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Abstract Terrestrial ecosystems, occupying 28.26% of Earth's surface, are extensively 1 

at risk from droughts, which is likely to propagate into human communities owing to 2 

loss of vital services. Ecosystem risk also tends to fluctuate within anthropogenically-3 

forced nonstationary environments, raising considerable concerns about effectiveness 4 

of mitigation strategies. This study aims to assess dynamic ecosystem risk induced by 5 

droughts and identify risk hotspots. Bivariate nonstationary drought frequency was 6 

initially derived as a hazard component of risk. By coupling vegetation coverage and 7 

biomass quantity, a two-dimensional exposure indicator was developed. Trivariate 8 

likelihood of vegetation decline was calculated under arbitrary droughts to intuitively 9 

determine ecosystem vulnerability. Ultimately, time-variant drought frequency, 10 

exposure and vulnerability were multiplied to derive dynamic ecosystem risk, followed 11 

by hotspot and attribution analyses. Risk assessment implemented in the drought-12 

prevalent Pearl River basin (PRB) of China during 1982–2017 showed that 13 

meteorological droughts in eastern and western margins, although less frequent, were 14 

prolonged and aggravated in contrast to prevalence of less persistent and severe 15 

droughts in the middle. In 86.12% of the PRB, ecosystem exposure maintains high 16 

levels (0.62). Relatively high vulnerability (>0.5) occurs in water-demanding 17 

agroecosystems, exhibiting a northwest-southeast-directed extension. A 0.1-degree risk 18 

atlas unveils that high and medium risks occupy 18.96% and 37.99% of the PRB, while 19 

risks are magnified in the north. The most pressing hotspots with high risk continuing 20 

to escalate reside in the East River and Hongliu River basins. Our results provide 21 

knowledge of composition, spatio-temporal variability and driving mechanism of 22 

drought-induced ecosystem risk, which will assist in risk-based mitigation prioritization. 23 
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1 Introduction 26 

 27 

Climate extremes, lying at the outermost tails of historical distributions, usually arise 28 

from the severe alternation of water availability and thermal conditions (Diffenbaugh 29 

et al., 2017, Rupp et al., 2022). In response to the occurrence of diverse climate 30 

extremes, terrestrial ecosystem functioning, productivity and structure can significantly 31 

alter as a direct consequence of the hampered photosynthesis, respiration, transpiration 32 

and other essential physiological processes (Fang et al. 2019b; Stocker et al., 2019; 33 

Zhang et al. 2023). In this way, climate extremes tend to amplify the likelihood that 34 

ecosystems fail to function properly, thereby creating climate-related ecosystem risks. 35 

Among diverse climate extremes that constitute external forcings of ecosystem risk, 36 

droughts in conjunction with their consequent adverse effects have been extensively 37 

documented (Keen et al. 2022; Teutschbein et al. 2023). Droughts pose risk to terrestrial 38 

ecosystems in a way that water deficits disrupt plant metabolism, nutrient mobility and 39 

energy production that are indispensable for all living organisms, usually with water 40 

content as high as 65~89% (Li, Tong, et al., 2020; Meza et al., 2020). More importantly, 41 

drought-induced ecosystem risks are easily transmitted to surrounding human 42 

settlements through mismatches between the supply of ecosystem services and human 43 

demand during drought, ultimately exacerbating risks to the human communities 44 

closely interrelated (Munns Jr et al., 2016). Therefore, it constitutes a high priority to 45 

specifically evaluate the drought-related ecosystem risk and identify risk hotspots, as 46 

part of efforts to shift drought preparedness from reactive crisis management to 47 

proactive risk reduction. 48 

 49 
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Risk, according to the Intergovernmental Panel on Climate Change (IPCC; Field et al., 50 

2012) and the United Nations Office for Disaster Risk Reduction (UNDRR; Kelman, 51 

2018), is defined as the likelihood over a specific period when the normal functioning 52 

of a community or society is severely altered due to hazardous physical events, leading 53 

to widespread negative effects. The definition emphasizes the role of causal hazards as 54 

the external forcing, and either natural or anthropogenic systems where hazard impact 55 

occurs. An ensemble of preceding studies (Bachmair et al., 2017; Quijano et al., 2015; 56 

Tsakiris, 2017) are accustomed to utilizing the product of the drought index and 57 

consequent impact to estimate drought-related risk. Given the multifaceted nature of 58 

droughts, the use of the drought index as a risk component provides sufficient flexibility 59 

in integrating different drought characteristics (such as drought frequency, severity and 60 

duration; Li, Tong, et al., 2020) as well as information regarding diverse types of 61 

droughts (meteorological, hydrological and groundwater droughts; Sharafi et al., 2020; 62 

Zhang et al., 2019), which facilitates risk assessment from a comprehensive perspective. 63 

The foregoing efforts exemplify the impact-based approaches to risk assessment. As 64 

the drought impact archives are typically sector-specific, a distinct advantage of the 65 

impact-based approaches is that risk assessment can be targeted towards dealing with 66 

particular concerns over ecosystem, economy, society and cultural heritage, which is 67 

key to risk managers from different sectors. However, the impact-based approaches are 68 

highly dependent upon the historical drought records, and are only applicable to limited 69 

regions with good data coverage, such as developed countries with sophisticated 70 

disaster communication networks and traditions (Blauhut et al., 2016). To deal with the 71 

limitation, accumulated knowledge provides useful insight that hazard impact is jointly 72 

determined by how many environmental services, and socioeconomic assets are 73 

exposed to hazards as well as the extent to which the system under investigation is 74 
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vulnerable to hazards (Field et al., 2012). High levels of exposure and vulnerability tend 75 

to give rise to great severity of hazard impact upon natural or anthropogenic systems. 76 

Thereby, recent studies (Ahmadalipour et al., 2019; Carrão et al., 2016; Koks et al., 77 

2015) more frequently employ exposure and vulnerability as surrogates of hazard 78 

impact, in view of the difficulty in access to quantitative information about the 79 

documented impact on human communities and ecosystems. An updated risk formula 80 

is generated, which is expressed as a product of hazard, exposure and vulnerability at 81 

an accelerated pace (Aerts et al., 2018; Byers et al., 2018; Koks et al., 2019). The 82 

hazard-exposure-vulnerability (HEV) approach for risk assessment highlights that 83 

exposure and vulnerability, following the hazard, become the other two risk 84 

determinants originating from the affected systems (Peduzzi et al., 2009). Exposure and 85 

vulnerability with multi-dimensional characteristics (usually having environmental, 86 

social, and economic dimensions; Angeon & Bates, 2015; Wens et al., 2019) can be 87 

evaluated using composite indicators or index-based methods (Balogun & 88 

Onokerhoraye, 2022; González Tánago et al., 2016; Hagenlocher et al., 2019), which 89 

involve the integration of a large amount of information (such as the biomass quantity, 90 

vegetation types and biodiversity from ecosystems, and the demographic structure, 91 

education level, socio-economic status and governance capacity from human 92 

communities) from systems where negative impacts arise. Weights assigned to each 93 

subdimension of exposure or vulnerability are usually determined via the expert survey 94 

(Meza et al., 2020) and multiple criteria decision analysis typically including the 95 

analytical hierarchy process (Chakraborty & Joshi, 2016) and fuzzy logic methods 96 

(Hoque et al., 2021). Data required by the HEV approach can be more easily retrieved 97 

from the annual statistical reports available at either national or regional scale, which 98 

is considered as a major advantage compared to the impact-based approach. This 99 
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advantage has largely contributed to the popularity of the HEV approach in risk analysis 100 

community. 101 

 102 

The main focus of the preceding risk assessment and the subsequent risk management 103 

are directed to human communities. Terrestrial ecosystems, which occupy 28.26% of 104 

the Earth's surface, are substantially more vulnerable to drought than human settlements 105 

with much lower ground cover (0.38% in 2015) and a more sparse distribution 106 

(Melchiorri et al., 2018). However, little attention has been paid to terrestrial 107 

ecosystems when assessing drought-related risks. Only limited efforts have been made, 108 

with a particular focus on agricultural systems (also termed as the agroecosystem; Jia 109 

et al., 2012; Zhang et al., 2019) which is a typical representative of an artificial 110 

ecosystem designed and managed to yield crops and animal products (Swinton et al., 111 

2007). Case studies on estimating drought-related risk to agroecosystems are mostly 112 

conducted within the hazard-exposure-vulnerability framework. Hazard is usually 113 

characterized using the occurrence probability of hazardous events at different 114 

intensities (Dalezios et al., 2014). Exposure has a close association with the cultivated 115 

area, agricultural GDP and rural population depending on agriculture for survival (Liu, 116 

You, et al, 2019). Vulnerability is often measured by means of composite indicators 117 

(Meza et al., 2020), which involve the fusion of diverse drivers related to susceptibility 118 

(prevalence of undernourishment and fertilizer consumption, for instance), coping 119 

capacity (impounding capacity of dams and availability of irrigation facilities) and 120 

adaptability (crop density adjustment and species shift). An emerging alternative to the 121 

index-based method for vulnerability evaluation is the yield loss functions (Jayanthi et 122 

al., 2014) which generate a vulnerability curve (Quijano et al., 2015) or loss probability 123 

(Leng & Hall, 2019) under drought stress of particular concern. A steep slope of the 124 
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vulnerability curve or a large possibility of yield loss conditional on drought scenarios, 125 

signifies a high level of crop vulnerability. In addition to agroecosystems, forest risk 126 

arising from drought stress has caught growing attention (Brèteau-Amores et al., 2019; 127 

Marusig et al., 2020; Peters et al., 2021). Increased attention is due to widespread 128 

concern that the frequency and severity of droughts are expected to be exacerbated by 129 

climate warming (Trenberth et al. 2014; Yuan et al. 2019), which will exacerbate risks 130 

to forest ecosystems — an important net carbon sink that is believed to capture 131 

approximately 20% of global carbon dioxide (CO2) emissions each year. However, in 132 

addition to the agricultural system and forest, terrestrial ecosystems more broadly 133 

comprise grassland, deserts and tundra. Ecosystem services highly valued by humans 134 

are not confined to food production and carbon sequestration as usually investigated, 135 

but also include climate regulation, water purification, waste decomposition and habitat 136 

provision in close association with human physical well-being. At the current stage, 137 

knowledge gap still exists regarding the differentiated risk levels across diverse 138 

terrestrial ecosystems and risk hotspot atlas at a wide spatial scale. 139 

 140 

When individual components of ecosystem risk — the hazard (i.e., drought herein), 141 

exposure, or vulnerability — are investigated, their variations over time have been 142 

increasingly noticed under the influence of climate change and human intervention 143 

(Chen et al., 2019; Gonzalez et al., 2010; Sarhadi et al., 2016). Risk is explicitly 144 

expressed as the product of time-dependent risk components, subsequently determining 145 

that ecosystem risk tends to be time-varying rather than static in a nonstationary 146 

environment. Firstly, recent studies observed non-stationarity in precipitation across 147 

Europe (Rahimpour et al., 2016; Vasiliades et al., 2015), East Asia (Noh et al., 2021; 148 

Wang, Li, et al., 2015), North America (Ganguli & Coulibaly, 2017), Australia (Rashid 149 
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& Beecham, 2019) as well as 40.3% of 11069 global catchments for streamflow (Yang 150 

et al., 2021) in the Anthropocene. Under a non-stationary condition, the mean and 151 

variance of precipitation and streamflow become time-variant, introducing changes in 152 

the location and shape of statistical distributions, respectively (Salas et al., 2018). Given 153 

the alteration of precipitation and streamflow distributions, the likelihood of dry day 154 

occurrence — graphically expressed as left-tail probability defined in a fixed domain 155 

extending from zero to the specified threshold — can change over time accordingly. As 156 

a result, the probability of droughts with designated duration and severity of concern 157 

— a commonly used measure of the hazard dimension of risk — is expected to evolve 158 

through time. Moreover, exposure of ecosystems to drought stress is largely shaped by 159 

fractional vegetation cover and biomass quantity. High exposure arises from either a 160 

high fraction of vegetation coverage or a large quantity of biomass where strong water 161 

demand is essential to maintain the functioning of ecosystems. Thereby, primary drivers 162 

of time-varying exposure are found to be human- and climate change-induced 163 

alterations in vegetation coverage or biomass amount, examples of which comprise the 164 

massive revegetation in the Loess Plateau of China (Li et al., 2017) and accelerated 165 

shift from vegetated land surfaces to human settlement under rapid urbanization (Du et 166 

al., 2019). With respect to vulnerability, its temporal dynamics can be partially 167 

attributed to different life stages of ecosystems, changes in the accessibility of drought 168 

mitigation infrastructure and the evolutionary adaptation of ecosystems to frequent 169 

water stress. Several cases elucidating diverse controls over vulnerability include the 170 

varied ecosystem vulnerability at different life stages owing to the changing water 171 

requirements (Li, Tong, et al., 2020), increased vulnerability related to the declining 172 

performance of the antiquated irrigation facilities in agroecosystems (Rao et al., 2016), 173 

and diminished vulnerability in association with a higher root zone storage capacity and 174 
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smaller canopy cover as a part of evolutionary drought coping strategies of ecosystems 175 

(Singh et al., 2020). Within a context of global change, time-varying risk is easy to 176 

occur as long as any one of the risk components evolves through time. For long-time 177 

mitigation planning, disregarding the time-varying nature of risk may result in the 178 

unknown performance of mitigation systems in the coming decades (Sarhadi et al., 179 

2016). Therefore, assessment of dynamic ecosystem risk, though rarely conducted 180 

before, is of growing importance in a changing climate, which assists in distinguishing 181 

hotspot ecosystems where timely risk management is urgently required and in updating 182 

the long-term proactive strategies to strengthen reliability of mitigation facilities. 183 

 184 

In contrast to earlier static risk analyses that focused primarily on human communities, 185 

the particular focus of the current study is directed toward analyzing drought-related 186 

risk to terrestrial ecosystems and its temporal variability in response to a changing 187 

environment. Detailed objectives are to (a) develop a dynamic drought-related 188 

ecosystem risk assessment model (DERM) which incorporates time-varying hazard 189 

probability, exposure and vulnerability as risk determinants, (b) generate the high-190 

resolution (0.1-degree by 0.1-degree) ecosystem risk map for hotspot identification, and 191 

(c) clarify how ecosystem risk evolves over time and the key drivers of medium to high 192 

risk. Results of the study may be useful in increasing knowledge about the composition, 193 

spatio-temporal patterns as well as driving mechanism of time-varying ecosystem risk 194 

under stress of climate extremes, further supporting risk reduction decisions towards 195 

high-priority ecosystems and long-term mitigation planning with desirable performance 196 

in the future. 197 

 198 
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2 Study area and data 199 

 200 

2.1 Study area 201 

 202 
The Pearl River basin (PRB) in China is selected as the study area. The Pearl River, 203 

flowing 2,214 km from Yunnan-Kweichow Plateau in the west to the South China Sea 204 

in the southeast (Fig. 1(a)–(b)), has a drainage area of 442.1 thousand km2 in the 205 

territory of China. The river is the third longest in China and the second largest river in 206 

terms of annual surface runoff up to 338.1 billion m3. The PRB has tropical and 207 

subtropical climates featuring high temperature and heavy precipitation (Fang et al., 208 

2019a). As depicted in Fig. 1(c), the mean annual precipitation generally decreases 209 

westward from 2600 to 800 mm. Despite the relative abundance of precipitation in the 210 

PRB, spatial heterogeneity, mainly due to geomorphology, marks the existence of many 211 

low-precipitation areas. The uneven distribution of precipitation throughout the year is 212 

also observed, which is that only half of the annual total is received in autumn, winter 213 

and spring. Pronounced spatio-temporal variability in precipitation makes droughts 214 

prevail in the PRB (Li, Wang, et al., 2020). Recent droughts include, but are not limited 215 

to, a multi‐annual drought persisting over six successive dry seasons (2002–2007) in 216 

the first decade of the 21st century and the latest record-breaking drought lasting from 217 

2021 winter to 2022 spring, of which the negative and extensive influence upon 218 

agricultural production and diverse ecosystem services has been reported by Dai et al. 219 

(2020) and Han et al. (2019). 220 

 221 

Fig. 1(d) also presents the PRB ecosystem distribution using land cover data from the 222 

Resource and Environment Science and Data Center, Chinese Academy of Sciences 223 
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(https://www.resdc.cn/data.aspx?DATAID=198). Forests, occupying more than half of 224 

the study area (61.92%), dominate the PRB ecosystem. Croplands and grasslands also 225 

have relatively high spatial coverage of 21.15% and 11.84%, respectively. The rest 226 

5.09% proportion is categorized as urban areas, water bodies and barren land (Table 1). 227 

 228 

Table 1 land-cover in the percentage of main types of ecosystems in the PRB 229 

Type Forest Cropland Grassland City and town Waterbody Barren land 
Occupancy 61.92% 21.15% 11.84% 3.17% 1.89% 0.03% 

 230 
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 231 

Fig. 1. The PRB location (a), topographic features (b), the spatial pattern of mean annual precipitation (c) and terrestrial ecosystem distribution in the year 2015 (d). 232 
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2.2 Data products 233 

 234 

Precipitation anomalies are used to identify drought stress as the external forcing of 235 

ecosystem risk. Precipitation records are from the China Meteorological Forcing 236 

Dataset (CMFD) archived at the National Tibetan Plateau/Third Pole Environment Data 237 

Center (http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/). For 238 

the analysis period from 1982 to 2017, the gridded CMFD precipitation has a temporal 239 

resolution of 3 hours and a high spatial resolution of 0.1 degree. The CMFD was 240 

produced via integrating remote sensing and reanalysis products with ground-based 241 

observations at 753 gauging stations affiliated to China Meteorological Administration. 242 

The quality of the CMFD precipitation has been verified through intercomparison with 243 

rainfall products from the Tropical Rainfall Measuring Mission (TRMM) satellite and 244 

the Global Land Data Assimilation System (GLDAS). In the present study, the 3-hour 245 

precipitation is aggregated to yield the monthly accumulation, depending on which the 246 

Standardized Precipitation Index (SPI) is calculated for monitoring precipitation 247 

anomalies over time (Tirivarombo et al., 2018). 248 

 249 

Multiple remote sensing products with spatial integrity and temporal continuity are 250 

jointly employed for ecosystem exposure and vulnerability assessment, which comprise 251 

The Normalized Difference Vegetation Index (NDVI), the Fractional Vegetation Cover 252 

(FVC), the Leaf Area Index (LAI) and the Gross Primary Production (GPP) describing 253 

terrestrial ecosystem status from different aspects. The NDVI, an indicator for 254 

vegetation greenness, is obtained for the same analysis period 1982–2017 from the 255 

NOAA’s Climate Data Records (CDRs), publicly accessible via 256 

https://www.ncei.noaa.gov/data/avhrr-land-normalized-difference-vegetation-257 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
https://www.ncei.noaa.gov/data/avhrr-land-normalized-difference-vegetation-index/access/


13 
 

index/access/. The NOAA CDRs provide the daily NDVI at a 0.05-degree by 0.05-258 

degreee grid using satellite images captured by Advanced Very High Resolution 259 

Radiometer (AVHRR) sensors onboard a series of NOAA polar-orbiting satellites. At 260 

present, the AVHRR NDVI dataset is the longest NDVI record available since 1981. Its 261 

applicability in the study area has been validated in the preceding studies by Song et al. 262 

(2010) and Zhang and Ye (2020). Good agreement on spatial patterns is observed 263 

among the AVHRR NDVI and the other two popular counterparts — the MODIS and 264 

SPOT-VGT NDVI. In regard to the FVC, LAI and GPP, they separately refer to the 265 

areal proportion of land surface occupied by photosynthetic vegetation (Yang et al., 266 

2013), one-half of the total green leaf area per unit ground area (Myneni et al., 1997), 267 

and the total quantity of atmospheric carbon dioxide absorbed by plants via 268 

photosynthesis (Campbell et al., 2017). The employed FVC, LAI and GPP are all 8-day 269 

gridded (0.05-degree by 0.05-degree) products coming from the Global Land Surface 270 

Satellite (GLASS, http://www.glass.umd.edu/) product suite developed by Liang et al. 271 

(2021). Data reliability has been evaluated against in-situ measurements, indicating that 272 

the GLASS FVC, LAI and GPP exhibit favorable performance with the R2 respectively 273 

equal to 0.834 (Jia et al., 2019), 0.96 (Li et al., 2018) globally and more than 0.5 at over 274 

95% of the studied sites (Zheng et al., 2020). Four types of remote sensing products at 275 

either a daily or a 8-day scale are monthly aggregated using the maximum value 276 

composite method. Subsequently, the obtained monthly composites at 0.05-degree grids 277 

are resampled to 0.1 degree to match the resolution of the gridded CMFD precipitation. 278 

 279 

3 Methods 280 

 281 
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Fig. 2 provides an illustrative description of the proposed DERM model for assessing 282 

drought-related ecosystem risk with time-variant properties in a changing environment. 283 

The DERM model consists of four progressive modules — namely, (a) calculation of 284 

bivariate nonstationary frequency of drought jointly considering duration and severity, 285 

(b) development of a multi-dimensional indicator to estimate vegetation exposure to 286 

drought stress, and (c) trivariate probabilistic quantification of ecosystem vulnerability 287 

conditioned on drought scenarios (i.e., the pairwise duration and severity), and (d) post 288 

analysis for identifying ecosystem risk hotspot, dynamics and main drivers. The 289 

constituent modules are sequentially outlined in this section.  290 
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 291 

Fig. 2. The schematic of the DERM model integrating three risk determinants for ecosystem risk assessment. 292 
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3.1 Bivariate nonstationary drought frequency analysis using a GAMLSS model 293 

 294 

3.1.1 Joint use of the truncated SPI and IC method for independent drought 295 

identification 296 

 297 

In drought frequency analysis, the Standardized Precipitation Index (SPI) is utilized to 298 

distinguish water deficits. The SPI recommended by the World Meteorological 299 

Organization as a reference drought indicator (Svensson et al., 2017) has received 300 

extensive application in the assessment of drought impact on ecosystems (Fang et al., 301 

2019c) and drought-related risk analysis (Strzepek et al., 2010). To calculate the SPI, 302 

precipitation data with a minimum timespan of 30 years are initially aggregated at a 303 

given accumulative period. The Gamma distribution is subsequently fitted to the 304 

composite precipitation series for each calendar month independently. Finally, the SPI 305 

— a standard normal statistic — is generated from the probability of precipitation 306 

composites via an equiprobability transformation which is an inverse normal function 307 

used here. The normalization process above, in essence, establishes a one-to-one 308 

correspondence between precipitation observations and the normally-distributed SPI 309 

with its value below -1 and greater than 1 separately notifying dry and wet conditions 310 

(Fig. 3; Spade et al., 2020). The SPI outperforms diverse drought indices in its low data 311 

requirement, relatively simple calculation procedure as well as comparability over time 312 

and space. Nonetheless, the utilized index is often criticized for ignoring the influence 313 

of high temperature, which tends to induce intense evapotranspiration sufficient to 314 

aggravate drought situations (Vicente-Serrano et al., 2010). Interested readers are 315 

referred to McKee et al. (1993) and Kumar et al. (2016) for more details about the SPI 316 

formulation, merits and limitations. 317 
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 318 

Specifically, the SPI at a 1-month scale (referred to hereafter as the SPI-1) is employed 319 

for distinguishing water deficits in the study. Consecutive periods with the SPI below -320 

1 constitute drought episodes, of which attributes like duration (D ) and severity ( S ), 321 

onset and termination time are identified by virtue of run theory (Mesbahzadeh et al., 322 

2020). However, the combined application of the SPI-1 fluctuating at a relatively high 323 

frequency and run theory categorized as a truncation level approach is easy to introduce 324 

a number of mutually dependent droughts and minor droughts. Mutually dependent 325 

droughts, exemplified by Case 2 and Case 3 in Fig. 3, are prolonged droughts split into 326 

several smaller spells owing to the SPI temporarily exceeding the threshold for a short 327 

time, resulting in the violation of the independence assumption indispensable for the 328 

succeeding frequency analysis. To minimize dependence of adjacent droughts, an inter-329 

event time and volume criterion (IC) method (Madsen & Rosbjerg, 1995) is utilized to 330 

acquire a sequence of independent droughts. Interested readers are guided to 331 

supplementary data for detailed procedure for the IC method. 332 

 333 

Fig. 3. An illustration of pooling mutually-dependent droughts and excluding minor ones. 334 
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3.1.2 Estimation of time-varying bivariate drought probability in a possibly 335 

nonstationary context 336 

 337 

After independent duration and severity are screened out, the bivariate drought 338 

frequency analysis is conducted following four steps. 339 

 340 

Step 1. Nonstationarity detection for univariate drought attributes. Nonstationarity in 341 

drought attribute series suggests that their mean and variance in close relation with the 342 

location and scale of probability distributions change over time. Fig. 4 gives an intuition 343 

of nonstationary duration (or severity) having variant exceedance probability iq   as 344 

compared to the constant probability in a stationary context, thereby emphasizing the 345 

necessity of a nonstationary test towards the accurate estimation of drought frequency. 346 

Amid diverse approaches for detecting nonstationarity (e.g., the Mann–Kendall, 347 

Spearman, Pettitt and CUSUM tests), the augmented Dickey-Fuller (ADF) test 348 

extensively applied in hydrological research is selected mainly due to its specialty in 349 

distinguishing the temporal trends in random variables — a major case of violating 350 

univariate stationary assumption under climate change (Villarini, Serinaldi, et al., 2009). 351 
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 352 

Fig. 4. Time-varying univariate probability ( tq ) of exceeding the specified duration ( 0D ) relative 353 

to the constant probability ( tq ) in a stationary context.  354 
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Step 2. Univariate probability distribution modeling. A total of eight parametric 355 

distributions tabulated in Table 2 are fitted to the independent duration and severity 356 

series, from which the most appropriate is determined depending on a goodness-of-fit 357 

metric — the Schwartz Bayesian Criterion (SBC; Schwarz, 1978) formulated in Eq. (1). 358 

The most appropriate candidate having the minimum SBC value is screened out. 359 

     ˆlog 2log logSBC GD n df L n df      Θ                          (1) 360 

in which GD   signifies the global deviance, n   is the number of independent 361 

observations of duration or severity, df   denotes the degree of freedom, ( )L  362 

symbolizes the likelihood function and Θ̂  is the estimate of distribution parameters. 363 

 364 

The key to univariate distribution modeling is how to estimate distribution parameters, 365 

especially with time-variant properties under a nonstationary condition. To this end, the 366 

generalized additive model for location, scale and shape (GAMLSS; Rigby & 367 

Stasinopoulos, 2005) is introduced, providing sufficient flexibility to express 368 

distribution parameters as linear or nonlinear functions of explanatory variables and 369 

random effects. The GAMLSS model assumes that for 1, 2, ,i n  , independent 370 

observations of a response variable iy  follow a distribution  iif y Θ  conditional on 371 

   1 2 3= , , = , ,i i i i i i i     Θ , which is a set of changing parameters determining the 372 

distribution location, scale and shape. Relation of distribution parameters with diverse 373 

explanatory variables is established via monotonic link functions ( )g  given by Eq. (2).  374 

 
1

θ η = β γ
kJ

k k k k k jk jk
j

g


 X Z                                          (2) 375 

As listed in Table 2, a maximum of three distribution parameters ought to be determined. 376 

Eq. (3) is hence detailed as follows. 377 
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
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


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
  


  








X Z

X Z

X Z

                                        (3) 378 

where θk  , μ  , σ   and ν   are distribution parameter vectors of length n  , ηk   denotes 379 

link function values of the equal length n , kJ  is the number of explanatory variables 380 

introduced as predictors of the k -th distribution parameter, kX  symbolizes a kn J  381 

design matrix consisting of explanatory variables over a total of n   time steps, 382 

 1β , , kJ
k k k   is an unknow parameter vector to be estimated, jkZ  is an already-383 

known design matrix of size jkn q  , and γ jk   represents a jkq  -dimensional vector 384 

composed of random variables. 385 

 386 

The present study adopts a semi-parametric additive form of the GAMLSS model 387 

(Villarini, Smith, et al., 2009), in which parameters are expressed as cubic spline 388 

smoothing functions (i.e., the link function) of time of drought occurrence (i.e., the 389 

explanatory variable) to account for their possibly nonlinear variability over time. Other 390 

candidate explanatory variables that have potential to explain nonstationarity in 391 

droughts can also be applied, and broadly comprise large-scale climate indices and 392 

various human disturbances, such as land cover change, water extraction, and reservoir 393 

regulations (Das et al., 2020; Jehanzaib et al., 2020; Wang et al., 2020). Time-varying 394 

parameters of nonstationary distributions are derived by resolving the model using the 395 

Rigby-Stasinopoulos (RS) algorithm to maximize a penalized likelihood 396 

(Stasinopoulos & Rigby, 2007). Under a stationary condition, distribution parameters 397 

keeping invariant can be estimated using a GAMLSS model as well, only by assigning 398 
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a constant term to the right side of the link function (Eqs. (2) and (3)). Additionally, it 399 

is necessary to note that drought duration and severity always have positive values. 400 

Thereby, normal, gumbel and logistic distributions originally defined on  ,   401 

need to be left-truncated and cumulative probability are revised as Eq. (4). 402 

     
 

   
 

0

0

ˆ ˆ0
1 0 ˆ1

y
f y dy f y dyF y F

F y
F f y dy

 




  

 

 


Θ Θ

Θ
                        (4) 403 

in which  ˆf y Θ  is the probability density function (PDF) of a random variable y . 404 
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Table 2 Eight types of candidate univariate distributions of drought duration and severity 405 

Name Expression Variable 
domain Parameter range Link function 

EXP    expf x x     +x  +     lng    

LOGNO     2 2, exp log 2 2f x x x          +x  +,         1 2, lng g      

Gamma        
2

2 11 1 2 2 2, exp 1f x x x
            

 +x  + +,           1 2ln , lng g      

Weibull    1, expf x x x            +x  + +,           1 2ln , lng g      

Normal    2 2, exp 2 2f x x          x  +,         1 2, lng g      

Gumbel       , exp expf x x x             x  +,         1 2, lng g      

Logistic        2
, exp 1 expf x x x      


             x  +,         1 2, lng g      

GG      , , expf x z z x           +x  + +, , \{0}               1 2 3ln , ln ,g g g         

Note: EXP, LOGNO and GG are abbreviations for exponential, lognormal and generalized Gamma distributions, respectively. 406 
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Step 3. Nonstationarity detection for bivariate duration-severity dependence. The 407 

consensus about drought as a multi-dimensional phenomenon embedded with diverse 408 

attributes (duration, severity, intensity and affected area), has led to a rising propensity 409 

to include multiple attributes in drought analysis (Amirataee et al., 2020; Kwon & Lall, 410 

2016). In the study, duration and severity are jointly considered, aiming at a more 411 

complete characterization of drought situations. Analogous to the univariate case, the 412 

presence of nonstationarity in bivariate duration-severity dependence provokes 413 

temporal variation in their joint distributions. Therefore, examining possible 414 

nonstationarity in duration-severity dependence also serves as an indispensable step in 415 

improving the reliability of drought frequency estimation. The copula likelihood ratio-416 

based (CLR) test is chosen for bivariate nonstationarity detection, among alternative 417 

approaches including the well-known Mann-Kendall and Spearman’s rho type tests for 418 

multivariate trend analysis in panel data (Chebana et al., 2013), as well as the 419 

Kolmogorov-Smirnov statistic (Gombay & Horváth, 1999) and Cramér–von Mises 420 

statistic (Bucchia & Wendler, 2017) for changepoint identification. The use of copula 421 

functions favors a simplified way to derive the complicated multivariate distribution, 422 

through modeling marginal distributions and multivariate dependence structure 423 

sequentially. The CLR test stems from the notion that the type of copula functions in 424 

conjunction with different values of their parameters describes the shape (the upper-tail 425 

and lower-tail dependence, for instance) and strength of dependence structure, 426 

respectively (Xiong et al., 2015). More technical details about the CLR test are provided 427 

in the supplementary data section. 428 

 429 

Step 4. Joint distribution modeling for drought duration and severity. Marginal 430 

distributions of drought duration and severity are connected using copula functions to 431 
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yield the corresponding joint distribution. To improve the goodness-of-fit (GOF), five 432 

types of candidate copula functions listed in Table 3 are prepared. The estimation of 433 

copula parameters diverges owing to the challenge posed by nonstationary dependence 434 

structure. In the case of nonstationarity identified via the CLR test, bivariate duration-435 

severity distribution evolves and should be modeled using a copula function with 436 

changing parameters, which is termed the dynamic copula (Vinnarasi & Dhanya, 2019) 437 

or time-varying copula (Jiang et al., 2015). Following the conceptual framework of the 438 

GAMLSS model, a link function — a quartic polynomial of time in Eq. (5) — is 439 

developed to mimic temporal volatility of copula parameters cθ . 440 

 
 

2 3 4
0 1 2 3 4Nonstationary dependence.

1, ,
Stationary dependence. constant  

c
i i i i

c

g t t t t
i n

g

           
 

θ η

θ η
 (5) 441 

where ( )g   is the link function and  0 1 2 3 4, , , ,       is a set of parameters to be 442 

estimated. 443 

 444 

The proposed link function is resolved using a two-step inference function for margins 445 

(IFM; Favre et al., 2004), with a goal of maximizing the global log-likelihood of the 446 

joint distribution expressed in Eq. (6). Given that the maxima of the first two terms at 447 

the right side of Eq. (6) have been calculated by separately screening out the most 448 

appropriate marginal distributions for duration and severity in Step 2, the goal is 449 

subsequently switched to how to maximize the third term closely related to the density 450 

function of copula (Eq. (7)).  451 

       
1 1 1

, , ln ln ln ,
n n n

D S c D S D S c
D i i S i i i i i

i i i
L f D f S c u u  

  

              θ θ θ    (6) 452 
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 
 

0 1 2 3 4
1

2 3 4
0 1 2 3 4

ˆ ˆ ˆ ˆ ˆ, , , , arg max ln ,
n

D S c
i i i

i

c
i i i i i

c u u

g t t t t

     

     


       
     


                    (7) 453 

in which D  , S   and c   separately symbolize parameters concerning the duration 454 

distribution, severity distribution and copula function, ( )f  and u  denote the PDF and 455 

univariate cumulated probability, respectively. 456 

 457 

Once a parameter set 0 1 2 3 4
ˆ ˆ ˆ ˆ ˆˆ= , , , ,      β  is determined, they are incorporated into 458 

the link function (a quartic polynomial in Eq. (5)) to yield the optimal values of time-459 

varying copula parameters. In the case of stationary dependence structure, the same 460 

method for estimating copula parameters can be simply applied. A major difference lies 461 

in the configuration of the link function, of which the right side is assumed to be a 462 

constant implying a time-invariant bivariate distribution in a stationary context (Eq. (5)). 463 

After the calibration of candidate copula functions, the best-fitted one is determined 464 

with the lowest value of the Bayesian information criterion. Ultimately, bivariate 465 

drought probability is calculated under two scenarios. The first one orP   in Eq. (8) 466 

represents either duration or severity exceeding the designated threshold at diverse 467 

return periods (for instance, 1 in 10 years or 1 in 20 years). The latter andP  signifies a 468 

more harmful situation when both duration and severity go beyond the specified 469 

threshold uniformly. In the succeeding process of risk calculation, the bivariate 470 

probability derived is employed as a surrogate variable of the hazard component of risk. 471 

     
       

     

,

,

1 , 1 ,
1 ,

1 ,

or des des des des D S des des

and des des des des des des

D des S des D S des des

P d D s S P d D s S F D S
P d D s S P d D P s S P d D s S

F D F S F D S

        


         
    

 (8) 472 

where ( )DF  and ( )SF  are cumulated probability functions of duration and severity, 473 
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and , ( )D SF  represents the joint cumulative probability. 474 
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Table 3 Five types of candidate copula functions for bivariate distribution modeling and the associated link functions 475 

Name Expression Generation function Parameter range Link function 

Gaussian copula    -1 -1,u v       /     g    

Clayton copula  11u v
      1t        1, \ 0        ln 1g     

Gumbel copula     1
exp ln lnu v

          ln t


    1      ln 1g      

Frank copula     ln 1 1 1 1u ve e e               ln 1 1te e         \ 0    g    

Joe copula        
1

1 1 1 1 1u v u v
              ln 1 1 t       1      ln 1g     

 476 
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3.2 Ecosystem exposure assessment via a non-compensatory approach 477 

 478 

Ecosystem exposure to natural hazards can be understood from a generalized definition 479 

proposed by the UNDRR (Field et al., 2012). As compared to exposure of human 480 

communities, ecosystem exposure to drought is confined to environmental entities and 481 

services in places that could be negatively influenced. As a principal constituent of 482 

ecosystems, vegetation accounts for a predominant quantity (70±9%) of water loss in 483 

the way of transpiration across the global ecosystems (Fatichi & Pappas, 2017; Quan et 484 

al., 2018). Therefore, the areal extent and quantity of terrestrial vegetation, combinedly 485 

exerting a central role in determining the degree of water stress in ecosystems when 486 

drought episodes emerge, are assumed to become major determinants of ecosystem 487 

exposure. In the study, an ecosystem exposure indicator with two sub-dimensions is 488 

developed. 489 

 490 

Dim. 1. Fractional vegetation cover (FVC). The FVC with value 1 stands for a fully 491 

vegetated pixel and 0 for bare ground. The use of the FVC enables the comparison of 492 

exposed vegetation in the horizontal direction across different geographic units. A 493 

larger FVC value approaching 1 signifies a high level of exposure from the horizontal 494 

perspective. 495 

 496 

Dim. 2. Biomass density. Given the identical vegetation coverage, ecosystem exposure 497 

can still be differentiated depending on diverse vertical structures of vegetation biomes, 498 

such as canopy size and species composition. Aboveground biomass (AGB) density is 499 

a composite metric of vertical structure of vegetation communities in terms of biomass 500 

accumulation, subsequently becoming the second sub-dimension of ecosystem 501 
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exposure developed in the study. High AGB density tends to result in an elevated level 502 

of exposure. However, the difficulty in acquiring a reliable AGB density estimate with 503 

desirable temporal and spatial coverage is in the way of its practical application to 504 

exposure assessment. To address the limitation, the LAI covering a long timespan and 505 

the global extent is introduced as a proxy variable, owing to the close LAI-AGB linkage 506 

(Weraduwage et al., 2015) often utilized in the process-based crop (Dong et al., 2020) 507 

and statistical (Zhang, Ganguly, et al., 2014) models to simulate the AGB variability. In 508 

the formulation of an exposure index, the LAI going from 0 to 10 is rescaled within the 509 

range 0–1 following Eq. (9). A large nLAI value close to 1 notifies high exposure when 510 

the vertical structure of ecosystems catches our attention as well. 511 

, , 10i j i jnLAI LAI                                                  (9) 512 

where nLAI  is the range-adjusted LAI, ,i jLAI  is the LAI in the i -th year at the j -th 513 

pixel, and 10 and 0 are upper and lower bound of the LAI values, respectively. 514 

 515 

Two sub-dimensions aforementioned are incorporated to yield an exposure indicator 516 

using a non-compensatory approach (Eq. (10); Carrão et al., 2016). The non-517 

compensatory approach emphasizes that superiority in one component of the exposure 518 

index cannot be counteracted by inferiority in any other component. In this sense, an 519 

ecosystem is highly exposed to droughts if at least one sub-dimension is sufficiently 520 

large. For instance, the largest exposure is for a completely-vegetated pixel or an 521 

observation of the highest biomass density. As noted in Eq. (10), annual FVC and LAI 522 

are incorporated to yield the exposure indicator. Ecosystem exposure can thereby 523 

fluctuate annually and give rise to time-varying ecosystem risk. 524 

 , , ,max ,i j i j i jExp FVC nLAI                                          (10) 525 
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where ,i jExp  is exposure in the i -th year at the j -th pixel. 526 

 527 

3.3 Quantitative analysis of ecosystem vulnerability based on trivariate 528 

conditional vegetation decline likelihood 529 

 530 

Ecosystem vulnerability under drought stress is quantified within a trivariate 531 

conditional probabilistic framework, where vegetation decline probability is considered 532 

an intuitive metric for the degree of vulnerability. When water deficits occur, a large 533 

possibility of consequent vegetation decrease implies that an ecosystem is highly 534 

vulnerable. An earlier bivariate probabilistic framework proposed by Fang et al. (2019b, 535 

2019c) is limited to leveraging the vegetation anomaly dependence upon water shortage 536 

accumulation over a fixed timespan (quantified by the negative SPI at a designated 537 

timescale like 3 or 6 months), whilst being inapplicable to vulnerability assessment 538 

considering specific information of realistic drought events (such as duration and 539 

severity), which is the external forcing of interest in the current study. To this end, 540 

improvements are made with the aid of the canonical vine (C-vine) copula technique. 541 

The modified trivariate probabilistic framework depicted in Fig. 2 utilizes vegetation 542 

indicators as response variables, and a combination of causal drought duration and 543 

severity as the external forcing. In this way, it provides sufficient flexibility to evaluate 544 

ecosystem vulnerability to any drought episode of high concern. What’s more, the 545 

proposed framework has potential to expand into arbitrary dimensional space to 546 

evaluate the joint effect of multiple drought attributes, which is particularly suitable as 547 

more details about upcoming droughts can be accessible via increasingly skillful 548 

forecasting systems. 549 
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 550 

In the proposed framework, trivariate conditional likelihood of vegetation status 551 

deteriorating into the specified range ,lower upperVI VI     during a drought episode 552 

(characterized using the pairwise duration D  and severity S ) is formulated as follows 553 

   , , dupper

lower

VI

lower upper VI
P VI vi VI d D s S f vi d s vi                       (11) 554 

where vi  denotes vegetation indicators including multiple remote sensing products — 555 

the NDVI and GPP — sequentially applied for the improved reliability of vulnerability 556 

assessment, lowerVI  is the theoretically lowest values of vegetation indicators which are 557 

-1 and 0 for the NDVI and GPP, upperVI  represents the deteriorating vegetation status 558 

set to be the 50th, 40th, 30th and 20th percentiles of long-term historical observations, 559 

and  ,f vi d s  is the probability density function of vegetation conditional on a given 560 

drought episode. 561 

 562 

Vegetation decline probability under drought stress can be calculated by integrating the 563 

conditioned probability density function over the interval ,lower upperVI VI     using the 564 

Cubature package in the R environment. How to derive the conditional PDF  ,f vi d s  565 

in Eq. (11) subsequently becomes a key to the successful calculation of conditioned 566 

vegetation decline likelihood  ,lower upperP VI vi VI d D s S     . Whereas, deriving 567 

the explicit formula of  ,f vi d s   is subject to considerable complexity. A feasible 568 

approach is to turn to the vine copula technique. Initially, trivariate conditional PDF 569 

shown in Eq. (12) is expressed as the ratio of  , ,f vi d s  to  ,f d s . The copula theory 570 

further assists in resolving either  , ,f vi d s   or  ,f d s   through multiplying the 571 
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copula density function by univariate PDFs of individual variables involved. The 572 

relevant procedure is detailed in Eqs. (13) and (14). Ultimately,  ,f vi d s   has an 573 

updated form (Eq. (12)) in close association with copula density    ,D Sc F d F s    and 574 

     , ,VI D Sc F vi F d F s    , which can be addressed using the ‘BiCopPDF’, 575 

‘RVineStructureSelect’ and ‘RVinePDF’ functions in the VineCopula package for the R 576 

environment. 577 
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(14) 580 

in which  VIF   and  VIf   symbolize the CDF and PDF of vegetation indicators, 581 

respectively. 582 

 583 

When the NDVI is utilized as a vegetation indicator in Eq. (11), trivariate vegetation 584 

loss likelihood can be yielded. As shown in Eq. (15), rescaling of the NDVI-based 585 

vegetation loss probability to  0,1   gives rise to a drought-related ecosystem 586 
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vulnerability index, of which greater values imply a higher degree of vulnerability. It is 587 

worth noting that since trivariate vegetation loss likelihood (Eq. (11)) remains constant 588 

throughout the analysis period, the resultant ecosystem vulnerability is time consistent 589 

as well. 590 

  min

max min

,lower upper NDVI
NDVI

NDVI NDVI

P NDVI ndvi NDVI d D s S P
vul

P P
    




              (15) 591 

in which max
NDVIP   and min

NDVIP   are the maximum and minimum of vegetation decline 592 

likelihood across the whole study site, respectively.  593 

 594 

Likewise, the GPP, can be sequentially applied in Eqs. (11) and (12) as well. To analyze 595 

the influence of possible bias in diverse remote sensing products, intercomparison is 596 

conducted between vegetation decline likelihood based on the NDVI and GPP. 597 

Furthermore, the ensemble mean of multiple ecosystem vulnerability indices is 598 

calculated following Eq. (16) to yield a composite index, for the enhanced reliability of 599 

vulnerability assessment.  600 

 ,NDVI GPPVul mean vul vul                                       (16) 601 

 602 

3.4 Risk estimation and a k-means-based clustering approach 603 

 604 

According to a risk concept increasingly accepted by the research community (Koks et 605 

al., 2019; Scheuer et al., 2021), drought-induced ecosystem risk shown in Eq. (17) is 606 

estimated through the multiplication of bivariate drought probability (i.e., the external 607 

forcing), ecosystems exposure and vulnerability (i.e., impact-related attributes of the 608 

affected systems). 609 

andR P Exp Vul                                                 (17) 610 
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 611 

Herein, it is noted that the first risk determinant in Eq. (17) is concurrent drought 612 

probability ( andP ) jointly considering drought duration and severity. The reason lies in 613 

that concurrent drought scenarios are considered more realistic and impactful relative 614 

to the widely-investigated univariate scenarios (exclusively considering univariate 615 

duration or severity) and the other form of bivariate scenario orP  illustrated in Eq. (8). 616 

Meanwhile, ecosystem vulnerability can be uniformly evaluated under the same 617 

concurrent drought scenario. In this way, Eq. (17) allows for increased flexibility in 618 

estimating ecosystem risk arising from any past major droughts or forthcoming 619 

droughts of specific duration and severity.  620 

 621 

Clustering analysis is an essential step following risk estimation, in favor of efficient 622 

relief employment by differentiating high, medium and low levels of drought-induced 623 

ecosystem risk. The derived risk is sorted using a k-means method (Jahangoshai Rezaee 624 

et al., 2021). K-means — one of the top ten algorithms in data mining — is an 625 

unsupervised classifier quite useful when prior knowledge is absent. In risk clustering 626 

analysis, the number K  of risk clusters ( , 1, ,kC k K ) ought to be determined in 627 

advance. K  cluster centroids ( , 1, ,ku k K ) are randomly initialized amongst a set 628 

of risk samples  1, , nR r r  , after which each sample ir   can be assigned to the 629 

nearest cluster. Subsequently, centroids ku   are iteratively updated to minimize the 630 

intra-cluster variance given in Eq. (18) (Galluccio et al., 2012). The updating procedure 631 

performs repeatedly and converges when no change is noted in cluster centroids 632 

between two consecutive iterations. Ultimately, to determine the risk levels, all samples 633 

are partitioned by measuring the Euclidean distance to the optimal cluster centroids. 634 
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Popularity of the k-means is largely attributed to conceptual simplicity and 635 

computational scalability. However, its performance is limited to high sensitivity to the 636 

proper initialization of cluster centroids as well as difficulty in determining the optimal 637 

number of clusters. Interested readers can refer to Zhao et al. (2018) for detailed 638 

information concerning diverse variants, superiority and limitations of the k-means. 639 

2

1
min

i k

K

i k
k r C

E r u
 

                                               (18) 640 

 641 

4 Result analysis 642 

 643 

4.1 An overview of meteorological droughts as significant external forcing of 644 

ecosystem risk in the PRB 645 

 646 

The total number, duration, severity, onset and termination of independent 647 

meteorological droughts during 1982–2017 were identified via the combined use of the 648 

truncated SPI series and IC method for 0.1-degree by 0.1-degree pixels in the PRB. To 649 

facilitate spatial heterogeneity analysis across a wide spatial extent, seven sub-basins 650 

(Fig. 1(b)) — namely the Nanbeipan River basin, the Hongliu River basin, the Yu River 651 

basin, the downstream of the West River basin, the North River basin, the East River 652 

basin and the Pearl River Delta — are localized from west to east following the sub-653 

basin partitioning published by China's Ministry of Water Resources. 654 

 655 

Maximum duration and severity were initially screened from a total of 4019 pixels, 656 

which are compared with historical observations to ensure the reliability of subsequent 657 
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risk analysis. During the recent four decades, the most prolonged duration is up to 8.23 658 

months, triggering an interannual drought spanning from summer, autumn to winter in 659 

2009–2010. Spatially, the maximum duration falls within a pixel (25.6–25.7°N, 104.5–660 

104.6°E) in the western PRB, which is under the administration of Panzhou, Kweichow 661 

province. Almost at the same time in 2009–2010, an 81.34 km neighboring pixel (25.5–662 

25.6°N, 105.3–105.4°E) in Xingren, Kweichow registered the highest severity 663 

amounting to 11.67. Two geographic locations identified here are also confirmed by 664 

sources from authorities and public media reporting where the longest period and 665 

highest severity of precipitation deficits occurred in the study area during the 2009-666 

2010 extreme drought period (http://www.gov.cn/jrzg/2010-667 

02/24/content_1540612.htm; 668 

http://www.cnr.cn/zgzb/wjbkc/zytqy/201012/t20101225_507499790.html). Severe 669 

reductions in ecosystem services including the yield loss of 1.6 million tons and a 670 

maximum 10.9% decrease in carbon uptake (Li et al., 2019), exemplify some ecological 671 

consequences of the 2009-2010 centennial-scale drought sweeping Southwest China, 672 

thereby calling our close attention to ecosystem risk arising from persistent water 673 

scarcity. 674 

 675 

Fig. 5(a) exhibits the spatial pattern of the cumulative number of droughts. Prevalence 676 

of droughts is noted in the PRB as the number of occurrences varies from 16 to 39 times, 677 

with the mean reaching 26.63 times over the past four decades. In terms of mean 678 

drought count in sub-basins, the middle PRB — the Hongliu River, the downstream of 679 

West River, the Yu River, the North River basins and the Pearl River Delta — have 680 

greater drought numbers of 27.31, 27.28, 27.26, 26.93 and 26.94, respectively. As 681 

compared, droughts become less frequent in the western (25.69 times in the Nanbeipan 682 
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River basin) and eastern (22.76 times in the East River basin) margins of the PRB. 683 

Meanwhile, the long-term average of drought duration and severity over the recent four 684 

decades is depicted in Fig. 5(b) and (c), respectively. The eastern (1.38 months for the 685 

East River basin) and western PRB margins (1.39 and 1.35 months respectively for the 686 

Nanbeipan River and the Hongliu River basins) have comparatively longer mean 687 

duration beyond 1.3 months relative to the middle portion with a slightly shorter 688 

duration around 1.2 months. Mean severity escalating westwards and eastwards reveals 689 

the spatial pattern analogous to that of mean duration. In contrast to the total drought 690 

number, mean duration and severity uniformly present inverse spatial patterns. 691 

Therefore, the middle PRB is subject to more recurrent drought episodes characterized 692 

by shorter duration and alleviated severity, and droughts in the eastern and western 693 

margins, though being less frequent, tend to be prolonged and deteriorating. 694 

 695 

Fig. 5. Drought attributes over the PRB in 1982–2017. (a) The total number of droughts, (b) the 696 

mean duration and (c) the mean severity. 697 

 698 

The average recurrence interval of 1.36 years reveals the prevalence of drought across 699 

the PRB. Except for the rainy summer receiving 46% of the annual precipitation (Liu 700 
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et al., 2009), there is a high frequency of precipitation deficits in autumn, winter and 701 

spring, reaching 37.96%, 35.70% and 39.57% respectively. Autumn droughts are 702 

usually the compound consequences of a large proportion of the PRB under control of 703 

the western Pacific subtropical high (WPSH) resulting in dry and cloudless days, as 704 

well as observably fewer tropical cyclones making landfall in the PRB (Feng & Fu, 705 

2009; Yang et al., 2015). In wintertime, droughts are often attributed to the active cold-706 

dry air intrusion owing to the strengthened East Asian Winter Monsoon in conjunction 707 

with a weakening of the northward warm moist airflow from the South Pacific and 708 

Indian Ocean (Zhang et al., 2011; Zhang, Zhu, et al., 2014). Spring droughts are highly 709 

likely to occur in the wake of winter ones within a year. During spring — a winter-to-710 

summer monsoon transition period, droughts occur under rather different circulation 711 

conditions that the weaker Aleutian low and the stronger WPSH jointly provoke more 712 

northward convergence of cold and warm airflow out of the PRB domain (Lin et al., 713 

2012). 714 

 715 

4.2 Time-variant bivariate exceedance likelihood of droughts in a possibly 716 

nonstationary environment 717 

 718 

Duration and severity are combined to calculate bivariate drought exceedance 719 

probability. Differentiated levels of exceedance probability in favor of distinguishing 720 

hazard hotspots are introduced as an ideal surrogate for quantifying the hazard 721 

component of risk. According to the risk formula in Eq. (17), a higher probability of 722 

exceedance means more frequent drought disturbances. Meanwhile, it is worth noting 723 

that to acquire a more accurate outcome of bivariate frequency analysis, potential 724 

nonstationarity in either univariate variables (i.e., duration or severity) or bivariate 725 
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dependence structure are all tested against the stationary assumption. In a nonstationary 726 

case, time-varying parametric distributions are prepared to fit drought attributes of 727 

concern. Accordingly, the resultant bivariate exceedance probability becomes 728 

temporally dynamic rather than static. 729 

 730 

Figs. 6–7 exemplify marginal distributions of duration and severity as well as their joint 731 

distribution at a pixel (24.6–24.7°N, 105–105.1°E) randomly chosen from the PRB. 732 

Results of the ADF test indicate the presence of nonstationarity in univariate duration 733 

or severity series, making their probability distributions changeable over time. In such 734 

a context, the GAMLSS model is utilized to estimate time-variant parameters of 735 

marginal distributions. As seen in Fig. 6, normalized quantile residuals ideally close to 736 

the horizontal line in the middle of the worm plot (in essence, a detrended QQ plot), in 737 

conjunction with almost all observations located in the scope of a 95% confidence 738 

interval, notify satisfactory fitness of the obtained time-varying marginal distributions. 739 

Afterward, the joint distribution is developed. Rejection of the null hypothesis proposed 740 

in the CLR test firstly helps identify nonstationarity in duration-severity dependence 741 

structure at the selected pixel. Bivariate distribution connecting duration and severity 742 

is then modeled using a dynamic copula with variant parameters expressed as the 743 

quartic polynomials of time. Fig. 7(b) emphasizes that when bivariate nonstationarity 744 

is taken into consideration, the derived duration-severity density function achieves the 745 

enhanced goodness-of-fit due to the AIC decreasing from -23.39 to -34.65. Across the 746 

whole PRB, univariate (duration or severity) and bivariate (duration-severity 747 

dependence structure) nonstationarity is detected at 3816 (94.95%) out of a total of 748 

4019 pixels, where temporal evolution of drought exceedance probability is observed. 749 
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 750 

Fig. 6. Worm plots (a) and the time-varying univariate distributions (b) of drought duration and 751 

severity at a randomly selected pixel (24.6–24.7°N, 105–105.1°E) in the PRB. 752 

 753 

 754 

Fig. 7. Probability density of duration-severity distribution derived using dynamic copula function 755 

(a) and the time-varying copula parameters (b) in a nonstationary context. 756 
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Under two scenarios, bivariate drought exceedance probability is calculated and its 757 

mean values over 1982–2017 are depicted in Figs. 8–9. The former scenario ( orP ) only 758 

needs that either duration or severity goes beyond the designated thresholds. In the latter 759 

( andP ), the requirement of two drought attributes uniformly surpassing the specified 760 

values defines a more detrimental scenario. Four sets of duration and severity thresholds 761 

are determined with 5-, 10-, 20- and 30-year return periods for the improved reliability 762 

of frequency analysis outcome. When designated thresholds escalate from a 5- to 30-763 

year return level, downward trends in drought exceedance probability are shown by an 764 

increasing number of dark blue pixels at the bottom-right panels of Figs. 8–9. On a sub-765 

basin scale, an individual panel of Fig. 8 indicates that the NanbeiPan River, the 766 

Hongliu River and the East River basins on average have 21.99%, 12.43%, and 20.25% 767 

higher exceedance likelihood ( orP  ) relative to the basin mean. By contrast, below-768 

average probability dominates the rest part of the PRB. It is more evident in the east 769 

central PRB (i.e., the downstream of the West River basin, the North River basin and 770 

the Pearl River Delta) with the mean exceedance probability being -21.30%, -25.57%, 771 

and -23.39% lower than the basin average. In terms of andP  derived in the latter scenario 772 

(Fig. 9), the consistent spatial heterogeneity becomes increasingly pronounced when 773 

duration and severity thresholds rise towards a 30-year return level. Both scenarios 774 

confirm the vast majority of the east-central PRB are less-probable regions of severe 775 

droughts. At a fine 0.1-degree resolution, pixels in color approaching firebrick as an 776 

indication of greater exceedance likelihood are scattered over the PRB. As seen in Fig. 777 

8, high-likelihood ( orP ) patches mainly concentrate in the west of the Nanbeipan River 778 

and the west-central Hongliu River basins. Smaller patches are also distributed in the 779 

East River basin as well as a transboundary region of the North River basin, the 780 
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downstream of the West River basin, and the Pearl River Delta. In the case of andP  781 

depicted in Fig. 9, almost the identical pixels have a high exceedance probability, except 782 

for the transboundary patch as aforementioned. Therefore, bivariate frequency analysis 783 

under two scenarios assists in localizing hotspots of influential droughts, which are 784 

mainly distributed in the Nanbeipan River basin (especially its western part), the 785 

Hongliu River basin (more specifically its west central portion) and a large proportion 786 

of the East River basin. As mentioned, dynamic variations of drought exceedance 787 

probability emerge at 94.95% of the PRB due to the influence of a nonstationary 788 

environment. Mainly located in the eastern Hongliu River and eastern Yu River basins, 789 

1393 pixels (34.65%) favorably witness the descending tendency. However, 2423 790 

pixels (60.28%), mainly located in the remaining five sub-basins, witness an increase 791 

in the probability of exceedance.  792 

 793 

 794 

Fig. 8. Mean bivariate probability of exceeding the designated duration or severity 795 

(   or  or des desP d D s S  ) at (a) 5-year, (b) 10-year, (c) 20-year and (d) 30-year return levels over 796 

1982–2017. 797 
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 798 

Fig. 9. Mean bivariate probability of concurrently exceeding the designated duration and severity 799 

(   and  and des desP d D s S  ) at (a) 5-year, (b) 10-year, (c) 20-year and (d) 30-year return levels 800 

over 1982–2017. 801 

 802 

4.3 Ecosystem exposure and its variations over the recent four decades 803 

 804 

A composite index for quantifying ecosystem exposure is formulated in Eq. (10), which 805 

takes into account the three-dimensional structure of vegetation biomes. High exposure 806 

to drought stress is typically noticed as long as vegetation fraction or aboveground 807 

biomass density is sufficiently high. Mean exposure followed by the 1982–2017 808 

variation is shown in Fig. 10. 809 

 810 

In Fig. 10(a), the long-term average of ecosystem exposure over 1982–2017 fluctuates 811 

between 0.07 and 0.85, with the minimum located at the highly urbanized Pearl River 812 

estuary (i.e., the Pearl River Delta) and the maximum in the neighboring East River 813 

basin. Mean ecosystem exposure exhibits less profound spatial heterogeneity. 814 
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Terrestrial ecosystems have comparably higher exposure across a large proportion of 815 

the PRB — more specifically comprising the Hongliu River (0.66), the Yu River (0.64), 816 

the downstream of the West River (0.68), the North River (0.68) and the East River 817 

basins (0.65) from west to east. However, the Nanbeipan River basin (0.52) in the west 818 

and the Pearl River Delta (0.48) at the southeastern margin separately witness the 819 

16.12% and 22.58% decline of ecosystem exposure in relation to the basin average 820 

(0.62). It is inferred that a low level of exposure is largely the result of elevation 821 

influence upon ecosystem structure in the Nanbeipan River basin within the Yunnan-822 

Kweichow Plateau (1000–2000 m). The high‐elevation plateau receives less 823 

precipitation and lower temperature, being responsible for the comparatively sparse 824 

vegetation with horizontal coverage being roughly 20% below the basin mean. The 825 

substitution of grassland for evergreen forests observed at many pixels in the Nanbeipan 826 

River basin (Fig. 1(b); Wang et al., 2021) also reminds less biomass accumulation is 827 

exposed to drought stress along the vertical direction. Concerning the densely populated 828 

and economically developed Pearl River Delta, the observation of even smaller 829 

exposure is attributed to intense human activity — especially rapid urbanization. 830 

Terrestrial ecosystems reshaped by urbanization have markedly lower vegetation 831 

occupation (Liu, Zhan, et al, 2019). Likewise, low exposure owing to urbanization 832 

impact is evident in Nanning, Liuzhou and other cities throughout the PRB, as the 833 

corresponding pixels marked by circles are in color approaching dark brown (Fig. 834 

10(a)). In addition, the role of agricultural practices — the other type of significant 835 

human intervention — in diminishing ecosystem exposure is noticed in the southmost 836 

Hongliu River basin and the eastern Yu River basin where the most cropland is located 837 

(Fig. 1(d)). Thereby, the above analysis is insightful in understanding the modulation 838 

of exposure spatial patterns by intense human activity and elevation.  839 
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 840 

In addition, over 1982–2017, there exists a slight upsurge of the basin mean exposure 841 

estimated to be 2.86%. At a 0.1-degree resolution, the highest growth rate of up to 842 

30.42% is at a pixel of the Nanbeipan River basin. As illustrated in Fig. 10(b), exposure 843 

tends to amplify at different rates in the majority (86.12%) PRB covering 3461 pixels. 844 

A more marked increase is found in the eastern Nanbeipan River and the Yu River 845 

basins, which coincide well with where surface vegetation restoration has been 846 

introduced by policymakers as an effective way to prevent karst rocky desertification 847 

in Yunnan, Guangxi and Kweichow provinces since 2001 (Wang, Wang, et al., 2015). 848 

The downward trend in exposure is recorded at 558 pixels merely accounting for 849 

13.88% of the PRB. The decline in exposure was more dramatic in the central Pearl 850 

River Delta, where the largest decline rate (-25.41%) was also recorded. According to 851 

previous studies (Du et al., 2020; Liu et al., 2022), this is due to rapid urban expansion 852 

leading to fragmentation of ecosystems, reduction in vegetation area and exposure to 853 

drought stress.  854 
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 855 

Fig. 10. The mean (a) and variation (b) of the composite exposure indicator over 1982–2017. 856 
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4.4 Ensemble mean of the NDVI- and GPP-indicated ecosystem vulnerability to 857 

drought stress 858 

 859 

Under multiple drought scenarios, trivariate conditional probability of vegetation 860 

decline is systematically estimated following Eq. (11) to characterize ecosystem 861 

vulnerability. The occurrence of vegetation decline is typically noticed when vegetation 862 

status is lower than the 50th percentile (i.e., the long-term median). More serious 863 

vegetation loss defined by vegetation indicators below 40th, 30th and 20th percentiles 864 

is investigated as well. As the external forcing, drought stress discussed is the 865 

concurrent duration and severity separately at 5-, 10-, 20- and 30-year return levels, 866 

which is identical to the drought scenarios investigated in subsection 4.1 to ensure 867 

consistency. Sixteen combinations of the casual drought stress and the consequent 868 

vegetation decline are exhaustively analyzed, of which the results are provided in Figs. 869 

11–12. A large likelihood of vegetation loss suggests a high degree of vulnerability.  870 

 871 

In Figs. 11–12, a symbol mean   at the upper-right corner of an individual panel 872 

indicates the basin mean of trivariate vegetation decline probability across the PRB. As 873 

seen in each column of the figure, the basin-average likelihood of vegetation suffering 874 

from the same decline merely diverges by 1–4% under different drought scenarios. 875 

Whereas, spatial heterogeneity is highly visible at a fine 0.1-degree resolution. In 876 

contrast to chartreuse pixels, orange and red ones denote above-50% likelihood, 877 

implying that an outcome of interest has more chance of happening in the statistical 878 

sense. In the first panel of Fig. 11, >50% possibility of vegetation decrease below 50th 879 

percentile occupies more than 58% of the PRB, and develops a northwest-southeast tilt 880 

across the Hongliu River basin and all four sub-basins of the eastern PRB. Acceleration 881 
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of increase in loss probability as indicated by the emergence of more red pixels occurs 882 

in response to more stressful water shortage like 10-, 20- and 30-year droughts. It is the 883 

same case when more profound vegetation decrease (like 40th, 30th and 20th 884 

percentiles) is under investigation. In Fig. 12, the NDVI is substituted with the GPP for 885 

vegetation status characterization. A duplicate spatial pattern of high loss possibility — 886 

a northwest-southeast tilt — is disclosed as well, confirming the reliability of the 887 

probabilistic assessment outcome. 888 
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 889 

Fig. 11. The NDVI-derived vegetation decline probability conditioned on diverse drought stress. 890 
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 891 

Fig. 12. The GPP-derived vegetation decline probability conditioned on diverse drought stress. 892 
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Furthermore, the NDVI- and GPP-indicated likelihood of vegetation loss (i.e., the 893 

below-50th percentile) is normalized using Eqs. (15) and (16) to derive the ensemble 894 

mean of ecosystem vulnerability. Vulnerability, by definition, is the propensity or 895 

predisposition to be adversely affected. Given deteriorating drought conditions, an 896 

increased propensity for vegetation to decline suggests exacerbating vulnerability. 897 

Under a 5-year drought scenario (Fig. 13(a)), ecosystem vulnerability varies from 0.15 898 

to 0.74. Sub-basins in the eastern PRB, including the downstream of the West River, 899 

the North River, the East River basins and the Pearl River Delta, witness higher degree 900 

of vulnerability, which is separately 3.59%, 11.90%, 6.89% and 9.27% larger than the 901 

basin average (0.41). Vegetation in the west is less vulnerable to drought stress, 902 

especially the Nanbeipan River and the Yu River basins, of which vulnerability 903 

decreases by 9.00% and 7.28%. At 0.1-degree spatial resolution, vulnerable ecosystems 904 

(>0.5) connect the eastern Hongliu River basin, the northmost of the downstream of the 905 

West River, a large proportion of the North River basin and the eastern and southern 906 

margins of the Pearl River Delta to show northwest-southeast-directed extension, which 907 

becomes increasingly visible under more severe drought conditions at 10-, 20- and 30-908 

year return levels (Fig. 13(b)–(d)). The abovementioned pixels with comparably high 909 

vulnerability mostly reside in agroecosystems which are highlighted in yellow in Fig. 910 

1(d). Previous studies (Hochmuth et al., 2015; Howes et al., 2015; Taghvaeian et al., 911 

2018; Teixeira, 2010) conducted in different climate contexts reported that plants 912 

cultivated for grain, fruit and vegetable production consume more water than natural 913 

vegetation by factors of 2 and 3. Consequently, enlarged vulnerability is more likely to 914 

emerge among water-demanding agroecosystems (especially, the rainfed) when 915 

suffering from precipitation deficits. An exceptional case is that the eastern Yu River 916 

basin where the cropland shows the greatest ground coverage across the PRB (Fig. 1(d); 917 
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Wang et al., 2021), has an unexpectedly low level of ecosystem vulnerability. According 918 

to statistics from local authorities, more than 50% of cultivated land in Nanning (243k 919 

hectares/480k hectares) and Guigang (184k hectares/320k hectares) within the domain 920 

of the eastern Yu River basin has access to irrigation facilities to cope with drought, 921 

while only 19% cropland of the eastern Hongliu River basin (140k hectares/755k 922 

hectares) has access to irrigation systems. It is reasonable to infer that appropriate 923 

human interventions, such as irrigation, can serve to regulate ecosystem vulnerability.  924 

 925 

 926 

Fig. 13. Ensemble of drought-induced vegetation vulnerability derived from diverse vegetation 927 

indicators.928 
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4.5 Time-varying ecosystem risk induced by droughts in the PRB 929 

 930 

As defined, time-varying ecosystem risk arising from droughts is calculated as the 931 

multiplication of hazard likelihood ( andP   representing a more stressful concurrency 932 

scenario is herein considered), ecosystem exposure and vulnerability. Risk maps at 0.1-933 

degree spatial resolution were generated to study the spatial pattern (Figs. 14–15) and 934 

temporal dynamics (Figs. 16–17), in support of pinpointing hotspots where high risk 935 

projected to be further aggravated should receive the overriding mitigation priority.  936 

 937 

4.5.1 Spatial pattern and temporal change of drought-induced ecosystem risk during 938 

1982–2017 939 

 940 

Spatial patterns become distinguishable in Fig. 14 by mapping out the mean of drought-941 

induced ecosystem risk during 1982–2017. When a 5-year drought occurs as the 942 

external forcing, ecosystem risk is estimated to have a mean value of 0.0226 across the 943 

PRB. For individual sub-basin, ecosystems in the East River (0.0304) and the Hongliu 944 

River (0.0301) basins are uniformly at 33% higher risk compared with the PRB mean. 945 

Lower risk fluctuating around the basin mean is noted from west to east, mainly in the 946 

Nanbeipan River (0.0188), the Yu River (0.0212), the downstream of the West River 947 

(0.0191) and the North River (0.0194) basins. The Pearl River Delta (0.0137) is the 948 

least risky sub-basin where ecosystem risk deviates from the PRB average by -39%. 949 

Risk assessment conducted under an ensemble of 10-, 20- and 30-year drought 950 

scenarios also confirms the elevated levels of ecosystem risk in the East River and the 951 

Hongliu River basins. Furthermore, ecosystem risk under drought stress is clustered 952 
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into three groups using the k-means algorithm to visualize the relatively high, medium 953 

and low levels within the PRB domain. As seen in Fig. 15, relatively low, medium and 954 

high levels of risk under a 5-yr return period drought are within the range of (0, 0.020], 955 

(0.020, 0.035] and (0.035, 0.065], respectively. High-risk pixels highlighted in dark 956 

golden yellow and red occupy 18.96% of the PRB, with concentration more specifically 957 

in the majority of the East River basin as well as the western and northern parts of the 958 

Hongliu River basins at 0.1-degree resolution. Medium risk corresponding to light 959 

yellow pixels dominates the rest Hongliu River basin and is more widely distributed 960 

over the middle of the Yu River basin and the western and northern Nanbeipan River 961 

basin, presenting a spatial coverage of up to 37.99% in the study area. 962 

 963 

 964 

Fig. 14. Mean values of drought-related ecosystem risk in the PRB during 1982–2017. 965 
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 966 

Fig. 15. Ecosystem risk clustered by the k-means method in the PRB. 967 

 968 

In addition to spatial patterns, the proposed DERM model provides insight into how 969 

ecosystem risk varies in a changing climate. Out of a total of 4019 pixels within the 970 

scope of the PRB, 2459 (61.18%), 2548 (63.40%), 2554 (63.55%) and 2565 (63.82%) 971 

pixels witness an enlargement of risk under the stress of 5-, 10-, 20- and 30-year 972 

droughts, respectively. As depicted in Fig. 16, the increasing trend mostly occurs over 973 

the northern PRB (i.e., 74.41% of the Nanbeipan River basin, 65.08% of the 974 

downstream of the West River basin, 94.58% of the North River basin and 92.25% of 975 

the East River basin), except for the Hongliu River basin. On the contrary, more than 976 

50% of the southern PRB accompanied by the northerly Hongliu River basin is subject 977 

to the alleviated ecosystem risk. Meanwhile, decadal analysis is performed to justify 978 

the risk alternation identified above. Fig. 17 exemplifies the decadal mean risk under 979 

the 5-year drought scenario. The PRB average risk presents an overall upward trend 980 

throughout the entire analysis period, increasing rapidly from 0.0197 in 1982–1989 to 981 

0.0205 in 1990–1999 and 0.0274 in 2000–2009 and slightly diminishing to 0.0224 till 982 

the most recent decade (2010–2017). A westward and eastward expansion of high risk 983 
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from the middle PRB (the Hongliu River basin) in 1982–1989 to the Nanbeipan River 984 

and East River basins at PRB margins in 2010–2017 finally results in the intensification 985 

of risk across most of the northern part, justifying the identified temporal alteration in 986 

ecosystem risk. Thereby, analysis of mean annual change (Fig. 16) and decadal mean 987 

(Fig. 17) of risk jointly discloses that ecosystems in more than 60% of the PRB are at 988 

amplified risk during the past four decades. Exacerbated risk prevails over the northern 989 

PRB (except for part of the Hongliu River basin) in contrast to the alleviated risk mainly 990 

in the southern part.  991 

 992 

 993 

Fig. 16. Mean annual changes in drought-induced ecosystem risk during the recent four decades. 994 
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 995 

Fig. 17. Decadal mean of ecosystem risk under a 5-year drought over (a) 1982-1989, (b) 1990-1999, (c) 2000-2009 and (d) 2010-2017, respectively. 996 
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4.5.2 Hotspots of drought-induced ecosystem risk 997 

 998 

Ultimately, the spatial pattern of risk, together with its temporal dynamic acquired from 999 

the proposed DERM model, is combined to identify risk hotspots. Additional 1000 

involvement of risk change information elaborates hotspot analysis by further notifying 1001 

whether there will be an acute exacerbation of ecosystem risk in the near future, which 1002 

is closely associated with the performance of risk mitigation efforts in a changing 1003 

climate. Pixels, where high risk is expected to continue to escalate, are the most pressing 1004 

hotspots and should receive the highest priority. Out of a total of 762 high-risk pixels, 1005 

431 pixels (56.56%) showed an escalation trend (Table 4) and were therefore identified 1006 

as hotspots. As depicted in Fig. 18, the most pressing hotspots of drought-induced 1007 

ecosystem risk are mostly confined in the northern and western margins of the Hongliu 1008 

River basin (185 pixels) and the East River basin (116 pixels). As illustrated in Figs. 9, 1009 

10 and 13, relatively high levels of bivariate drought probability and ecosystem 1010 

exposure are responsible for high risk in the northern and western margins of the 1011 

Hongliu River basin, while they are bivariate drought probability, exposure and 1012 

vulnerability uniformly at high levels in the East River basin. As for the increasing trend 1013 

in ecosystem risk, it is primarily attributed to the escalating drought probability as 1014 

revealed in subsection 4.2. In addition, there is considerable potential for moderate risk 1015 

to swell to high levels when an uptrend is superimposed. Related pixels can be 1016 

considered as potential hotspots where early preparations are also needed to deal with 1017 

the impending adverse effects. Potential hotspots highlighted in orange develop 1018 

continuously in the northwestern (corresponding to 252 pixels in the Nanbeipan River 1019 

basin) and northeastern (covering 263 pixels in the North River and East River basins) 1020 

PRB, with some smaller patches embedded in the middle portion. Thereby, the 1021 
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knowledge gained in terms of spatial patterns and temporal variations facilitates an 1022 

elaborate hotspot analysis by differentiating a collection of risk hotspots. In the PRB, 1023 

the most pressing hotspots with the highest mitigation priority are predominantly found 1024 

in the middle and eastern margins. An early preparedness plan should be made as well, 1025 

to address the possible future impact upon potential hotspots that outline two space 1026 

continuums across the northwestern and northeastern PRB, respectively. 1027 
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Table 4 Number of pixels with above-medium risk superposed by trend information over 1982–1028 

2017 1029 

Sub-basins 
High risk Medium risk 

Uptrend Downtrend Uptrend Downtrend 

The Nanbeipan River basin 25 15 252 86 
The HongLiu basin 185 209 179 240 
The Yu River basin 20 69 83 190 
The downstream of the West River 32 31 95 59 
The North River basin 34 0 162 16 
The East River basin 116 7 101 12 
The Pearl River Delta 19 0 33 19 
The Whole PRB 431 331 905 622 

 1030 

 1031 

Fig. 18. High and medium risk superposed by trend information over the past four decades. 1032 

 1033 

5 Discussion 1034 

 1035 

Risk components are all classified into low, medium and high levels via the k-means 1036 

method to facilitate attribution analysis. Risk components with dominant control over 1037 

above-medium risk are finally screened out to elucidate the driving mechanism of risk 1038 

and develop appropriate mitigation strategies. 1039 

 1040 
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It is observed in Fig. 19 that medium and high levels of drought frequency, exposure 1041 

and vulnerability emerge at 90.26%, 94.06% and 74.40% of 2289 pixels having above-1042 

medium risk, respectively. Accordingly, drought frequency and exposure are found to 1043 

exert more widespread influence upon the formation of above-medium risk relative to 1044 

the vulnerability component. The above-medium risk may be the result of a single risk 1045 

component or several ones jointly reaching medium and high levels. Fig. 19 indicates 1046 

that when a single risk component is sequentially investigated, only drought frequency 1047 

imposes exclusive control on above-medium risk at 45 pixels that are highlighted in red. 1048 

The dominant role of drought frequency is profound in the western margin of the 1049 

Nanbeipan River basin, which coincides well with where drought recurrence is at a high 1050 

rate (Figs. 8–9). Drought frequency, in essence, represents the external forcing of 1051 

climate extremes for risk formation. At 45 pixels identified above, risk mitigation in a 1052 

way of modulating climate extremes calls for long-term collaborative efforts to alleviate 1053 

climate impact upon ecosystems across the globe and thereby may not be attained in 1054 

short time frames. In the remaining part covering 2240 pixels, above-medium risk is 1055 

the composite result of at least two risk components reaching medium and high values. 1056 

Detailly, all three risk components exceeding the medium levels are noted to take shared 1057 

responsibility for above-medium risk at up to 1393 orange pixels, which is successively 1058 

followed by the frequency and exposure combination (i.e., highlighted in seagreen) and 1059 

the exposure and vulnerability combination (i.e., highlighted in yellow) separately 1060 

acting as dominant risk drivers at 537 and 219 pixels. 1061 

 1062 

In the context of global warming and the high uncertainty of future regional climate 1063 

extremes (Sillmann et al., 2021), transnational climate governance over decades or even 1064 

centuries is required to regulate existing drought frequencies (Lawrence et al., 2020; 1065 
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Malhi et al., 2020). Buffering risk components — namely exposure and vulnerability 1066 

— through broad ecosystem management activities is considered a viable way to 1067 

mitigate ecosystem risks in the short term (UNISDR, 2015). For instance, lower 1068 

exposure of agroecosystems to water stress can be achievable through interventions 1069 

including the planting date adjustment (Kosoe & Ahmed, 2022; Lu et al., 2017) and the 1070 

relocation of water-demanding crops cultivated during drought-intensive months (Ray 1071 

et al., 2018).  1072 

 1073 

More options can be adopted to reduce vulnerability, which allows ecosystems to co-1074 

exist with climate extremes. (Wamsler et al., 2016). For agroecosystems, supplemental 1075 

irrigation (Byrareddy et al., 2021; Diatta et al., 2021) is in widespread application, 1076 

which diverts alternative sources of water (mainly groundwater and impounded water 1077 

in reservoirs) in order to make vegetation communities less vulnerable to insufficient 1078 

atmospheric water supply. As discussed in subsection 4.4, the significant role of 1079 

irrigation practices in the US (Oikonomou et al., 2019), South Africa (Araujo et al., 1080 

2016) and Europe (Orth et al., 2020) is also found in the eastern Yu River basin of the 1081 

PRB. The other cluster of mitigation options manages to reduce crop lifetime water 1082 

consumption through the improved water use efficiency (WUE). To achieve the goal, a 1083 

cascade of molecular, biochemical and physiological modifications at a cell level can 1084 

be implemented with the aid of the emerging biotechnological approaches (Hussain et 1085 

al., 2018), comprising genetic makeup manipulation for breeding drought-tolerant crop 1086 

species, and the exogenous application of compatible solutes (soluble sugars, for 1087 

instance; Dien et al., 2019) for lowering osmotic potential and thereby maintaining 1088 

tissue water content, hormonal or non-hormonal plant growth regulators (abscisic acid 1089 

and jasmonates; Fugate et al., 2018; Mega et al., 2019) for triggering plant defense 1090 
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response (for instance, water-saving antitranspirant response) and mineral nutrients 1091 

(phosphorus and potassium additions; Ahmad et al., 2018; Nawaz et al., 2020) for 1092 

drought stress alleviations. Besides, several management practices, although relatively 1093 

limited, can be designed to diminish vulnerability of natural ecosystems like forests and 1094 

grassland covering up to 61.92% and 11.84% of the PRB (Fig. 1). Forest ecosystems of 1095 

the PRB account for the highest proportion (greater than 47% in 2021) of national wood 1096 

production, whilst being frequently perturbed by water scarcity. Density reduction 1097 

through silvicultural thinning treatments might be advocated as a near-term solution to 1098 

mitigate forest vulnerability to drought stress (Navarro-Cerrillo et al., 2019; Restaino 1099 

et al., 2019; Zhang et al., 2021) because of such efforts in favor of increased water 1100 

availability to the remaining trees during drought episodes (D'Amato et al., 2013). With 1101 

regard to grassland ecosystems, vulnerability, to a large extent, originates from the fact 1102 

that persistent water shortage reduces mobility and availability of nutrients 1103 

indispensable for plant functioning and metabolism (Araya et al., 2022; Meisser et al., 1104 

2019). To enhance resistance to droughts, biodiversity restoration management (De 1105 

Boeck et al., 2018; Isbell et al., 2015) can be conducted as a way of enhancing nutrient 1106 

uptake and WUE by adding key functional groups of plants and microorganisms to 1107 

grassland communities. Previous studies have revealed that some candidate functional 1108 

biomes are legume species with N-fixing rhizobia associations (Cole et al., 2019) and 1109 

biotechnologically developed phosphorus-solubilizing microbes (Kour et al., 2019), the 1110 

presence of which has potential to confer higher resistance (i.e., lower vulnerability) of 1111 

the sub-alpine meadows also predominantly distributed at the western margin of the 1112 

current study area (Fig. 1). Overall, the human practices described above illustrate a 1113 

variety of efforts to buffer vulnerability by following pathways that increase water 1114 

availability to individual plants or reduce water demand through the improved water 1115 
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use efficiency. Under ideal conditions, 2,240 pixels, representing 55.83% of the total 1116 

PRB, are expected to have moderate or higher ecosystem risk mitigated if appropriate 1117 

measures are taken to mitigate ecosystem exposure and vulnerability. 1118 

 1119 

 1120 

Fig. 19. Ecosystem risk is high and medium when the three risk factors are at a medium or higher 1121 

level. 1122 

 1123 

6 Conclusions 1124 

 1125 

Ecosystems, which cover 28.26% of the Earth's surface, are extensively at risk 1126 

worldwide when suffering from droughts — a major abiotic stressor receiving increased 1127 

attention in a warming climate. Drought-induced ecosystem risk can propagate rapidly 1128 

into the connected human communities via the mismatch between ecosystem service 1129 

supply and human demand, thereby reinforcing the necessity to specifically evaluate 1130 
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ecosystem risk imposed by droughts and climate extremes. In addition, dynamic risks 1131 

may arise from time-variant risk determinants — hazard frequency, exposure and 1132 

vulnerability — within anthropogenically-forced nonstationary environments. The 1133 

expanded knowledge of how and to what extent risk evolves is indispensable for 1134 

updating risk-based proactive mitigation strategies with desirable performance in the 1135 

upcoming decades. To this end, the present study develops a DERM model to 1136 

investigate the composition, spatio-temporal variability as well as driving mechanism 1137 

of time-varying ecosystem risk under the stress of climate extremes. In the DERM 1138 

model, bivariate drought exceedance probability as the hazard component of risk is 1139 

initially calculated jointly considering univariate and bivariate nonstationarity of 1140 

duration and severity, with the aid of the GAMLSS model and dynamic copula. 1141 

Meanwhile, a two-dimensional indicator coupling vegetation coverage and biomass 1142 

quantity is formulated to characterize ecosystem exposure through a non-compensatory 1143 

approach. Trivariate likelihood of vegetation loss (quantified using the NDVI and GPP 1144 

decline) given arbitrary multivariate drought condition (i.e., the pairwise duration and 1145 

severity) is derived as an intuitive metric for ecosystem vulnerability to drought stress. 1146 

Ultimately, dynamic risk is calculated by multiplying time-variant drought frequency, 1147 

ecosystem exposure and vulnerability, followed by a chain of post analysis including 1148 

the identification of spatio-temporal variability, the most pressing risk hotspots and the 1149 

main drivers of above-medium risk for proactive mitigation planning. 1150 

 1151 

Time-varying ecosystem risk at 0.1-degree resolution was assessed during 1982–2017 1152 

in the PRB, China, where recurrent precipitation deficiency exerts a significant control 1153 

on ecosystem functioning and productivity. Results indicate that meteorological 1154 

droughts revisit the middle PRB at higher frequencies, which have characteristics of 1155 
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shorter duration and lower severity. In contrast, droughts in the eastern and western 1156 

margins, although less frequent, become prolonged and severe. Mean ecosystem 1157 

exposure to drought stress fluctuates within a small range from 0.48 to 0.66 across 1158 

seven sub-basins and exhibits less pronounced heterogeneity over space. Intensification 1159 

of exposure over the 86.12% PRB is more pronounced in the karst western proportion 1160 

as a result of vegetation restoration, whilst a drastic decline with the maximum of -1161 

25.41% over the Pearl River Delta is due to rapid urban expansion over the past decades. 1162 

As the third risk component, ecosystem vulnerability at relatively high levels (>0.5) 1163 

mostly resides in the eastern PRB and shows northwest-southeast-directed extension. 1164 

Greater vulnerability is found amongst water-demanding agroecosystems, which can 1165 

be beneficially modulated by irrigation practices. Ultimately, dynamic risk analysis 1166 

incorporating the foregoing risk determinants discloses that high and medium risk 1167 

occupies 18.96% and 37.99% of the PRB, respectively. More than 60% of the PRB (i.e., 1168 

the northern PRB except for part of the Hongliu River basin) is at amplified risk in 1169 

contrast to the alleviated risk mainly in the southern part. Furthermore, the most 1170 

pressing hotspots where high risk superimposed by an escalating trend takes the 1171 

overriding mitigation priority are predominantly at the northern and western margins 1172 

of the Hongliu River basin (185 pixels) and the East River basin (116 pixels). Drought 1173 

frequency and exposure are found to exert more widespread influence upon the 1174 

formation of above-medium risk relative to the vulnerability component in the PRB.  1175 

 1176 

Overall, the proposed DERM model can be used for the quantification of drought 1177 

impacts on ecosystems and has the potential to be applied in other regions for the 1178 

mitigation of drought-induced ecosystem risk in a changing climate. The developed 1179 

model also allows more flexibility in the substitution of droughts with floods, 1180 
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heatwaves, chilling, wildfires, compound extreme events (Phillips et al., 2020), insect 1181 

pests (Rasche & Taylor, 2019) and infectious diseases (Hassell et al., 2021) as a way to 1182 

identify highly risky ecosystems under diverse abiotic and biotic stress and understand 1183 

how risk evolves under future climate scenarios. Additionally, terrestrial ecosystems 1184 

are tightly coupled to human communities in the functional domain including 1185 

ecosystem service provision and the secondary effect of ecosystem disruption across a 1186 

broader spatial scale. Ecosystem risk may thereby spread out and exacerbate drought-1187 

induced risk to human settlements due to the loss of vital services highly valued by 1188 

human beings, which is termed as cascading risk (Pescaroli & Alexander, 2018). 1189 

Therefore, the modeling of causal interactions between natural and anthropogenic 1190 

systems, the subsequent identification of cascading risk pathways (Suk et al., 2020) and 1191 

the initiation of appropriate measures to minimize risk propagation rate might be some 1192 

significant topics deserving further investigation. 1193 
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Environment Data Center (http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-1207 
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http://www.glass.umd.edu/.  1212 

 1213 

References 1214 

 1215 

Aerts, J. C. J. H., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., et al. 1216 

(2018). Integrating human behaviour dynamics into flood disaster risk 1217 

assessment. Nature Climate Change, 8(3), 193-199. 1218 

https://doi.org/10.1038/s41558-018-0085-1  1219 

Ahmad, Z., Anjum, S., Waraich, E. A., Ayub, M. A., Ahmad, T., Tariq, R. M. S., et al. 1220 

(2018). Growth, physiology, and biochemical activities of plant responses with 1221 

foliar potassium application under drought stress – a review. Journal of Plant 1222 

Nutrition, 41(13), 1734-1743. https://doi.org/10.1080/01904167.2018.1459688  1223 

Ahmadalipour, A., Moradkhani, H., Castelletti, A., & Magliocca, N. (2019). Future 1224 

drought risk in Africa: Integrating vulnerability, climate change, and population 1225 

growth. Science of The Total Environment, 662, 672-686. 1226 

https://doi.org/10.1016/j.scitotenv.2019.01.278  1227 

Amirataee, B., Montaseri, M., & Rezaie, H. (2020). An advanced data collection 1228 

procedure in bivariate drought frequency analysis. Hydrological Processes, 1229 

34(21), 4067-4082. https://doi.org/10.1002/hyp.13866  1230 

Angeon, V., & Bates, S. (2015). Reviewing Composite Vulnerability and Resilience 1231 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
https://www.ncei.noaa.gov/data/avhrr-land-normalized-difference-vegetation-index/access/
https://www.ncei.noaa.gov/data/avhrr-land-normalized-difference-vegetation-index/access/
http://www.glass.umd.edu/
https://doi.org/10.1038/s41558-018-0085-1
https://doi.org/10.1080/01904167.2018.1459688
https://doi.org/10.1016/j.scitotenv.2019.01.278
https://doi.org/10.1002/hyp.13866


70 
 

Indexes: A Sustainable Approach and Application. World Development, 72, 140-1232 

162. https://doi.org/10.1016/j.worlddev.2015.02.011  1233 

Araujo, J. A., Abiodun, B. J., & Crespo, O. (2016). Impacts of drought on grape yields 1234 

in Western Cape, South Africa. Theoretical and Applied Climatology, 123(1), 1235 

117-130. https://doi.org/10.1007/s00704-014-1336-3  1236 

Araya, A., Jha, P. K., Zambreski, Z., Faye, A., Ciampitti, I. A., Min, D., et al. (2022). 1237 

Evaluating crop management options for sorghum, pearl millet and peanut to 1238 

minimize risk under the projected midcentury climate scenario for different 1239 

locations in Senegal. Climate Risk Management, 36, 100436. 1240 

https://doi.org/10.1016/j.crm.2022.100436  1241 

Bachmair, S., Svensson, C., Prosdocimi, I., Hannaford, J., & Stahl, K. (2017). 1242 

Developing drought impact functions for drought risk management. Nat. 1243 

Hazards Earth Syst. Sci., 17(11), 1947-1960. https://doi.org/10.5194/nhess-17-1244 

1947-2017  1245 

Balogun, V. S., & Onokerhoraye, A. G. (2022). Climate change vulnerability mapping 1246 

across ecological zones in Delta State, Niger Delta Region of Nigeria. Climate 1247 

Services, 27, 100304. https://doi.org/10.1016/j.cliser.2022.100304 1248 

Blauhut, V., Stahl, K., Stagge, J. H., Tallaksen, L. M., De Stefano, L., & Vogt, J. (2016). 1249 

Estimating drought risk across Europe from reported drought impacts, drought 1250 

indices, and vulnerability factors. Hydrol. Earth Syst. Sci., 20(7), 2779-2800. 1251 

https://doi.org/10.5194/hess-20-2779-2016  1252 

Brèteau-Amores, S., Brunette, M., & Davi, H. (2019). An Economic Comparison of 1253 

Adaptation Strategies Towards a Drought-induced Risk of Forest Decline. 1254 

Ecological Economics, 164, 106294. 1255 

https://doi.org/10.1016/j.ecolecon.2019.04.006  1256 

Bucchia, B., & Wendler, M. (2017). Change-point detection and bootstrap for Hilbert 1257 

space valued random fields. Journal of Multivariate Analysis, 155, 344-368. 1258 

https://doi.org/10.1016/j.jmva.2017.01.007  1259 

Byers, E., Gidden, M., Leclère, D., Balkovic, J., Burek, P., Ebi, K., et al. (2018). Global 1260 

exposure and vulnerability to multi-sector development and climate change 1261 

hotspots. Environmental Research Letters, 13(5), 055012. 1262 

https://doi.org/10.1088/1748-9326/aabf45  1263 

Byrareddy, V., Kouadio, L., Mushtaq, S., Kath, J., & Stone, R. (2021). Coping with 1264 

drought: Lessons learned from robusta coffee growers in Vietnam. Climate 1265 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1016/j.worlddev.2015.02.011
https://doi.org/10.1007/s00704-014-1336-3
https://doi.org/10.1016/j.crm.2022.100436
https://doi.org/10.5194/nhess-17-1947-2017
https://doi.org/10.5194/nhess-17-1947-2017
https://doi.org/10.5194/hess-20-2779-2016
https://doi.org/10.1016/j.ecolecon.2019.04.006
https://doi.org/10.1016/j.jmva.2017.01.007
https://doi.org/10.1088/1748-9326/aabf45


71 
 

Services, 22, 100229. https://doi.org/10.1016/j.cliser.2021.100229 1266 

Campbell, J. E., Berry, J. A., Seibt, U., Smith, S. J., Montzka, S. A., Launois, T., et al. 1267 

(2017). Large historical growth in global terrestrial gross primary production. 1268 

Nature, 544(7648), 84-87. https://doi.org/10.1038/nature22030  1269 

Carrão, H., Naumann, G., & Barbosa, P. (2016). Mapping global patterns of drought 1270 

risk: An empirical framework based on sub-national estimates of hazard, 1271 

exposure and vulnerability. Global Environmental Change, 39, 108-124. 1272 

https://doi.org/10.1016/j.gloenvcha.2016.04.012  1273 

Chakraborty, A., & Joshi, P. K. (2016). Mapping disaster vulnerability in India using 1274 

analytical hierarchy process. Geomatics, Natural Hazards and Risk, 7(1), 308-1275 

325. https://doi.org/10.1080/19475705.2014.897656  1276 

Chebana, F., Ouarda, T. B. M. J., & Duong, T. C. (2013). Testing for multivariate trends 1277 

in hydrologic frequency analysis. Journal of Hydrology, 486, 519-530. 1278 

https://doi.org/10.1016/j.jhydrol.2013.01.007  1279 

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., et al. (2019). China 1280 

and India lead in greening of the world through land-use management. Nature 1281 

Sustainability, 2(2), 122-129. https://doi.org/10.1038/s41893-019-0220-7  1282 

Cochavi, A., Amer, M., Stern, R., Tatarinov, F., Migliavacca, M., & Yakir, D. (2021). 1283 

Differential responses to two heatwave intensities in a Mediterranean citrus 1284 

orchard are identified by combining measurements of fluorescence and 1285 

carbonyl sulfide (COS) and CO2 uptake. New Phytologist, 230(4), 1394-1406. 1286 

https://doi.org/10.1111/nph.17247  1287 

Cole, A. J., Griffiths, R. I., Ward, S. E., Whitaker, J., Ostle, N. J., & Bardgett, R. D. 1288 

(2019). Grassland biodiversity restoration increases resistance of carbon fluxes 1289 

to drought. Journal of Applied Ecology, 56(7), 1806-1816. 1290 

https://doi.org/10.1111/1365-2664.13402  1291 

D'Amato, A. W., Bradford, J. B., Fraver, S., & Palik, B. J. (2013). Effects of thinning 1292 

on drought vulnerability and climate response in north temperate forest 1293 

ecosystems. Ecological Applications, 23(8), 1735-1742. 1294 

https://doi.org/10.1890/13-0677.1  1295 

Dai, M., Huang, S., Huang, Q., Leng, G., Guo, Y., Wang, L., et al. (2020). Assessing 1296 

agricultural drought risk and its dynamic evolution characteristics. Agricultural 1297 

Water Management, 231, 106003. https://doi.org/10.1016/j.agwat.2020.106003  1298 

Dalezios, N. R., Blanta, A., Spyropoulos, N. V., & Tarquis, A. M. (2014). Risk 1299 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1038/nature22030
https://doi.org/10.1016/j.gloenvcha.2016.04.012
https://doi.org/10.1080/19475705.2014.897656
https://doi.org/10.1016/j.jhydrol.2013.01.007
https://doi.org/10.1038/s41893-019-0220-7
https://doi.org/10.1111/nph.17247
https://doi.org/10.1111/1365-2664.13402
https://doi.org/10.1890/13-0677.1
https://doi.org/10.1016/j.agwat.2020.106003


72 
 

identification of agricultural drought for sustainable Agroecosystems. Nat. 1300 

Hazards Earth Syst. Sci., 14(9), 2435-2448. https://doi.org/10.5194/nhess-14-1301 

2435-2014  1302 

Das, J., Jha, S., & Goyal, M. K. (2020). Non-stationary and copula-based approach to 1303 

assess the drought characteristics encompassing climate indices over the 1304 

Himalayan states in India. Journal of Hydrology, 580, 124356. 1305 

https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.124356 1306 

De Boeck, H. J., Bloor, J. M. G., Kreyling, J., Ransijn, J. C. G., Nijs, I., Jentsch, A., & 1307 

Zeiter, M. (2018). Patterns and drivers of biodiversity–stability relationships 1308 

under climate extremes. Journal of Ecology, 106(3), 890-902. 1309 

https://doi.org/10.1111/1365-2745.12897  1310 

Diatta, A. A., Min, D., & Jagadish, S. V. K. (2021). Chapter Two - Drought stress 1311 

responses in non-transgenic and transgenic alfalfa—Current status and future 1312 

research directions. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 170, pp. 1313 

35-100). Academic Press. https://doi.org/10.1016/bs.agron.2021.06.002  1314 

Dien, D. C., Mochizuki, T., & Yamakawa, T. (2019). Effect of various drought stresses 1315 

and subsequent recovery on proline, total soluble sugar and starch metabolisms 1316 

in Rice (Oryza sativa L.) varieties. Plant Production Science, 22(4), 530-545. 1317 

https://doi.org/10.1080/1343943X.2019.1647787  1318 

Diffenbaugh, N. S., Singh, D., Mankin, J. S., Horton, D. E., Swain, D. L., Touma, D., 1319 

et al. (2017). Quantifying the influence of global warming on unprecedented 1320 

extreme climate events. Proceedings of the National Academy of Sciences, 1321 

114(19), 4881-4886. https://doi.org/10.1073/pnas.1618082114  1322 

Dong, T., Liu, J., Qian, B., He, L., Liu, J., Wang, R., et al. (2020). Estimating crop 1323 

biomass using leaf area index derived from Landsat 8 and Sentinel-2 data. 1324 

ISPRS Journal of Photogrammetry and Remote Sensing, 168, 236-250. 1325 

https://doi.org/10.1016/j.isprsjprs.2020.08.003  1326 

Du, J., Fu, Q., Fang, S., Wu, J., He, P., & Quan, Z. (2019). Effects of rapid urbanization 1327 

on vegetation cover in the metropolises of China over the last four decades. 1328 

Ecological Indicators, 107, 105458. 1329 

https://doi.org/10.1016/j.ecolind.2019.105458  1330 

Du, J., Quan, Z., Fang, S., Liu, C., Wu, J., & Fu, Q. (2020). Spatiotemporal changes in 1331 

vegetation coverage and its causes in China since the Chinese economic reform. 1332 

Environmental Science and Pollution Research, 27(1), 1144-1159. 1333 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.5194/nhess-14-2435-2014
https://doi.org/10.5194/nhess-14-2435-2014
https://doi.org/10.1111/1365-2745.12897
https://doi.org/10.1016/bs.agron.2021.06.002
https://doi.org/10.1080/1343943X.2019.1647787
https://doi.org/10.1073/pnas.1618082114
https://doi.org/10.1016/j.isprsjprs.2020.08.003
https://doi.org/10.1016/j.ecolind.2019.105458


73 
 

https://doi.org/10.1007/s11356-019-06609-6  1334 

Fang, W., Huang, S., Huang, G., Huang, Q., Wang, H., Wang, L., et al. (2019a). 1335 

Copulas-based risk analysis for inter-seasonal combinations of wet and dry 1336 

conditions under a changing climate. International Journal of Climatology, 1337 

39(4), 2005-2021. https://doi.org/https://doi.org/10.1002/joc.5929  1338 

Fang, W., Huang, S., Huang, Q., Huang, G., Wang, H., Leng, G., et al. (2019b). 1339 

Probabilistic assessment of remote sensing-based terrestrial vegetation 1340 

vulnerability to drought stress of the Loess Plateau in China. Remote Sensing of 1341 

Environment, 232, 111290. https://doi.org/10.1016/j.rse.2019.111290  1342 

Fang, W., Huang, S., Huang, Q., Huang, G., Wang, H., Leng, G., et al. (2019c). 1343 

Bivariate probabilistic quantification of drought impacts on terrestrial 1344 

vegetation dynamics in mainland China. Journal of Hydrology, 577, 123980. 1345 

https://doi.org/10.1016/j.jhydrol.2019.123980  1346 

Fatichi, S., & Pappas, C. (2017). Constrained variability of modeled T:ET ratio across 1347 

biomes. Geophysical Research Letters, 44(13), 6795-6803. 1348 

https://doi.org/10.1002/2017GL074041  1349 

Favre, A.-C., El Adlouni, S., Perreault, L., Thiémonge, N., & Bobée, B. (2004). 1350 

Multivariate hydrological frequency analysis using copulas. Water Resources 1351 

Research, 40(1), W01101. https://doi.org/10.1029/2003WR002456  1352 

Feng, S., & Fu, Y. F. (2009). Seasonal Characteristics of Precipitation Occurrences in 1353 

the Core Area of the Subtropical High. Acta Meteorologica Sinica, 23(6), 681-1354 

690. 1355 

Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (2012). Managing the risks of extreme 1356 

events and disasters to advance climate change adaptation: special report of 1357 

the intergovernmental panel on climate change. Cambridge University Press.  1358 

Fugate, K. K., Lafta, A. M., Eide, J. D., Li, G., Lulai, E. C., Olson, L. L., et al. (2018). 1359 

Methyl jasmonate alleviates drought stress in young sugar beet (Beta vulgaris 1360 

L.) plants. Journal of Agronomy and Crop Science, 204(6), 566-576. 1361 

https://doi.org/10.1111/jac.12286  1362 

Galluccio, L., Michel, O., Comon, P., & Hero, A. O. (2012). Graph based k-means 1363 

clustering. Signal Processing, 92(9), 1970-1984. 1364 

https://doi.org/10.1016/j.sigpro.2011.12.009  1365 

Ganguli, P., & Coulibaly, P. (2017). Does nonstationarity in rainfall require 1366 

nonstationary intensity–duration–frequency curves? Hydrol. Earth Syst. Sci., 1367 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1007/s11356-019-06609-6
https://doi.org/https:/doi.org/10.1002/joc.5929
https://doi.org/10.1016/j.rse.2019.111290
https://doi.org/10.1016/j.jhydrol.2019.123980
https://doi.org/10.1002/2017GL074041
https://doi.org/10.1029/2003WR002456
https://doi.org/10.1111/jac.12286
https://doi.org/10.1016/j.sigpro.2011.12.009


74 
 

21(12), 6461-6483. https://doi.org/10.5194/hess-21-6461-2017  1368 

Gombay, E., & Horváth, L. (1999). Change-points and bootstrap. Environmetrics, 10(6), 1369 

725-736. https://doi.org/10.1002/(SICI)1099-1370 

095X(199911/12)10:6<725::AID-ENV387>3.0.CO;2-K  1371 

Gonzalez, P., Neilson, R. P., Lenihan, J. M., & Drapek, R. J. (2010). Global patterns in 1372 

the vulnerability of ecosystems to vegetation shifts due to climate change. 1373 

Global Ecology and Biogeography, 19(6), 755-768. 1374 

https://doi.org/10.1111/j.1466-8238.2010.00558.x  1375 

González Tánago, I., Urquijo, J., Blauhut, V., Villarroya, F., & De Stefano, L. (2016). 1376 

Learning from experience: a systematic review of assessments of vulnerability 1377 

to drought. Natural Hazards, 80(2), 951-973. https://doi.org/10.1007/s11069-1378 

015-2006-1  1379 

Hagenlocher, M., Meza, I., Anderson, C. C., Min, A., Renaud, F. G., Walz, Y., et al. 1380 

(2019). Drought vulnerability and risk assessments: state of the art, persistent 1381 

gaps, and research agenda. Environmental Research Letters, 14(8), 083002. 1382 

https://doi.org/10.1088/1748-9326/ab225d  1383 

Han, H., Gao, H., Huang, Y., Chen, X., Chen, M., & Li, J. (2019). Effects of drought 1384 

on freshwater ecosystem services in poverty-stricken mountain areas. Global 1385 

Ecology and Conservation, 17, e00537. 1386 

https://doi.org/10.1016/j.gecco.2019.e00537  1387 

Hassell, J. M., Newbold, T., Dobson, A. P., Linton, Y.-M., Franklinos, L. H. V., 1388 

Zimmerman, D., & Pagenkopp Lohan, K. M. (2021). Towards an ecosystem 1389 

model of infectious disease. Nature Ecology & Evolution, 5(7), 907-918. 1390 

https://doi.org/10.1038/s41559-021-01454-8  1391 

Hochmuth, H., Thevs, N., & He, P. (2015). Water allocation and water consumption of 1392 

irrigation agriculture and natural vegetation in the Heihe River watershed, NW 1393 

China. Environmental Earth Sciences, 73(9), 5269-5279. 1394 

https://doi.org/10.1007/s12665-014-3773-9  1395 

Hoque, M. A.-A., Pradhan, B., Ahmed, N., & Sohel, M. S. I. (2021). Agricultural 1396 

drought risk assessment of Northern New South Wales, Australia using 1397 

geospatial techniques. Science of The Total Environment, 756, 143600. 1398 

https://doi.org/10.1016/j.scitotenv.2020.143600  1399 

Howes, D. J., Fox, P., & Hutton, P. H. (2015). Evapotranspiration from Natural 1400 

Vegetation in the Central Valley of California: Monthly Grass Reference-Based 1401 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.5194/hess-21-6461-2017
https://doi.org/10.1002/(SICI)1099-095X(199911/12)10:6%3c725::AID-ENV387%3e3.0.CO;2-K
https://doi.org/10.1002/(SICI)1099-095X(199911/12)10:6%3c725::AID-ENV387%3e3.0.CO;2-K
https://doi.org/10.1111/j.1466-8238.2010.00558.x
https://doi.org/10.1007/s11069-015-2006-1
https://doi.org/10.1007/s11069-015-2006-1
https://doi.org/10.1088/1748-9326/ab225d
https://doi.org/10.1016/j.gecco.2019.e00537
https://doi.org/10.1038/s41559-021-01454-8
https://doi.org/10.1007/s12665-014-3773-9
https://doi.org/10.1016/j.scitotenv.2020.143600


75 
 

Vegetation Coefficients and the Dual Crop Coefficient Approach. Journal of 1402 

Hydrologic Engineering, 20(10). https://doi.org/10.1061/(asce)he.1943-1403 

5584.0001162  1404 

Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. 1405 

(2018). Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, 1406 

and Potential Management Opportunities. Frontiers in Plant Science, 9, 393. 1407 

https://doi.org/10.3389/fpls.2018.00393  1408 

Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., et al. 1409 

(2015). Biodiversity increases the resistance of ecosystem productivity to 1410 

climate extremes. Nature, 526(7574), 574-577. 1411 

https://doi.org/10.1038/nature15374  1412 

Jahangoshai Rezaee, M., Eshkevari, M., Saberi, M., & Hussain, O. (2021). GBK-means 1413 

clustering algorithm: An improvement to the K-means algorithm based on the 1414 

bargaining game. Knowledge-Based Systems, 213, 106672. 1415 

https://doi.org/10.1016/j.knosys.2020.106672  1416 

Jayanthi, H., Husak, G. J., Funk, C., Magadzire, T., Adoum, A., & Verdin, J. P. (2014). 1417 

A probabilistic approach to assess agricultural drought risk to maize in Southern 1418 

Africa and millet in Western Sahel using satellite estimated rainfall. 1419 

International Journal of Disaster Risk Reduction, 10, 490-502. 1420 

https://doi.org/10.1016/j.ijdrr.2014.04.002  1421 

Jehanzaib, M., Shah, S. A., Yoo, J., & Kim, T. W. (2020). Investigating the impacts of 1422 

climate change and human activities on hydrological drought using non-1423 

stationary approaches. Journal of Hydrology, 588, 125052. 1424 

https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125052  1425 

Jia, H., Wang, J., Cao, C., Pan, D., & Shi, P. (2012). Maize drought disaster risk 1426 

assessment of China based on EPIC model. International Journal of Digital 1427 

Earth, 5(6), 488-515. https://doi.org/10.1080/17538947.2011.590535  1428 

Jia, K., Yang, L., Liang, S., Xiao, Z., Zhao, X., Yao, Y., et al. (2019). Long-Term Global 1429 

Land Surface Satellite (GLASS) Fractional Vegetation Cover Product Derived 1430 

From MODIS and AVHRR Data. IEEE Journal of Selected Topics in Applied 1431 

Earth Observations and Remote Sensing, 12(2), 508-518. 1432 

https://doi.org/10.1109/JSTARS.2018.2854293  1433 

Jiang, C., Xiong, L., Xu, C.-Y., & Guo, S. (2015). Bivariate frequency analysis of 1434 

nonstationary low-flow series based on the time-varying copula. Hydrological 1435 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1061/(asce)he.1943-5584.0001162
https://doi.org/10.1061/(asce)he.1943-5584.0001162
https://doi.org/10.3389/fpls.2018.00393
https://doi.org/10.1038/nature15374
https://doi.org/10.1016/j.knosys.2020.106672
https://doi.org/10.1016/j.ijdrr.2014.04.002
https://doi.org/https:/doi.org/10.1016/j.jhydrol.2020.125052
https://doi.org/10.1080/17538947.2011.590535
https://doi.org/10.1109/JSTARS.2018.2854293


76 
 

Processes, 29(6), 1521-1534. https://doi.org/10.1002/hyp.10288  1436 

Keen, R. M., Voelker, S. L., Wang, S.-Y. S., Bentz, B. J., Goulden, M. L., Dangerfield, 1437 

C. R., Reed, C. C., Hood, S. M., Csank, A. Z., Dawson, T. E., Merschel, A. G., 1438 

& Still, C. J. (2022). Changes in tree drought sensitivity provided early warning 1439 

signals to the California drought and forest mortality event. Global Change 1440 

Biology, 28, 1119-1132. https://doi.org/10.1111/gcb.15973  1441 

Kelman, I. (2018). Lost for Words Amongst Disaster Risk Science Vocabulary? 1442 

International Journal of Disaster Risk Science, 9(3), 281-291. 1443 

https://doi.org/10.1007/s13753-018-0188-3  1444 

Koks, E. E., Jongman, B., Husby, T. G., & Botzen, W. J. W. (2015). Combining hazard, 1445 

exposure and social vulnerability to provide lessons for flood risk management. 1446 

Environmental Science & Policy, 47, 42-52. 1447 

https://doi.org/10.1016/j.envsci.2014.10.013  1448 

Koks, E. E., Rozenberg, J., Zorn, C., Tariverdi, M., Vousdoukas, M., Fraser, S. A., et al. 1449 

(2019). A global multi-hazard risk analysis of road and railway infrastructure 1450 

assets. Nature Communications, 10(1), 2677. https://doi.org/10.1038/s41467-1451 

019-10442-3  1452 

Kosoe, E. A., & Ahmed, A. (2022). Climate change adaptation strategies of cocoa 1453 

farmers in the Wassa East District: Implications for climate services in Ghana. 1454 

Climate Services, 26, 100289. https://doi.org/10.1016/j.cliser.2022.100289 1455 

Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, V., Kumar, A., et al. (2019). 1456 

Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity and 1457 

Biotechnological Applications for Alleviation of Drought Stress in Plants. In R. 1458 

Z. Sayyed, N. K. Arora, & M. S. Reddy (Eds.), Plant Growth Promoting 1459 

Rhizobacteria for Sustainable Stress Management : Volume 1: Rhizobacteria in 1460 

Abiotic Stress Management (pp. 255-308). Springer Singapore. 1461 

https://doi.org/10.1007/978-981-13-6536-2_13  1462 

Kumar, R., Musuuza, J. L., Van Loon, A. F., Teuling, A. J., Barthel, R., Ten Broek, J., 1463 

et al. (2016). Multiscale evaluation of the Standardized Precipitation Index as 1464 

a groundwater drought indicator. Hydrol. Earth Syst. Sci., 20(3), 1117-1131. 1465 

https://doi.org/10.5194/hess-20-1117-2016  1466 

Kwon, H.-H., & Lall, U. (2016). A copula-based nonstationary frequency analysis for 1467 

the 2012–2015 drought in California. Water Resources Research, 52(7), 5662-1468 

5675. https://doi.org/10.1002/2016WR018959  1469 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1002/hyp.10288
https://doi.org/10.1111/gcb.15973
https://doi.org/10.1007/s13753-018-0188-3
https://doi.org/10.1016/j.envsci.2014.10.013
https://doi.org/10.1038/s41467-019-10442-3
https://doi.org/10.1038/s41467-019-10442-3
https://doi.org/10.1007/978-981-13-6536-2_13
https://doi.org/10.5194/hess-20-1117-2016
https://doi.org/10.1002/2016WR018959


77 
 

Lawrence, J., Blackett, P., & Cradock-Henry, N. A. (2020). Cascading climate change 1470 

impacts and implications. Climate Risk Management, 29, 100234. 1471 

https://doi.org/10.1016/j.crm.2020.100234  1472 

Leng, G., & Hall, J. (2019). Crop yield sensitivity of global major agricultural countries 1473 

to droughts and the projected changes in the future. Science of The Total 1474 

Environment, 654, 811-821. https://doi.org/10.1016/j.scitotenv.2018.10.434  1475 

Li, J., Peng, S., & Li, Z. (2017). Detecting and attributing vegetation changes on 1476 

China’s Loess Plateau. Agricultural and Forest Meteorology, 247, 260-270. 1477 

https://doi.org/10.1016/j.agrformet.2017.08.005  1478 

Li, J., Wang, Z., Wu, X., Guo, S., & Chen, X. (2020). Flash droughts in the Pearl River 1479 

Basin, China: Observed characteristics and future changes. Science of The Total 1480 

Environment, 707, 136074. https://doi.org/10.1016/j.scitotenv.2019.136074  1481 

Li, K., Tong, Z., Liu, X., Zhang, J., & Tong, S. (2020). Quantitative assessment and 1482 

driving force analysis of vegetation drought risk to climate 1483 

change:Methodology and application in Northeast China. Agricultural and 1484 

Forest Meteorology, 282-283, 107865. 1485 

https://doi.org/10.1016/j.agrformet.2019.107865  1486 

Li, X., Li, Y., Chen, A., Gao, M., Slette, I. J., & Piao, S. (2019). The impact of the 1487 

2009/2010 drought on vegetation growth and terrestrial carbon balance in 1488 

Southwest China. Agricultural and Forest Meteorology, 269, 239-248. 1489 

https://doi.org/10.1016/j.agrformet.2019.01.036  1490 

Li, X., Lu, H., Yu, L., & Yang, K. (2018). Comparison of the Spatial Characteristics of 1491 

Four Remotely Sensed Leaf Area Index Products over China: Direct Validation 1492 

and Relative Uncertainties. Remote Sensing, 10(1), 148. 1493 

https://doi.org/10.3390/rs10010148  1494 

Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., et al. (2021). The Global Land 1495 

Surface Satellite (GLASS) Product Suite. Bulletin of the American 1496 

Meteorological Society, 102(2), E323-E337. https://doi.org/10.1175/BAMS-D-1497 

18-0341.1  1498 

Lin, A. L., Li, C. H., Gu, D. J., & Zheng, B. (2012). Variation and causes of persistent 1499 

drought events in Guangdong province. Journal of Tropical Meteorology, 18(1), 1500 

54-64. https://doi.org/10.3969/j.issn.1006-8775.2012.01.006  1501 

Liu, L., Jiang, T., & Yuan, F. (2009). Observed (1961-2007) and projected (2011-2060) 1502 

climate change in the Pearl River Basin. Advances in Climate Change Research, 1503 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1016/j.crm.2020.100234
https://doi.org/10.1016/j.scitotenv.2018.10.434
https://doi.org/10.1016/j.agrformet.2017.08.005
https://doi.org/10.1016/j.scitotenv.2019.136074
https://doi.org/10.1016/j.agrformet.2019.107865
https://doi.org/10.1016/j.agrformet.2019.01.036
https://doi.org/10.3390/rs10010148
https://doi.org/10.1175/BAMS-D-18-0341.1
https://doi.org/10.1175/BAMS-D-18-0341.1
https://doi.org/10.3969/j.issn.1006-8775.2012.01.006


78 
 

5(4), 209-214.  1504 

Liu, W., Zhan, J., Zhao, F., Wang, C., Zhang, F., Teng, Y., et al. (2022). Spatio-temporal 1505 

variations of ecosystem services and their drivers in the Pearl River Delta, China. 1506 

Journal of Cleaner Production, 337, 130466. 1507 

https://doi.org/10.1016/j.jclepro.2022.130466  1508 

Liu, W., Zhan, J., Zhao, F., Yan, H., Zhang, F., & Wei, X. (2019). Impacts of 1509 

urbanization-induced land-use changes on ecosystem services: A case study of 1510 

the Pearl River Delta Metropolitan Region, China. Ecological Indicators, 98, 1511 

228-238. https://doi.org/10.1016/j.ecolind.2018.10.054  1512 

Liu, Y., You, M., Zhu, J., Wang, F., & Ran, R. (2019). Integrated risk assessment for 1513 

agricultural drought and flood disasters based on entropy information diffusion 1514 

theory in the middle and lower reaches of the Yangtze River, China. 1515 

International Journal of Disaster Risk Reduction, 38, 101194. 1516 

https://doi.org/10.1016/j.ijdrr.2019.101194  1517 

Lu, H., Xue, J, & Guo, D. (2017). Efficacy of planting date adjustment as a cultivation 1518 

strategy to cope with drought stress and increase rainfed maize yield and water-1519 

use efficiency. Agricultural Water Management, 179, 227-235. 1520 

https://doi.org/10.1016/j.agwat.2016.09.001  1521 

Madsen, H., & Rosbjerg, D. (1995). On the modelling of extreme droughts. IAHS 1522 

Publications-Series of Proceedings and Reports-Intern Assoc Hydrological 1523 

Sciences, 231, 377-386.  1524 

Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B., & Knowlton, 1525 

N. (2020). Climate change and ecosystems: threats, opportunities and solutions. 1526 

Philosophical Transactions of the Royal Society B: Biological Sciences, 1527 

375(1794), 20190104. https://doi.org/10.1098/rstb.2019.0104  1528 

Marusig, D., Petruzzellis, F., Tomasella, M., Napolitano, R., Altobelli, A., & Nardini, 1529 

A. (2020). Correlation of Field-Measured and Remotely Sensed Plant Water 1530 

Status as a Tool to Monitor the Risk of Drought-Induced Forest Decline. Forests, 1531 

11(1). https://doi.org/10.3390/f11010077  1532 

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency 1533 

and duration to time scales. Proceedings of the 8th Conference on Applied 1534 

Climatology, American Meteorological Society, 179–183. 1535 

Mega, R., Abe, F., Kim, J.-S., Tsuboi, Y., Tanaka, K., Kobayashi, H., et al. (2019). 1536 

Tuning water-use efficiency and drought tolerance in wheat using abscisic acid 1537 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1016/j.jclepro.2022.130466
https://doi.org/10.1016/j.ecolind.2018.10.054
https://doi.org/10.1016/j.ijdrr.2019.101194
https://doi.org/10.1016/j.agwat.2016.09.001
https://doi.org/10.1098/rstb.2019.0104
https://doi.org/10.3390/f11010077


79 
 

receptors. Nature Plants, 5(2), 153-159. https://doi.org/10.1038/s41477-019-1538 

0361-8  1539 

Meisser, M., Vitra, A., Deléglise, C., Dubois, S., Probo, M., Mosimann, E., et al. (2019). 1540 

Nutrient limitations induced by drought affect forage N and P differently in two 1541 

permanent grasslands. Agriculture, Ecosystems & Environment, 280, 85-94. 1542 

https://doi.org/10.1016/j.agee.2019.04.027  1543 

Melchiorri, M., Florczyk, A. J., Freire, S., Schiavina, M., Pesaresi, M., & Kemper, T. 1544 

(2018). Unveiling 25 Years of Planetary Urbanization with Remote Sensing: 1545 

Perspectives from the Global Human Settlement Layer. Remote Sensing, 10(5). 1546 

https://doi.org/10.3390/rs10050768  1547 

Mesbahzadeh, T., Mirakbari, M., Mohseni Saravi, M., Soleimani Sardoo, F., & 1548 

Miglietta, M. M. (2020). Meteorological drought analysis using copula theory 1549 

and drought indicators under climate change scenarios (RCP). Meteorological 1550 

Applications, 27(1), e1856. https://doi.org/10.1002/met.1856  1551 

Meza, I., Siebert, S., Döll, P., Kusche, J., Herbert, C., Eyshi Rezaei, E., et al. (2020). 1552 

Global-scale drought risk assessment for agricultural systems. Nat. Hazards 1553 

Earth Syst. Sci., 20(2), 695-712. https://doi.org/10.5194/nhess-20-695-2020  1554 

Munns Jr, W. R., Rea, A. W., Suter II, G. W., Martin, L., Blake-Hedges, L., Crk, T., et 1555 

al. (2016). Ecosystem services as assessment endpoints for ecological risk 1556 

assessment. Integrated Environmental Assessment and Management, 12(3), 1557 

522-528. https://doi.org/10.1002/ieam.1707  1558 

Myneni, R. B., Ramakrishna, R., Nemani, R., & Running, S. W. (1997). Estimation of 1559 

global leaf area index and absorbed par using radiative transfer models. IEEE 1560 

Transactions on Geoscience and Remote Sensing, 35(6), 1380-1393. 1561 

https://doi.org/10.1109/36.649788  1562 

Navarro-Cerrillo, R. M., Sánchez-Salguero, R., Rodriguez, C., Duque Lazo, J., 1563 

Moreno-Rojas, J. M., Palacios-Rodriguez, G., & Camarero, J. J. (2019). Is 1564 

thinning an alternative when trees could die in response to drought? The case of 1565 

planted Pinus nigra and P. Sylvestris stands in southern Spain. Forest Ecology 1566 

and Management, 433, 313-324. https://doi.org/10.1016/j.foreco.2018.11.006  1567 

Nawaz, F., Shehzad, M. A., Majeed, S., Ahmad, K. S., Aqib, M., Usmani, M. M., & 1568 

Shabbir, R. N. (2020). Role of Mineral Nutrition in Improving Drought and 1569 

Salinity Tolerance in Field Crops. In M. Hasanuzzaman (Ed.), Agronomic Crops: 1570 

Volume 3: Stress Responses and Tolerance (pp. 129-147). Springer Singapore. 1571 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1038/s41477-019-0361-8
https://doi.org/10.1038/s41477-019-0361-8
https://doi.org/10.1016/j.agee.2019.04.027
https://doi.org/10.3390/rs10050768
https://doi.org/10.1002/met.1856
https://doi.org/10.5194/nhess-20-695-2020
https://doi.org/10.1002/ieam.1707
https://doi.org/10.1109/36.649788
https://doi.org/10.1016/j.foreco.2018.11.006


80 
 

https://doi.org/10.1007/978-981-15-0025-1_8  1572 

Noh, T. G., Yeh, S. W., Hyun, Y. K., & Hwang, S. O. (2021). Non-stationary 1573 

characteristics of intraseasonal precipitation variability in Northeast Asia during 1574 

the boreal summer. International Journal of Climatology, 41(1), 714-725. 1575 

https://doi.org/10.1002/joc.6647  1576 

Oikonomou, P. D., Tsesmelis, D. E., Waskom, R. M., Grigg, N. S., & Karavitis, C. A. 1577 

(2019). Enhancing the standardized drought vulnerability index by integrating 1578 

spatiotemporal information from satellite and in situ data. Journal of Hydrology, 1579 

569, 265-277. https://doi.org/10.1016/j.jhydrol.2018.11.058  1580 

Orth, R., Destouni, G., Jung, M., & Reichstein, M. (2020). Large-scale biospheric 1581 

drought response intensifies linearly with drought duration in arid regions. 1582 

Biogeosciences, 17(9), 2647-2656. https://doi.org/10.5194/bg-17-2647-2020  1583 

Peduzzi, P., Dao, H., Herold, C., & Mouton, F. (2009). Assessing global exposure and 1584 

vulnerability towards natural hazards: the Disaster Risk Index. Nat. Hazards 1585 

Earth Syst. Sci., 9(4), 1149-1159. https://doi.org/10.5194/nhess-9-1149-2009  1586 

Pescaroli, G., & Alexander, D. (2018). Understanding Compound, Interconnected, 1587 

Interacting, and Cascading Risks: A Holistic Framework. Risk Analysis, 38(11), 1588 

2245-2257. https://doi.org/10.1111/risa.13128  1589 

Peters, J. M. R., López, R., Nolf, M., Hutley, L. B., Wardlaw, T., Cernusak, L. A., & 1590 

Choat, B. (2021). Living on the edge: A continental-scale assessment of forest 1591 

vulnerability to drought. Global Change Biology, 27(15), 3620-3641. 1592 

https://doi.org/10.1111/gcb.15641  1593 

Phillips, C. A., Caldas, A., Cleetus, R., Dahl, K. A., Declet-Barreto, J., Licker, R., et al. 1594 

(2020). Compound climate risks in the COVID-19 pandemic. Nature Climate 1595 

Change, 10(7), 586-588. https://doi.org/10.1038/s41558-020-0804-2  1596 

Quan, Q., Zhang, F., Tian, D., Zhou, Q., Wang, L., & Niu, S. (2018). Transpiration 1597 

Dominates Ecosystem Water-Use Efficiency in Response to Warming in an 1598 

Alpine Meadow. Journal of Geophysical Research: Biogeosciences, 123(2), 1599 

453-462. https://doi.org/10.1002/2017JG004362  1600 

Quijano, J. A., Jaimes, M. A., Torres, M. A., Reinoso, E., Castellanos, L., Escamilla, J., 1601 

& Ordaz, M. (2015). Event-based approach for probabilistic agricultural 1602 

drought risk assessment under rainfed conditions. Natural Hazards, 76(2), 1603 

1297-1318. https://doi.org/10.1007/s11069-014-1550-4  1604 

Rahimpour, V., Zeng, Y., Mannaerts, C. M., & Su, Z. (2016). Attributing seasonal 1605 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1007/978-981-15-0025-1_8
https://doi.org/10.1002/joc.6647
https://doi.org/10.1016/j.jhydrol.2018.11.058
https://doi.org/10.5194/bg-17-2647-2020
https://doi.org/10.5194/nhess-9-1149-2009
https://doi.org/10.1111/risa.13128
https://doi.org/10.1111/gcb.15641
https://doi.org/10.1038/s41558-020-0804-2
https://doi.org/10.1002/2017JG004362
https://doi.org/10.1007/s11069-014-1550-4


81 
 

variation of daily extreme precipitation events across The Netherlands. Weather 1606 

and Climate Extremes, 14, 56-66. https://doi.org/10.1016/j.wace.2016.11.003  1607 

Rao, C. A. R., Raju, B. M. K., Rao, A., Rao, K. V., Rao, V. U. M., Ramachandran, K., 1608 

et al. (2016). A district level assessment of vulnerability of Indian agriculture to 1609 

climate change. Current Science, 110(10), 1939-1946. 1610 

https://doi.org/10.18520/cs/v110/i10/1939-1946  1611 

Rasche, L., & Taylor, R. A. J. (2019). EPIC-GILSYM: Modelling crop-pest insect 1612 

interactions and management with a novel coupled crop-insect model. Journal 1613 

of Applied Ecology, 56(8), 2045-2056. https://doi.org/10.1111/1365-1614 

2664.13426  1615 

Rashid, M. M., & Beecham, S. (2019). Development of a non-stationary Standardized 1616 

Precipitation Index and its application to a South Australian climate. Science of 1617 

The Total Environment, 657, 882-892. 1618 

https://doi.org/10.1016/j.scitotenv.2018.12.052  1619 

Ray, R. L., Fares, A., & Risch, E. (2018). Effects of Drought on Crop Production and 1620 

Cropping Areas in Texas. Agricultural & Environmental Letters, 3(1), 170037. 1621 

https://doi.org/10.2134/ael2017.11.0037  1622 

Restaino, C., Young, D. J. N., Estes, B., Gross, S., Wuenschel, A., Meyer, M., & Safford, 1623 

H. (2019). Forest structure and climate mediate drought-induced tree mortality 1624 

in forests of the Sierra Nevada, USA. Ecological Applications, 29(4), e01902. 1625 

https://doi.org/10.1002/eap.1902  1626 

Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, 1627 

scale and shape. Journal of the Royal Statistical Society: Series C (Applied 1628 

Statistics), 54(3), 507-554. https://doi.org/10.1111/j.1467-9876.2005.00510.x  1629 

Rupp, D.E., Hawkins, L.R., Li, S., Koszuta, M. & Siler, N. (2022). Spatial patterns of 1630 

extreme precipitation and their changes under~ 2° C global warming: a large-1631 

ensemble study of the western USA. Climate Dynamics, 59, 2363-2379. 1632 

https://doi.org/10.1007/s00382-022-06214-3  1633 

Salas, J. D., Obeysekera, J., & Vogel, R. M. (2018). Techniques for assessing water 1634 

infrastructure for nonstationary extreme events: a review. Hydrological 1635 

Sciences Journal, 63(3), 325-352. 1636 

https://doi.org/10.1080/02626667.2018.1426858  1637 

Sarhadi, A., Burn, D. H., Concepción Ausín, M., & Wiper, M. P. (2016). Time-varying 1638 

nonstationary multivariate risk analysis using a dynamic Bayesian copula. 1639 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1016/j.wace.2016.11.003
https://doi.org/10.18520/cs/v110/i10/1939-1946
https://doi.org/10.1111/1365-2664.13426
https://doi.org/10.1111/1365-2664.13426
https://doi.org/10.1016/j.scitotenv.2018.12.052
https://doi.org/10.2134/ael2017.11.0037
https://doi.org/10.1002/eap.1902
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1007/s00382-022-06214-3
https://doi.org/10.1080/02626667.2018.1426858


82 
 

Water Resources Research, 52(3), 2327-2349. 1640 

https://doi.org/10.1002/2015WR018525  1641 

Scheuer, S., Haase, D., Haase, A., Wolff, M., & Wellmann, T. (2021). A glimpse into 1642 

the future of exposure and vulnerabilities in cities? Modelling of residential 1643 

location choice of urban population with random forest. Nat. Hazards Earth 1644 

Syst. Sci., 21(1), 203-217. https://doi.org/10.5194/nhess-21-203-2021  1645 

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 1646 

6(2), 461-464. http://www.jstor.org/stable/2958889  1647 

Sharafi, L., Zarafshani, K., Keshavarz, M., Azadi, H., & Van Passel, S. (2020). Drought 1648 

risk assessment: Towards drought early warning system and sustainable 1649 

environment in western Iran. Ecological Indicators, 114, 106276. 1650 

https://doi.org/10.1016/j.ecolind.2020.106276  1651 

Sillmann, J., Shepherd, T. G., van den Hurk, B., Hazeleger, W., Martius, O., Slingo, J., 1652 

& Zscheischler, J. (2021). Event-Based Storylines to Address Climate Risk. 1653 

Earth's Future, 9(2), e2020EF001783. https://doi.org/10.1029/2020EF001783  1654 

Singh, C., Wang-Erlandsson, L., Fetzer, I., Rockström, J., & van der Ent, R. (2020). 1655 

Rootzone storage capacity reveals drought coping strategies along rainforest-1656 

savanna transitions. Environmental Research Letters, 15(12), 124021. 1657 

https://doi.org/10.1088/1748-9326/abc377  1658 

Song, Y., Ma, M., & Veroustraete, F. (2010). Comparison and conversion of AVHRR 1659 

GIMMS and SPOT VEGETATION NDVI data in China. International Journal 1660 

of Remote Sensing, 31(9), 2377-2392. 1661 

https://doi.org/10.1080/01431160903002409  1662 

Spade, D., de Beurs, K., & Shafer, M. (2020). Major Over- and Underestimation of 1663 

Drought Found in NOAA’s Climate Divisional SPI Dataset. Journal of Applied 1664 

Meteorology and Climatology, 59(9), 1469-1480. 1665 

https://doi.org/10.1175/JAMC-D-19-0272.1  1666 

Stasinopoulos, D. M., & Rigby, R. A. (2007). Generalized Additive Models for 1667 

Location Scale and Shape (GAMLSS) in R. Journal of Statistical Software, 1668 

23(7), 46. https://doi.org/10.18637/jss.v023.i07  1669 

Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C., Seneviratne, S. I., & 1670 

Peñuelas, J. (2019). Drought impacts on terrestrial primary production 1671 

underestimated by satellite monitoring. Nature Geoscience, 12(4), 264-270. 1672 

https://doi.org/10.1038/s41561-019-0318-6  1673 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1002/2015WR018525
https://doi.org/10.5194/nhess-21-203-2021
http://www.jstor.org/stable/2958889
https://doi.org/10.1016/j.ecolind.2020.106276
https://doi.org/10.1029/2020EF001783
https://doi.org/10.1088/1748-9326/abc377
https://doi.org/10.1080/01431160903002409
https://doi.org/10.1175/JAMC-D-19-0272.1
https://doi.org/10.18637/jss.v023.i07
https://doi.org/10.1038/s41561-019-0318-6


83 
 

Strzepek, K., Yohe, G., Neumann, J., & Boehlert, B. (2010). Characterizing changes in 1674 

drought risk for the United States from climate change. Environmental Research 1675 

Letters, 5(4), 044012. https://doi.org/10.1088/1748-9326/5/4/044012  1676 

Suk, J. E., Vaughan, E. C., Cook, R. G., & Semenza, J. C. (2020). Natural disasters and 1677 

infectious disease in Europe: a literature review to identify cascading risk 1678 

pathways. European Journal of Public Health, 30(5), 928-935. 1679 

https://doi.org/10.1093/eurpub/ckz111  1680 

Svensson, C., Hannaford, J., & Prosdocimi, I. (2017). Statistical distributions for 1681 

monthly aggregations of precipitation and streamflow in drought indicator 1682 

applications. Water Resources Research, 53(2), 999-1018. 1683 

https://doi.org/10.1002/2016WR019276  1684 

Swinton, S. M., Lupi, F., Robertson, G. P., & Hamilton, S. K. (2007). Ecosystem 1685 

services and agriculture: Cultivating agricultural ecosystems for diverse 1686 

benefits. Ecological Economics, 64(2), 245-252. 1687 

https://doi.org/10.1016/j.ecolecon.2007.09.020  1688 

Taghvaeian, S., Neale Christopher, M. U., Osterberg John, C., Sritharan Subramania, I., 1689 

& Watts Doyle, R. (2018). Remote Sensing and GIS Techniques for Assessing 1690 

Irrigation Performance: Case Study in Southern California. Journal of 1691 

Irrigation and Drainage Engineering, 144(6), 05018002. 1692 

https://doi.org/10.1061/(ASCE)IR.1943-4774.0001306  1693 

Teixeira, A. H. d. C. (2010). Determining Regional Actual Evapotranspiration of 1694 

Irrigated Crops and Natural Vegetation in the São Francisco River Basin (Brazil) 1695 

Using Remote Sensing and Penman-Monteith Equation. Remote Sensing, 2(5). 1696 

https://doi.org/10.3390/rs0251287  1697 

Teutschbein, C., Jonsson, E., Todorović, A., Tootoonchi, F., Stenfors, E., & Grabs, T. 1698 

(2022). Future Drought Propagation through the Water-Energy-Food-1699 

Ecosystem Nexus–a Nordic Perspective. Journal of Hydrology, 128963. 1700 

https://doi.org/10.1016/j.jhydrol.2022.128963  1701 

Tirivarombo, S., Osupile, D., & Eliasson, P. (2018). Drought monitoring and analysis: 1702 

Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised 1703 

Precipitation Index (SPI). Physics and Chemistry of the Earth, Parts A/B/C, 106, 1704 

1-10. https://doi.org/https://doi.org/10.1016/j.pce.2018.07.001  1705 

Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., 1706 

& Sheffield, J. (2014). Global warming and changes in drought. Nature Climate 1707 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1088/1748-9326/5/4/044012
https://doi.org/10.1093/eurpub/ckz111
https://doi.org/10.1002/2016WR019276
https://doi.org/10.1016/j.ecolecon.2007.09.020
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001306
https://doi.org/10.3390/rs0251287
https://doi.org/10.1016/j.jhydrol.2022.128963
https://doi.org/https:/doi.org/10.1016/j.pce.2018.07.001


84 
 

Change, 4(1), 17-22. https://doi.org/10.1038/nclimate2067  1708 

Tsakiris, G. (2017). Drought Risk Assessment and Management. Water Resources 1709 

Management, 31(10), 3083-3095. https://doi.org/10.1007/s11269-017-1698-2  1710 

UNISDR. (2015). Sendai framework for disaster risk reduction 2015–2030. 1711 

https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf  1712 

Vasiliades, L., Galiatsatou, P., & Loukas, A. (2015). Nonstationary Frequency Analysis 1713 

of Annual Maximum Rainfall Using Climate Covariates. Water Resources 1714 

Management, 29(2), 339-358. https://doi.org/10.1007/s11269-014-0761-5  1715 

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar 1716 

Drought Index Sensitive to Global Warming: The Standardized Precipitation 1717 

Evapotranspiration Index. Journal of Climate, 23(7), 1696-1718. 1718 

https://doi.org/10.1175/2009JCLI2909.1  1719 

Villarini, G., Serinaldi, F., Smith, J. A., & Krajewski, W. F. (2009). On the stationarity 1720 

of annual flood peaks in the continental United States during the 20th century. 1721 

Water Resources Research, 45(8). https://doi.org/10.1029/2008WR007645  1722 

Villarini, G., Smith, J. A., Serinaldi, F., Bales, J., Bates, P. D., & Krajewski, W. F. (2009). 1723 

Flood frequency analysis for nonstationary annual peak records in an urban 1724 

drainage basin. Advances in Water Resources, 32(8), 1255-1266. 1725 

https://doi.org/10.1016/j.advwatres.2009.05.003  1726 

Vinnarasi, R., & Dhanya, C. T. (2019). Bringing realism into a dynamic copula-based 1727 

non-stationary intensity-duration model. Advances in Water Resources, 130, 1728 

325-338. https://doi.org/10.1016/j.advwatres.2019.06.009  1729 

Wamsler, C., Niven, L., Beery, T. H., Bramryd, T., Ekelund, N., Jönsson, K. I., et al. 1730 

(2016). Operationalizing ecosystem-based adaptation: harnessing ecosystem 1731 

services to buffer communities against climate change. Ecology and Society, 1732 

21(1), Article 31. https://doi.org/10.5751/ES-08266-210131  1733 

Wang, H., Duan, K., Liu, B., & Chen, X. (2021). Assessing the large-scale plant–water 1734 

relations in the humid, subtropical Pearl River basin of China. Hydrol. Earth 1735 

Syst. Sci., 25(9), 4741-4758. https://doi.org/10.5194/hess-25-4741-2021  1736 

Wang, J., Wang, K., Zhang, M., & Zhang, C. (2015). Impacts of climate change and 1737 

human activities on vegetation cover in hilly southern China. Ecological 1738 

Engineering, 81, 451-461. https://doi.org/10.1016/j.ecoleng.2015.04.022  1739 

Wang, Y., Duan, L., Liu, T., Li, J., & Feng, P. (2020). A Non-stationary Standardized 1740 

Streamflow Index for hydrological drought using climate and human-induced 1741 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1038/nclimate2067
https://doi.org/10.1007/s11269-017-1698-2
https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf
https://doi.org/10.1007/s11269-014-0761-5
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1029/2008WR007645
https://doi.org/10.1016/j.advwatres.2009.05.003
https://doi.org/10.1016/j.advwatres.2019.06.009
https://doi.org/10.5751/ES-08266-210131
https://doi.org/10.5194/hess-25-4741-2021
https://doi.org/10.1016/j.ecoleng.2015.04.022


85 
 

indices as covariates. Science of The Total Environment, 699, 134278. 1742 

https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.134278  1743 

Wang, Y., Li, J., Feng, P., & Hu, R. (2015). A Time-Dependent Drought Index for Non-1744 

Stationary Precipitation Series. Water Resources Management, 29(15), 5631-1745 

5647. https://doi.org/10.1007/s11269-015-1138-0  1746 

Wens, M., Johnson, J. M., Zagaria, C., & Veldkamp, T. I. E. (2019). Integrating human 1747 

behavior dynamics into drought risk assessment—A sociohydrologic, agent-1748 

based approach. WIREs Water, 6(4), e1345. https://doi.org/10.1002/wat2.1345  1749 

Weraduwage, S. M., Chen, J., Anozie, F. C., Morales, A., Weise, S. E., & Sharkey, T. 1750 

D. (2015). The relationship between leaf area growth and biomass accumulation 1751 

in Arabidopsis thaliana. Frontiers in Plant Science, 6, 167. 1752 

https://doi.org/10.3389/fpls.2015.00167  1753 

Xiong, L., Jiang, C., Xu, C., Yu, K., & Guo, S. (2015). A framework of change-point 1754 

detection for multivariate hydrological series. Water Resources Research, 1755 

51(10), 8198-8217. https://doi.org/10.1002/2015WR017677  1756 

Yang, G., Pu, R., Zhang, J., Zhao, C., Feng, H., & Wang, J. (2013). Remote sensing of 1757 

seasonal variability of fractional vegetation cover and its object-based spatial 1758 

pattern analysis over mountain areas. ISPRS Journal of Photogrammetry and 1759 

Remote Sensing, 77, 79-93. https://doi.org/10.1016/j.isprsjprs.2012.11.008  1760 

Yang, L., Du, Y., Wang, D., Wang, C., & Wang, X. (2015). Impact of intraseasonal 1761 

oscillation on the tropical cyclone track in the South China Sea. Climate 1762 

Dynamics, 44(5), 1505-1519. https://doi.org/10.1007/s00382-014-2180-y  1763 

Yang, Y., Roderick, M. L., Yang, D., Wang, Z., Ruan, F., McVicar, T. R., et al. (2021). 1764 

Streamflow stationarity in a changing world. Environmental Research Letters, 1765 

16(6), 064096. https://doi.org/10.1088/1748-9326/ac08c1  1766 

Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., et al. (2019). 1767 

Increased atmospheric vapor pressure deficit reduces global vegetation growth. 1768 

Science Advances, 5(8), eaax1396. https://doi.org/10.1126/sciadv.aax1396  1769 

Zhang, F., Chen, Y., Zhang, J., Guo, E., Wang, R., & Li, D. (2019). Dynamic drought 1770 

risk assessment for maize based on crop simulation model and multi-source 1771 

drought indices. Journal of Cleaner Production, 233, 100-114. 1772 

https://doi.org/10.1016/j.jclepro.2019.06.051  1773 

Zhang, G., Ganguly, S., Nemani, R. R., White, M. A., Milesi, C., Hashimoto, H., et al. 1774 

(2014). Estimation of forest aboveground biomass in California using canopy 1775 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/https:/doi.org/10.1016/j.scitotenv.2019.134278
https://doi.org/10.1007/s11269-015-1138-0
https://doi.org/10.1002/wat2.1345
https://doi.org/10.3389/fpls.2015.00167
https://doi.org/10.1002/2015WR017677
https://doi.org/10.1016/j.isprsjprs.2012.11.008
https://doi.org/10.1007/s00382-014-2180-y
https://doi.org/10.1088/1748-9326/ac08c1
https://doi.org/10.1126/sciadv.aax1396
https://doi.org/10.1016/j.jclepro.2019.06.051


86 
 

height and leaf area index estimated from satellite data. Remote Sensing of 1776 

Environment, 151, 44-56. https://doi.org/10.1016/j.rse.2014.01.025  1777 

Zhang, H., Qin, J., & Li, Y. (2011). Climatic background of cold and wet winter in 1778 

southern China: part I observational analysis. Climate Dynamics, 37(11), 2335-1779 

2354. https://doi.org/10.1007/s00382-011-1022-4  1780 

Zhang, L., Zhu, X., Fraedrich, K., Sielmann, F., & Zhi, X. (2014). Interdecadal 1781 

variability of winter precipitation in Southeast China. Climate Dynamics, 43(7), 1782 

2239-2248. https://doi.org/10.1007/s00382-014-2048-1  1783 

Zhang, T., Zhou, J., Yu, P., Li, J., Kang, Y., & Zhang, B. (2023). Response of ecosystem 1784 

gross primary productivity to drought in northern China based on multi-source 1785 

remote sensing data. Journal of Hydrology, 616, 128808. 1786 

https://doi.org/10.1016/j.jhydrol.2022.128808  1787 

Zhang, X., Li, X., Manzanedo, R. D., D’Orangeville, L., Lv, P., Wang, C., et al. (2021). 1788 

High risk of growth cessation of planted larch under extreme drought. 1789 

Environmental Research Letters, 16(1), 014040. https://doi.org/10.1088/1748-1790 

9326/abd214  1791 

Zhang, Y., & Ye, A. (2020). Spatial and temporal variations in vegetation coverage 1792 

observed using AVHRR GIMMS and Terra MODIS data in the mainland of 1793 

China. International Journal of Remote Sensing, 41(11), 4238-4268. 1794 

https://doi.org/10.1080/01431161.2020.1714781  1795 

Zhao, W., Deng, C., & Ngo, C. (2018). k-means: A revisit. Neurocomputing, 291, 195-1796 

206. https://doi.org/10.1016/j.neucom.2018.02.072  1797 

Zheng, Y., Shen, R., Wang, Y., Li, X., Liu, S., Liang, S., et al. (2020). Improved estimate 1798 

of global gross primary production for reproducing its long-term variation, 1799 

1982–2017. Earth Syst. Sci. Data, 12(4), 2725-2746. 1800 

https://doi.org/10.5194/essd-12-2725-2020  1801 

 1802 

Appendix A. Supplementary data 1803 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1016/j.rse.2014.01.025
https://doi.org/10.1007/s00382-011-1022-4
https://doi.org/10.1007/s00382-014-2048-1
https://doi.org/10.1016/j.jhydrol.2022.128808
https://doi.org/10.1088/1748-9326/abd214
https://doi.org/10.1088/1748-9326/abd214
https://doi.org/10.1080/01431161.2020.1714781
https://doi.org/10.1016/j.neucom.2018.02.072
https://doi.org/10.5194/essd-12-2725-2020


Supplementary data for 

Assessment of dynamic drought-induced ecosystem risk: integrating time-

varying hazard frequency, exposure and vulnerability 

 

Contents of this file 

Text S1. Method for pooling interdependent droughts and excluding minor droughts 

Text S2. The copula likelihood ratio-based (CLR) test for detecting nonstationarity in 

duration-severity dependence structure 

Supplementary Material



Text S1. Method for pooling interdependent droughts and excluding minor 

droughts 

 

Two successive droughts are assumed to be inter-dependent and subsequently merged 

into a single one with attributes updated using Eq. (S1) if two prerequisites are both 

satisfied which are that (a) adjacent droughts occur less than a user-specified inter-

event time ct  and (b) the ratio between the inter-event excess volume 2iv   colored in 

green in Fig. 3 and the previous drought severity 2iS   is below a predefined threshold 

c . In addition to pooling dependent droughts, minor droughts are likely to distort the 

extreme value modeling (Fleig et al., 2006). Therefore, minor droughts with duration 

or severity (Case 1 in Fig. 3) lower than the designated percentage ( dr  and sr ) of 

mean duration and severity are removed from analysis (see Eq. (S2)) to minimize 

potential bias in the derived drought frequency. According to the outcome of 

sensitivity analysis conducted by Tu et al. (2019) in the PRB and a relevant study by 

Van Loon and Van Lanen (2012), appropriate values of ct , c , dr  and sr  are set to be 

10 days, 0.2, 0.41 and 0.41 in the current study, respectively.  
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                             (S2) 

where  ,i iD S  and  +1 +1,i iD S  symbolize the pairwise duration and severity of two 

consecutive droughts, and attributes of the pooled and excluded droughts are denoted 

by D  and S  with subscripts pooled  and excluded , respectively.  

 



References 

Fleig, A. K., Tallaksen, L. M., Hisdal, H., & Demuth, S. (2006). A global evaluation 

of streamflow drought characteristics. Hydrol. Earth Syst. Sci., 10(4), 535-552. 

https://doi.org/10.5194/hess-10-535-2006  

Tu, X., Du, Y., Singh Vijay, P., Chen, X., Zhao, Y., Ma, M., et al. (2019). Bivariate 

Design of Hydrological Droughts and Their Alterations under a Changing 

Environment. Journal of Hydrologic Engineering, 24(6), 04019015. 

https://doi.org/10.1061/(ASCE)HE.1943-5584.0001788 

Van Loon, A. F., & Van Lanen, H. A. J. (2012). A process-based typology of 

hydrological drought. Hydrol. Earth Syst. Sci., 16(7), 1915-1946. 

https://doi.org/10.5194/hess-16-1915-2012

https://doi.org/10.5194/hess-10-535-2006
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001788
https://doi.org/10.5194/hess-16-1915-2012


Text S2. The copula likelihood ratio-based (CLR) test for detecting 

nonstationarity in duration-severity dependence structure 

 

A pairwise duration-severity series under investigation

      1 1 1, , , , , ,n n nD S D Sy y  is assumed to follow a multivariate distribution 

 c
i iF y . For the best-fitted copula, the null hypothesis 0H  of no changepoint in 

dependence strength is shown by Eq. (S3), in which the copula parameters are all the 

same. The alternative hypothesis 1H  is that there is a notable change in copula 

parameters at a time k , which implies the existence of temporal variation in 

dependence strength. 
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Subsequently, the CLR test statistic nZ  (Eq. (S4)) is formulated by calculating the 

maximum likelihood ratio in the logarithmic form, to determine whether to accept the 

null hypothesis or not.  
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where ( )nL  is the likelihood for the whole series of pairwise duration and severity, 

( )kL  and ( )n kL   are symbols of the likelihood before or after time k , 0̂ , 1̂  and 2̂  

represent the estimated copula parameters, u  is a vector composed of cumulative 

probability of duration and severity, and ( )c  denotes a copula density function. 



 

If the statistic nZ  is greater than the critical value computed using Eq. (S5), the null 

hypothesis will be rejected at the 5% significance level and k  is identified as a 

changepoint in dependence structure. The existence of changepoints notifies 

nonstationarity in duration-severity dependence. Otherwise, the stationary assumption 

regarding dependence structure is justified. 
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in which p  indicates the number of copula parameters, and n  is the sample size. 


