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Modeling agent decision and behavior in the light of data science and artificial intelligence 

  

Abstract 

  

Agent-based modeling (ABM) has been widely used in numerous disciplines and practice 
domains, subject to many eulogies and criticisms.  This article presents key advances and 
challenges in agent-based modeling over the last two decades and shows that understanding 
agents’ behaviors is a major priority for various research fields. We demonstrate that artificial 
intelligence and data science will likely generate revolutionary impacts for science and 
technology towards understanding agent decisions and behaviors in complex systems. We 
propose an innovative approach that leverages reinforcement learning and convolutional neural 
networks to equip agents with the intelligence of self-learning their behavior rules directly from 
data.  We call for further developments of ABM, especially modeling agent behaviors, in the 
light of data science and artificial intelligence. 
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Although agent-based modeling (ABM; ABMs for agent-based models) emerged as early as the 
1970s (Schelling, 1971) or even earlier (W. Zhang et al., 2021), it has been extensively applied 
in ecology, where it is usually referred to as “individual-based modeling” (Grimm, 1999), and 
numerous other disciplines since the 1990s (Vincenot, 2018). Subsequently, ABM has exploded 
in applications (Figure 1), an indication of its usefulness across multiple sciences. Milestones in 
ABM development include the Overview, Design concepts, and Details (ODD) protocol for the 
model documentation (Grimm et al., 2010, 2020) and the Pattern-Oriented Modeling (POM) 
paradigm (Grimm et al., 2005). ABM received a major institutional endorsement in 2001 when it 
was featured by the U.S. National Academy of Sciences’ Sackler Colloquium and the resultant 
special issue in the Proceedings of the National Academy of Sciences (Bonabeau, 2002). Since 
then, ABM has been hailed with both enthusiasm and optimism because of its potential to create 
a “revolution” among the social, ecological, behavioral, and complexity sciences.  

 

Figure 1. ABM-related papers in comparison with papers related to differential equations.  
The y axis is the ratio of the number of ABM papers vs. that of the differential equation (D.E) 
papers. For related data collection, see An, Grimm, Sullivan, Turner II, et al. (2021).  

Yet, progress has been slower than initially anticipated in several critical areas of development 
and application (Grimm & Berger, 2016; Lorscheid et al., 2019), leading to various criticisms of 
ABM (Couclelis, 2002; Roughgarden, 2012). This slower progress, likely leading to the fade of 
enthusiasm in ABM, is embedded in the context of a big issue for ABM or any process-based 
modeling effort: the need to balance 1) the pattern-informed, top-down approach, which 
reproduces macro-level patterns without adequate explanatory power, such as the well 
reproduced flight patterns of hawks without an explanation of the mechanistic processes behind 
the patterns (Conte & Paolucci, 2014a); and 2) the theory-driven approach, which aims at 
generating macro-patterns from bottom-up processes. ABM developers aim to not only 
accurately predict or replicate the observed patterns in question, but also to understand and 
explain the mechanisms behind such patterns. 

In this paper, we propose a third approach, based on artificial intelligence (AI) and data science,  
to detect, formulate, and test mechanistic processes (e.g., structures, rules, parameters) that 
complement the above two traditional approaches. The paper first briefly reviews historic 
advances in modeling human behavior, followed by an overview of the challenges of modeling 



3 
 

agent/human behavior. Next, we show how artificial intelligence and machine learning, in 
combination with data science, can help reveal mechanistic processes and model agent/human 
behavior. In the Appendix, we provide more details about the most promising methods in 
relation to what we propose in this paper. 

 

Background about modeling agent/human behavior in ABM 

Historically, modeling agent/human decision-making and behavior in ABM was largely based on 
economic theories, such as benefit maximization or cost minimization by rational actors, and 
largely ignored other approaches, such as those in psychology and neurology (Groeneveld et al., 
2017). Advances in relevant social and cognitive sciences have greatly enhanced the capacity of 
ABM to model agent (human in particular) behavior (Filatova et al., 2013; Niamir et al., 2020), 
generating normative models, cognitive models, and psychologically (especially emotional 
models) and neurologically inspired models that are instrumental for understanding and 
modeling human behavior (for excellent review papers, see (Balke & Gilbert, 2014), (Huber et 
al., 2018), and (Bourgais et al., 2018)).   

Along this thread, one prominent example is the Belief-Desire-Intentions (BDI) framework. 
Inspired by logical and psychological principles (e.g., Michael Bratman's theory of human 
practical reasoning; Bratman, 1999), the BDI framework models practical reasoning and 
subsequent action of resource-bounded, rational agents. These agents carry 1) beliefs, which are 
facts agents believe about the environment, 2) desires, which involve desired end state or goals 
to achieve; and 3) intentions, which are intended commitments to accomplish the corresponding 
desires (goals). Under this framework, intentions are important elements and precursors of 
planned actions. Considered an improvement compared with the BDI framework, the physical, 
emotional, cognitive, and social factors (PECS; Conte & Paolucci, 2014; Schmidt, 2002) 
framework aims to explain or predict human behavior from a common deep structure, which has 
four fundamental elements: physical conditions, emotional state, cognitive capabilities, and 
social status. Once a PECS deep structure is constructed and tested as a reference model for real 
systems or agents,  various superficial qualities can be imposed on the structure to represent a set 
of local, heterogenous characteristics and better predict the behavior (Schmidt, 2002). 

 

Challenges in modeling agent behavior 

ABM faces several major challenges, detailed in Appendix 1 and several assessments (An, 
Grimm, Sullivan, Turner, et al., 2021; Crooks et al., 2008; McDowall & Geels, 2017; O’Sullivan 
et al., 2016). These challenges arise from ABM’s greater complexity in comparison to traditional 
models (Sun et al., 2016), which is the price paid for ABM’s superior flexibility and capacity to 
capture the corresponding processes or mechanisms (Filatova et al., 2013). ABMs tend to be 
“data-hungry” and difficult to understand. Common solutions deployed to date include 
simplifying assumptions, theoretical representation of processes, and inverse parameterization 
using sets of observed patterns. Among all challenges that ABM faces, we highlight the 
seriousness of two related problems: equifinality and multifinality. ABM suffers from these two 
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problems, although we acknowledge that they are not endemic to ABM, but involve any 
mechanistic modeling efforts.  

The equifinality problem may blind the true pathway or mechanistic process that generates the 
observed macro-level pattern or outcome because the end state can be reproduced through 
multiple pathways (von Bertalanffy, 1968). For example, the Prisoner’s Dilemma can be related 
to several seemingly plausible mechanisms, including group selection (Di Tosto et al., 2007), 
strong reciprocity (Boyd et al., 2003), tit-for-tat retaliation (Axelrod, 1997), and others (Conte & 
Paolucci, 2014b). While equifinality may be considered a “curse” by way of the processes 
involved in the outcome, it may also be viewed as a “blessing”, providing a means to explore 
alternative explanatory pathways and falsification of existing theories. Such exploration is 
facilitated when data at multiple spatial, temporal, or organizational scales are available to filter 
out those theories that cannot explain all patterns simultaneously (the pattern-oriented modeling 
framework (Grimm et al., 2005)).  

A related challenge is the multifinality problem, in which the same causes and/or starting 
conditions give rise to very different trajectories or ultimate outcomes. This problem may arise 
from uncertainties in key processes and/or parameters. A related challenge is that verbally 
formulated theories of agent behavior often leave too much room for interpretation when it 
comes to formalize them in an ABM so that different implementations of the same theory can 
lead to different results and conclusions (Muelder & Filatova, 2018). 

To demonstrate ABM’s unmatched potential to provide (alternative) pathways or mechanisms 
for explaining or predicting observed patterns as well as the need to handle the equifinality 
problem, we provide an exemplar ABM that aims at understanding the dynamics of firms in the 
U.S. (Axtell, 2001, 2015). The ABM—with absence of many parameters and assumptions 
included in traditional economic models—is sufficient to endogenously produce the kinds of 
macro-pattern dynamics in firm sizes, ages, growth rates, job tenure, wages, networks, and so on 
that agree with empirical data (Appendix 2).  

This seemingly “successful” ABM, though providing unique, useful mechanisms, can still be 
questioned due to the equifinality problem.  To break new ground for improving the science and 
art of modeling agent decision and behavior, approaches for systematic ABM development and 
testing, such as the “MoHuB” (Schlüter et al., 2017a) and “POM” (Grimm et al., 2005) 
frameworks, have been suggested. In addition, we have developed a set of guidelines for 
modelers and reviewers and for novices (An, Grimm, Sullivan, Turner II, et al., 2021), which 
include a comparison of commonly used ABM toolkits and software packages (An, Grimm, 
Sullivan, Turner II, et al., 2021) given the existence of 85+ platforms or toolkits for ABM (Abar 
et al., 2017). Also, we promote more effective ABM education and communication through 
several means, such as developing and sharing curricula, promoting the reusability of ABM 
modules (e.g., ABM “Lego” or “Mr. Potatohead” pieces), and engaging a broader ABM 
community in collaborative education efforts (An, Grimm, Sullivan, Turner II, et al., 2021).  

These and other endeavors, though useful, have their own limitations. We therefore propose a 
new pathway for modeling agent decisions and behavior, which is based on artificial intelligence 
(AI) and data science. Over the last decade or so, AI, data science, and their applications for 
ABM have led to a critical mass of tools, applications, and insights so that the potential of this 



5 
 

new pathway has become clearly visible. This paper focuses on data collection, processing, and 
methods or algorithms that support modelling decisions and behavior, recognizing the 
importance of other important issues such as verification of the mechanisms or rules thus 
derived. 

 

Opportunities from artificial intelligence and machine learning 

Traditional artificial intelligence leverages machines to understand and mimic human 
intelligence. Machine learning, an essential element of artificial intelligence, can be as simple as 
standard linear regression models. On the other hand, machine learning can leverage more 
advanced models and reveal non-linear, complex processes through, for example, neural 
networks, genetic algorithms, decision trees, naive Bayes, and Bayesian networks. For instance, 
the data-driven agent-based crowd model by Tan et al., (2019) adopts a standard differential 
evolution genetic algorithm to calibrate model parameters (e.g., pedestrian speed, turn angle) 
based on video and virtual reality (VR) experiment data. In a study that features a data-driven 
agent-based model (Taghikhah et al., 2022), machine learning is leveraged to identify 
automatically the causal relationships and derive decision rules for agents from microdata on 
behavior. Furthermore, machine learning can be employed to detect patterns in model output, 
which may help to evaluate the robustness of the model. Below we focus on illustrating the 
usefulness of neural networks. 

Inspired by the structure of human and animal brains, neural networks have emerged as one of 
the most versatile algorithms in machine learning. Neural networks are increasingly employed in 
consequential decision-making processes in many domains such as banking, medicine, and 
criminal justice. By 2030, artificial intelligence could boost the global economy by $15.7 trillion, 
which includes massive decisions made by neural networks (West & Allen, 2018). The huge 
explosion of neural networks presents an unparalleled opportunity to augment individual human 
life, learning, intelligence, and productivity.  

A neural network consists of layers of nodes that are connected by links. Here, nodes may be 
interpreted differently, which may be analogous to agents in the context of complex systems, 
variables, or decision points (Abdulkareem et al., 2019), while links could be agent-agent or 
agent-environment relationships (Cranmer et al., 2020; Kipf & Welling, 2016). As input data are 
fed into the machine learning algorithm(s), nodes receive messages from parent (sending) nodes 
and pass messages to their child (receiving) nodes, depending on whether some conditions are 
met. With sufficient data and an appropriate model structure, the trained models can offer high 
predictive power, offering significant opportunities to calibrate and/or validate ABMs. For 
instance, modelers can assign and implement each agent with its own unique regression equation 
or neural network (H. Zhang et al., 2016). Then the process of understanding and envisioning 
agent behavior entails optimizing the regression equations or neural networks for all the agents 
(see the example below). Models trained in this way—the behavior rules of agents in 
particular—are relatively rare for many reasons, such as the difficulty of independently training a 
large number of convolutional neural networks.  
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Another critical issue concerning neural networks centers on the difficulty of interpretation: such 
models are often like a “black box”, offering little or no understanding of the mechanisms 
governing the processes. Below we propose a reinforcement learning (RL) plus convolutional 
neural network (CNN) based approach (i.e., RL-CNN approach) to equip agents with the 
intelligence of self-uncovering and self-learning behavior mechanisms instead of relying on the 
modeler to “hardcode” (W. Zhang et al., 2021) behavioral rules beforehand. Among the three 
ways machine learning can contribute to ABM analysis (i.e., prior to running the ABM, during 
the running of the ABM, and post running the ABM to analyze ABM output; (Abdulkareem et 
al., 2019)), the one related to empowering agents to self-learn and formulate mechanisms during 
the running of the ABM is most challenging (e.g., computationally intense) and promising. The 
most common practice is that ABM modelers hardcode agents’ behavioral rules prior to running 
ABM (W. Zhang et al., 2021). In a recent multi-agent model integrated with reinforcement 
learning, effective preventive maintenance policies (i.e., rules governing agent actions) can be 
learned directly from data without any knowledge about the environment and maintenance 
strategies, ensuring smooth and efficient production for large-scale manufacturing systems (Su et 
al., 2022). 

 

Figure 2. Illustration of reinforcement learning in deciphering animal behavior rules under 
various environmental conditions. The node “if distance to water < 15 km” (within the blue 
box in Panel D) comes from the multiple nodes and links in the blue area of Panel C. 

Traditional machine learning is powerful in understanding and simulating agents decision-
making and behavior, but tends to suffer from insufficient data and/or data-handling capabilities 
(Gil & Selman, 2019) to identify the correct model structure and parameters and therefore 
appropriately calibrate ABMs (Srikrishnan & Keller, 2021).  The advent of data science and its 
methods, tools, and data infrastructures has powerfully enriched machine learning to derive 
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processes behind patterns of interest, verifying or rebutting the underlying hypothetical 
mechanisms behind such patterns. Reinforcement learning (RL), through a certain set of reward 
and penalty rules, is a promising tool in this regard (Su et al., 2022). Specifically, RL can be 
assigned to the agents under investigation. With little or no pre-knowledge about such 
mechanisms, RL-enabled agents can “learn” the best behavioral rules from data so that the 
learned “rules” can maximizes the RL’s reward (or minimize the penalty) when dealing with 
other agents and the environment.  One successful RL application is the multiagent system RL 
(MARL) (Buşoniu et al., 2010), under which a computer Go program called AlphaGo is 
developed and can beat a human professional player on a full-sized board (Silver et al., 2016); 
recently a newer version called KataGo can even beat world-class human Go players (Edwards, 
2022).  

Take an example of theorizing from (or seeking mechanisms of) animal behavioral science as 
shown in Figure 2. We begin with RL without pre-knowledge or hypothesis on the mechanisms 
(the term mechanism is often called policy in the Machine Learning domain). As data (Panel A) 
are used as input to train the RL neural network (a built-in capacity of each agent; Panel B), the 
agent’s RL neural network can then learn and establish a set of nodes and links, which can 
maximize the reward function with compliance to the state (for detail about state see Appendix 
4). To reveal the thus established, yet hidden nodes and links, a regression tree (Panel C) can be 
used to “translate” them into a set of visible decision tree links (arrows in Panel C) and nodes 
(e.g., C1, C2…d3 in Panel C). In turn, these nodes and links in the decision tree, with the aid of 
domain knowledge, can be used and interpreted as meaningful and understandable mechanisms 
(Panel D), helping theorize and understand the processes generating the macro patterns (e.g., 
data in Panel A). Alternatively, the above process may start with Panel D, where we have pre-
knowledge or hypotheses regarding the mechanisms of interest that need to be verified or 
polished. In this case, the RL process starts from both data (Panel A) and such specified 
mechanisms (Panel D), where the dashed arrow indicates the “extra” input to train the RL 
network in Panel B. All the remaining steps remain the same as above. The outcome is that the 
pre-knowledge or hypotheses regarding the mechanisms—including parameters and structure—
may be partially or fully modified according to the nodes and links in the decision tree. For 
instance, the parameter 15 km in Panel D may be changed to be 20 km, and “Go to lake” to  
“Stay where it is”. 

The above example takes the data for granted, which may or may not reflect the actual 
conditions. We may leverage a so-called convolutional neural network (CNN), a data extraction 
method (see Appendix 3 for detail), to prepare data that are useable in the above RL procedure 
(Figure 2). In the above example, CNN can be leveraged to identify/detect animals based on 
images from different sources (e.g., GPS collars or drone imaging). 

The RL-CNN approach, though promising and exciting, does not imply that AI, machine 
learning and data science are not unbiased, nor does it exhaust the potentials that AI and machine 
learning can contribute to modelling agent behavior. First, we still emphasize the importance of 
domain knowledge and theory that are obtained elsewhere (Taghikhah et al., 2022). The 
mechanism specification in Panel D of Figure 2, if employed as a starting point for RL network 
(Panel B), reflects this importance. The mechanisms or rules thus derived—for example, cause-
effects and feedback loops in many instances—should be subject to continued examination by 
domain knowledge and theory. Also, as new data become available, the above RL-CNN or other 
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approaches should be continually used to polish or revise existing rules, even establish new rules. 
Therefore, continuous real-time data collection is important for not only deriving, but also for 
validating and renewing, such rules. The concept of “Digital Twins” (DT) is based on this idea of 
updating, in regular intervals, the data underlying a realistic model used for forecasting. This 
principle is well-known from weather forecast and widely used in industry (Singh et al., 2022), 
but has also become the basis of large initiatives to support decision making regarding climate, 
ocean, and biodiversity, such as the Destination Earth program of the European Commission 
(Nativi et al., 2021). 

While neural networks and RL are among the most flexible and powerful tools, there are many 
other useful AI and machine learning algorithms. For instance, it is reported that Bayesian 
networks (Abdulkareem et al., 2019) and artificial neural networks (van der Hoog, 2019) 
represent viable alternatives for small training datasets. Such alternatives are illustrated here by 
an example regarding Graph Neural Networks (GNNs), which have recently emerged to link 
nodes horizontally and improved predictive tasks. In this context, a graph is a structure 
(frequently a mathematical function) that models pairwise relations between nodes, in which all 
nodes (agents) are connected by edges or links. In one recent application, GNN was leveraged to 
derive successfully the closed-form, symbolic expression of Newton’s law of motion based on 
data from the experiment. Simply put, the machine-mining approach can be used to exactly 
“recover” Newton’s formula 𝐹𝐹 = 𝐺𝐺 𝑚𝑚1𝑚𝑚2

𝑟𝑟2
 without any previous clue or assumption regarding its 

form. Note that F, G, m1, m2, and r represent the force between Particles 1 and 2, the 
gravitational constant, the mass of Particle 1, the mass of Particle 2, and the distance between the 
two particles (Cranmer et al., 2020). This success has boosted AI’s potential to recover laws or 
mechanisms in other domains: we present a potential way, as an example, to recover mechanisms 
or behavioral rules in agent-based complex systems (see Appendix 5). 

 

Opportunities from new forms of data 

Traditional AI’s capability to nourish ABM rules is also constrained because new forms of data, 
including data in high volumes, are either unavailable or too difficult to handle using traditional 
data processing and analytic methods.  In applications, machine learning will be much more 
empowered if aided with some non-traditional datasets such as big data or qualitative data. Such 
challenges are effectively addressed with recent advances in data science. 

Big data have several unique features that distinguish them from traditional data, largely in terms 
of huge volume, high velocity, wide variety, variable veracity, and value. Big data are 
increasingly nourishing quick detection and understanding of processes or patterns in many 
scientific fields (De Mauro et al., 2016). On the other hand, qualitative data could provide 
essential insights into understanding the above processes or patterns. Qualitative data take the 
form of text, images, videos, audio documents, and the like. Yet both big data and qualitative 
data are very different when compared to such traditional data as census data and survey data 
(Marcus, 2018).  

For example, in an instance of social-sensing analysis of the impacts of disasters (C. Zhang et al., 
2020), Twitter data are used to reveal the dynamic emotions, e.g., disgust, fear, joy, sadness, 
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anger, and surprise, in relation to a hurricane outbreak and related rescue activities in Houston, 
TX during August 25–30, 2017. Numeric emotion scores are derived from tweets describing 
certain types of events (e.g., help and rescue events) or flood-control infrastructures. These 
emotion scores, expressed as the relative abundance of words related to a certain emotion out of 
all words, can be used to verify or debut related ABM rules or outcomes (C. Zhang et al., 2020). 
Such data can also help in the above mechanism retrieval steps. For instance, the emotional 
scores can help at Step #1 (see Appendix 5) by ruling out some unrealistic functions, or at Step 
#3 by casting out unreasonable outcomes (and the corresponding functions at Step #1). 

 

Conclusion 

With the advent of the digital industrial revolution, new technologies and data forms are 
exploding in biophysical, human, Anthropocene, and many other realms. Among these, artificial 
intelligence and data science (machine learning in particular) should be among the top priority 
areas for future research, which will likely bring in revolutionary impacts on the science and 
technology addressing agent decisions and behaviors in complex systems. It must be pointed out 
that we do not downplay the importance of traditional scientific investigations and the related 
findings. On the contrary, the artificial intelligence and data science approach should build on 
and complement such traditional investigations through, for example, experimenting, fieldwork, 
inductive and deductive reasoning, hypothesis testing, and theorization, and vice versa. For 
instance, the data (Figure 2A) and pre-knowledge / hypotheses (Figure 2D) may come from 
traditional investigations.  

At the same time, it is worth emphasizing the unique potential of this artificial intelligence and 
data science approach to detecting internal, theory-relevant mechanisms. For instance, the links 
and nodes in the decision tree (Figure 2C), “translated” from the hidden network (Figure 2B), 
may reveal unique factors, structures (e.g., causal relationships), and parameter values (Figure 
2D) that would not be imagined and/or included in traditional scientific investigations and will 
likely be used to stimulate/formulate new theory development or improve existing theory. We do 
not intend to say that such factors, structures, and parameters are completely free of bias and 
“right”. Instead, we seek to provide alternative (related to traditional scientific investigations) 
thinking and modeling choices. Therefore, these innovative approaches will likely pave 
unprecedented ways for not only formulating agent behavior mechanisms or rules, but also 
forming new, more robust theories or rebutting existing theories (thus making equifinality less 
problematic). This approach may also be conducive to better understanding “commonalities and 
differences between theories” and addressing the “degree of formalization” problems (Schlüter et 
al., 2017b). 

There is abundant literature regarding pathways to “uncover” or formulate mechanisms or rules 
behind agent behavior or decisions, such as the Inverse Generative Social Science (Vu et al., 
2019) and the Mr. Potatohead (Parker et al., 2008) frameworks. Correspondingly, there exist a 
large amount of AI and data science tools, algorithms, or models we can leverage; for good 
reviews in this regard, we refer to W. Zhang et al. (2021). In the context of such literature and 
tools, this position paper does not seek to provide a comprehensive review of them. Instead, we 
aim to call for more attention and efforts towards uncovering agent decision and behavior 
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mechanisms in the light of data science and artificial intelligence. Towards using and advancing 
this AI and data science approach, barriers may exist for many reasons, such as its demanding 
computational power, difficulties in multi- and inter-disciplinary learning, conversing, and 
understanding, and coding some vague theoretical frameworks (Muelder & Filatova, 2018). 
However, we envision this approach will be increasingly recognized, used, and advanced in 
many aeras of research and practical applications related to understanding agent behavior and 
decision-making. 

 

Appendix: 

 

1. ABM challenges 

An and colleagues have identified a set of ABM challenges in a recent publication (An, Grimm, 
Sullivan, Turner, et al., 2021).  These challenges include developing integrated human-
environment ABMs, modeling human behavior, and building spatially explicit ABMs, 
particularly when considering the “telecoupling” effects (Liu et al., 2014). Challenges also 
abound in addressing module reusability and transparency, model verification and validation (a 
challenge to all types of model, not ABM alone), high-performance computing, and so on.  

 

2. Axtell’s agent-based model 

ABM can be used to formulate new theory. We illustrate this kind of application by explaining 
high levels of turnover (e.g., individual workers’ job changes; firm termination or start-up) in the 
American private sector with stationary firm size distributions (Axtell, 2001). To explain such 
high dynamism, conventional economic models—which assume general equilibrium in the 
economy—must resort to factors such as exogenous shocks and firm-specific (e.g., technological 
or productivity-related) variables, along with product markets, prices, and consumption patterns.  
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Figure S1: The Zipf’s law fits almost the entire distribution of firm sizes measured by 
employees and output. The blue dots are produced by the ABM, which fits a straight trend line 
(red) (Axtell, 2015). This pattern is observed in empirical data (1997) from the U.S. Census 
Bureau (Axtell, 2001). 

 

The ABM developed by Axtell (2015) simulates 120 million workers (agents) in the U.S. private 
sector, where each agent pursues their own self-interest by seeking information about alternative 
jobs within a limited social network (two to six friends). The ABM is sufficient to endogenously 
produce the kinds of macro-pattern dynamics in firm sizes, ages, growth rates, job tenure, wages, 
networks, etc. that closely resemble empirical data that follow power law distributions (Axtell, 
2001) (Figure S1)—without resorting to the aforementioned conventional theories or variables. 
We may have some confidence in the validity of this finding under the rule of minimality, also 
known as Occam’s razor: the simpler explanation wins if it can account for a phenomenon in the 
same way as a more complex one. Yet this rule per se needs further proof or justification—
especially in the complex system domain. 

 

3.  Neural networks 

Neural networks are increasingly leveraged in many social domains. In 2015, Potash and 
associates used a machine learning model named random forests to predict children’s risk of lead 
poisoning, collaborating with the Chicago Department of Public Health (Potash et al., 2015). 
This proposed warning system is designated to detect and remediate lead hazards before the 
potential adverse effect emerges. In 2016, Carton et al. proposed a machine learning method to 
detect police officers at the risk of adverse behavior, including unjustified use of force or 
shootings and sustained complaints, to promote several inventions such as training and 
counseling (Carton et al., 2016). Athey and Wager employ a modification of random forests to 
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predict heterogeneous treatment effects with the model trained using data from The National 
Study of Learning Mindsets (Athey & Wager, 2019). 

While the neural network technology holds great promise, its convenience has often distracted us 
from its side effects. Neural network is often considered as mysterious or unknowable, called 
black boxes since researchers who design the architecture do not know how or why they work 
well. Some research efforts have been spent on demystifying a neural network to understand 
what it has learned. The neural network is modeled like the human brain, which has been 
implemented into layers of interconnected nodes, named neurons, to process data. For example, 
suppose the researcher built a neural network to recognize animals from the camera. Then the 
neural network might arrange specific neurons to detect ears of foxes and some other neurons to 
detect the mouth. Some researchers (e.g., Zewe, 2022) propose a method called MILAN (mutual 
information-guided linguistic annotation of neurons) to automatically demystify functions of all 
neurons in a network by generating descriptions to fulfill the requirements. It is essential because 
one neural network consists of hundreds of thousands of individual neurons.  

The main components of the convolutional neural network (CNN) are input layers, convolution 
and pooling layers, and multi-layer perceptron. A layer is a group of neurons with the same 
operation; a perceptron is a function that combine neutrons in the earlier layer to form a set of 
new neutrons; put another way, a perceptron is the layer that has the full connectivity with all 
neurons and helps to map the representation between input and output. The convolution layer is 
the core block of the CNN, which performs a dot product between two matrices: input and 
weights. The pooling layer is applied to replace the output of the network to derive a summary 
statistic of the nearby output. This layer helps reduce the spatial size of the representation. There 
are several blocks in these layers: tensor, neuron, layer (comprised of many neurons), kernel 
weights, and biases. A tensor is an n-dimensional matrix to represent data in deep learning. A 
neuron is a function (often a linear combination of some matrices) that takes several inputs and 
generates a single output. A layer is group of neurons with the same operation. Kernel weights 
and biases are unique to each neuron to allow a classifier to yield to environment.  

In Figure S2, the architecture of a neural network from the “You only look once” (YOLO, an 
ML algorithm that quickly detects and classifies objects) family is presented. The neural network 
processes the information through the process of “convolution-activation-pooling”, where 
convolution is a math operation that filters irrelevant information. To interpret the CNN, there 
are some visual explanation methods. For image classification task, a visual explanation from the 
model for justifying and target category requires to satisfy two properties: class discriminative 
and high resolution. The first property enables localization of different regions in the input image 
to contribute to different output classes (what does a class do?). The second property enables 
capturing fine-grained detail.  The gradient-weighted class activation mapping (Grad-CAM) 
(Suresh, 2021) employs the gradients of any object concepts (say, an airplane in a classification 
network) input into the final convolutional layer to generate a coarse localization map marking 
the important areas in the image. As an example of this method, an airplane image is an input 
into the convolutional neural network. By applying this method, a coarse heatmap is generated to 
visualize the different layers' functions. In Figure S2, we present the coarse heatmap procedure 
by (Suresh, 2021) to visualize the functions of the neural network. 
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Figure S2: The architecture of convolutional neural network Yolo family.  

A convolutional layer is a filter that removes some redundant (compared to the major task) 
information. For example, the background info (blue sky) is filtered out as it does not help 
identification of the target (airplane). In Figure S2, layers 2, 3, 5, 6, 8~10, 12~14, and 16~18 
belong to such layers. The pooling layers (orange; layers 4, 7, 11, 15, and 19) calculate the mean, 
max, and min and summarize what is in the previous layer. Through the pooling process, the size 
of the previous image is decreased, enabling a focus on the elements that are meaningful. The 
fully connected (FC) layer is a multi-layer perceptron, which adds up all convolutional layers, 
resulting in a full representation. Images B ~E are the outcome images after implementing all the 
convolutional and pooling layers. Images A and B should have the same size, while images C, D, 
and E should be smaller in size as the pooling layers are used to focus on a smaller area (we 
present them at the same size for illustration purpose with a sacrifice in image resolution). 

 

4. Reinforcement Learning 

Under RL, the neural network developer does not need to develop and adjust a model to fit in the 
environment. Here the environment, more than natural environment, refers to all context other 
than itself—including all other objects or agents. Instead, the agent learns from the environment 
and adopts the best behavior using  two types of RLs: model-based algorithm and model-free 
algorithm. The model-based algorithm employs experience to construct an internal model, which 
can calculate the agent’s transitions and outputs in the environment. Then, the internal model 
chooses the best action to respond to the environment. The agent can externally receive the 
rewards from the probability function and state (state refers to components of a certain behavior 
or set of behaviors) transition. In contrast, the model-free algorithm uses experience from the 
environment to learn the policy or function of values (behavior rules of agents) directly from the 
data without a predefined model. The agent only needs to recognize its possible states and 
actions in an environment without knowing the state transition and reward function. The agent 
decides what to do according to some generic function or constraints, which can be determined 
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by the data and the emergent outcomes. Finally, the modeler can unveil each agent’s RL 
structure and parameters, extracting the common factors and relationships (from which we can 
develop/verify theory). Such factors and relationships may help detect hidden structures and/or 
variables, support or rebut existing hypotheses, and/or formulate new theories. 

Reinforcement Learning (RL) may be interpreted in three different ways: using another method 
to generate explanations, introducing a new learning model called intrinsic model, and a 
combination method by changing the original model (the RL) to improve interpretability. Among 
them, a very popular method to allow non-experts to understand RL is through the use of a 
decision tree-based structure (Humbird et al., 2019), among others. This method leverages the 
hierarchical decision structure that can encode user experience into an interpretable structure. In 
this way, each rule or policy (i.e., part of the mechanism in Figure 2) can be mapped to decision 
nodes in a tree. Based on this method, combinational decision trees with natural language 
initializations and explanations have been proposed and approved within more conducive for 
specific policy (i.e., part of the mechanism in Figure 2). A novel collaborative framework to 
interpret an autonomous agent’s behavior rooted in principles of human-centered design has been 
recently proposed (Tambwekar et al., 2022). This work employs a novel deep learning (which 
refers to a class of machine learning algorithms that use a cascade of multiple layers of nonlinear 
processing units for feature extraction and transformation) framework, named HAN2Tree, and a 
differential decision tree (DDT) model to represent the policy with policy gradients 
(connectionist) given a user-defined task completion signal (i.e., a reward function) (Tambwekar 
et al., 2022). Then, the unstructured natural languages from humans initialize the behavior are 
converted to lexical decision trees. Lastly, explanations of learned policy in multiple modules are 
provided to users.  

  

5. Uncover mechanisms using a three-step GNN approach 

To uncover an important law in a complex system, we can use a three-step strategy. Step #1: 
build an edge model to represent links or edges (i.e., messages) amongst all agents. Having 
formed potential candidate sets of equations or functions (e.g., those conforming to the BDI 
theory or PECS framework) with input from domain scientists, we may select one through a 
means of deep learning, such as graph neural network. Using this edge model, we conduct Step 
#2: develop a node model, in which each node (agent) receives messages from other agents, with 
the magnitude of each message calculated from the candidate function obtained in Step #1. 
Finally, Step #3: establish a global model to aggregate and update the status of all messages and 
nodes over time based on the edge and node models chosen above. Once a function (plus number 
of parameters as part of complexity) from the edge model (Step #1) is examined, the status of all 
agents can be calculated and compared to the observed time series of agent data. The function (or 
a set of functions) with the least measure of some index (e.g., normalized mean square error) can 
be chosen among the different alternative functions (plus parameter values) under the rule of 
minimality, such as the KISS principle, “keep it simple, stupid” (Axelrod, 1997; Kemerer, 1995), 
or other more sophisticated rules if necessary. Note that to handle actions of less interest or 
importance, black-box approaches may suffice, saving the hassle of following the three steps 
outlined above. 
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