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Abstract 15 

Like many other regions in central Europe, Germany experienced sequential summer 16 

droughts from 2015-2018. As one of the environmental consequences, river nitrate 17 

concentrations have exhibited significant changes in many catchments. However, catchment 18 

nitrate responses to the changing weather conditions have not yet been mechanistically 19 

explored. Thus, a fully distributed, process-based catchment Nitrate model (mHM-Nitrate) 20 

was used to reveal the causal relations in the Bode catchment, of which river nitrate 21 

concentrations have experienced contrasting trends from upstream to downstream reaches. 22 

The model was evaluated using data from six gauging stations, reflecting different levels of 23 

runoff components and their associated nitrate-mixing from upstream to downstream. Results 24 

indicated that the mHM-Nitrate model reproduced dynamics of daily discharge and nitrate 25 

concentration well, with Nash-Sutcliffe Efficiency ≥ 0.73 for discharge and Kling-Gupta 26 

Efficiency ≥ 0.50 for nitrate concentration at most stations. Particularly, the spatially 27 

contrasting trends of nitrate concentration were successfully captured by the model. The 28 

decrease of nitrate concentration in the lowland area in drought years (2015-2018) was 29 

presumably due to (1) limited terrestrial export loading (ca. 40% lower than that of normal 30 

years 2004-2014), and (2) increased in-stream retention efficiency (20% higher in summer 31 

within the whole river network). From a mechanistic modelling perspective, this study 32 

provided insights into spatially heterogeneous flow and nitrate dynamics and effects of 33 

sequential droughts, which shed light on water-quality responses to future climate change, as 34 

droughts are projected to be more frequent. 35 

Keywords 36 
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Highlights:  38 

• The model reproduces nitrate dynamics and trends under changing weather 39 

conditions. 40 

• Nitrate dynamics show spatiotemporally varying responses to the sequential droughts.  41 

• Soil export decreases while in-stream retention efficiency increases in droughts.  42 
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1. Introduction 43 

Central Europe recently experienced sequential droughts in 2013, 2015, 2018 and 2019 44 

(Hanel et al., 2018; Hari et al., 2020), and droughts are projected to become more frequent 45 

and severe in the future (Hari et al., 2020; Spinoni et al., 2018). In Germany, mean annual 46 

temperature increased by 1.5°C from 1881-2018, with ca. 0.3°C of that increase occurring 47 

from 2014-2018 (UBA, 2019). Using an ensemble of climate-change scenarios, Huang et al. 48 

(2015) reported that most rivers in Germany will experience more frequent droughts. 49 

Excess nitrogen (N) input to surface water due to intensive anthropogenic activities (e.g., 50 

fertiliser application from arable land, wastewater from urban and industrial areas) has caused 51 

widespread environmental problems in recent decades. Nitrate turnover processes at the 52 

catchment scale are expected to change due to climate change (Hesse and Krysanova, 2016; 53 

Mosley, 2015; Whitehead et al., 2009), especially due to an increase in drought events 54 

(Ballard et al., 2019; Zwolsman and van Bokhoven, 2007).  55 

The influence of drought on N dynamics has received increasing attention in recent decades 56 

(e.g., Baldwin et al., 2005; Lutz et al., 2016; Mosley, 2015; van Vliet and Zwolsman, 2008; 57 

Whitehead et al., 2009; Yevenes et al., 2018; Zwolsman and van Bokhoven, 2007). Previous 58 

studies have reported decreasing nitrate concentration in response to drought, for example, in 59 

the Meuse River in western Europe (van Vliet and Zwolsman, 2008), which was attributed to 60 

less diffuse input during drought periods. During a drought in Chile from 2010-2015, 61 

Yevenes et al. (2018) found that nitrate concentration did not change in the upstream part of a 62 

study catchment but decreased downstream due to differences in discharge regime and nitrate 63 

sources from upstream to downstream. In line with these findings, numerous studies have 64 

reported that droughts can have spatiotemporally varying impacts on nitrate transport and 65 

transformation processes due to the heterogeneous changes in hydrological processes within 66 

catchments (e.g., Leitner et al., 2020; Lintern et al., 2018; Lutz et al., 2016). These studies are 67 
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generally based on data-driven and statistical analyses, but conclusions drawn from them are 68 

site-specific and often do not provide a full understanding of the factors that influence the 69 

effects of drought on nitrate dynamics and their spatial heterogeneity. Thus, it is crucial to 70 

identify the mechanisms that underlie water-quality trends under drought conditions to ensure 71 

future water quality and develop effective management strategies. Furthermore, the scientific 72 

understanding gained from analysing deterministic trends can help to predict future trends. 73 

However, how sequential droughts influence stream nitrate responses has not yet been 74 

mechanistically explored. Catchment-scale hydrological water-quality models are an 75 

alternative solution to identify the relations between changing weather conditions and 76 

changes in nitrate dynamics. These models can reproduce catchment nitrate dynamics and 77 

stream water concentrations well based on hydrological understanding, which can be 78 

transferred across catchments or climate conditions (Jiang et al., 2014; Wellen et al., 2015). 79 

Process-based water-quality models are rarely used to investigate spatiotemporal effects of 80 

historical droughts on N concentrations at the catchment scale. One of the challenges is to 81 

adequately represent the catchment spatial heterogeneity and the complexity of nitrate 82 

dynamic processes, which can become more important during droughts (Rode et al., 2010; 83 

Wellen et al., 2015). The fully distributed hydrological model mHM (Samaniego et al., 2010) 84 

introduces flexible multiscale catchment discretization and parameterization techniques. The 85 

mHM-Nitrate model was recently developed based on the hydrological mHM platform, 86 

including advanced descriptions of terrestrial and in-stream nitrate processes and 87 

consideration of agricultural management (Yang et al., 2018). The model has shown a robust 88 

ability to provide reliable, detailed information about terrestrial and in-stream nitrate 89 

dynamics (Yang et al., 2019a; Yang et al., 2019b; Yang et al., 2018). Thus, the model acts as 90 

a promising tool for mechanistic investigation of the impacts of drought on stream nitrate 91 

dynamics. In this study, we applied mHM-Nitrate to the Bode catchment (3200 km2, central 92 
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Germany; part of the German TERENO observatories). The catchment has large 93 

hydroclimatic, geophysical and landscape gradients and has experienced sequential droughts 94 

in recent years (2015-2018). The objectives of the study were to (i) simulate spatiotemporal 95 

nitrate dynamics in a mesoscale catchment with widely differing meteorological and land-use 96 

characteristics using the mHM-Nitrate model, (ii) evaluate mHM-Nitrate’s ability to 97 

represent recent drought-induced trends in nitrate concentration and (iii) analyse mechanisms 98 

that influence spatiotemporally varying river nitrate concentrations under sequential droughts.  99 

2. Materials and Methods 100 

2.1 Study area 101 

The Bode catchment is an intensively monitored and investigated mesoscale catchment in 102 

central Germany (Wollschläger et al., 2016) (Figure 1). The catchment includes the Harz 103 

Mountains in the southwest and lowland plains in the northeast. Elevation of the catchment 104 

ranges from 1142 m.a.s.l. at the Brocken (the highest peak of the Harz Mountains) to 70 105 

m.a.s.l. in the lowland area. Along the elevation gradient, the catchment has large gradients of 106 

meteorological, land use, soil type and geological characteristics. Annual mean precipitation 107 

varies from more than 1500 mm at the Brocken to ca. 500 mm in the lowland (Wollschläger 108 

et al., 2016). Mean annual potential evapotranspiration is around 710 mm in the mountain 109 

area while it is about 810 mm in the lowland area. Mean annual temperature ranges from 5℃ 110 

on the Brocken to 9.5℃ in the lowland, with a minimum of -0.6℃ (1.2℃) in January and a 111 

maximum of 16.8℃ (19.1℃) in July in the mountain and lowland area, respectively. The 112 

Bode catchment experienced sequential summer droughts from 2015-2018 according to the 3-113 

month standardized precipitation evapotranspiration index (Vicente-Serrano et al., 2010) 114 

(Figure S1). Land use in the mountain area is dominated by forest, with 10% pasture, 8% 115 

agriculture and 7% urban areas and lakes. The soil type in the Harz Mountains is dominated 116 
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by Cambisols. Land use in the lowland area is dominated by agriculture (81%), whose main 117 

crops are winter wheat, winter barley, rapeseed and sugar beet; forest and pasture cover 7% 118 

and 3%, respectively; and urban areas and small lakes cover the remaining 9% (Figure 1b). 119 

Chernozems are the main soil type in the lowland area.  120 

To classify typical landscape nitrate-leaching behaviour of agricultural soils, five dominant 121 

soil classes were identified (Figure 1c) according to the United States Department of 122 

Agriculture classification by combining soil properties and land-use types: sandy, silt loam, 123 

silty clay loam and loam. In the mountain forest area N input is restricted to atmospheric 124 

deposition and nitrate export amounts in this area are very low, we restricted the soil-land-use 125 

class N-balance analysis to agricultural soils. Then, these classes on the soil texture map were 126 

intersected with the land-use map, and the cells in which the area of the dominant soil-land-127 

use class exceeded 80% of the cell’s area were selected. Consequently, the lowland area was 128 

classified into Classes I-III, which represented the dominant loess area (silt loam soils), 129 

riverine area (loam soils) and highly sandy area (sandy soils), respectively. Two 130 

representative classes in the mountain area were selected: Class IV, which represented the 131 

mountain pasture area (silty clay loam soils), and Class V, which represented the mountain 132 

arable area (sandy soils).  133 
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 134 

Figure 1. The Bode catchment: (a) geographical location of the gauging stations and 135 

wastewater treatment plants, (b) land use types and (c) five dominant soil-land-use classes. 136 

2.2 Data availability  137 

Meteorological data were derived from the German Weather Service (DWD), including daily 138 

precipitation and daily mean temperature from 2000-2018. To create the meteorological 139 

forcing inputs for the model, the DWD observations were spatially interpolated into 1 km × 1 140 

km grid data, using the kriging method drifted by terrain elevation. This method considers the 141 

orographic effect on precipitation and temperature by using the elevation as an external 142 

variable for the interpolation (Hundecha and Bárdossy, 2004). Daily potential 143 

evapotranspiration data were calculated using the Hargreaves and Sammi (1985) method at 144 

the same spatial resolution. 145 

A terrain elevation model was obtained from the Shuttle Radar Topography Mission (SRTM) 146 

sensor (Jarvis, 2008). The digitized geological map and soil map, both at a scale of 147 
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1:1,000,000, were obtained from the Federal Institute for Geosciences and Natural Resources 148 

(BGR) (https://produktcenter.bgr.de, last accessed 1 June 2020). Land-cover data were 149 

derived from CORINE Land Cover 10 ha (https://gdz.bkg.bund.de/index.php/default/open-150 

data.html, last accessed 1 June 2020). These datasets were resampled to a spatial resolution of 151 

100 m × 100 m for model simulations. 152 

Data on mineral fertiliser and manure application rates and times, as well as crop rotations on 153 

arable land, were obtained from the model configuration of Yang et al. (2018) and 154 

agricultural authorities (https://llg.sachsen-anhalt.de/llg/, last accessed 10 April 2020). The 155 

total amount of fertiliser (mineral fertiliser and manure) applied depended on crop type and 156 

was assumed to be applied evenly throughout the fertilisation period. The resolution of the 157 

crop-rotation map was set to that of the land-use map for technical simplification due to the 158 

lack of detailed information. Point-source data were collected from Urban Wastewater 159 

Treatment Directive (UWWTD) sites for Germany 160 

(https://uwwtd.eu/Germany/uwwtps/treatment, last accessed 10 April 2020). Overall, 29 161 

wastewater treatment plants (WWTPs) were considered (Figure 1a). The original point-162 

source data were available only as annual total N load. Based on detailed authority data from 163 

large wastewater treatment plants’ outflow, values of NH4 were always below 1.0 mg N L-1 164 

(mostly below 0.1 mg N L-1) and total NO3 ranged between 2 and 12 mg N L-1. Higher NH4-165 

N values correspond to higher NO3-N values. Furthermore, NH4 is quickly processed to 166 

NO3 within the streams (Rahimi et al., 2020). Thus, in our catchment nitrate is the main form 167 

of N from WWTPs, and the daily inputs were obtained by dividing annual total N load by the 168 

number of days in that year. The percentage of point-source N load, which was calculated by 169 

dividing the annual total N load of the 29 WWTPs by the observed annual nitrate-N load at 170 

the catchment outlet station, equalled only 12% of the total N load in the Bode catchment 171 

during the study period. 172 

https://produktcenter.bgr.de/
https://gdz.bkg.bund.de/index.php/default/open-data.html
https://gdz.bkg.bund.de/index.php/default/open-data.html
https://llg.sachsen-anhalt.de/llg/
https://uwwtd.eu/Germany/uwwtps/treatment
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Daily discharge at six gauging stations (Meisdorf, Hausneindorf, Wegeleben, Nienhagen, 173 

Hadmersleben and Stassfurt) was provided by the State Agency for Flood Protection and 174 

Water Management of Saxony-Anhalt (LHW) (http://gldweb.dhi-wasy.com/gld-portal/, last 175 

accessed 10 April 2020). Nitrate concentration was measured twice weekly to twice monthly 176 

from 2000-2009 by LHW (http://gldweb.dhi-wasy.com/gld-portal/, last accessed 10 April 177 

2020) and daily from 2010-2018 by the Helmholtz Centre for Environmental Research – 178 

UFZ. Nitrate concentration observations were missing for 2015 and 2017-2018 at the 179 

Wegeleben station, and discharge observations were missing for 2017-2018 at the Nienhagen 180 

station (Figure 1a). 181 

2.3 mHM-Nitrate model description 182 

The mHM-Nitrate model is a grid-based catchment nitrate model that balances process 183 

complexity and model representation (Yang et al., 2018). Nitrate-process descriptions come 184 

mainly from the HYPE model (Lindström et al., 2010), with additional considerations of 185 

nitrate retention in deep groundwater, spatially distributed crop rotations and time-varying 186 

point-source inputs. The model includes the following hydrological processes: canopy 187 

interception, snow accumulation and melt, evapotranspiration, infiltration, soil moisture 188 

dynamics, runoff generation, percolation and flood routing along the river network. Nitrate 189 

processes are fully integrated into the hydrological cycling. Major N inputs include wet 190 

atmospheric deposition via precipitation, fertiliser and manure application and plant/crop 191 

residues. In each soil layer, four N pools are defined (i.e., active solid organic N, inactive 192 

solid organic N, dissolved organic N and dissolved inorganic N), along with soil N processes 193 

of denitrification, plant/crop uptake and transformations among the four N pools. In-stream N 194 

transformations include denitrification, primary production and mineralization. Governing 195 

equations of N transformations in the soil and the stream can be found in Supplementary 196 

http://gldweb.dhi-wasy.com/gld-portal/
http://gldweb.dhi-wasy.com/gld-portal/
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material (Text S1).  More detailed descriptions of the mHM-Nitrate model can be found in 197 

Yang et al. (2018), and source code can be found in Yang and Rode (2020). 198 

2.4 Model calibration and performance measurements  199 

The mHM-Nitrate model was set at a daily time step from 2000-2018 (2000-2003 was 200 

considered a warm-up period). We used daily discharge and nitrate concentration data from 201 

2010-2014 as calibration data. The nitrate concentration data used to validate model 202 

predictions included twice weekly to twice monthly grab sampling data for 2004-2009 and 203 

daily data for 2015-2018. To minimize the influence of the Rappbode reservoir in the upper 204 

Bode River, observed discharge and nitrate concentration at the Thale station were used as 205 

the input flow and nitrate concentration when setting up the model.   206 

Before calibrating the model, sensitivity analysis was performed to identify the most 207 

influential parameters using the Morris method (Morris, 1991). Parameter samples were 208 

generated using radial-based Latin-Hypercube sampling, and 200 trajectories were set to 209 

ensure convergence of the sensitivity analysis. Sensitivity indices (absolute mean (µ) and 210 

standard deviation (σ) of each parameter’s elementary effect) were calculated using the SAFE 211 

tool (Sensitivity Analysis For Everybody, (Pianosi et al., 2015)). The sensitivity ranking was 212 

obtained by plotting µ vs. σ for all parameters; the more to the right and top of the plot a 213 

point is located, the more the parameter is influential and interrelated with other parameters, 214 

respectively. The Dynamically Dimensioned Search (DDS) method (Tolson and Shoemaker, 215 

2007) was used to calibrate the most influential parameters, with 50,000 iterations as the 216 

terminal criterion. The detailed procedure of parameter sensitivity analysis and calibration 217 

can be found in Yang et al. (2018). 218 

The multi-objective function for calibration consisted of multi-criteria, multi-site and multi-219 

variable functions. We selected the Nash-Sutcliffe Efficiency (NSE) and the logarithm-220 

transformed NSE (lnNSE) as objective criteria, in which the latter gives more weight to low 221 
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values. The combined NSE and lnNSE as objective criteria increase the potential to find a 222 

robust parameter set for both high flow and low flow. In addition, six internal gauging 223 

stations were considered to calibrate discharge and nitrate concentrations simultaneously, 224 

with a weight-aggregated multi-variable function, as follows: 225 

𝑂𝐹𝑚𝑢𝑡𝑖𝑙−𝑣 = 𝑚𝑖𝑛{𝑤𝑞𝑂𝐹𝑚𝑢𝑡𝑖𝑙−𝑠
𝑞 + 𝑤𝑛𝑂𝐹𝑚𝑢𝑡𝑖𝑙−𝑠

𝑛 } (1) 

where 𝑂𝐹𝑚𝑢𝑡𝑖𝑙−𝑠
𝑞

 and 𝑂𝐹𝑚𝑢𝑡𝑖𝑙−𝑠
𝑛  denote multi-site objective functions, which are the 226 

unweighted sum of NSE and lnNSE across all six gauging stations for discharge and nitrate 227 

concentration, respectively; and 𝑤𝑞= 0.9 and 𝑤𝑛= 0.1 denote weights for discharge and 228 

nitrate concentration objectives, respectively. Three goodness-of-fit metrics were used to 229 

evaluate model performance: NSE, Kling-Gupta Efficiency (KGE) and Percentage BIAS 230 

(PBIAS) (e.g., Gupta et al., 2009; Moriasi et al., 2015).  231 

2.5 Trend analysis 232 

To further validate the mHM-Nitrate model capability to capture the trend caused by the 233 

drought, we compared the trend components between observed and simulated discharge and 234 

nitrate concentration. Observed discharge and nitrate concentration time series at the six 235 

gauging stations were first aggregated into a monthly time step to minimize effects of 236 

different observation frequencies. Missing values in the observed nitrate time series were 237 

interpolated using the Kalman smoothing method in the R package imputeTS (version 4.0.2) 238 

(R Core Team., 2020). Each time series, 𝑌𝑡 (i.e., monthly nitrate or discharge) was then 239 

broken down into trend, seasonality and random components using the following equation: 240 

 𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑒𝑡 (2) 

where 𝑇𝑡 is the trend component, 𝑆𝑡 is the seasonal component and 𝑒𝑡 is a random component, 241 

which represents residuals. 242 



13 

 

The trend component was determined from a moving average with a symmetric window 243 

(window size =19) using the STL function (Cleveland, 1990) in the R package stats (version 244 

4.0.2), which has been successfully used to analyse seasonal and long-term nitrate trends 245 

(Stow et al., 2014, 2015). The STL algorithm consists of two iterative loops, the inner and 246 

outer loops. In the inner loop, the time series is first de-trended: 𝑇𝑡 is extracted and smoothed 247 

with a local fitting with weights applied to the points that are fitted. Then the seasonal 248 

component is extracted using a low-pass filter. In the outer loop, the residuals 𝑒𝑡 is used to 249 

create robustness weights for the next round of the inner loop. These robustness weights 250 

reflect how extreme the residuals are. As the outliers in the time series  𝑌𝑡 result in large 251 

residuals, the outliers will have small or zero weight (Cleveland, 1990). The trends of 252 

monthly discharge and nitrate concentration were then normalized using min-max 253 

normalization. The significance of normalized trend components of monthly discharge and 254 

nitrate concentration was analysed by using Mann-Kendall trend test, which was performed 255 

using the mk.test function in the R package trend (version 1.1.4). 256 

3. Results 257 

3.1 Sensitivity results 258 

In this study, the mHM-Nitrate model included 72 parameters (61 for hydrological processes 259 

and 11 for nitrate processes). Simultaneous parameter sensitivity analysis showed that 260 

hydrological predictions were the most sensitive (Figure 2). Predictions of runoff were most 261 

sensitive to pet1 (the terrain-aspect correction of potential evapotranspiration), sm10 (the 262 

transfer function used to calculate soil saturated hydraulic conductivity) and sm17 (used to 263 

calculate the fraction of water that infiltrates through soil layers). 264 
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 265 

Figure 2. Simultaneous parameter sensitivity ranking of the 60 most influential parameters of 266 

the mHM-Nitrate model. The 16 labelled parameters (the top 10 hydrological and 6 nitrate 267 

parameters, respectively) are related to soil moisture (sm), evapotranspiration (pet), interflow 268 

generation (intfl), soil denitrification rates in the arable area (deni_as) and non-arable area 269 

(deni_s), mineralization rate in the arable area (miner_a), in-stream denitrification rates 270 

(deni_w) and in-stream primary production rate in the arable area (pprt_aw) and non-arable 271 

area (pprt_w). See Table 1 for additional definitions. The more a point is near the right and 272 

top of the plot, the more the parameter is influential and interrelated with other parameters, 273 

respectively, µ and σ is the absolute mean and standard deviation of each parameter’s 274 

elementary effect. Note the log-log scales. 275 

For nitrate submodel, the most sensitive parameters were the in-stream denitrification rate 276 

(deni_w) (for the entire Bode stream network) and two land-use parameters (deni_as and 277 
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deni_s) (soil denitrification rate in the agricultural and non-agricultural areas, respectively) 278 

(Table 1). In line with the results of Yang et al. (2018) and Cuntz et al. (2015), the two most 279 

influential parameters for hydrological predictions were pet1 and sm10. Generally, the larger 280 

the associated flux, the more influential the parameter became (Cuntz et al., 2015). Because 281 

pet1 is directly related to evapotranspiration, which is the largest flux after precipitation in 282 

the water-balance equation, it was more influential in summer. Parameter sm10, a multiplier 283 

for saturated hydraulic conductivity, which influences the infiltration rate, became more 284 

influential during precipitation and snowmelt. The soil-moisture-related parameter sm17 was 285 

influential, but it was not for Yang et al. (2018), which indicates a larger influence of 286 

infiltration in the lowland part of the Bode catchment than in the Selke sub-catchment. Based 287 

on the sensitivity analysis, the top ten hydrological parameters and top five nitrate parameters 288 

were selected for model calibration. 289 

Table 1. Description of parameters calibrated in the mHM-Nitrate model, their initial ranges 290 

and optimal values. 291 

Process Parameter Description Initial range 
Optimal 

value 

PET 
pet1 (Shevenell, 

1999) 

Parameter for aspect correction of 

input potential evapotranspiration 

data 

[6.99E-1, 1.30E+0] 9.80E-1 

Soil moisture 

 

sm10 (Cosby et al., 

1984) 

Transfer function parameter used to 

calculate soil saturated hydraulic 

conductivity 

[-1.20E+0, -2.85E-1] -8.42E-1 

sm17 (Brooks and 

Corey, 1964) 

Parameter that determines the 

relative contribution of precipitation 

or snowmelt to runoff  

[1.00E+0, 4.00E+0] 3.83E+0 

sm14 (Brooks and 

Corey, 1964) 

Fraction of roots used to calculate 

actual evapotranspiration in forest 

areas 

[9.00E-1, 9.99E-1] 9.73E-1 

sm16 (Brooks and 

Corey, 1964) 

Fraction of roots used to calculate 

actual evapotranspiration in 

permeable areas 

[1.00E-3, 8.99E-2] 5.63E-3 

sm4 (Cosby et al., 

1984) 

Pedotransfer function parameter 

used to calculate maximum soil 

moisture content 

[6.46E-1, 9.51E-1] 9.44E-1 

sm11 (Cosby et al., 

1984) 

Pedotransfer function parameter 

used to calculate soil saturated 

hydraulic conductivity 

[6.01E-3, 2.59E-2] 6.23E-3 

Percolation pc1 
Parameter used to calculate the 

percolation coefficient 
[0.00E+0, 5.00E+1] 1.44E+1 

Interflow 
 intfl4 Slow interflow recession coefficient [1.00E+0, 3.00E+1] 2.38E+1 

 Intfl5 Slow interflow exponent coefficient [5.00E-2, 2.99E-1] 5.55E-2 
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In-stream 

denitrification 
deni_w 

General parameter of in-stream 

denitrification rate (kg m-2 d-1) 
[1.00E-8, 5.00E-2] 2.99E-4 

Soil 

denitrification 

deni_as 
Soil denitrification rate on 

agricultural land (d-1) 
[1.00E-8, 1.10E-1] 3.35E-3 

deni_s 
Soil denitrification rate on non-

agricultural land (d-1) 
[1.00E-8, 1.10E-1] 5.50E-8 

In-stream 

assimilation 

pprt_aw 
Primary production rate in 

agricultural streams (kg m-3 d-1) 
[1.00E-8, 1.00E+0] 1.68E-1 

pprt_w 
Primary production rate in non-

agricultural streams (kg m-3 d-1) 
[1.00E-8, 1.00E+0] 1.11E-1 

3.2 Model performance 292 

The mHM-Nitrate model reproduced the observed discharge and nitrate concentration at the 293 

six gauging stations reasonably well. Results for three typical gauging stations (Meisdorf, 294 

Hausneindorf and Stassfurt) are shown in this article, while those for other stations can be 295 

found in the Supplementary material. These three stations reflect different combinations of 296 

dominant land use and weather conditions from the upstream to downstream parts of the 297 

Bode catchment. Meisdorf represents a forest-dominated area, while Hausneindorf represents 298 

a mixture of forest and agricultural areas ranging from mountains to lowlands. In contrast, 299 

Stassfurt represents the whole catchment with a mixture of forest and agricultural areas. 300 

Daily discharge predictions (Figure 3) and goodness-of-fit metrics (Table 2) showed that 301 

mHM-Nitrate captured discharge dynamics well during both calibration (2010-2014) and 302 

validation (2004-2009 and 2015-2018) periods (lowest NSE of 0.76 and 0.73, respectively). 303 

The model performed worse for the forest area than for the mixture of forest and agricultural 304 

areas. For example, the Meisdorf station had the lowest performance during the calibration 305 

period (KGE and PBIAS of 0.64 and -14.1%, respectively) and the first validation period 306 

(2004-2009) (KGE and PBIAS of 0.66 and -17%, respectively). The model performed best 307 

for all stations during the second validation period (2015-2018) (lowest NSE and KGE of 308 

0.83 and 0.91, respectively; largest PBIAS of 1.6%) (Figure 3, Table 2). 309 

The model represented seasonal dynamics in observed nitrate concentrations well (Figure 3). 310 

Nitrate concentrations had similar seasonal patterns as discharge during the study period, 311 
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which reflects their control by hydrological processes. In the forest area (Meisdorf station), 312 

the model captured long-term nitrate concentration dynamics (2004-2018) reasonably well 313 

(lowest KGE of 0.66 and largest PBIAS of 23.70%) (Table 2). Model performance decreased 314 

for mixed forest and agricultural areas, as indicated by the lowest KGE values for nitrate 315 

concentrations at the Hausneindorf and Nienhagen stations (0.21 and 0.11, respectively).  316 
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 317 

Figure 3. Observed and simulated daily discharge and nitrate concentration time series 318 

during the calibration (2010-2014) (shaded area) and validation period (2004-2009 and 2015-319 

2018) at the three gauging stations: (a) Meisdorf, (b) Hausneindorf and (c) Stassfurt. 320 
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The model reproduced observed daily nitrate loads well for the Meisdorf, Hausneindorf and 321 

Stassfurt gauging stations, with the lowest coefficient of determination (R2) of 0.73 (Figure 322 

S2). The model reproduced observed daily loads better for mixed forest and agricultural 323 

areas, represented by the Hausneindorf and Stassfurt stations (R2 of 0.83 and 0.85, 324 

respectively). The lower performance for simulated daily loads in the forest area (i.e., 325 

Meisdorf station) can be explained by underestimating discharge during high flow periods 326 

(Figure 3a), which resulted in underestimating daily nitrate loads (Figure S2a). Like 327 

simulated discharge, the daily load was reproduced best during the second validation period 328 

(2015-2018) (NSE ranged from 0.81-0.92 and PBIAS ranged from -2 to 9.6 among the six 329 

gauging stations (Table 2). 330 

Table 2. Model evaluation metrics (Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency 331 

(KGE) and Percentage BIAS (PBIAS) for daily discharge (Q), nitrate concentration (Nitrate) 332 

and nitrate load (Load = Nitrate × Q) at the Meisdorf, Hausneindorf, Wegeleben, Nienhagen, 333 

Hadmersleben and Stassfurt gauging stations during the calibration (2010-2014) and 334 

validation periods (2004-2009 and 2015-2018). 335 

Station Criterion 

Calibration Validation 

2010-2014 2004-2009  2015-2018 

Q Nitrate Load Q Nitrate Load  Q Nitrate Load 

Meisdorf 

NSE 0.77 0.59 0.66 0.73 0.35 0.88  0.83 0.40 0.81 

KGE 0.64 0.72 0.56 0.66 0.68 0.66  0.91 0.66 0.81 

PBIAS -14.10 12.30 -12.60 -17.00 -10.20 -20.30  1.60 23.70 9.60 

Hausneindorf 

NSE 0.85 -0.35 0.80 0.74 -0.84 0.82  0.86 -0.70 0.84 

KGE 0.85 0.42 0.89 0.76 0.21 0.82  0.91 0.27 0.87 

PBIAS -8.10 -0.10 -1.30 15.50 -8.70 15.70  -5.10 9.00 1.00 

Wegeleben 

NSE 0.91 -0.39 0.74 0.94 0.08 0.89  0.93 - - 

KGE 0.90 0.48 0.74 0.92 0.40 0.91  0.91 - - 

PBIAS -7.90 -12.00 -16.00 -4.60 -4.90 -4.10  -3.40 - - 

Nienhagen 

NSE 0.76 0.15 0.90 0.76 -0.34 0.81  - -1.59 - 

KGE 0.85 0.72 0.83 0.78 0.50 0.82  - 0.11 - 

PBIAS 2.90 -19.60 -13.30 19.90 -10.50 13.20  - -9.20 - 

Hadmersleben 

NSE 0.87 0.67 0.88 0.93 0.65 0.93  0.94 0.25 0.92 

KGE 0.90 0.74 0.92 0.94 0.76 0.81  0.95 0.61 0.93 

PBIAS -7.40 3.00 -5.50 1.90 19.10 17.30  -4.30 11.10 4.60 

Stassfurt 

NSE 0.86 0.65 0.80 0.90 0.23 0.81  0.94 0.44 0.92 

KGE 0.89 0.77 0.73 0.91 0.61 0.67  0.95 0.59 0.96 

PBIAS -8.50 1.70 -14.20 4.00 22.10 25.00  -3.50 1.60 -2.00 
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3.3 Discharge and nitrate concentration trends  336 

To evaluate further the ability of mHM-Nitrate to simulate spatiotemporal nitrate dynamics in 337 

the Bode catchment, the trends of monthly mean observed and simulated nitrate 338 

concentrations at the three gauging stations were examined. The three components of 339 

monthly mean observed nitrate concentration showed the influence of trend, seasonal and 340 

random effects (Figure S3). The model captured the observed normalized monthly trends of 341 

nitrate concentration well (Figure 4) (Spearman’s correlation coefficient of 0.54, 0.83 and 342 

0.82 for Meisdorf, Hausneindorf and Stassfurt, respectively (p < 0.01)), indicating that the 343 

model successfully represented temporal dynamics of nitrate concentration trends at the three 344 

gauging stations. In addition, during 2004-2018, nitrate concentration decreased significantly 345 

(p<0.05) at Hausneindorf but non-significant at the Meisdorf and Stassfurt stations (Table 346 

S1). 347 

 348 

Figure 4. Normalized trends of monthly mean observed (aggregated from daily and monthly 349 

grab sampling data) nitrate concentration (black lines) and simulated (aggregated from daily 350 
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mHM-Nitrate model results) nitrate concentration (red lines) from 2004-2018 at the gauging 351 

stations (a) Meisdorf, (b) Hausneindorf and (c) Stassfurt. 352 

The trends of monthly mean observed discharge and nitrate concentration were normalized at 353 

the Meisdorf, Hausneindorf and Stassfurt gauging stations from 2004-2018. Normalized 354 

trends of the monthly mean observed discharge and nitrate concentration were strongly 355 

correlated at Meisdorf and Stassfurt from 2004-2018 (Spearman’s correlation coefficient of 356 

0.65 and 0.59, respectively (p < 0.01)) (Figure 5), which indicates that hydrology influenced 357 

nitrate concentration strongly.  358 

 359 

Figure 5. Normalized trends of monthly mean observed discharge (blue lines) and nitrate 360 

concentration (red lines) from 2004-2018 at the gauging stations (a) Meisdorf, (b) 361 

Hausneindorf and (c) Stassfurt. 362 
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3.4 Spatial heterogenous effects of drought on terrestrial nitrate export 363 

The heterogeneous spatial changes in runoff components and thus nitrate concentrations 364 

(Figure S6) resulted in high spatial variability in nitrate load exported from the terrestrial 365 

compartment (Figure 6). The mean annual nitrate load in total runoff showed a spatial pattern 366 

that clearly depended on land use (Figure 6c), with the largest nitrate export from lowland 367 

agricultural area (Class I) and mountain pasture area (Class IV) (ca. 7 and 19 kg N ha-1 year-1, 368 

respectively, Figure S7). The mean annual nitrate load in baseflow showed a similar spatial 369 

pattern (Figures 6b vs. 6c), with a mean of 5 and 6 kg N ha-1 year-1 in Classes I and IV, 370 

respectively. In the 2015-2018 drought period, the nitrate load in total runoff decreased by a 371 

mean of 40% (Figure 6f), mainly due to the decreased nitrate export loads from interflow and 372 

baseflow in the lowland area (Figures 6d-e). For example, nitrate loads in interflow and 373 

baseflow decreased by 72% and 77%, respectively, in Class II, but they increased in baseflow 374 

by 16% in Class IV. The increased nitrate load of interflow, baseflow and total runoff in the 375 

mountain area during the drought period were due to higher nitrate concentration in interflow, 376 

baseflow and total runoff in these areas (Figures S6n-p). 377 

 378 
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Figure 6. Spatial distribution of simulated (a-c) annual mean load of interflow, baseflow and 379 

total runoff from 2004-2014 and (d-f) the corresponding change from 2015-2018 compared to 380 

2004-2014. 381 

3.5 Drought effects on N surplus among soil-land-use classes 382 

To identify the internal processes that influence nitrate dynamics in the Bode catchment 383 

better, soil N sources and sinks for the five soil-land-use classes were examined. For the 384 

agriculture-dominated lowland Classes I-III, the N source was mainly fertiliser (including 385 

mineral fertiliser and mineralized organic manure), which decreased slightly (by 5%) during 386 

the drought period compared to the pre-drought period (Table 3). It is noteworthy that the 387 

decreased fertiliser is due to different crop rotations during the drought period compared to 388 

pre-drought period.  Crop uptake was the main N sink (83-90% of the total fertiliser amount) 389 

in Classes I-III, and it decreased slightly (ca. 10%) during the drought period compared to the 390 

pre-drought period. Soil denitrification, which can include denitrification in the upper 391 

groundwater when the water table is high, decreased considerably in Classes II and III (by 392 

28% and 43%, respectively). This was likely due to lower soil moisture induced by drought 393 

in the lowland, which decreased crop uptake and soil denitrification during the drought 394 

period. Terrestrial export also decreased greatly in Classes I-III. Therefore, soil N surplus, 395 

which equals input (total fertiliser amount and precipitation deposition) minus output 396 

(crop/plant uptake) was higher in Classes I-II (by 4.4 and 3.1 kg N ha-1 y-1, respectively) 397 

during the drought period than the pre-drought period, indicating that more N was stored in 398 

the soil in the lowland area during the drought period. 399 

In the mountain area, N sources and sinks in Classes IV and V responded differently to 400 

drought than these of Classes I-III (Table 3). The total amount of fertiliser in Classes IV and 401 

V remained relatively constant during the drought period. Class IV had the lowest soil 402 

denitrification among the five classes, perhaps due to lower total fertiliser amount and lower 403 
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temperature in mountain pastures. In addition, soil denitrification and terrestrial export in 404 

Classes IV and V did not change during the 2015-2018 drought period compared to the 2004-405 

2014 period, which indicates that drought had less effect in the mountain area. 406 

Table 3. N balances (mean ± standard deviation) in the five soil-land-use classes during the 407 

2004-2014 pre-drought period and, in parentheses, their corresponding values in the 2015-408 

2018 drought period. 409 

N balances 

(kg N ha-1 y-1) 

Soil-land-use classes 

I II III IV V* Catchment mean 

Total fertiliser 

amount 

172.5 ± 8.2 

(163.1 ± 7.7) 

168.8 ± 10.0 

(159.6 ± 9.4) 

170.5 ± 9.2 

(161.3 ± 8.7) 

63.8 ± 16.4 

(64.2 ± 16.9) 

158.3 

(163.5) 

113.0 ± 69.8 

(107.4 ± 65.6) 

Precipitation 

deposition 

11.7 ± 0.6 

(9.9 ± 1.1) 

11.2 ± 0.5 

(9.2 ± 0.9) 

11.0 ± 0.2 

(8.7 ± 0.3) 

17.7 ± 0.4 

(16.7 ± 0.4) 

14.7  
(13.7) 

13.2 ± 3.3 

(11.5 ± 3.4) 

Crop/plant uptake 
142.8 ± 6.8 

(127.2 ± 6.9) 

142.6 ± 8.0 

(128.3 ± 8.0) 

154.1 ± 6.6 

(143.6 ± 7.6) 

39.8 ± 17.6 

(37.3 ± 15.8) 

121.2 

(106.4) 

96.4 ± 55.2 

(86.7 ± 49.0) 

Soil denitrification 
34.2 ± 3.3 

(28.1 ± 5.6) 

32.5 ± 4.5 

(23.4 ± 5.3) 

21.0 ± 4.4 

(12.8 ± 2.0) 

2.5 ± 3.5 

(2.6 ± 3.7) 

24.0 

(25.0) 

20.3 ± 15.2 

(16.7 ± 13.0) 

Terrestrial export 
7.2 ± 3.6 

(3.2 ± 3.2) 

4.0 ± 2.6 

(1.2 ± 1.8) 

0.3 ± 0.2 

(0.02 ± 0.02) 

19.4 ± 3.5 

(20.3 ± 2.3) 

12.1 

(13.5) 

6.0 ± 4.1 

(3.7 ± 3.7) 
*Note that for Class V only one grid was selected. 410 

3.6 Drought effects on in-stream nitrate retention  411 

Annual and seasonal mean lateral nitrate loading from terrestrial to streams decreased during 

the drought period compared to the pre-drought period, except for the streams upstream of 

Meisdorf (Table 4). Lateral nitrate loading reduced by 41% and 44% in summer and autumn 

within the whole river network; meanwhile, in-stream retention amount decreased by 20% 

and 16%, respectively, plausibly due to smaller stream benthic area and lower nitrate 

concentrations during the drought period. Lateral nitrate loading reduced more than that of in-

stream retention during the drought period, and this resulted in a higher in-stream retention 

efficiency (Table 4).  
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Table 4. Seasonal and annual mean values of nitrate loading and in-stream retention at station Meisdorf (Meis), Hausneindorf (Haus) and 412 

Stassfurt (Stass) during the 2004-2014 pre-drought period and, in parentheses, their corresponding values in the 2015-2018 drought period. 413 

 
 Winter    Spring    Summer    Autumn    Annual  

Load/In-stream 

retention (kg N 

d-1) 

Meis Haus Stass   Meis Haus Stass   Meis Haus Stass   Meis Haus Stass   Meis Haus Stass 

Load 423.3 837.8 7848.9   317.8 730.0 6947.1  103.0 299.9 2972.9  126.3 332.0 3324.3  229.5 539.0 5249.5 

 (554.7) (746.1) (5529.2)  (303.2) (468.8) (4044.1)  (56.2) (157.6) (1758.5)  (91.7) (178.5) (1853.8)  (238.3) (375.2) (3233.8) 

Retention 5.7 19.1 211.5  35.3 117.1 1232  33.7 143.0 1671.4  16.2 61.3 728.4  22.4 83.9 947.7 

 (8.9) (25.8) (267.2)  (39.2) (113.6) (1124.5)  (28.1) (98.5) (1332.4)  (16.0) (50.4) (615.2)  (22.7) (71.1) (823.4) 

Percentage of 

retention  

(%)  

1.4 2.3 2.7  11.1 16.0 17.7  32.7 47.7 56.2  12.8 18.5 21.9  9.8 15.6 18.1 

(1.6) (3.5)  (4.8)  (12.9) (24.2) (27.8)  (50.0) (62.5) (75.8)  (17.5) (28.2) (33.2)  (9.5) (18.9) (25.5) 

Note. The load was the sum of model-simulated total terrestrial loads from the drainage area upstream of each station, and in-stream retention 414 

was the sum of net assimilation uptake and denitrification amount from the stream network upstream of each station.415 
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4. Discussion 416 

4.1 Model performance evaluation 417 

The mHM-Nitrate model reproduced the observed discharge throughout the Bode catchment 418 

well (mean NSE of 0.85 and PBIAS  ±20%), according to guidelines for evaluating the 419 

performance of catchment simulations (Moriasi et al., 2015). This accuracy is similar to those 420 

of previous simulations of the study area (e.g., Mueller et al., 2016; Nguyen et al., 2021; 421 

Yang et al., 2018). Comparing the three representative gauging stations, the performance at 422 

the Meisdorf station was relatively low, as indicated by lower NSE and KGE (Table 1), 423 

perhaps due to underestimating peak flow events and the high sensitivity of NSE to extreme 424 

values (e.g., Krause et al., 2005). Similarly, the low KGE was likely due to underestimating 425 

high flow values in 2010, 2013 and 2014 (Figure 3a). 426 

The model may have underestimated peak flow events because of the inaccurately measured 427 

precipitation and the lower density of meteorological stations. Specifically, daily precipitation 428 

is not sufficiently precise to represent a detailed discharge response, especially in the 429 

headwater of the Bode catchment (due to high heterogeneity in precipitation), where many 430 

storm events last only a few hours. Moreover, the spatial coverage of the meteorological 431 

stations decreased significantly during the recent period, especially in the mountain area of 432 

the catchment. For example, the number of precipitation gauging stations in the Selke sub-433 

catchment decreased from 16 to only 8 after 2004 (Yang et al., 2018). Generally, the decrease 434 

in detailed precipitation records decreased performance in predicting discharge in the 435 

headwater area, which is known for its high spatiotemporal variability in precipitation due to 436 

the varying elevation. Therefore, the less accurate precipitation inputs from the lower station 437 

density could explain the slight underestimate of water balance at Meisdorf (PBIAS of -14% 438 

and -17% for the calibration and first validation period, respectively).  439 
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However, the model slightly overestimated the water balance for the Hausneindorf station 440 

during the first validation period (Table 2). Jiang et al. (2014) and Winter et al. (2021) stated 441 

that water from the lower Selke River was abstracted to fill pit lakes from 1998-2009 at a rate 442 

of 3.1 million m3 year-1, which was ca. 8% of the mean annual stream flow from 2004-2009. 443 

Although the water balance remained overestimated after considering this abstraction, these 444 

overestimates occurred mainly during the low-flow period and were acceptable when the 445 

corresponding runoff depth was considered (i.e., the largest PBIAS of 15.5% at Hausneindorf 446 

corresponded to a runoff depth of only 12.8 mm/year). 447 

Although NSE values were negative at Hausneindorf and Nienhagen stations during 448 

validation periods (Table 2), due to few extreme values (Krause et al., 2005; Moriasi et al., 449 

2015). With regard to the KGE and PBIAS values at these two stations, the model 450 

performance was acceptable. The slightly lower performance of mHM-Nitrate at the 451 

Hausneindorf and Nienhagen stations than at the other stations was likely due to the lack of 452 

detailed time series of point sources from urban areas during the low-flow period, especially 453 

in the initial period of operation of the WWTPs, as they started to function properly only in 454 

2007 (Yang et al., 2018). The high nitrate concentrations during summers before 2007 455 

(Figure 3b) were likely caused by untreated point sources, as discussed in Yang et al. (2018). 456 

After 2007, the model captured the dynamics of nitrate concentration well at Hausneindorf 457 

station. In addition, some houses (mainly summer houses) in the Selke sub-catchment are not 458 

connected to the sewage system, which may generate additional unknown point sources and 459 

can decrease model performance under low-flow conditions. The lack of detailed spatial 460 

cropping information for the entire Bode catchment and the need to rely on only rough survey 461 

information might introduce additional uncertainty. Nevertheless, mHM-Nitrate successfully 462 

identified decreasing trends in observed nitrate concentrations at the Hausneindorf and 463 

Stassfurt lowland stations (Figures 3 and 4). The model performance was in line with that of 464 
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Yang et al. (2018) in the Selke sub-catchment, and they also confirmed that the simulations 465 

based on DDS calibration performed similarly good with that of using the DREAM method.  466 

The model can represent observed nitrate concentrations well for several reasons. First, its 467 

flexible structure ensures sufficient spatial representation of catchment heterogeneity as well 468 

as spatiotemporal variability in meteorological inputs (Kumar et al., 2010; Samaniego et al., 469 

2010; Yang et al., 2018). In addition, it can adequately represent the diffuse source inputs and 470 

turnover (i.e., agricultural practices, crop rotation and plant uptake) and point-source 471 

contributions (input time series can be added at the real stream locations) at the resolution of 472 

the input data, which increases the model’s ability to represent spatial variability in nitrate 473 

sources (Yang et al., 2018). Selecting an appropriate calibration period under varying 474 

conditions (e.g., at nonstationary conditions like the drought) is crucial for model training. 475 

For example, during the calibration period, 2011 was a wetter year, while 2012 was a drier 476 

year. Thus, selecting a calibration period that encompasses varying hydrological conditions 477 

helps activate all model components. This approach agrees with Engel et al. (2007), who 478 

suggested that both calibration and validation periods should have high and low flows to 479 

increase a model’s robustness. Together, these characteristics helped to identify model 480 

parameters better and reliably estimate nitrate contributions from different runoff 481 

components, which is crucial for representing nitrate concentrations spatiotemporally in the 482 

entire Bode catchment.  483 

The most influential nitrate sub-model parameter was related to in-stream denitrification, 484 

while in the study of Yang et al. (2018), which focused more on upstream catchments, the 485 

most influential parameter was related to soil denitrification. This is presumably due to the 486 

larger total stream benthic areas for the Bode catchment, which is in line with Yang et al. 487 

(2019b) who found that there is a significant relationship between stream benthic area and in-488 
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stream denitrification rate, reflecting  the relative increasing importance of in-stream 489 

processes  with increasing catchment size. 490 

4.2 Explaining changes in nitrate concentration during drought years 491 

Recent droughts (2015-2018) in the Bode catchment provided an opportunity to investigate 492 

the internal processes that influence nitrate dynamics under changing weather conditions at 493 

the catchment scale. Observed nitrate concentration showed a decreasing trend in lowland 494 

agricultural areas (i.e., Hausneindorf and Stassfurt stations) but not significant in the 495 

mountain forest area (i.e., Meisdorf station) (Figure 4). Results suggested that the influence 496 

of drought on nitrate concentration could be explained by (i) spatiotemporal differences in 497 

hydrological response and (ii) its associated effects on soil and in-stream nitrate processes 498 

during the 2015-2018 drought period compared to the 2004-2014 pre-drought period.  499 

Seasonal total runoff decreased in the entire Bode catchment during the drought period 500 

(Figures S8m-p). The decrease was larger in the lowland area, due to the combined effects of 501 

meteorology and soil properties. Annual precipitation in the 2015-2018 drought period did 502 

not differ greatly from that in long-term historical records (1971-2000) from DWD. When 503 

considering the temporal distribution of precipitation, however, precipitation decreased 504 

greatly in winter and spring in the lowland agricultural area during the drought period, 505 

especially in Class II (by 25% and 30%, respectively) (Figures S8a-b). Soil moisture 506 

decreased continuously in all seasons and was not replenished during the rewetting seasons 507 

due to reduced precipitation in the lowland area (Figures S8i-l). In addition, the modeled soil 508 

moisture of the third layer in Classes (I-III) showed a significant decline during drought 509 

period (Figure S9). 510 

Consequently, this process could decrease unsaturated zone storage and groundwater 511 

recharge during the drought period. This further explains the decrease in mean annual 512 

interflow, baseflow and total runoff in the lowland area during the 2015-2018 drought period 513 
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compared to 2004-2014. Furthermore, the decrease in soil moisture content may have 514 

decreased hydrological connectivity between hillslope and streams during the drought period 515 

(Figures S6f-h), thus increasing the potential for soil profiles to become disconnected from 516 

the stream channel and shallow groundwater (Davis et al., 2014; Outram et al., 2016). In 517 

contrast, total runoff in the mountain area decreased only slightly during the drought period, 518 

perhaps due to seasonal precipitation and slightly decreased soil moisture content there 519 

(Figure S8). This result agrees with other studies that reported that flatter and less forested 520 

catchments are more vulnerable to long-term drought (Saft et al., 2015). 521 

The large decrease in nitrate concentration in the lowland area during the drought period, 522 

represented by the Hausneindorf and Stassfurt stations (Figures 4b-c), was plausible because 523 

the decrease in interflow, baseflow and total runoff in Classes I-III greatly reduced soil nitrate 524 

export from interflow and baseflow which are the major source of the terrestrial nitrate export 525 

to surface water (Figures 6d-f, Table 3). This indicates that nitrate became more transport-526 

limited in the lowland area during the drought period. In addition, upstream discharge with 527 

low nitrate concentration could dilute downstream nitrate concentration. The share of 528 

discharge from uplands (sum of discharge at Thale and Meisdorf station) to the total 529 

discharge at the outlet of the Bode catchment increased from 44.3% to 48.8% from the pre-530 

drought period to the drought period. Furthermore, drought increased water temperatures, and 531 

longer stream water residence time in summer could have stimulated in-stream uptake and 532 

denitrification efficiency (Table 4) (Hosen et al., 2019; Rode et al., 2016). Therefore, the 533 

combined effects of terrestrial export load and in-stream processes could explain the decrease 534 

of in-stream nitrate concentrations in lowland areas (e.g., at the Hausneindorf and Stassfurt 535 

stations in Figures 4b-c). In contrast, nitrate concentration in the mountain forest-dominated 536 

area showed a constant pattern during the drought period compared to the pre-drought period, 537 

as reflected by the Meisdorf station (Figures 3a and 4a). This pattern could have occurred 538 
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because the share of discharge from high nitrate concentration agricultural areas and low 539 

nitrate concentration forest areas did not change substantially (Figure 6 and Table 3). Nitrate 540 

source in the mountain forest-dominated area comes mainly from patches of agricultural area, 541 

which decreased slightly during the drought period in Class IV (Table 3). Although total 542 

runoff increased in the mountain area in winter during the drought period, in-stream nitrate 543 

concentrations were similar to those during the pre-drought period (Figures S8m vs. 3a). In 544 

addition, in-stream retention in winter was low and did not influence nitrate concentration, 545 

which indicated that nitrate could be supply-limited in the mountain area.  546 

Previous studies have reported a decrease in stream nitrate concentrations during droughts 547 

(e.g.,  van Vliet and Zwolsman, 2008; Yevenes et al., 2018). They also explained the decrease 548 

in nitrate concentration by less diffuse supply based on empirical relations between nitrate 549 

concentration and discharge. Our study confirmed this explanation by simulating a large 550 

decrease in soil nitrate export in the lowland area during the drought period (Figure 6). 551 

5. Conclusion 552 

Varying spatial trends in nitrate concentration under drought conditions were observed in the 553 

Bode catchment in central Germany. To explain the mechanisms that influence the changes in 554 

trends, calibrated mHM-Nitrate model outputs and internal processes were compared 555 

between a drought period (2015-2018) and a pre-drought period (2004-2014). Results 556 

indicated that nitrate export from the terrestrial compartment greatly decreased while in-557 

stream retention efficiency increased during the drought periods, which could result in the 558 

decrease of in-stream nitrate concentration in the lowland area of the Bode catchment. In 559 

contrast, nitrate export and in-stream retention efficiency in the upper mountain area of the 560 

catchment changed little. Therefore, nitrate concentrations remained relatively constant in the 561 

drought and pre-drought periods. Results suggested that during the drought periods, nitrate 562 

was mainly stored in the soil rather than mobilized or transported, especially in the lowland 563 
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area of the catchment. This study assessed the model’s ability to represent nitrate 564 

concentrations under varying weather conditions, which could be used to study the effects of 565 

climate change. The Bode catchment is a typical mesoscale catchment in central Europe, in 566 

which the headwater is a mountain area with high precipitation, and the lowland is an 567 

agricultural area with relatively low precipitation. We expect that catchments with landscape 568 

and climate conditions similar to those of the Bode catchment (i.e., wet mountain areas and 569 

dry lowland areas) are highly vulnerable to changing weather conditions. This study showed 570 

that droughts have heterogeneous spatial effects on hydrology and water-quality responses. 571 

Therefore, water managers should specifically consider this spatial heterogeneity when 572 

managing future droughts. 573 
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