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Abstract 22 

Since the industrial revolution, fossil fuel combustion has led to a 30%-increase of the atmospheric 23 

CO2 concentration, also increasing the ocean partial CO2 pressure. The consequent lowered surface 24 

seawater pH is termed ocean acidification (OA) and severely affects marine life on a global scale. 25 

Cellular and molecular responses of marine species to lowered seawater pH have been studied but 26 

information on the mechanisms driving the tolerance of adapted species to comparatively low 27 

seawater pH is limited. Such information may be obtained from species inhabiting sites with 28 

naturally low water pH that have evolved remarkable abilities to tolerate such conditions. This 29 

review gathers information on current knowledge about species naturally facing low water pH 30 

conditions and on cellular and molecular adaptive mechanisms enabling the species to survive 31 

under, and even benefit from, adverse pH conditions. Evidences derived from case studies on 32 

naturally acidified systems and on resistance mechanisms will guide predictions on the 33 

consequences of future adverse OA scenarios for marine biodiversity. 34 

 35 

Keywords: Ocean acidification, Marine organisms, Acid stress tolerance and resistance, Cellular and 36 

molecular responses, ATP-binding cassette (ABC) transport proteins 37 

38 
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1. Ocean acidification: lessons from naturally acidified systems 39 

Ocean acidification (OA) refers to the currently ongoing process of a decrease of the surface seawater pH, 40 

widely recognized as one of the most hazardous environmental threats to marine ecosystems that are 41 

associated with global change (Doney et al., 2009). This phenomenon is due to the emissions of 42 

anthropogenically produced carbon dioxide (CO2) into the atmosphere from combustion of fossil fuels that 43 

had sharply increased during the industrial revolution and since then remained at a high level (Bindoff et al., 44 

2019; Takahashi et al., 2014). In pre-industrial times, the atmospheric concentration of CO2 varied within a 45 

range of 180–300 ppm, with 280 ppm on average but changes in atmospheric CO2 levels markedly 46 

accelerated in the 20th century (Joos and Spahni, 2008). A recently recorded monthly average, 421 ppm CO2 47 

in the air, was 1.5-fold above the pre-industrial value (Mauna Loa, June 2022; 48 

https://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html). Since the beginning of the industrial revolution, the 49 

pH of the ocean surface worldwide dropped by approximately 0.1 pH units, from 8.21 to 8.10 (Brewer, 1997; 50 

Caldeira and Wickett, 2003; IPCC, 2014; Jiang et al., 2019; https://www.climate.gov/news-51 

features/understanding-climate/climate-change-atmospheric-carbon-dioxide). According to current 52 

prediction models, this trend will continue at the same or an even higher rate until the end of the century 53 

(0.036–0.400 pH units by the year 2100) (Bindoff et al., 2019; Brewer, 1997; Caldeira and Wickett, 2003; Cao 54 

et al., 2007). At present, seawater pH is lowest in the equatorial regions, whereas pH is highest in subpolar 55 

and polar waters; the surface ocean pH decreases at a slower rate in areas with lower pH, resulting in more 56 

homogeneous global surface ocean pH with time (Jiang et al., 2019; Takahashi et al., 2014). The increase of 57 

the partial CO2 pressure (pCO2) in the atmosphere leads to a net air-to-sea flux of surplus gas that modulates 58 

the Earth system responses to climate changes and causes shifts in seawater and carbonate chemistry (Bates 59 

et al., 2014). The ocean works as a giant sink for the anthropogenically emitted CO2, absorbing 20–30% of 60 

emitted CO2 (Bindoff et al., 2019), equaling nearly 2.4 Gt of carbon per year (DeVries et al., 2019). CO2 61 

dissolved in seawater forms carbonic acid (H2CO3), which is unstable dissociating into hydrogen (H+) and 62 

bicarbonate (HCO3
-) ions and, at a lower rate, carbonate ions (CO3

2-). The increased H+ input is sufficient to 63 

strongly affect the water chemistry causing an acidification shift in the alkaline seawater (Brewer, 1997; 64 
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Raven et al., 2005). Currently, the surface seawater pH ranges globally between 7.9 and 8.2 (Takahashi et al., 65 

2014) and it naturally fluctuates due to variable solar irradiation (photosynthesis to respiration ratio) and 66 

temperatures changing seasonally and among latitudes (Kapsenberg and Cyronak, 2019). Moreover, 67 

regional– and habitat–scale processes, such as phytoplankton blooms, upwelling and/or changes in 68 

photosynthesis and respiration, can influence seawater pH (Kapsenberg and Cyronak, 2019). 69 

Anthropogenic OA, leading to an increase of HCO3
- and a decrease in CO3

2- in the seawater, reduces the 70 

saturation state of calcium carbonate (CaCO3) (Raven et al., 2005), perturbing calcification processes (Raven 71 

et al., 2005) in marine organisms with calcareous exoskeletons or shells (Agostini et al., 2018; Albright et al., 72 

2010). Thus, affected taxa include calcareous red algae, foraminifera, coccolithophorids, aragonite-producing 73 

pteropods, hard corals, mollusks, serpulid polychaetes and echinoderms (as reviewed in Burns, 2008; Foo et 74 

al., 2018; González-Delgado and Hernández, 2018; Orr et al., 2005). In addition to perturbed calcification, the 75 

shifts in pH and carbonate chemistry in seawater also influence the chemistry of compounds, such as heavy 76 

metal speciation with effects on the metals’ bioavailability and toxicity to marine organisms (Doney et al., 77 

2009; Jin et al., 2021; Kibria et al., 2021; Landrigan et al., 2020; Zeng et al., 2015). OA-related changes in 78 

seawater pH also caused a drastic modification of interindividual chemical communications (Mutalipassi et 79 

al., 2020; Zupo and Viel, 2020), impair organism’s feeding ability (Maibam et al., 2012), physiology 80 

(Mutalipassi et al., 2019) but also their defenses towards toxicants (Zupo et al., 2015) and predators (Maibam 81 

et al., 2015). Therefore, although changes in pH values appear subtle, OA has direct and indirect implications 82 

to marine life (Garrard et al., 2014). Here we aim to provide an overview on marine biota dealing with low 83 

water pH in their habitats and on the mechanisms marine species use to survive and/or benefit from such 84 

limiting environmental conditions. Furthermore, the advantages of current knowledge deriving from case 85 

studies on naturally acidified systems to unravel future marine biodiversity OA scenarios are discussed. In 86 

the first part, some general aspects related to different approaches to study OA (in situ, field studies and 87 

bench-scale researches) and to the effects of OA at higher hierarchical scales, such as species, population 88 

and communities, to reach a conceptual and factual bridge between molecules/cells and 89 

organisms/communities are provided. Further sections and in its sub-paragraphs, although not exhaustive, 90 
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are aimed to highlight the major outcomes of studies concerning the effects of acidified conditions on marine 91 

life, many of which used a meta-analysis approach (Dupont et al., 2010; Harvey et al., 2013; Hendriks et al., 92 

2010; Kroeker et al., 2010; 2013a). The final part of this section is dedicated to organisms able to tolerate 93 

naturally acidified environments (low-pH/high-pCO2) and to their ability to cope with such peculiar acid-stress 94 

conditions. Finally, in order to unravel the resistance ability to acid stress, the documented role of ATP-95 

binding cassette transport proteins (ABC) in selected single cell organisms able to cope with low water pHs is 96 

discussed as a potential area of investigation in predicting future marine biodiversity scenarios. 97 

Certain marine ecosystems are naturally exposed to extremely high CO2 concentrations due to unique 98 

hydrogeological and biological phenomena, such as for instance hydrothermal vents from submarine 99 

volcanism and nutrient upwelling (González-Delgado and Hernández, 2018; Santana-Casiano et al., 2016). In 100 

waters of the mentioned areas, the pCO2 is higher than that commonly found in surface oceanic waters (150–101 

530 μatm, Takahashi et al., 2014) and it is in the range that is predicted for oceanic surface waters for the 102 

year 2100 (500–1370 μatm, IPCC 2014). However, the pCO2 in seawater can be extremely high in certain 103 

areas, such as for instance at the volcanic CO2 system of the Castello Aragonese in Ischia Island (Italy) where 104 

pCO2 values above 20 800 μatm have been recorded (Hall-Spencer et al., 2008). 105 

The current concerns on the impact of OA on marine species and communities underline the importance of 106 

investigating how they deal with and/or are affected by such low pHs in naturally acidified systems, such as 107 

CO2 vents (Foo et al., 2018; Hall-Spencer et al., 2008; Hernandez et al., 2016; Kroeker et al., 2013b). Such 108 

knowledge will help us to unravel future scenarios of increasing global OA and predict “winners” and “losers” 109 

among marine species and communities (Gambi et al., 2016; Saha et al., 2019). Naturally acidified marine 110 

systems show anomalies in CO2 concentration in the water mostly due to subtidal volcanic activity resulting 111 

in gas emissions, known as vents, that are enriched in CO2. Such marine volcanic vents are globally distributed 112 

and are found in the Mediterranean Sea (volcanic CO2 vents at Ischia Island, Italy, Foo et al., 2018), the 113 

Atlantic and Pacific Oceans (subtropical reefs of  “Las Cabras” Canary Island, Spain, Hernández et al., 2016 114 

and the tropical coral reefs of Papua New Guinea, Fabricius et al., 2011; 2014; González-Delgado; Hernández, 115 

2018), and in the Southern Ocean (caldera of the active volcano of Deception Island, Antarctica, Di Giglio et 116 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 
 

al. 2021). Other phenomena causing naturally acidified seawater conditions comprise (i) karstification, a 117 

process in which acidic waters leaked into karst terrain dissolve the limestone and then flow into the ocean 118 

(e.g., lagoons in Caribbean Sea) (Crook et al., 2016), (ii) hydrographic-biological processes (e.g., Palauan reef 119 

system) (Shamberger et al., 2014), (iii) upwelling of cold water rich in carbon (such as in the Arctic Ocean) 120 

(Chierici and Fransson, 2009). Those naturally acidified areas have become particularly relevant as open-lab 121 

scenarios to predict detrimental impacts of OA on natural populations and communities as for instance the 122 

disintegration of bivalve shells (Rodolfo-Metalpa et al., 2011) and changes in community structure (Barruffo 123 

et al., 2021; Crook et al., 2016; Esposito et al., 2022; Kroeker et al., 2013b; Vizzini et al., 2017). 124 

 125 

2. Direct and indirect effects of OA on marine organisms 126 

Changes in ocean chemistry can directly and indirectly affect marine ecosystems at several levels, from single 127 

species up to communities, leading to a fundamental change in their relationships including structures and 128 

functions of all ecosystems. Current knowledge on the impacts of low pH conditions on marine organisms 129 

has been obtained by studies conducted either in situ in natural acidified systems or on a bench-scale under 130 

controlled laboratory conditions including mesocosms to simulate natural OA scenarios. Bench-scale in vivo 131 

studies have addressed a wide range of autotrophs and heterotrophs species as well as time of exposure 132 

(from 20 min up to 12 months) (Zupo et al., 2015; Hennige et al., 2020) and with seawater pH lowered only 133 

by an input of CO2, to simulate natural processes. 134 

In situ studies on marine invertebrates mainly focused on polychaete species, which are considered useful 135 

indicators of community composition and excellent models to investigate individual mechanisms for 136 

acclimation and adaptation to OA (Calosi et al., 2013; Gambi et al., 2016; Ricevuto et al., 2014; 2015). 137 

Approximately 60.4% of investigated species and related studies here reported belong to the class of 138 

Polychaeta. The remaining (39.6%) is composed mainly by Malacostraca (26.1%) and in a smaller percentage 139 

by Gastropoda (9.2%), Anthozoa and Ophiuroidea (1.4% each one), Bivalvia (1.0%) and Echinoidea (0.5 %) 140 

(Figure 1a, Table S1). Effects of acidified environments on plants and algae have also been studied, mainly 141 

focused on assemblages in in situ observations (Porzio et al., 2011; Vizzini et al., 2017). 142 
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Bench-scale studies using marine invertebrates include mainly mollusks (42.6% of which 25.6% gastropods 143 

and 17.0% bivalves) due to their economic importance and their role as bioindicators for marine pollution 144 

(Goldberg et al., 1978; Shumway and Parsons, 2006) followed by Malacostraca (34.0%), Polychaeta (12.8%), 145 

Anthozoa (6.4%), Hexanauplia and Echinoidea (each 2.1%) (Figure 1b, Table S1). 146 

Polychaeta represent one of the most abundant groups of invertebrates within benthic communities and 147 

show high functional diversity (Jumars et al., 2015; Olsgard et al., 2003). Interestingly, they exhibit different 148 

tolerance to low-pH conditions depending on the taxa (Giangrande et al. 2014) and are considered excellent 149 

models to investigate effects of acidified environments (Calosi et al., 2013; Gambi et al., 2016; Ricevuto et 150 

al., 2014; 2015), being also abundantly in naturally acidified areas (Ricevuto et al., 2012; Vizzini et al., 2011). 151 

So, many studies on the effect of OA, mainly conducted in situ, have been focused on these organisms. 152 

Furthermore, since congeneric species can show opposite responses to acid stress, this phylum is a 153 

fascinating candidate to understand the mechanisms at the base of acclimation and adaptation to low-pH 154 

environments. 155 

Mollusca are one of the most diverse groups of marine invertebrates and they are distributed ubiquitously. 156 

Acidified environments could represent a serious threat for them impacting calcifying processes and their 157 

presence is almost null in natural low-pH/high-pCO2 areas (Ricevuto et al., 2012). Since their great ecological 158 

and economic value (Ponder and Lindberg, 2008), mollusks have been largely investigated to understand 159 

their response when exposed to low pH scenarios.  160 

 161 

2.1. Evidence for OA effects on population and community levels  162 

Several studies at the population and community levels have been carried out to evaluate ecological 163 

consequences (shown in Figure 2) of a lowered seawater pH. They clearly show that chronic exposure to 164 

elevated pCO2/lowered pH levels cause changes in community structure, with a reduction in ecological 165 

diversity and trophic complexity (Fabricius et al., 2014; Gambi et al., 2016; Garrard et al., 2014; Hall-Spencer 166 

et al., 2008; Kroeker et al., 2013b; Teixidó et al., 2018; Vizzini et al., 2017). With a decrease in pH (pH range 167 

from 7.9 to 6.6), shifts in community composition and structure and in loss of habitats have been reported 168 
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(Hall-Spencer et al., 2008; Kroeker et al., 2013b; c), including coral reefs worldwide (Albright et al., 2018; 169 

Fabricius et al., 2014; Hennige et al., 2020; Hoegh-Guldberg et al., 2007; Kelaher et al., 2022). Thus, habitats 170 

affected by OA lose their ability to support high biodiversity (i.e., decreases in numbers of species and in the 171 

community structure complexity). A slight decrease in pH values (i.e., reduction from 0.3 to more than 1 172 

units) has been reported to cause alterations in interspecies balance with consequences on the population 173 

composition. Researchers have observed variations in settlement and recruitment dynamics of benthic 174 

communities and in competitive relationships between different invertebrate groups inhabiting naturally 175 

acidified environments (Crook et al., 2016; Kroeker et al., 2013b; c; Ricevuto et al., 2012; 2014). Changes in 176 

interaction among organisms have also been shown in laboratory experiments (Maibam et al., 2015; 177 

Mutalipassi et al., 2019; 2022; Zupo et al., 2015). As a consequence, alterations in feeding habits may occur 178 

in these acidified environments (Maibam et al., 2015). Observed effects of a slightly lowered pH (7.7) were 179 

changes in the production of volatile organic compounds (VOCs) by algae (Cocconeis scutellum var. parva, 180 

Diploneis sp. and Ulva prolifera) upon exposure at these conditions for 16 days (Mutalipassi et al., 2022) and 181 

an altered odor sensing ability in the copepod Centropages typicus (Maibam et al., 2015). Thus, such 182 

modifications influence behavioral responses indirectly but can also impact community structure. Differences 183 

in epifaunal communities associated with seagrass Posidonia oceanica because of changes in 184 

attraction/repulsion reactions due to pH decreasing (from pH 8.1 to pH 7.7) have been documented (Zupo et 185 

al., 2015). 186 

Generally, in low-pH environments, calcareous species (as the erect and crustose coralline algae, barnacles 187 

and calcareous tube worms) decrease in abundance when they enter in competition with fleshy algae 188 

(Kroeker et al., 2013c), and a connection between those changes and community depletion has been 189 

identified (Kroeker et al., 2013b; c). High CO2 levels (pCO2 > 520 μatm) are associated with a reduction in the 190 

number of taxa (Fabricius et al., 2014; Gambi et al., 2016; Vizzini et al., 2017) and in a modification of relative 191 

abundance of species (Kroeker et al., 2013c) dictated by their different sensitivity towards low pH. Some taxa 192 

are able to tolerate very low pH levels (down to pH 6.6) (Calosi et al., 2013; Fabricius et al., 2014; Ricevuto et 193 

al., 2014) and result highly abundant in naturally acidified marine areas (the Ischia vents, Italy); those include 194 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 
 

the polychaetes Amphiglena spp., Syllis prolifera, Platynereis cf. dumerilii, P. cf. massiliensis, Parafabricia 195 

mazzellae, Brifacia aragonensis (Gambi et al., 2016; Giangrande et al., 2014; Ricevuto et al., 2014). However, 196 

the ability to adapt to OA is not ubiquitous in all species (Rastrick et al., 2018) and varies according to 197 

developmental stage (Kroeker et al., 2010) and/or reproductive traits (Gambi et al., 2016; Lucey et al., 2015). 198 

A widespread dominance of generalist species has been documented in naturally CO2-enriched 199 

environments, as for instance at Ischia vents (Esposito et al., 2022; Foo et al., 2018). More recent studies 200 

documented an abundance in primary producers (e.g., algae), seagrasses (like P. oceanica and Cymodocea 201 

nodosa), herbivores and non-calcareous filter feeders, whereas carnivores and calcifying both fail (Gambi et 202 

al., 2016; Garrard et al., 2014; Hyun et al., 2020; Kroeker et al., 2013c; Vizzini et al., 2017). Calcifying species 203 

are the most impacted by OA triggering changes in water chemistry (Cigliano et al., 2010; Crook et al., 2016; 204 

Gambi et al., 2016; Kroeker et al., 2010; Ricevuto et al., 2012; Vizzini et al., 2017) and, only those employing 205 

less soluble forms of CaCO3 are more resistant (Kroeker et al., 2010). Their reduction or even their 206 

disappearance has been documented in regions characterized by low pH. For instance, Hall-Spencer et al. 207 

(2008) reported a strong reduction in abundance of the sea urchins Paracentrotus lividus and Arbacia lixula 208 

at pH 7.4–7.5, while Vizzini et al. (2017) reported the absence of the mollusk bivalve Lucinella divaricata at 209 

sites with pH 7.96. Among primary producers, non-calcareous algal species are predominant while the 210 

calcifying ones disappear (Crook et al., 2016; Hall-Spencer et al., 2008; Kroeker et al., 2013b; c). Observations 211 

of the community structure at various naturally rich CO2 hydrothermal vents have highlighted differences in 212 

macrophyte composition between pH 8.1 and acidified sites (pH from 7.9 to 6.2) and disappearance of 213 

calcareous epiphytes in low-pH areas or even when pH decrease by 0.1 units as Columbella rustica (Hall-214 

Spencer et al., 2008; Mecca et al., 2020; Porzio et al., 2011; Vizzini et al., 2017). The occurrence of 215 

malformation in calcareous coccolithophores (D’Amario et al., 2020) as well as shell corrosion in adult 216 

bivalves and gastropods (Duquette et al., 2017; Hall-Spencer et al., 2008; Rodolfo-Metalpa et al., 2011) has 217 

been reported to significantly intensify with an increase of pCO2. Though some calcareous species are able 218 

to resist at acidified conditions thanks to their ability to protect their exoskeleton or shell from erosion as it 219 

is the case of the Mediterranean mussel Mytilus galloprovincialis and the zooxanthellate coral Balanophyllia 220 
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europaea (Rodolfo-Metalpa et al., 2011). Furthermore, negative effects on species and taxa include a 221 

simplification of the structure of food webs (Vizzini et al., 2017) and a reduction of functional diversity 222 

(Kroeker et al., 2013b; Teixidó et al., 2018) which weak the whole ecosystem function and services (Zunino 223 

et al., 2019). Teixidó et al. (2018) reported a loss in functional entities (FEs, groups of species sharing the 224 

same trait values) associated to a lowering pH gradient (from 8.06 to 6.59 pH units) in the temperate benthic 225 

assemblages of the volcanic vents of the Castello Aragonese (Bay of Naples, Italy). In this environment, the 226 

majority of FEs are represented by a single species with a lack of functional redundancy. Furthermore, due 227 

to changes in community composition, a redistribution of species abundance can be found. These traits can 228 

bring from an increase in vulnerability of less plentiful FEs to new stressors and may lead to a reduction in 229 

the long-term resilience of the ecosystem which affect its ability to cope with further future environmental 230 

changes. 231 

Moreover, it is worth mentioning the discovery of a few new species that have been described as primarily 232 

associated with shallow CO2 vents systems, such as Fabriciidae (Annelida, Sabellida) Brifacia aragonensis sp. 233 

nov. and Parafabricia mazzellae sp. nov. in the CO2 vent system off the island of Ischia (Giangrande et al., 234 

2014; 2021; Nilsson et al., 2011). Therefore, overall findings obtained from naturally acidified marine 235 

environments suggest that these systems, able to select morpho- and genotypes, can be used as “natural 236 

laboratories” to study the evolutionary effects of OA. The evolutionary implications of OA for diversity and 237 

adaptation of the marine biota, highlighted by Sunday et al. (2011, 2013) remain, in fact, one of the main 238 

issues for future investigations on the far-reaching biological effects of one of the main aspects of the ocean’s 239 

global climate change. 240 

 241 

2.2. Individual scale evidence of OA 242 

Biological responses to lowering seawater pH (summarized in Figure 2) are species-specific and even 243 

phylogenetically close species can be differently affected (Gambi et al., 2016). Kroeker et al. (2010) have 244 

conducted a meta-analysis on biological responses to OA and revealed survival and calcification processes as 245 

the main targets, followed by growth and reproductive traits. As described above, few species can easily 246 
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handle and survive in CO2-enriched environments leading to a reduction in biodiversity, if they are not 247 

substituted. A reduction of calcification rates correlates to lower pHs in corals and in mollusks (Rodolfo-248 

Metalpa et al. 2011). Moreover, CaCO3 calcification process is slower in corals subjected to acidified 249 

conditions (Burns et al., 2008). Hyun and colleagues (2020) have shown opposite trends with proliferation of 250 

selected phytoplanktonic classes exposed to high pCO2 levels based on sizes. Growth rates in smaller species 251 

are faster whereas higher-size species grow slowly. Besides, organisms living in acidified environments may 252 

exhibit lowered body sizes up to dwarfism (Calosi et al., 2013; Garilli et al., 2015). A further trait affected by 253 

low-pH conditions is body respiration; a reduction in cumulative respiration has been recorded in planktonic 254 

communities upon exposure to different CO2 concentrations (240, 346, 348, 494, 868, 1 075 and 1 333 μatm 255 

fCO2) for 31 days in a mesocosm study (Spilling et al., 2016). 256 

Organism’s physiology is also affected by acidified conditions. Calosi et al. (2013) have shown a reduction in 257 

the uptake of oxygen (O2) in polychaetes more sensitive to low pH compared to those more tolerant. 258 

Additionally, an increase in pCO2 conditions by 817.68 μatm caused an increase in the heart rate of the 259 

caprellid amphipods Caprella laeviuscula and Caprella mutica (Lim et al., 2018). 260 

Although OA is clearly posing a threat to natural marine life, some species can tolerate low seawater pH 261 

values either via acclimatization, as for instance via phenotypic plasticity or enhancement of basal antioxidant 262 

protection (Calosi et al., 2013; Ricevuto et al., 2015), or adaptation, through selection of the best genotypes 263 

(Calosi et al., 2013). Therefore, the understanding on how they adapt to such limiting conditions and the 264 

molecular/cellular bases of tolerance/resistance could unravel future biodiversity scenarios. 265 

Different approaches have been used to unravel how organisms tolerate and/or resist to low pH starting 266 

from identifying pathways affected and the mechanisms involved at molecular to cellular levels (Figure 2, 267 

Table 1 and Table 2). To our knowledge, the major tools employed for this purpose are based on biochemical, 268 

transcriptomic and proteomic approaches. 269 

Several studies have found changes in cellular and molecular processes to low-pH conditions (range 7.96–270 

6.5) in mollusks, cnidarians, arthropods, echinoderms and worms, either upon acute (at least 3 hours) and 271 

chronic (up to 60 days) exposures. However, even under similar exposure conditions, not always common 272 
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expression patterns were found in selected pathways, as for instance in energy metabolism and signaling (as 273 

it can be seen in Table 1, Table 2). 274 

 275 

2.2.1. Cellular and molecular responses affecting the whole organism 276 

Table 1 summarizes the main molecular pathways identified as targets and/or involved in low pH organisms' 277 

responses affecting the whole organism, as follows: metabolic pathways, calcification processes, 278 

cytoskeleton regulation, immune system and acid-base regulation described until now in various 279 

tissues/organs or whole organism. 280 

Metabolism includes all the processes involved in the extraction of energy from the environment and making 281 

it available to the organism. Living organisms need a continuous supply of energy to survive and maintain all 282 

their internal biological processes. Homeostasis is supported by the coordination and complementarity of all 283 

the metabolic pathways in each cell (Wilson and Matschinsky, 2021) and a change in some of them could 284 

affect the whole organism. Alterations in energy metabolism induced by low-pH conditions were described 285 

in several marine invertebrates belonging to the phyla Cnidaria, Mollusca, Anellida, Arthropoda and 286 

Echinodermata. In the coral Acropora millepora a downregulation of metabolic genes upon an acute 287 

exposure of 3 days to pH 7.96 and 7.86 was observed (Moya et al., 2012). Suppression of energy metabolism 288 

was also found in the worm P. dumerilii (pH 7.8 for 7 d) (Wäge et al., 2016), in the Pacific oyster Crassostrea 289 

gigas (pH 7.6, 31 d) (Cao et al., 2018) and Crassostrea hongkongensis oyster larvae (pH 7.9 and 7.6 35d) 290 

(Dineshram et al., 2013). Interestingly, Dineshram et al. (2015) observed an opposite pattern for C. 291 

hongkongensis larvae after 19 days at pH 7.60. In response to acidified environments metabolic activity could 292 

be initially enhanced in order to facilitate homeostasis maintenance and avoid injuries while, beyond a 293 

certain exposure time, a rearrangement in energy allocation occurs and energy metabolism decreases 294 

(Freitas et al., 2016a). An increase in energetic metabolism in response to decreasing pHs was reported in 295 

the scleractinian coral Pocillopora damicornis after 21-d of exposure to pH 7.75, 7.42 and 7.19 (Vidal-Dupiol 296 

et al., 2013). Similarly, the polychaete Hediste diversicolor exhibited higher metabolic rate upon exposure to 297 

pH 7.6 and 7.3 for 28 days (Freitas et al., 2016a) as well as the shrimp Litopenaeus vannamei exposed for 7 298 
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weeks to 7.8, 7.6, 7.4, 7.2 and 7.0 (Muralisankar et al., 2021). While no differences in the metabolic rate 299 

occurred in the sea urchin P. lividus living in naturally acidified waters (pH 7.8) at the venting area of Ischia 300 

(Migliaccio et al., 2019). The modification of energetic metabolism in response to seawater acidification 301 

conditions suggests a shift in energy allocation in favor of other pathways. An improvement in metabolism 302 

could indicate the use of energy reservoir to prevent cells from injuries (Freitas et al., 2016a) while it is 303 

possible that the reduction in the expression of metabolic genes could be a mechanism carried out by 304 

organisms to survive, by which energy would be channeled to more immediate stress responses (Dineshram 305 

et al., 2013; Moya et al., 2012). In Mollusca and Echinodermata other metabolic pathways were affected by 306 

exposure to acidified environments (pH range varies from 7.9 to 7.6). Increased expression of proteins 307 

involved in the metabolism of ammonium, pyruvate and propanoate were described in immune cells of 308 

specimens of the sea urchin P. lividus inhabiting naturally acidified sites (pH 7.8). In the same organisms a 309 

modulation of enzymes related to carbon metabolism occurred (Migliaccio et al., 2019). In C. hongkongensis 310 

larvae, proteins implicated in general metabolism resulted to be differentially expressed after 35 d of 311 

exposure to pH 7.9 and 7.6 (Dineshram et al., 2013). 312 

Biomineralization processes provide organisms with a mineralized hard structure which protects them 313 

against external threats, like predators. Among these, calcification is the most common process and leads to 314 

the formation of calcium carbonate skeletals (Adey and Loveland, 2007). Biomineralization and calcification 315 

regulation is strictly related to the secretion of organic matrix molecules by the organisms being involved in 316 

mineral deposition (Falini et al., 2015). As described in paragraph 2.2, several studies identified negative 317 

effects on calcification processes due to OA (Kroeker et al., 2010; Rodolfo-Metalpa et al., 2011). Studies 318 

conducted on corals and bivalves also identified modifications in regulation of proteins related to calcification 319 

and biomineralization upon exposure to low-pH levels (ranging between 7.96 and 7.19). Different 320 

calcification-related proteins were investigated in these works, such as calmodulin, carbonic anhydrases 321 

(CAs) and transporters of calcium, bicarbonate and hydrogen ions. In specimens of A. millepora exposed for 322 

3 days at pH 7.96 and 7.86, calcification was not affected by acidified conditions except for CAs which were 323 

found down-regulated. Furthermore, genes encoding proteins involved in skeletal organic matrix have been 324 
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observed to be either up- or down-regulated (Moya et al., 2012). Down-regulation of gene encoding for 325 

proteins involved in calcification and biomineralization was observed in C. hongkongensis larvae maintained 326 

at pH 7.9 for 35 d while at lower pH (7.6) these proteins were slightly up-regulated (Dineshram et al., 2013). 327 

Similarly, an increase in calcification-associated proteins following low pH exposure (7.6) was reported in the 328 

same species (Dineshram et al., 2015). In the scleractinian coral P. damicornis exposed for 21 days to 3 329 

different low pH values (7.75, 7.42 and 7.19), an up-regulation of genes encoding HCO3
- transports, Ca2

+ 330 

plasma membrane ATPase and CAs was found at higher pH (7.75 and 7.42) and a down-regulation was 331 

observed at the lowest (7.19) except for an extracellular CA that resulted up-regulated. In the same 332 

experiment, genes encoding proteins related to skeletal organic matrix appeared up-regulated (Vidal-Dupiol 333 

et al., 2013). Calcium homeostasis could be affected by acidified environments (Dineshram et al., 2013) 334 

altering calcification by influencing the central calcium signaling pathways (Moya et al., 2012). The 335 

enhancement of proteins involved in calcification and biomineralization has a key role in mitigate the impacts 336 

associated with acidified conditions (Dineshram et al., 2015; Vidal-Dupiol et al., 2013). Vidal-Dupiol et al. 337 

(2013) hypothesized that the upregulation of ion transporters could increase ion concentration leading to 338 

the maintenance of calcification efficiency or the aragonite saturation state in less favorable conditions. 339 

While a down-regulation in such genes causes decline in calcification rate. It is important to notice that 340 

calcification processes require a high amount of energy therefore, if energetic metabolism is increased by 341 

low-pH also the calcification rate could improve (Dineshram et al., 2015; Vidal-Dupiol et al., 2013). 342 

Furthermore, down-expression of structural protein could suppress metabolism either at specific and general 343 

level (Moya et al., 2012), while induction of proteins related to skeleton formation and composition may 344 

sustain structural alterations and local changes in nucleation, cytosol growth inhibition and orientation 345 

(Dineshram et al., 2013; Vidal-Dupiol et al., 2013). The differences in response of skeleton proteins suggests 346 

a specific and unique role for each protein in mineral deposition which can lead to an enhancement of 347 

calcification in some sites and an inhibition in others (Moya et al., 2012). 348 

Another pathway influenced by low pH exposure is cytoskeleton regulation. Cytoskeleton is a dynamic 349 

filamentous protein structure surrounding cells which has mechanical and structural functions, allows 350 
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communication and exchanges with the external environment and is involved in cell division processes 351 

(Alberts et al., 2008). Alteration of the cytoskeletal architecture could affect cell stability and health and has 352 

been seen associated with some diseases, including neurological disorders (Muñoz-Lasso et al., 2020).  353 

Studies on Mollusca and Annelida described an increase in cytoskeleton protein expression upon low-pH 354 

exposure. Up-regulation of paramyosin and calponin was documented in the marine worm P. dumerilii upon 355 

exposure to pH 7.8 for 7 d (Wäge et al., 2016). Induction of proteins involved in cytoskeleton regulation were 356 

revealed in the pacific oyster C. gigas upon exposure to pH 7.6 for 31 d (Cao et al. 2018). Similarly, cytoskeletal 357 

proteins were up-regulated in C. hongkongensis larvae after 35 d of exposure to pH 7.9 and 7.6 (Dineshram 358 

et al., 2013) but not after 19 d (Dineshram et al., 2015). The increase in cytoskeletal protein production 359 

suggests a compensatory response to acidified environments that could cause positive cytoskeletal outcome 360 

(Cao et al., 2018; Dineshram et al., 2013). 361 

The immune system is a network of numerous components and processes, which allows organisms to deal 362 

with diseases, infections and pathogens. It is fundamental for survival and its alterations could have 363 

tremendous consequences on health (Alberts et al., 2008). This system seems to be affected by low pH 364 

conditions (pH range 7.8–6.5) in either Mollusca or Annelida. A down-regulation of immune-related genes 365 

was documented in the polychaete P. dumerilii (pH 7.8, 7 d) (Wäge et al. 2016) and in the Pacific oyster C. 366 

gigas (pH 7.6, 31 d) (Cao et al., 2018). In the mantle of the Yesso scallop Patinopecten yessoensis 4 genes 367 

were modulated after 24 h of exposure to pH 7.5 and 6.5 (Zhu et al., 2020). In the short term the first 368 

proteomic response could be an enhancement of some immune proteins to activate defenses to cope with 369 

low pH but then, this process might imply a too elevated energy cost and thus be abolished. The suppression 370 

of proteins involved in immune responses may lead to a higher vulnerability to other stressors, such as 371 

pathogens, and to an impairment of the immune system (Cao et al., 2018). 372 

Internal acid-base homeostasis maintains cellular and extracellular pH in the optimal range and is crucial to 373 

guarantee physiological functions in organisms. Acid-base balance was positively influenced by low pHs (7.6, 374 

7.5 and 7.3) in Polychaeta and Bivalvia in long term experiments (16 and 28 days). Specimens of H. diversicolor 375 

exposed to pH 7.6 and 7.3 for 28 d showed an increased CA activity, which is involved in acid-base regulation 376 
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in non-calcifying marine invertebrates (Freitas et al., 2016a). The same trend was observed in mRNA 377 

expression of C. gigas’ soluble adenylyl cyclase (sAC), an oyster acid-base sensor, after 16 days to pH 7.5 378 

except in male gonads, where sAC was down-regulated (Wang et al., 2016). Acid-base regulation is essential 379 

for cellular homeostasis maintenance and an enhancement in this process could allow organisms to an 380 

increased metabolic capacity and to the preservation of cell acid-base balance (Freitas et al., 2016a). On the 381 

other hand, the decrease in sAC expression in oyster male gonads could endanger the fertilization process 382 

because sAC in oyster sperm is highly involved in maturation, motility regulation and the acrosome reaction. 383 

 384 

2.2.2. Cellular and molecular responses affecting cell integrity 385 

Table 2 summarizes the molecular and cellular mechanisms affecting cell integrity, such as: antioxidant 386 

response, signaling pathways, protein synthesis and degradation, DNA replication, cholinergic functions and 387 

apoptosis, described until now in various tissues/organs or whole organism. 388 

Antioxidant activity prevents the potential negative effects of reactive molecules, such as reactive oxygen 389 

species (ROS), that are naturally produced during normal cell activity (Snezhkina et al., 2019). Stress 390 

conditions could result in a higher ROS production or a weakening antioxidant response causing cell damage 391 

(Burton and Jauniaux, 2011). Low seawater pH (range 7.8–6.6) affected the oxidative status in Mollusca, 392 

Echinodermata, Arthropoda and Annelida by increasing antioxidant responses. This was documented in the 393 

oyster C. gigas (pH 7.6, 31 d) (Cao et al., 2018), in C. hongkongensis larvae (pH7.6, 19 d) (Dineshram et al., 394 

2015), in the shrimp L. vannamei (pH 7.8, 7.6, 7.4, 7.2 and 7.0, 49 d) (Muralisankar et al., 2021) and in immune 395 

cells of specimens of P. lividus inhabiting naturally acidified sites (pH 7.8) (Migliaccio et al., 2019). In the 396 

polychaetes Diopatra neapolitana and H. diversicolor antioxidant enzymes activity responded differentially 397 

to pH (pH range 7.6–7.1, 28 days). In D. neapolitana superoxide dismutase (SOD) activity increased at all pH 398 

levels while catalase (CAT) only at two lower pH (7.3 and 7.1) and glutathione S-transferases (GSTs) at pH 7.3 399 

(Freitas et al., 2016b). In H. diversicolor SOD activity increased at pH 7.3 while no changes were observed at 400 

pH 7.6, CAT activity was not altered while GSTs increased at both pHs (Freitas et al., 2016b). Limited changes 401 

in oxidative status in Platynereis spp. upon exposure to low pH conditions were reported (Valvassori et al. 402 
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2019). Since SOD, GST and CAT are the major antioxidant enzymes preventing oxidative damage (Halliwell, 403 

1974), the enrichment on these enzymes can be considered a defense mechanism put in place by organisms 404 

to prevent and protect themselves from cellular damage caused by ROS. 405 

Signaling pathway represents the way to communicate between cells and consists in a sequence of cascade 406 

chemical reactions which control cell function. It is activated by an external molecule which binds to a cellular 407 

receptor initiating the communication (Alberts et al., 2008). Some of these processes were affected by low-408 

pH conditions (pH 7.8– 7.2) in Mollusca and Cnidaria. In the scleractinian coral P. damicornis genes involved 409 

in signal transduction resulted down-regulated at lower pH (7.42 and 7.19) while up-regulated at higher 410 

values (7.75) upon exposure for 21 d (Vidal-Dupiol et al., 2013). Larvae of the pacific oyster C. hongkongensis 411 

displayed a decrease in signal transduction proteins at pH 7.6 in 19 d (Dineshram et al., 2015). In the oyster 412 

C. gigas various signaling pathways were enriched by CO2 exposure. The [HCO3
-]/CgsAC/cAMP signaling 413 

pathway was stimulated by a 16-d exposure to pH 7.5 (Wang et al., 2016) and the calcium signaling pathway 414 

increased at pH 7.5 and 7.6 at different time points (7, 31 and 60 days) (Cao et al., 2018; Wang et al., 2020). 415 

Depending on the modified signaling pathway and life stage different effects could be expected. As for 416 

instance, the decrease in neuroglian expression in pacific oyster larvae exposed to pH 7.6 could lead to an 417 

abnormal neuronal development (Dineshram et al., 2015). Quite the opposite, the increase in calcium 418 

signaling pathway detected in C. gigas could play an essential role in homeostasis maintenance and its ability 419 

to deal with environmental CO2 fluctuations (Wang et al., 2020). 420 

The amount of protein inside cells is maintained constant over time by balancing their synthesis and 421 

degradation. This continuous turnover is regulated by the cells and depends also on their division cycle (Alber 422 

and Suter, 2019). During cell division, a crucial role is played by DNA replication which has to guarantee the 423 

correct genetic information transfer on the daughter cells (Alberts et al., 2008). Both protein synthesis and 424 

degradation and DNA replication were affected by low pH (7.6-7.8) in mollusks, worms and sea urchins (Cao 425 

et al., 2018; Migliaccio et al., 2019; Wäge et al., 2016). The oyster C. gigas exposed for 31 d at pH 7.6 showed 426 

a down-regulation of proteins involved in protein synthesis and degradation (Cao et al., 2018). On the other 427 

hand, in the polychaete P. dumerilii genes encoding proteins related to the synthesis of proteins and DNA 428 
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replication were up-regulated after 7 d of exposition to pH 7.8 (Wäge et al. 2016). Moreover, in specimens 429 

of P. lividus inhabiting naturally acidified sites (pH 7.8) genes encoding proteins involved in amino-acid 430 

degradation were up-regulated (Migliaccio et al., 2019). 431 

As part of the central nervous system, the cholinergic signaling is involved in numerous brain functions (Das 432 

et al., 2005) as well as in development (Abreu-Villaça et al., 2011). Alterations in the cholinergic complex are 433 

associated with changes in behavior and diseases in organisms (SawKatare et al., 2020; Bianchini et al., 2022). 434 

In the Yesso scallop Patinopecten yessoensis the cholinergic pathway was differently regulated in response 435 

to pH 7.5, 6.5 over time (0, 3, 6, 12 and 24 h). All the ten P. yessoensis’ cholinesterase genes (PyChEs) targeted 436 

resulted differentially expressed in specimens exposed to low pH compared to controls and most of them 437 

were found initially up-regulated suggesting the involvement in an acute response towards low-pH 438 

conditions (Xing et al., 2021). 439 

Apoptosis represents another crucial pathway to maintain internal homeostasis and its excessive or 440 

insufficient regulation may have serious consequences on organisms, such as occurrence of tumors or 441 

autoimmune diseases as described in humans (Alberts et al., 2008). An up-regulation of proteins involved in 442 

programmed cell death, apoptosis, was reported at low pH exposure in C. gigas after 31 d to pH 7.6 (Cao et 443 

al., 2018). 444 

All former evidences suggest that low pH conditions affect several cellular responses with compensatory 445 

mechanisms and detrimental effects based on time of exposure (short- vs long-term), range of pH and 446 

sensitivity of the selected species and cell investigated. At the cellular level there are also other mechanisms 447 

conferring tolerance/resistance towards changes in the external environment and particularly relevant are 448 

those at membrane level. It stands out the adenosine triphosphate (ATP)-binding cassette (ABC) transporters 449 

involved in drug and/or xenobiotic resistance, already well known in numerous taxa including marine species. 450 

Their role towards acid stress tolerance has recently attracted the attention of the scientific community since 451 

they can confer resistance to acid stress conditions which are those natural marine species are facing in OA 452 

scenarios. Here we aim to review the current knowledge on ABC transport proteins and recent stimulating 453 

findings on their involvement in acid stress resistance in some organisms. 454 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19 
 

 455 

3. ATP-binding cassette (ABC) transporters and their involvement in acid stress resistance 456 

ABC transporters are a large protein superfamily highly conserved across taxa (Li 2004; Annilo et al., 2006; 457 

Rea 2007; Jeong et al., 2017). ABC efflux proteins act in many cases as transmembrane pumps which use the 458 

energy from ATP hydrolysis for their activity. They control the trafficking of chemicals across membranes and 459 

regulate cellular processes, such as DNA repair (Goosen and Moolenaar, 2001) and translational regulation 460 

(Chakraburtty, 2001). ABC transporters fulfill cellular functions in nutrient uptake, protein synthesis 461 

regulation and translocation, and cytoplasmic pH control (Chen et al., 2006; Igarashi and Kashiwagi, 1999; 462 

Sangari et al., 2010; Schinkel et al., 1994). By transferring substances, they contribute to maintain cellular 463 

equilibrium conditions. ABC transporters are located in plasma and intracellular membranes and can be 464 

organized as full transporters with two nucleotide-binding (with Walker A and B domains and a peculiar 465 

signature motif) and transmembrane domains (with α-helix transmembrane segments), or as half 466 

transporters, containing one nucleotide-binding and one transmembrane domain (Hyde et al., 1990). A 467 

variety of chemicals can act as substrates, such as nutrients, xenobiotics and other exogenic compounds, 468 

endogenous compounds and metabolites of endogenous and exogenous compounds including metabolized 469 

drugs and xenobiotics (Deeley et al., 2006; Gottesman and Pastan, 1993; Igarashi and Kashiwagi, 1999). The 470 

transfer across extra- and intra-cellular membranes influences substrate bioavailability (Ayrton and Morgan, 471 

2001; Dietrich et al., 2003).  472 

ABC transporter subfamilies ABCA – ABCG were found in all animal taxa; subfamily ABCH was so far found 473 

only in one vertebrate species, the zebrafish (Danio rerio) (Dean and Annilo, 2005; Popovic et al., 2010); 474 

subfamily ABCJ was recently, proposed as separate group including nine proteins in the mosquito Aedes 475 

aegypti (Figueira-Mansur et al., 2020). ABCA subfamily paralogs are mainly involved in the transfer of lipids 476 

across cellular membranes (Dassa and Bouige, 2001) while ABCB subfamily, as for instance the ABCB1 477 

transporter, known as P-glycoprotein, plays an important role in multidrug and multixenobiotic resistance 478 

(MDR and MXR, respectively) by regulating also the entrance of drugs and xenobiotics, thus identified as 479 

phase 0 of cellular biotransformation (Homolya et al., 1993). They have low specificity to substrates because 480 
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of a wide binding cavity and a great flexibility (Aller et al., 2009) and can translocate various compounds with 481 

moderate hydrophobicity, low molecular weight and positive or neutral residues (Higgins, 2007; Litman et 482 

al., 2001; McDevitt and Callaghan, 2007). This is considered an adaptive mechanism, which also confers 483 

higher resistance to multiple chemical stressors and it is recognized as the first line of cellular defense (Epel 484 

et al., 2008). Members of the large ABCC subfamily generally transport metabolites, eliminating modified 485 

endogenous and exogenous compounds from cells (Cole and Deeley, 1998; Deeley et al., 2006; Haimeur et 486 

al., 2004). Functions of the subfamily ABCD paralogs are largely unclear; some of them were found to be 487 

involved in the uptake of peroxisome fatty acid and are supposed to have important physiological roles 488 

(Annilo et al., 2006; Baker et al., 2015). Members of the subfamilies ABCE and ABCF participate in the 489 

regulation of protein synthesis (Chen et al., 2006), ABCF paralogs are furthermore involved in ribosome 490 

assembly and protein transduction (Annilo et al., 2006). The ABCG and ABCH subfamilies show high structural 491 

similarity but the functions of the ABCH subfamily are little known (Dean and Annilo, 2005; Popovic et al., 492 

2010). 493 

ABC transporters from the ABCB, ABCC and ABCG subfamilies (ABCB1, ABCC1, ABCC2, ABCG2) were found to 494 

be involved in MDR of cancer cells (Gros et al., 1986; Juliano and Ling, 1976; Roninson et al., 1984) and healthy 495 

tissues (Leslie et al., 2005); orthologs of these transporters were observed to confer MXR, a term primarily 496 

used for the resistance of aquatic taxa against toxicants in their environment (Bard, 2000; Kurelec, 1992; 497 

Epel, 1998; Hamdoun et al., 2004; Luckenbach and Epel, 2008; Sun et al., 2017). By providing a cellular stress 498 

response as part of the MDR and MXR systems, they limit the intracellular accumulation of toxic compounds 499 

(Annilo et al., 2006; Corsi and Marques-Santos, 2018). Such involvement of ABC transporters in MXR 500 

processes in aquatic species resulted in a prominent ecotoxicological relevance (Corsi and Marques-Santos, 501 

2018; Epel et al., 2008). Overviews on marine taxa and life stages, in which ABC transporters have been 502 

investigated in MXR functioning, but also in other contexts, are given in Table 3 and Figure 3. 503 

MDR/MXR related ABC transporters generally recognize a wide range of chemically diverse compounds as 504 

substrates that they translocate across cellular membranes (Higgins, 2007; Litman et al., 2001; McDevitt and 505 

Callaghan, 2007, Aller et al., 2009, Leslie et al., 2005). Other paralogs from these subfamilies show more 506 
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substrate specificity, limiting transmembrane translocation to certain physiologically relevant compounds, 507 

such as for instance the bile acid transporter ABCB11 (Gerloff et al., 1998, Cai et al., 2001). 508 

Cellular stress responses carried out by the ABC proteins result from an up regulation of the protective and 509 

detoxifying corresponding genes (Epel et al., 2008). Therefore, the MXR constitutes a mechanism of 510 

adaptation for aquatic organisms that enables them to live and growth in a polluted environment. A 511 

relationship between exposure to xenobiotics and marine toxins and the ABC genes expression level was 512 

documented (Huang et al., 2015; Tanaka et al., 2002). MDR genes are also induced by other stress signals, as 513 

heat shock, inflammation, hypoxia, UV and X irradiation and exposure to carcinogens (Epel et al., 2008). 514 

In mollusks, gill ABCB- and ABCC-types transporters manage the trafficking of nutrients and prevent the 515 

entrance of toxic compounds in the body, so they represent an important external barrier between the 516 

environment and the organism and have a crucial role in the maintenance of homeostasis in sensitive tissues 517 

(Luckenbach and Epel, 2008). In addition, a comparative genetic study between shallow and abyssal mussel 518 

genome showed that these proteins have a role in adaptation to the deep-sea environment (Sun et al, 2017). 519 

Roepke et al. (2006) described that ABC proteins contribute to oocyte maturation in the sea stars Patiria 520 

miniata (formerly known as Asterina miniata) and Pisaster ochraceous. The ABC pumps in sea urchin 521 

gametes, embryos and pluteus play an important biochemical role in early life stage development. They 522 

constitute a defense barrier against toxicants and contribute to the homeostasis of cell membranes. Also, 523 

they carry endogenous signaling molecules essential for embryonic development and may be involved in 524 

gametes fusion (Corsi and Marques-Santos, 2018). 525 

In bacterial cells the ABC transporters showed to play a role in the tolerance to acid stress conditions. Survival 526 

of bacteria - such as the Cyanobacteria Synechocystis sp. (Matsuhashi et al., 2015; Tahara et al., 2012; 2015; 527 

Uchiyama et al., 2019) and Anabaena sp. (Shvarev and Maldener, 2020) or the Firmicutes Lactococcus lactis 528 

(Zhu et al., 2019) - in acidified environments could be granted by the presence of these pumps. Some 529 

researchers have suggested that the tolerance to acid stress in bacteria is due to the transport of substances, 530 

like ATP and carbohydrates, by the ABC proteins (Zhu et al., 2019). The cyanobacterium Synechocystis sp. 531 

PCC 6803 was selected for its remarkable acid stress tolerance and results revealed that several ABC genes 532 
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might be involved. In this species, Tahara et al. (2012; 2015) found that ABC transporter subunits Slr1045, 533 

Sll0751 and Sll1041 were essential for survival in acidic environments (tested at pH 6.0 units). Particularly, 534 

they observed that these three proteins form a lipid transport complex that is involved in stress tolerance. 535 

Matsuhashi et al. (2015) also recognized Slr2019 as an important ABC protein for acid stress tolerance (pH 536 

6.0). This is a homologue to MsbA in Escherichia coli which is an inner membrane transporter involved in the 537 

export of phospholipids and lipid A, the endotoxic component of the lipopolysaccharides. Even though 538 

expression of Slr2019 gene was not affected and the amount of Slr2019 protein was not increased under acid 539 

stress, this protein was found to be important for the survival and growth in acidified conditions. The 540 

extracellular lipid transport could represent a mechanism carried out by bacteria forming a layer able to 541 

protect cells. A similar process occurs in bile ducts of mammals where phosphatidylcholine (PC) was flopped 542 

out from the hepatocytes by a P- glycoprotein, the ABCB4 transporters. Once in the biliary tree, PCs form a 543 

mixed micelle with the bile acids to neutralize its toxicity towards hepatocytes (Barrios and Lichtenberger, 544 

2000; Borst et al., 2000; Linton, 2015; Nicolaou et al., 2012). 545 

Still within Synechocystis sp. PCC 6803, Uchiyama et al. (2019) suggested another ABC protein complex 546 

engaged in acid stress tolerance (at pH 6.0), composed by three proteins: Sll1180, facilitating growth of 547 

bacterial cells in acid conditions and which is upregulated after acid treatment, Sll1181, homologous to HlyD 548 

of Escherichia coli, and Slt1270, that has homology with TolC of E. coli and transports the negatively charged 549 

Sll1951 out of the cell. Once outside the cell, Sll1951 might attract H+ and constitute an essential factor in 550 

acid stress tolerance. Recently, the mechanisms of resistance to low pH have also been studied in the 551 

filamentous cyanobacterium Anabaena sp. PCC 7120 analyzing the role of gene all5304 in acid stress 552 

tolerance (Shvarev and Maldener, 2020). Protein All5304 shows homology with 100% probability to Sll1181 553 

from Synechocystis sp., which is an ABC transporter involved in acid stress resistance (Uchiyama et al., 2019), 554 

as previously mentioned. Through an experiment of DNA manipulation, in which all5304 gene has been 555 

silenced, Shvarev and Maldener (2020) have described the inability for the mutant strain to survive in a low-556 

pH environment (pH 6.0). These results evidenced that the all5304 gene plays a role in acid tolerance by 557 

regulating a possible component of a complex exporting an effector protein that takes part in the formation 558 
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of extracellular structures involved in resistance to low pH. Another species examined for its acid stress 559 

tolerance (pH 4.0) is Lactococcus lactis. Zhu et al. (2019) indicated overexpression of genes encoding for 560 

MsmK, a sugar ABC transporter ATP-binding protein, DppA, an oligopeptide ABC transporter substrate-561 

binding protein, and RbsA and RbsB, that compose (with RbsCD protein) a D-ribose ABC transporter 562 

substrate-binding proteins, demonstrating the involvement of ABC pumps in L. lactis acid stress tolerance. 563 

To the best of our knowledge, just one study has investigated changes in genes encoding ABC transporters 564 

in oysters after exposure to acid stress (Wang et al., 2020). Wang et al. (2020) have identified the up-565 

regulation of ABC transporter genes in hemocytes of the Pacific oyster C. gigas chronically exposed to high-566 

CO2 levels. Analysis of the gene ontology (GO) distribution of differentially expressed genes has shown that 567 

ABC genes affected by long-term exposure to low pH belong to two different GO categories. In particular, 568 

ABC transporter G family member 14 and multidrug resistance protein 1 belong to the membrane and to the 569 

heterocyclic compound binding category (GO:0016020 and GO:1901363), and ABC subfamily A member 1 570 

and 3 belong to the heterocyclic compound binding category (GO:1901363). 571 

These examples show that the knowledge of mechanisms of acid stress tolerance may contribute to 572 

understand if and how marine species can cope with OA, which would be crucial to define future scenarios 573 

on the impact of OA on aquatic life. 574 

 575 

Final remarks 576 

Studies on natural acidified environments show that low pH conditions influence different hierarchical scales 577 

of biological complexity, from the cellular and species level to populations, communities and ecosystems. 578 

The cellular processes most directly affected by decreased seawater pH are related to calcification, 579 

metabolism, immune function, and antioxidant responses that may impair physiological functions, growth, 580 

reproduction, and survival. Decreased seawater pH can result in weakening of the whole organism by 581 

affecting an organism’s internal homeostasis in a species-dependent manner. Indirectly, decreased seawater 582 

pH can also affects marine plants and animals’ intra-specific communication, feeding habits, defenses against 583 

predators (with impacts on predator-prey relationships), deeply modifying the structure of animal and plant 584 
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communities. Certain marine species appear to be able to cope with lowered pH conditions due to the action 585 

of a cellular defense mechanism based on ABC transporters. Acid stress tolerance conferred by these proteins 586 

may be related to the transport of certain substances, including ATP, carbohydrates, lipids and proteins. 587 

Further information will be essential to understand the cellular mechanisms taking part in resistance and 588 

adaptation to acidified environments in order to unravel consequences of OA. 589 
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Figure 1_Families of marine invertebrates investigated in OA effects studies in situ (a) and in bench-scale settings (b). 1130 
Colors refer to: Polychaeta (light green), Bivalvia (yellow), Gastropoda (orange), Anthozoa (red), Ophiuroidea (pink), 1131 
Echinoidea (dark blue), Malacostraca (light blue) and Hexanauplia (dark green). 1132 

 1133 

2-column fitting image, color online only  1134 
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 1135 

Figure 1_ Conceptual representation of effects of low-pH/high-CO2 environment at different levels, from whole 1136 
ecosystem communities down to single species and cellular affected pathways 1137 

 1138 

2-column fitting image, color online only  1139 
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Table 1_Main pathways affected in marine invertebrates subjected to acidified water conditions. Responses at cellular 1140 

and molecular level affecting the whole organism, both in situ and in the laboratory. 1141 

Species 
Situ/ 

Lab 
pH Method Response Reference 

Metabolic pathways 

Acropora 

millepora 

In vivo 7.96 

7.86 

Transcriptomics Down-regulation of 37 metabolic genes (29 of 

which are differentially expressed at higher 

acidic condition only) 

Moya et al., 2012 

Crassostrea 

gigas 

In vivo 7.60 Proteomics Down-regulation of protein involved in 

carbohydrate and lipid metabolism 

Cao et al., 2018 

Crassostrea 

hongkongensis 

(larvae) 

In vivo 7.60 

7.90 

Proteomics Down-regulation of enzymes involved in energy 

metabolism 

Dineshram et al., 

2013 

In vivo 7.60 Proteomics Up-regulation of several proteins involved in 

metabolism and energy production 

Dineshram et al., 

2015 

Hediste 

diversicolor 

In vivo 7.30 

7.60 

Biochemical 

analysis 

Increasing in the metabolic rate, measured as 

electron transport system activity (oxygen 

consumption) 

Freitas et al., 

2016a 

Litopenaeus 

vannamei 

In vivo 7.00 

7.20 

7.40 

7.60 

7.80 

Biochemical 

analysis 

Higher levels of GOT and GPT Muralisankar et 

al., 2021 

Platynereis 

dumerilii 

In vivo 7.80 Transcriptomics Down-regulation of proteins involved in energy 

metabolism 

Wäge et al., 2016 

Pocillopora 

damicornis 

In vivo 7.19 

7.42 

7.75 

Transcriptomics Up-regulation of genes related to energy 

production 

Vidal-Dupiol et al., 

2013 

Paracentrotus 

lividus (immune 

cells) 

In situ  7.80 Biochemical 

analysis 

No differences in metabolic rate Migliaccio et al., 

2019 

Paracentrotus 

lividus (immune 

cells) 

In situ 7.80 Proteomics Up-regulation of most enzymes involved in 

ammonium metabolism 

Various response of proteins involved in carbon 

metabolism, some enzymes were up-regulated 

and other were down-regulated 

Up-regulation of protein involved in pyruvate 

and propanoate metabolism 

Migliaccio et al., 

2019 

Crassostrea 

hongkongensis 

(larvae) 

In vivo 7.60 

7.90 

Proteomics Either up- or down-regulation of proteins 

involved in general metabolism 

Dineshram et al., 

2013 
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Calcification/biomineralization and related processes 

Acropora 

millepora 

In vivo 7.96 

7.86 

Transcriptomics Complex effects, ion transporter proteins 

showed slight non-significant changes in 

transcription while carbonic anhydrases were 

down-regulated 

Similar number of genes encoding proteins of 

the skeletal organic matrix were up- or down-

regulated 

Moya et al., 2012 

Crassostrea 

hongkongensis 

(larvae) 

In vivo 7.60 

7.90 

Proteomics Opposite effects on calmodulin depending on 

pH, down-regulation at pH 7.9 and slight up-

regulation at pH 7.6 

Dineshram et al., 

2013 

In vivo 7.60 Proteomics Up-regulation of calcification-related proteins Dineshram et al., 

2015 

Pocillopora 

damicornis 

In vivo 7.19 

7.42 

7.75 

Transcriptomics Up-regulation of genes involved in calcification 

at higher pH (7.75, 7.42) and down-regulation 

at the extreme level of pH (7.19) except for an 

extracellular CA that was up-regulated 

Up-regulation of genes encoding skeleton 

organic matrix proteins 

Vidal-Dupiol et al., 

2013 

Cytoskeleton regulation 

Crassostrea 

gigas 

In vivo 7.60 Proteomics Up-regulation of proteins belonged to 

cytoskeleton regulation pathway  

Cao et al., 2018 

Crassostrea 

hongkongensis 

(larvae) 

In vivo 7.60 

7.90 

Proteomics Up-regulation of cytoskeletal proteins 

Either up- or down-regulation of proteins 

related to structure 

Dineshram et al., 

2013 

 

In vivo 7.60 Proteomics Down-regulation of proteins related to 

cytoskeletal functions 

Dineshram et al., 

2015 

Platynereis 

dumerilii 

In vivo 7.80 Transcriptomics Up-regulation of proteins involved in 

cytoskeletal function 

Wäge et al., 2016 

Immune system 

Crassostrea 

gigas 

In vivo 7.60 Proteomics Down-regulation of proteins involved in 

immune response 

Cao et al., 2018 

Patinopecten 

yessoensis 

(mantle) 

In vivo 6.50 

7.50 

Transcriptomics Various regulation of genes involved in innate 

immune response; some genes were up-

regulated at most time point whereas other 

were down-regulated 

Zhu et al., 2020 

Platynereis 

dumerilii 

In vivo 7.80 Transcriptomics Down-regulation of immune-related proteins Wäge et al., 2016 

Acid-base regulation 
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Hediste 

diversicolor 

In vivo 7.30 

7.60 

Biochemical 

analysis 

Increasing activity of CA Freitas et al., 

2016a 

Crassostrea 

gigas 

In vivo 7.50 Transcriptomics 

 

Up-regulation of CgsAC apart from in male 

gonad where is down-regulated 

Wang et al., 2016 

Abbreviations in the table: glutamic oxaloacetate transaminase (GOT); glutamic pyruvate transaminase (GPT); carbonic 1142 

anhydrase (CA); soluble adenylyl cyclase (sAC) 1143 
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Table 2_Main pathways affected in marine invertebrates subjected to acidified water conditions. Responses at cellular 1145 

and molecular level affecting the cell integrity, both in situ and in the laboratory. 1146 

Species 
Situ/ 

lab 
pH Method Response Reference 

Oxidative status 

Crassostrea 

gigas 

In vivo 7.6 Proteomics Up-regulation of proteins involved in the 

oxidative response 

Cao et al., 

2018 

Crassostrea 

hongkongensis 

(larvae) 

In vivo 7.6 Proteomics Up-regulation of proteins involved in cellular 

oxidative 

stress tolerance 

Dineshram et 

al., 2015 

Diopatra 

neapolitana 

In vivo 7.1 

7.3 

7.5 

Biomarkers Increasing activity of antioxidant enzymes, in 

particular SOD was higher in polychaetes 

exposed to all low pH values compared to 

control, CAT activity  increased in individuals 

exposed to pH values 7.3 and 7.1 and GSTs 

activity showed higher values only in organisms 

exposed to pH 7.3  

Freitas et al., 

2016b 

Hediste 

diversicolor 

In vivo 7.3 

7.6 

Biochemical 

analysis 

Increasing activity of antioxidant enzymes, in 

particular SOD activity was higher in organisms 

exposed to pH 7.3, CAT activity showed no 

differences among individuals exposed to 

different pH and GSTs activity increased in 

polychaetes exposed to both pH values 

Freitas et al., 

2016a 

Litopenaeus 

vannamei 

In vivo 7.0 

7.2 

7.4 

7.6 

7.8 

Biochemical 

analysis 

Higher levels of SOD, CAT and LPO in shrimps 

exposed to all low pH values compared to 

control 

Muralisankar 

et al., 2021 

Platynereis spp. In situ 7.8 – 6.6 Biomarkers Oxidative status was not affected Valvassori et 

al., 2019 

Paracentrotus 

lividus 

In situ 7.8 Proteomics 

Biochemical 

analysis 

Higher TAC 

Enrichment of enzymes involved in oxidative 

processes and increase in immune defense 

activity 

Migliaccio et 

al., 2019 

Signaling pathway 

Crassostrea 

gigas 

In vivo 7.5 Transcriptomics 

Biochemical 

analysis 

Stimulation of [HCO3
-]/CgsAC/cAMP signaling 

pathway 

Wang et al., 

2016 

Crassostrea 

gigas 

In vivo 7.6 Proteomics Up-regulation of proteins involved in calcium 

signaling 

Cao et al., 

2018 
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Crassostrea 

gigas 

In vivo 7.5 Transcriptomics Stimulation of calcium signal pathways Wang et al., 

2020 

Crassostrea 

hongkongensis 

(larvae) 

In vivo 7.6 Proteomics Down-regulation of signal transduction 

proteins 

Dineshram et 

al., 2015 

Pocillopora 

damicornis 

In vivo 7.19 

7.42 

7.75 

Transcriptomics Down-regulation of genes involved in signal 

transduction 

Vidal-Dupiol 

et al., 2013 

Gene and protein turnover  

Crassostrea 

gigas 

In vivo 7.6 Proteomics Down-regulation of proteins involved in protein 

synthesis and degradation 

Cao et al., 

2018 

Platynereis 

dumerilii 

In vivo 7.8 Transcriptomics Up-regulation of genes encoding proteins 

related to protein synthesis 

Wäge et al., 

2016 

Paracentrotus 

lividus 

In situ 7.8 Proteomics Up-regulation of proteins involved in amino-

acid degradation 

Migliaccio et 

al., 2019 

Platynereis 

dumerilii 

In vivo 7.8 Transcriptomics Up-regulation of genes encoding proteins 

involved in DNA replication processes 

Wäge et al., 

2016 

Cholinergic function 

Patinopecten 

yessoensis 

In vivo 6.5 

7.5 

Transcriptomics Up-regulation of 7 PyChEs genes and down-

regulation of the other 3 PyChEs genes; the 

different gene regulation seemed to be 

dependent on exposure time 

Xing et al., 

2021 

Apoptosis 

Crassostrea 

gigas 

In vivo 7.6 Proteomics Up-regulation of proteins involved in apoptosis Cao et al., 

2018 

Abbreviations in the table: superoxide dismutase (SOD); catalase (CAT); glutathione S-transferases (GSTs); lipid 1147 

peroxidation (LPO); total antioxidant capacity (TAC); carbonic anhydrase (CA); cholinesterase (ChE) 1148 
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Table 3_List of marine species where P-glycoprotein-like and multidrug-associated proteins have been identified. The 1150 

life stage, tissues and organs of studied organisms where the ABC proteins have been studied is also reported. 1151 

Species Life stage/ 

Tissue/organ 

Gene subfamily References 

Tethya aurantium - P-gp Kurelec, 1992 

Verongia aerophoba - P-gp Kurelec, 1992 

Geodia cydonium - P-gp Kurelec, 1992 

Mytilus edulis 

 

Embryos and larvae MDR McFadzen et al., 2000 

Mytilus californianus Gills ABCB, ABCC Luckenbach and Epel, 2008 

Mytilus galloprovincialis Gills, Mantle, Digestive 

gland 

P-gp Kurelec, 1992 

Urechis caupo 

 

 

Embryos and larvae MXR Hamdoun et al., 2002 

Asterina miniata 

 

 

Oocytes P-gp-like, MRP Roepke et al., 2006 

Pisaster ochraceous 

 

 

Oocytes P-gp-like, MRP Roepke et al., 2006 

Strongylocentrotus purpuratus 

 

 

Embryos ABCB1, ABCC1 Hamdoun et al., 2004 

Echinometra lucunter  Gametes and embryos 

 

ABCB1, ABCC1 Souzaet al., 2010 

Ciona intestinalis - ABCB1, ABCB11, 

ABCC1, ABCC2, ABCC4, 

ABCC10, ABCC12, 

ABCG2 

Annilo et al., 2006 

Petromyzon marinus Rope, Lips, Supraneural 

tissue, Neutrophils, 

Monocytes, Gil, Eye, Skin, 

Muscle, Intestine, Kidney, 

Liver 

ABCB1, ABCB11, 

ABCC1, ABCC2, ABCC3, 

ABCC4, ABCC5, ABCC7, 

ABCC8, ABCC9, 

ABCC10, ABCG2  

Ren et al., 2015 

Chelon labrosus Liver, Brain ABCB1, ABCB11, 

ABCC2, ABCC3, ABCG2 

Diaz de Cerio et al., 2012 

Dicenthrarchus labrax Liver ABCB1, ABCC1, ABCC2, 

ABCG2 

Ferreira et al., 2014b 

Mullus barbatus Liver MRP Sauerborn et al., 2004 
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Oncorhynchus mykiss Liver, Brain, Gonads, 

Kidney, Gills, Proximal 

Intestine, Distal Intestine 

ABCB1, ABCB11, 

ABCC1, ABCC2, ABCC3, 

ABCC4, ABCC5, ABCG2 

Lončar et al., 2010 

Plactichthys flesus Liver, Gills and Proximal 

intestine 

ABCB1b, ABCB11, 

ABCC1, ABCC2, ABCG2 

Costa et al., 2012 

Pleuronectes americanus - P-gp Chan et al., 1992 

Scophtalmus maximus Gills, Brain, Heart, Liver, 

Intestine, Muscle, 

Esophagus, Kidney 

P-gp, MDR Tutundjian et al., 2002 

Trematomus bernacchii Liver ABCB1, ABCC1, ABCC2, 

ABCC4, ABCC9 

Zucchi et al., 2010 

Abbreviations in the table: P-glycoprotein (P-gp); multidrug resistance (MDR); multixenobiotic resistance (MXR); multidrug 1152 
resistance-associated protein (MRP)  1153 
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 1154 

Figure 3_Families of marine species where P-glycoproteins/NDR-like genes have been identified. Colors refer to: Actinopterygii (light 1155 
green), Ascidiacea (yellow), Asteroidea (orange), Bivalvia (red), Cephalaspidomorphi (purple), Demospongiae (dark blue), Echinoidea 1156 
(light blue) and Polychaeta (dark green). 1157 

2-column fitting image, color online only 1158 
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