sentinel-1 images based on these two 201 

time windows to construct long-term composite images of Sentinel-1 for every two-month period. 202 

Twelve long-term composite images of Sentinel-1 for six time periods (e.g., period 1: January–203 
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February) were produced over a twelve month period. Long-term composite images are less 204 

susceptible to changes in image acquisition conditions than single date imagery (Anchang et al., 205 

2020). Twenty-four Sentinel-1 features were synthesized under each time window, and these 206 

long-term composite images from different polarization modes (i.e., VV and VH) and orbital 207 

directions were used as input predictors. 208 

There are two levels of Sentinel-2 available in GEE, with the higher-level Sentinel-2 Level 209 

2A product containing orthorectified atmospherically corrected surface reflectance processed 210 

using Sen2Cor tool from the Copernicus Scientific Data Hub (Roca et al., 2022; Tian et al., 2021). 211 

This study collected all Sentinel-2 surface reflectance data (Level 2A) with cloud cover less than 212 

10% via GEE from when the data was available on GEE to 2018. Similar to Sentinel-1, acquired 213 

Sentinel-2 images were processed and analyzed in multi-year and single-year time windows, 214 

respectively. Cloud masking was performed using Sentinel-2 QA band that provides cloud state 215 

information (Zhang et al., 2019). The median function was used to downscale all Sentinel-2 216 

images, resulting in Sentinel-2 composite images at different time windows (Ghorbanian et al., 217 

2020). The 10 extracted Sentinel-2 bands (i.e., bands 2-8a, 11, and 12) were used as explanatory 218 

variables to construct soil predictive models, which are widely used in soil mapping (Gholizadeh 219 

et al., 2018; Vaudour et al., 2019). In total, 68 Sentinel-1/2 derived predictors composed of 220 

single-year and multi-year composite images were used for further modeling and analysis of SOC 221 

and TSN (Table 1). 222 

 223 



12 

 

 224 

Table 1. Summary description of Sentinel-1/2-derived predictors synthesized from 225 

long-term satellite observations. 226 

Sensors Number of features Description 

Sentinel-1 12 Backscatter coefficient in "ASCENDING" orbit 

Sentinel-1 12 Backscatter coefficient in "DESCENDING" orbit 

Sentinel-1 12 Backscatter coefficient in VH polarization 

Sentinel-1 12 Backscatter coefficient in VV polarization 

Sentinel-1 24 All available Sentinel-1 derived predictors 

Sentinel-2 10 Sentinel-2 bands (i.e., bands 2-8a, 11, and 12) 

2.4. Predictive models 227 

2.4.1. Boosted regression trees 228 

The boosted regression tree (BRT) model is a combination of statistical methods and machine 229 

learning techniques with the advantages of two algorithms (i.e., boosting and regression trees) 230 

(Elith et al., 2008). It is a powerful regression modeling technique that can effectively select 231 

relevant variables and determine the most important input variables (Arabameri et al., 2019). This 232 

model is known to have several advantages, including low sensitivity to overfitting and stable 233 

predictive power (Wang et al., 2018). The BRT model has been widely used to solve various 234 

ecological modeling problems, especially the spatial prediction of soil properties (Lamichhane et 235 

al., 2019; Zhang et al., 2017). Three main parameters need to be set for BRT modeling: the 236 

learning rate, the number of trees and the tree complexity (Ottoy et al., 2017). We used the "caret" 237 

package in R software to perform a grid search to optimize these parameters (Forkuor et al., 2017; 238 

Kuhn, 2008). The combination of these parameters that produced the lowest prediction error was 239 
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set for final analysis. The BRT prediction method was implemented in the R software using the 240 

"gbm" packages. 241 

2.4.2. Regression kriging  242 

Regression kriging (RK) is the most commonly used hybrid spatial interpolation and modeling 243 

method that integrates regression and interpolation techniques in a single step (Ma et al., 2017). In 244 

the RK method, the target soil properties are explained by auxiliary variables through a regression 245 

model and the regression residuals are described by spatial autocorrelation using kriging 246 

techniques (Hengl et al., 2007). This method has been reported to improve model performance 247 

compared to ordinary kriging (Hengl et al., 2004). The RK model was implemented using the 248 

"fit.gstatModel" function of the "GSIF" package in the R software; it combines regression and 249 

residual kriging in a single step (Llamas et al., 2020; Zhang et al., 2020). 250 

2.5. Model performance evaluation 251 

Soil predictive models were constructed from different input variables, resulting in seven 252 

modeling scenarios (Scenario 1: long-term composite images from VV polarization; Scenario 2: 253 

long-term composite images from VH polarization; Scenario 3: long-term composite images of 254 

Sentinel-1 with "ASCENDING" orbits; Scenario 4: long-term composite images of Sentinel-1 255 

with "DESCENDING" orbits; Scenario 5: all available Sentinel-1 derived predictors; Scenario 6: 256 

all available Sentinel-2 derived predictors; Scenario 7: combination of SAR and optical data 257 

(Sentinel-1+ Sentinel-2)). The performance of the above models was evaluated by 10-fold 258 
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cross-validation. The following validation indices were calculated to compare and evaluate model 259 

performance: the root mean square error (RMSE), the mean absolute error (MAE) and the 260 

coefficient of determination (R2).  261 

3. Results 262 

3.1. Descriptive statistics of SOC and TSN 263 

The statistics of the soil properties are presented in Table 2. The mean values of SOC and TSN in the 264 

topsoil were 80.06 g/kg (median: 47.50 g/kg) and 5.20 g/kg (median: 4.00 g/kg), respectively. SOC 265 

ranged from 3.10 to 723.90 g/kg and TSN ranged from 0.40 to 46.50 g/kg. The above soil properties 266 

showed a strongly skewed distribution; the skewness coefficients for SOC and TSN were 2.70 and 267 

3.36, respectively. We therefore applied the natural logtransformation to those soil properties; the 268 

skewness coefficients of SOC and TSN dropped to 0.29 and 0.17, respectively.  269 

Table 2 Statistical summary of SOC and TSN in the study area (n = 449). 270 

 
Minimum Maximum Mean Median Standard deviation (SD) Skewness 

SOC 3.10 723.90 80.06 47.50 89.49 2.70 

LnSOC  1.13 6.58 3.93 3.86 0.92 0.29 

TSN 0.40 46.50 5.20 4.00 4.34 3.36 

LnTSN -0.91 3.83 1.40 1.38 0.68 0.17 

Notes: LnSOC, log-transformed SOC; LnTSN, log-transformed TSN. 271 

3.2. Predictive performance 272 

The performance of BRT and RK models in predicting SOC and TSN based on multi-year and 273 

single-year composite data under the seven scenarios is shown in Table 3. The comparative 274 
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analysis of the mapping accuracy of different modeling scenarios showed that the choice of 275 

satellite sensors, modeling methods, polarization modes, orbital directions and time window 276 

greatly affected the output of soil predictive models. For example, for the two modeling 277 

techniques used, RK performed better than BRT in SOC and TSN mapping from Scenario 1 to 278 

Scenario 7. This was confirmed by higher R2 and lower RMSE and MAE values when SOC (R2 279 

values in the range of 0.40 to 0.55 for different scenarios) and TSN (R2 values in the range of 0.37 280 

to 0.45 for different scenarios) were predicted by RK.  281 

The results showed that the SOC and TSN predictive models constructed by Sentinel-1 had 282 

obdvious differences in accuracy under various SAR data-acquisition configurations. Scenarios 1 283 

and 2, -both constructed from only a single polarization- showed relatively poor performance; the 284 

two polarization modes (i.e., VV and VH) had similar performance in mapping SOC and TSN 285 

using the RK model. The combined polarization (Scenario 5) effectively improved the mapping 286 

accuracy of SOC and TSN compared to Scenarios 1 and 2; their relative improvements (in terms 287 

of R2) compared to the RK-based modeling scenarios without VV polarization input were 6% and 288 

5%, respectively. SOC and TSN were better predicted by Sentinel-1 images with "ASCENDING" 289 

orbit than experimental scenarios with "DESCENDING" orbit. The accuracy of the experimental 290 

scenario with the "ASCENDING" orbit closely followed Scenario 5 (all available Sentinel-1 291 

predictors), while the experimental scenario with the "DESCENDING" orbit performed the 292 

poorest of all scenarios.  293 
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Among Sentinel-1/2-based experimental scenarios, Scenario 6 constructed by Sentinel-2 had 294 

an overall similar predictive performance to Sentinel-1-based experimental scenarios; their best 295 

prediction accuracies for SOC (R2 = 0.52 vs. R2 = 0.51, respectively) and TSN (R2 = 0.42) were 296 

very close. Scenario 7, constructed from the fusion of SAR and optical data, improved mapping 297 

accuracy compared to soil predictive models based on a single sensor; when Sentinel-1 and 298 

Sentinel-2 were fused, the R2 of the SOC and TSN predictive models using the RK method 299 

increased from 0.51 to 0.55 and from 0.42 to 0.45, respectively; moreover, soil predictive models 300 

based on SAR and optical data achieved the highest accuracy. 301 

Overall, more years of synthetic images in all experimental scenarios provided more accurate 302 

SOC and TSN prediction results. This result suggests that choosing an appropriate time window 303 

for satellite-based soil predictive models is very important to effectively model SOC and TSN. 304 

SOC was more successfully predicted than TSN for all modeling scenarios. The best performance 305 

was obtained from the SOC and TSN models fitted by all available Sentinel-1/2-derived predictors 306 

(Scenario 7) among all modeling scenarios, with R2 = 0.55 and R2 = 0.45 for SOC and TSN 307 

predictions, respectively. The R2 values of the SOC predictive models constructed by Sentinel-1/2 308 

indicated that these models could explain approximately 51% and 52% of the SOC variation, 309 

respectively, and together explained 55% of the SOC variability. Meanwhile, the RK models in 310 

Scenario 5 (Sentinel-1), Scenario 6 (Sentinel-2) and Scenario 7 (all available Sentinel-1/2 311 

predictors) explained 42%, 42% and 45% of the TSN variability, respectively. 312 

 313 
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Table 3 Accuracy results of predicting SOC and TSN based on multi-year and single-year composite 314 

images under seven scenarios. 315 

Modeling Model  SOC    TSN  

technique  MAE RMSE R2  MAE RMSE R2 

BRT Scenario 1        

 single-year 0.57 0.75 0.34  0.46 0.60 0.23 

 multi-year 0.55 0.73 0.38  0.45 0.59 0.27 

 Scenario 2        

 single-year 0.60 0.78 0.30  0.47 0.62 0.20 

 multi-year 0.56 0.73 0.37  0.45 0.59 0.25 

 Scenario 3        

 single-year 0.57 0.74 0.36  0.45 0.59 0.26 

 multi-year 0.54 0.71 0.41  0.43 0.57 0.31 

 Scenario 4        

 single-year 0.63 0.81 0.24  0.47 0.62 0.18 

 multi-year 0.60 0.77 0.31  0.46 0.60 0.23 

 Scenario 5        

 single-year 0.56 0.74 0.36  0.45 0.59 0.26 

 multi-year 0.54 0.71 0.41  0.43 0.57 0.31 

 Scenario 6        

 single-year 0.53 0.71 0.41  0.44 0.59 0.26 

 multi-year 0.53 0.71 0.41  0.43 0.59 0.27 

 Scenario 7        

 single-year 0.52 0.70 0.43  0.43 0.58 0.29 

 multi-year 0.51 0.69 0.45  0.43 0.57 0.31 

RK Scenario 1        

 single-year 0.52 0.68 0. 45  0.39 0.53 0. 39 

 multi-year 0.50 0.66 0.48  0.39 0.53 0. 40 

 Scenario 2        

 single-year 0.52 0.69 0.45  0. 39 0. 53 0. 38 

 multi-year 0.51 0.67 0.48  0. 39 0. 53 0. 40 

 Scenario 3        

 single-year 0. 51 0. 67 0. 47  0. 39 0.53 0.40 

 multi-year 0. 50 0. 66 0. 49  0. 39 0. 52 0. 41 

 Scenario 4        

 single-year 0. 55 0. 71 0.40  0.40 0. 54 0. 37 

 multi-year 0. 53 0. 68 0. 45  0. 39 0. 53 0. 40 

 Scenario 5        

 single-year 0.51 0.67 0. 47  0.39 0. 53 0. 40 

 multi-year 0.49 0. 65 0. 51  0.38 0. 52 0. 42 
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 Scenario 6        

 single-year 0.50 0. 64 0. 51  0. 39 0. 52 0.41 

 multi-year 0.49 0.64 0.52  0. 38 0. 52 0. 42 

 Scenario 7        

 single-year 0. 48 0. 62 0. 54  0. 38 0. 51 0. 43 

 multi-year 0. 47 0. 62 0. 55  0.38 0.51 0.45 

3.3. Importance of auxiliary variables 316 

 317 
Fig. 2. Importance of auxiliary variables in predicting SOC and TSN using BRT model based on 318 

different experimental scenarios. (a)–(c) correspond to the importance results of modeling 319 

scenarios 5 to 7 in predicting SOC, respectively; (d)–(f) correspond to the importance results of 320 

modeling scenarios 5 to 7 in predicting TSN, respectively; VV_1_asc to VV_6_asc correspond to 321 

long-term composite images of VV polarization with "ASCENDING" orbits from six time 322 

periods, respectively; VV_1_des to VV_6_des correspond to long-term composite images of VV 323 

polarization with "DESCENDING" orbits from six time periods, respectively; S2_B2 to S2_B12 324 

are the spectral bands of Sentinel-2 data. 325 
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The relative importance of explanatory variables in predicting SOC and TSN, which was estimated 326 

by the BRT algorithm, is shown in Fig. 2. The variable importance rankings of the two soil attributes 327 

were different, revealing different dominating environmental variables in the two soil predictive 328 

models. VH_3_asc, VV_6_asc, VV_1_asc and VV_3_des, all located in the top five most 329 

important predictors of the SOC and TSN predictive models built by Sentinel-1, together 330 

accounting for 56% and 45% of the total relative importance, respectively. S2_B11, S2_B4, 331 

S2_B12 and S2_B2 had the largest contributions in the SOC and TSN predictive models 332 

established by Sentinel-2, with the sum of their importance being 92% and 89%, respectively. 333 

These Sentinel-2 derived predictors also ranked in the top four for SOC and TSN models utilizing 334 

the combination of Sentinel-1 and Sentinel-2. Among the models built by Sentinel-1/2, only one 335 

of the top five most important predictors came from Sentinel-1, suggesting that Sentinel-2 had a 336 

greater impact on the models than Sentinel-1; the total relative importance of Sentinel-2-derived 337 

variables in the SOC and TSN predictive models was 72% and 52%, respectively. 338 

3.4. Predicted national maps of SOC and TSN 339 

We produced high-resolution digital soil maps for SOC and TSN in Austria using the BRT and 340 

RK models under different experimental scenarios (Figs. 3-4). The spatial patterns of the mapping 341 

results of the soil predictive models under these two modeling techniques were generally similar, 342 

but the spatial details were slightly different. We observed that the overall trends in the mapping 343 

results of soil predictive models built by Sentinel-1 and Sentinel-2 and their combinations were 344 

consistent, although the two systems had different image characteristics, information content, and 345 
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imaging techniques. Meanwhile, the mapping results of the SOC and TSN predictive models 346 

shared similar spatial patterns. The average values of SOC mapped by Scenario 5 (Sentinel-1), 347 

Scenario 6 (Sentinel-2) and Scenario 7 (Sentinel-1/2) using the RK model were 63.98 g/kg (SD: 348 

38.77 g/kg), 65.08 g/kg (SD: 44.28 g/kg) and 63.73 g/kg (SD: 45.06 g/kg), respectively. The mean 349 

and SD values of the predicted TSN using the RK model were 4.41 and 1.93 g/kg for Scenario 5, 350 

4.50 and 2.18 g/kg for Scenario 6, and 4.47 and 2.32 g/kg for Scenario 7, respectively. 351 

 352 
Fig. 3. Maps of SOC produced using BRT and RK models based on different experimental scenarios. 353 

RK-a to RK-c correspond to the predicted maps of modeling scenarios 5 to 7 based on the RK 354 

model, respectively; BRT-a to BRT-c correspond to the predicted maps of modeling scenarios 5 355 

to 7 based on the BRT model, respectively; Scenario 5 included all available Sentinel-1 derived 356 

predictors; Scenario 6 included all available Sentinel-2 derived predictors; Scenario 7 included 357 

all available Sentinel-1/2 derived predictors. 358 



21 

 

 359 

Fig. 4. Maps of TSN produced using BRT and RK models based on different experimental scenarios. 360 

RK-a to RK-c correspond to the predicted maps of modeling scenarios 5 to 7 based on the RK 361 

model, respectively; BRT-a to BRT-c correspond to the predicted maps of modeling scenarios 5 362 

to 7 based on the BRT model, respectively; Scenario 5 included all available Sentinel-1 derived 363 

predictors; Scenario 6 included all available Sentinel-2 derived predictors; Scenario 7 included 364 

all available Sentinel-1/2 derived predictors. 365 

 366 



22 

 

4. Discussion 367 

4.1. Performance of different modeling scenarios in predicting SOC and TSN 368 

Our comparative analysis based on different modeling scenarios showed that the choice of sensors 369 

and modeling techniques, as well as the SAR utilization strategies (i.e., polarization modes, orbital 370 

directions and time window) greatly affected the output of soil predictive models (Table 3). Our 371 

results showed that VV and VH polarizations exhibited similar performance in mapping SOC and 372 

TSN. Combined polarizations had more accurate prediction results than single polarizations. 373 

Many scholars reported that multi-polarization contains more information about the target 374 

scattering mechanism than single-polarization (Irwin et al., 2018; Liu et al., 2021). In our study, 375 

SOC and TSN were better predicted by Sentinel-1 images of the "ASCENDING" orbit than 376 

scenarios involving the "DESCENDING" orbit. Moreover, the experimental scenario with 377 

"ASCENDING" orbital data had similar prediction performance to Scenario 5 constructed by all 378 

available Sentinel-1 predictors. Some scholars have emphasized the differences in the backscatter 379 

and scattering mechanisms in different orbital directions of radar sensors (Elfadaly et al., 2020; 380 

Mahdavi et al., 2019). The prediction accuracy based on long-term Sentinel-1 observations was 381 

superior to previous studies utilizing multitemporal SAR data (Zhou et al., 2020).  382 

Our study demonstrated the feasibility and reliability of SOC and TSN mapping using 383 

long-term synthetic Sentinel-1 and Sentinel-2 data. This was also supported by Wang et al. (2021) 384 

who emphasized the usefulness of Sentinel-1 and Sentinel-2 data in soil prediction. We found that 385 
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the fusion of SAR and optical data improved the mapping accuracy (Table 3). The observed R2 386 

values were higher than previous studies based on Sentinel-1 and Sentinel-2 sensors (Li et al., 387 

2021; Zhou et al., 2020). Similar to our results, Nguyen et al. (2022) also reported the potential of 388 

combining SAR and optical data to improve accuracy. However, Shafizadeh-Moghadam et al. 389 

(2022) found that the synergistic use of Sentinel-1 and Sentinel-2 did not improve accuracy. 390 

Various environmental data (e.g., climate, relief and land use) directly or indirectly related to soil 391 

formation processes in nature have been widely used to map SOC content from regional to global 392 

scales (Chen et al., 2022). Remote sensing technology can obtain rich land surface information for 393 

SOC mapping in an effective, fast, frequent and economical way (Odebiri et al., 2021; Yang et al., 394 

2021). Similar to our study, many studies have explored the use of EO data with different 395 

characteristics in SOC mapping to improve the utility and performance of EO data without 396 

considering other environmental data such as climate and topography (Gholizadeh et al., 2018; 397 

Luo et al., 2022a; Odebiri et al., 2022b; Shi et al., 2022). It is expected that the SOC predictive 398 

model can be improved when other influential environmental data are included in this study. 399 

In this study, the GEE platform provided good support for efficient soil property modeling. 400 

We relied on the GEE platform to maximize the use of effective pixels from Sentinel-1 and 401 

Sentinel-2 data. Our results showed that soil predictive models involving more years of composite 402 

images from the GEE achieved more accurate prediction results than models with only one year of 403 

composite images. The advantages of long-term satellite observations could be explained by their 404 

ability to capture changes in land surface characteristics over time (Maynard and Levi, 2017). 405 
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Recent studies using the GEE platform for soil mapping have revealed its great potential in soil 406 

prediction (Luo et al., 2022b; Luo et al., 2022c). However, these studies only used optical satellite 407 

imagery to train the models. Our results revealed that both radar Sentinel-1 and multispectral 408 

Sentinel-2 have great potentials in predicting soil properties, especially the former in areas prone 409 

to cloud cover. 410 

The prediction accuracy of Scenario 7 (all available Sentinel-1/2 predictors) was the highest 411 

among all modeling strategies. The best soil predictive models with the highest R2 explained 55% 412 

and 45% of soil variability for SOC and TSN, respectively. The prediction accuracy of soil 413 

properties in this study based solely on long-term optical and radar satellite observations from the 414 

GEE platform was comparable to previous studies using topsoil LUCAS data and multisource 415 

environmental variables including satellite-derived variables. For example, the R2 values of SOC 416 

and TSN predictive models constructed from long-term Sentinel-1/2 satellite observations in this 417 

study were not inferior to those of soil predictive models constructed in Switzerland (Zhou et al., 418 

2021) and France (Wadoux, 2019) based on multi-source environmental data.  419 

4.2. Importance of predictors 420 

Optical images, which are more accessible and familiar to users, are the most commonly used 421 

remote sensing data for soil mapping. In our study, Sentinel-1 backscatter bands and Sentinel-2 422 

derived predictors were found to be useful auxiliary variables for mapping SOC and TSN (Fig. 2). 423 

For the models constructed by Sentinel-1/2, Sentinel-2 had a larger impact than Sentinel-1 in SOC 424 

and TSN predictive models. Sentinel-2 derived predictors were given a sum of relative importance 425 
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of 72% and 52% in the SOC and TSN predictive models, respectively. Many authors have 426 

highlighted the importance of various optical satellite images with different characteristics in 427 

predicting soil properties at different scales (Fathololoumi et al., 2020; Odebiri et al., 2022a; Vågen 428 

et al., 2016). Four of the top five most important predictors for the models based on all 429 

satellite-derived predictors were Sentinel-2 spectral bands. Vegetation cover was found to be highly 430 

related to the distribution pattern of soil properties near the topsoil (Wan et al., 2019; Zhang et al., 431 

2018). As reported by Maynard and Levi (2017) and Yang et al. (2019), vegetation and soil coexist 432 

as part of the feedback system and the soil-vegetation relationship helps to assist satellite imagery to 433 

predict soil properties. Some researchers have used reflectance or vegetation indices derived from 434 

Sentinel-2 data as a proxy for vegetation cover to develop soil predictive models (Guo et al., 2021; 435 

He et al., 2021).     436 

Unlike previous studies that only focused on optical data, our results revealed that both 437 

long-term optical (Sentinel-2) and radar (Sentinel-1) observations have powerful predictive 438 

capabilities for soil properties. Sentinel-1 also played an important role in our prediction models 439 

(Fig. 2), and comparable prediction performance to Sentinel-2 was observed in the SOC and TSN 440 

predictive models (Table 3). VV and VH backscatter images derived from Sentinel-1 were 441 

identified as influential predictors. This was supported by other soil mapping studies that revealed 442 

the importance of Sentinel-1 backscatter in predicting soil properties (Domenech et al., 2020). 443 

Nguyen et al. (2022) reported that Sentinel-1 derived variables played an important role in SOC 444 

prediction due to their ability to capture the characteristics of short-term variability in vegetation. 445 
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Our results also showed that multi-year satellite observations were more influential than 446 

single-year composite images. The GEE platform has been reported to have an important 447 

contribution to the efficient modeling of soil properties (Luo et al., 2022a). Tamiminia et al. (2020) 448 

reviewed the application status of the GEE platform and found that only 14 of the 349 papers 449 

using GEE were related to soil research. The GEE platform hosts vast amounts of remote sensing 450 

data, such as the global Sentinel and Landsat archives, and provides analytics-ready satellite 451 

products that allow for the relatively easy integration of disparate geospatial data (Wang et al., 452 

2020a). The benefits that the development of GEE has brought to the field of soil mapping cannot 453 

be underestimated. 454 

4.3. National-scale maps of SOC and TSN in Austria 455 

The predicted soil maps showed a highly heterogeneous spatial pattern, that is broadly similar with 456 

previous digital soil products implemented at the European or global scale (Ballabio et al., 2019; 457 

Hengl et al., 2017). However, these existing digital soil maps have a relatively low resolution, 458 

preventing end users from understanding the local-scale variation of soil properties. In this study, 459 

the overall trends in the predicted maps for radar Sentinel-1 and optical Sentinel-2 and their 460 

combinations were consistent, although the two systems had different image characteristics, 461 

information content, and imaging techniques. Meanwhile, SOC and TSN, having similar spatial 462 

patterns, showed significant spatial variation across different biogeographic regions (Figs. 3-4). 463 

Similar findings were also observed in other studies (Jeong et al., 2017; Peng et al., 2014), as there is 464 

inherently a strong positive correlation between SOC and TSN (Ma et al., 2018; Oduor et al., 2018). 465 
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Generally, high SOC and TSN content mainly occurred in the central and western part of the study 466 

area with high altitude, where the land was mostly covered by natural vegetation (woodland and 467 

grassland) and was less affected by human disturbance. These areas were characterized by a cold 468 

and humid climate and high vegetation coverage, which is conducive to carbon and nitrogen 469 

accumulation in the soil. Lower SOC and TSN concentrations were mainly distributed in the 470 

low-altitude eastern and northern regions dominated by cultivated land and artificial areas, where 471 

the soil was often disturbed by human activities. The predicted values of SOC and TSN in the 472 

northern mountainous areas were greater at higher altitudes. These results confirmed that 473 

topographic variables, vegetation cover and climate conditions are the main drivers of soil carbon 474 

and nitrogen distribution. This was also found in other soil mapping studies (Jeong et al., 2017; 475 

Liang et al., 2019) and is consistent with the predictor importance results described above.  476 

5. Conclusions 477 

In this study, we integrated long-term optical and radar Sentinel observations via GEE for 478 

high-resolution national-scale digital mapping of soil properties (SOC and TSN) in Austria. The 479 

main conclusions are as follows: 480 

 Our results indicated that satellite sensors, modeling techniques, and SAR data acquisition 481 

configurations have a significant impact on the output of the SOC and TSN predictive 482 

models. 483 

 Overall, VV and VH polarizations performed similarly in predicting SOC and TSN; 484 

combined polarizations produced more accurate output results than single polarizations. 485 

Sentinel-1 prediction models based on "ASCENDING" orbits outperformed models 486 
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involving "DESCENDING" orbits; the prediction accuracy of the former was comparable 487 

to models involving two orbital data. 488 

 Soil predictive models involving more years of Sentinel observations from the GEE 489 

platform yielded more accurate predictions. Our study highlighted the enormous potential 490 

of the GEE platform for large-scale soil mapping. 491 

 Models based on optical Sentinel-2 and radar Sentinel-1 performed similarly in predicting 492 

SOC and TSN; their synergistic utilization improved the mapping accuracy. Long-term 493 

Sentinel observation-derived variables have a powerful ability to model national-scale 494 

SOC and TSN. 495 

 Our most accurate soil predictive models explained 55% and 45% of soil variability for 496 

SOC and TSN, respectively; they were both constructed from long-term Sentinel-1/2 497 

observations using the RK method. 498 

 The predicted soil maps showed high spatial heterogeneity, in which SOC and TSN 499 

shared similar spatial patterns and had high values in the central and western regions at 500 

high altitudes. 501 
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