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Abstract1

The presence of anthropogenic organic micropollutants in rivers poses a long-term2

threat to surface water quality. To describe and quantify the in-stream fate of single3

chemicals, the advection-dispersion-reaction (ADR) equation has been used. under-4

standing processes of the cumulative effects caused by micropollutants mixture in rivers5

requires a new concept. Thus, we extended the ADR from single chemicals to defined6

mixtures, then to the measured mixture effects of chemicals extracted from the same7

river water samples, expressed as effect units (EU) and toxic units (TU) (the inverse8

of effect concentrations and inhibitory concentrations, respectively, quantified with a9

panel of in vitro bioassays). We performed a Lagrangian sampling campaign under un-10

steady flow, collecting river water containing micropollutants mainly originating from11

a wastewater treatment plant (WWTP). A convolution-based reactive transport model12

was used to simulate the dynamics of the effects. For the individual micropollutants’13

effects, their dissipation dynamics were reproduced by the deterministic model follow-14

ing first-order kinetics. The model ensemble computed within Bayesian inference was15

needed to characterize the dynamics in the case of experimental mixture effects with-16

out known compositions. The highly fluctuating WWTP effluent discharge dominated17

the temporal patterns of the effect fluxes with minor inputs likely from surface runoff18

and pesticide diffusion.19

Keywords20

Bioassay; Effect unit; Cytotoxicity; Markov chain Monte Carlo; Convolution; Reactive trans-21

port; Lagrangian sampling.22

Synopsis23

A stochastic convolution-based reactive transport model effectively characterized the in-24

stream dynamics of the mixture effect fluxes of micropollutants from diverse sources but25

2



mainly stemming from one wastewater treatment plant.26

1 Introduction27

Organic micropollutants like pharmaceuticals, polycyclic aromatic hydrocarbons (PAHs),28

personal care products (PCPs) (e.g., fragrances), detergents, industrial chemicals (e.g., roof29

sealing) and pesticides have been found ubiquitously at low concentrations levels (in a ng/L-30

range) in surface waters. The diverse physicochemical properties of these so-called micropol-31

lutants can adversely affect their biological and chemical removal efficiencies in the secondary32

treatment.1 Even the wastewater treatment plants (WWTPs) equipped with advanced pro-33

cesses have difficulties to completely eliminate all the micropollutants.2–4 WWTPs have been34

viewed as one of the main sources of organic micropollutants in rivers.5,6 Especially in small35

rivers where the surrounding areas are densely populated and the river discharge is domi-36

nated by the WWTP’s effluent, the receiving river water quality may be adversely impacted37

by WWTPs effluent.7–1038

To understand the micropollutant dynamics and their potential risk, some previous stud-39

ies applied the Lagrangian sampling scheme with high temporal resolutions to collect compos-40

ite samples in rivers. The scheme captures the in-stream dynamics of the micropollutants by41

tracking the same water packages from upstream to downstream locations.11–13 These stud-42

ies were purely focusing on the concentrations of the micropollutants, inorganic ions and43

dissolved organic carbon (DOC). Numerous studies have also been conducted on individual44

and mixture effects (specific effects and cytotoxicity) from WWTPs-emitted micropollutant45

mixtures14,15 in rivers. The main aims of these studies were to identify the micropollutants46

in the complex mixtures and the individual contributions to the overall mixture effects. It is47

not possible to identify every single compound in the complex mixture that potentially con-48

sists of hundreds and thousands of chemicals. But the effects stemming from the individual49

compounds, as well as the ones characterizing the overall mixture effects, can be quantified50

3



in the panels of in vitro bioassays. When thousands of compounds are present at very low51

concentrations in mixtures, the interactions among them are usually not noticeable. Under52

such circumstances, the concentration addition concept can be applied.1653

The fast changing in-stream dynamics of individual and mixture effects have been studied54

by Müller et al..10,17 However, there is a lack of quantitative understanding of the in-stream55

processes that the mixture effects undergo. Uncertainties originating from the quantification56

of the total bioactive mixture effects also need to be taken into account when studying the57

fate of mixture effects. A process-based mathematical modeling approach is needed to gain58

quantitative insights of in-stream mechanisms of the mixture effects. Liu et al. 18 studied the59

in-stream fate of a few pharmaceuticals using a one-dimensional reactive transport model.60

The computation expense of the model is already relatively high due to the complex pa-61

rameterization and spatial discretization. To address uncertainties that lead to the unclear62

transport pattern in the mixture effects data to reflect the random nature of the system and63

displaying levels of belief in the modeled results (as well as the model structure), a time series64

ensemble is particularly useful. Coupled with stochastic methods, the measurement uncer-65

tainties are taken into account when approximating the model parameters’ distributions,66

from where ensemble results can be computed. Thus, the computation costs increase with67

the complexity of the micropollutant mixtures that contain a large number of compounds,68

of which the individual and total mixture effects are quantified in multiple bioassays. The69

simulation time can be the limiting factor to run the model if stochastic methods are to70

be applied, when hundreds of thousands of model runs are needed for each mixture effect71

simulation.72

The present study intended to evaluate if a one-dimensional model based on the advection-73

dispersion-reaction equation (ADR) is able to characterize the in-stream dynamics of spe-74

cific effects and of the cytotoxicity of both individual compounds and the total bioactive75

micropollutant mixture. We assumed that parameters for the transport and reactions that76

characterize the single chemical’s fate can be transferred to the dynamics of the mixture77
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effects in rivers. We tested our hypothesis by combining a Lagrangian sampling campaign in78

a WWTP influenced river with the measurement of chemical mixtures and their effects. We79

implemented a computationally cheap convolution-based transport model to simulate the80

unsteady discharge in the river main channel caused by the WWTP high release. Adding81

first-order reaction kinetics, the convolution-based reactive transport model was applied to82

the individual compounds effects. The mixture effects of all chemicals in water samples were83

modeled by coupling the deterministic model with Metropolis-Hastings Markov chain Monte84

Carlo (MH-MCMC) to account for measurement and parameter uncertainties and which85

overcame the less clear transport patterns in the observations.86

2 Theory87

Effect unit and toxic unit. The specific effects (e.g. estrogenic effects, triggered by88

binding of micropollutants and natural hormones to the estrogen receptor.19) and cytotoxi-89

city in the river water, stemming from the micropollutants contributed mainly by WWTPs,90

were quantified in in vitro bioassays and expressed as effect unit (EU) for specific effects91

and toxic unit (TU) for cytotoxicity. Both EU and TU can be used to characterize the92

effects of individual chemicals (EUchemi,assayj , Eq. 1 and TUchemi,assayj , Eq. 2), the mixture93

effects of the detected chemicals in the sample (EUchem,assayj and TUchem,assayj), as well as94

the experimentally quantified mixture effects (EUbio and TUbio).95

EUchemi,assayj =
Cchemi

ECk,chemi,assayj

(1)

TUchemi,assayj =
Cchemi

ICk,chemi,assayj ,exp

(2)

Cchemi
[ng L-1] is the concentration of the individual detected compound. ECk,chemi

[ng L-1]96

and ICk,chemi
[ng L-1] are the compound specific effect concentration (EC) and inhibition97
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concentration (IC) that causes k effects (k typically is 10 % of the maximum effect20 or98

the induction ratio (IR) of 1.5, which is 50% over unexposed cells of IR 1.17,20) of specific99

endpoints and cell death (cytotoxicity), respectively. i and j are individual compounds’ and100

bioassays’ indices, respectively. n is the number of the compounds detected in the water101

sample and activated in the corresponding assay j.102

The mixture effects of all detected and activated compounds, EUchem,assayj (Eq. 3) and103

TUchem,assayj (Eq. 4), are the sum of the individual compounds’ effects.104

EUchem,assayj =
n∑

i=1

Cchemi

ECk,chemi,assayj

(3)

TUchem,assayj =
n∑

i=1

Cchemi

ICk,chemi,assayj ,exp

(4)

The EU and TU describing the mixture effects of the whole water sample, EUbioj [Lbiosassy105

· Lwater
-1] (Eq. 5) and TUbioj [Lbiosassy · Lwater

-1] (Eq. 6).106

EUbioj =
1

ECk,assayj

(5)

TUbioj =
1

ICk,assayj

(6)

where ECk,assayj and ICk,assayj are the ECs and ICs of the whole water sample that trigger107

k effects and cytotoxicity, respectively. The units of EC and IC are relative enrichment108

factor (REF).19 For TU of the whole bioactive mixture (TUbio), the measured TUbio values109

in different bioassays should be relatively similar, since TUs are quantified based on the same110

endpoint. The mean TUbio of four bioassays (bioassay details in Section 3.2) were used in111

this study.112
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Effect unit and toxic unit fluxes. The fluxes Fk(t) of the EU (q = EU chemi, assayj,113

EUbioj) and the TU (q = TU chemi, assayj, TUbioj) are defined by the products of the effect114

units and toxic units, respectively, with the corresponding discharge (Q in [m3 s-1]) at time115

t (Eq. 7. EU is replaced by TU when computing the cytotoxicity flux).116

Fq(t) = EUq(t) ·Q(t) (7)

Conservative transport of electrical conductivity. The electrical conductivity (ECd)117

in rivers is assumed to behave identically to the conservative compounds or ideal tracer.11,12118

Therefore, the ECd time series can be used to determine the hydrological parameters values,119

e.g., the mean water travel time and the lumped advection and dispersion coefficient11,12,21120

by fitting the modeled ECd to the measurements (fitting details in Section 3.3). In general,121

the one-dimensional transport of a time series signal in rivers can be described by a linear122

time-invariant system and its impulse response in the time domain. The essence is that the123

output signal is the integral of the product of the input signal and a transfer function. This124

operation is named convolution and can be expressed for the ECd by Eq. 8,125

ECddown(t) =

∫ t

0

ECdup(t− τ)g(τ)dτ (8)

where ECdup [mS cm-1] and ECddown [mS cm-1] are the ECd time series at the upstream and126

the downstream locations of the studied river stretch, respectively. t is the sampling time127

point. τ is the travel time of the individual water parcel, and g(τ) is the transfer function.128

Conservative transfer function. The impulse response of a linear-time invariant system129

is the transfer function, which is a probability density function (PDF) that characterizes the130

distribution of the travel times (τ) of the water parcels and produces the downstream signal131

from the upstream signal via convolution. Assuming ECd behaves conservatively, the transfer132
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function consists of advection and dispersion terms,11,12,22 and is expressed as Eq. 9,133

g(τ) =
1

τ
√

4πDτ
∆tECd

exp(−
(1− τ

∆tECd
)2

4Dτ
∆tECd

) (9)

which is parameterized by the dimensionless dispersion coefficient D [-] and the mean travel134

time ∆tECd.135

Unsteady discharge propagation. For approximating downstream discharge (Qdown)136

under unsteady flow conditions, an earlier approach for steady state conditions by Schwientek137

et al. 11 was adopted in Eq. 10,138

Qdown(t) =

∫ t

0

Qup(t− τ)q(τ)dτ (10)

where Qdown(t) [volume time-1] and Qup(t) [volume time-1] are the discharge time series at the139

upstream and downstream locations, respectively (Qup calculation in Text S1). The mean140

travel time of the wave is different from that of the ECd, therefore, the transfer function141

q(τ) needs to be adjusted as Eq. 11.142

q(τ) =
1

τ
√

20πDτ
3∆tECd

exp(−
(1− 5τ

3∆tECd
)2

20Dτ
3∆tECd

) (11)

The unsteady discharge follows the travel phenomenon of the kinematic wave in the open143

channel. Since the studied river stretch forms a rectangular channel and the water depth is144

shallow relative to the channel width, the definition of the celerity ckn,wave [m s-1] of the wave145

in relation to the mean velocity of the ECd vECd [m s-1], can be simplified to Eq. 12,11,23146

ckn,wave =
5

3
vECd (12)

which gives to Eq. 13,147
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∆tkn,wave =
3

5
∆tECd (13)

where ∆tkn,wave is the mean kinematic wave travel time.148

Reactive transport of the effects from individual chemicals and mixture. In addi-149

tion to the transport processes described above for the EU and TU, these effects are undergo150

exponential first-order decay. Therefore, the transport of the EU and TU is complemented151

by a description of the lumped loss process following first-order kinetics (Eq. 14 – 17),152

EUchemi,assayj ,down(t) =

∫ t

0

EUchemi,assayj ,up(t− τ)rchemi
(τ)dτ (14)

TUchemi,assayj ,down(t) =

∫ t

0

TUchemi,assayj ,up(t− τ)rchemi
(τ)dτ (15)

EUbioj ,down(t) =

∫ t

0

EUbioj ,up(t− τ)rbioj ,spec(τ)dτ (16)

TUbioj ,down(t) =

∫ t

0

TUbioj ,up(t− τ)rbioj ,cyto(τ)dτ (17)

where the EUchemi,assayj , TUchemi,assayj , EUbioj and TUbioj are time series of the state variables153

defined in Eq. 1 – 6. rchemi
(τ), rbioj ,spec(τ) and rbioj ,cyto(τ) are compound and assay specific154

reactive transfer functions, respectively that relate to the conservative transfer function g(τ)155

(Eq. 9) by Eq. 18 – 20.156

rchemi
(τ) = g(τ) exp(−λchemi

τ) (18)

rbioj ,spec(τ) = g(τ) exp(−λbioj ,specτ) (19)
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rbioj ,cyto(τ) = g(τ) exp(−λbioj ,cytoτ) (20)

where λchemi
, λbioj ,spec and λbioj ,cyto are the compound-specific and assay-specific reaction rate157

constants [time-1] that are, in this case, assumed to be constant over time. The transient158

storage part (needed under low flow conditions18) of the model was ignored in this case.159

3 Materials and Methods160

General approach. We conducted model-aided scenario analysis (Text S2) prior to the161

sampling and applied a Lagrangian sampling scheme that follows the same water parcel along162

the course of the Steinlach River in Tübingen (southwestern Germany). The studied river163

stretch is under direct impacts from a wastewater treatment plant effluent. Three auto-164

samplers have been installed for 46 hours to collect composite time series water samples.165

Samples from the field have been analyzed on concentrations and effects. A one-dimensional166

reactive convolution model coupled with stochastic methods has been developed for describ-167

ing the fate of the effects along the river.168

3.1 Field campaign169

The underlying sampling campaign took place in summer (June to August) 2020 at the170

Steinlach River with a mean discharge of 1.83 m3s−1 and a WWTP effluent of 0.26 m3s−1
171

close to the city of Tübingen, Germany. More details on field site and the sampling campaign172

can be found in the Supporting Information (Text S3).173

Mean travel time. Prior to the sampling, it was crucial to estimate the mean water parcel174

travel time so that the starting time of the auto-samplers at different sampling sites could175

be determined. We assumed that 1) the ECd signal behaves conservatively, 2) it reflects176

the temporal variation resulting from the effluent flow of the WWTP and 3) the measured177
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ECd values as a result of the existing organic substances in the water are much higher178

than the background ECd values in the main channel. The mean travel time estimation179

method presented by Schwientek et al. 11 and Glaser et al. 12 was modified by implementing180

the MultiStart algorithm to find the global solution in this study. We fitted the modeled181

downstream ECd to the measured ECd, deriving the transfer function’s parameters, the182

mean travel time ∆tECd and the lumped apparent dispersion coefficient D (Section 3.3).183

ECd measurement prior the sampling and correcting scheme are in Text S4 in Figure S2 -184

Figure S5.185

3.2 Laboratory work186

A brief description of the chemical analysis of the micropollutants (previously published24)187

can be found in the Supporting Information (Text S5).188

In vitro bioassays. The whole water samples were tested on four in vitro bioassays189

named AhR-CALUX (AhR) for aryl hydrocarbon receptor induction, PPARγ-GeneBLAzer190

(PPARγ) for peroxisome proliferator-activated receptor activity, ERα-GeneBLAzer (ER) for191

estrogenicity and AREc32 (ARE) for oxidative stress. Examples of inducing compounds for192

the four bioassays are polycyclic aromatic hydrocarbons (PAHs), fibrate pharmaceuticals,193

endocrine-disrupting compounds and pharmaceuticals that could produce reactive oxygen194

species, respectively.19 In each cell line, the cytotoxicity was also measured. The effect195

concentration and inhibitory concentration (EC10 and IC10) that cause 10% of the effects196

were quantified by fitting a simple linear regression in the concentration-response curve.25197

Detailed information on the measuring methods can be found in König et al..26198

3.3 Parameter estimation: Deterministic method199

The nonlinear least-squares solver was used in estimating the mean travel time ∆tECd, the200

lumped dispersion coefficient D (Eq. 9), and the first-order reaction rate constant of the201
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detected individual compound’s effect (Eq. 18). The objective function was defined as:202

min
θ
(f(θ)) =

n∑
i=1

(f(θ, xdatai)− ydatai)
2 (21)

where θ is the parameter to be found given the input (xdata) and observation (ydata).203

The MultiStart algorithm (trust-region-reflective searching method) was used to evaluate204

the outcome of the objective function. The global solution was found from the results of205

local solvers with multiple (500 - 1500) starting points. Normalized root-mean-square error206

(NRMSE) was computed for each compound to evaluate the goodness of the model fit.207

NRMSE is defined as the root mean square error divided by the difference between the208

maximum (ydataobs,max) and minimum values (ydataobs,min) in the observations (Eq. 22).209

NRMSE =

√∑n
i=1(ydatamodel,i − ydataobs,i)2/n

ydataobs,max − ydataobs,min

(22)

3.4 Parameters estimation: Markov chain Monte Carlo210

The Metropolis–Hastings Markov chain Monte Carlo (MH-MCMC) algorithm was applied211

in modeling the total effect and toxic units, EUbio and TUbio (Eq. 5 – 6).212

The prior parameter distribution. A prior distribution represents the belief of the213

existing information, knowledge or assumptions (e.g., parameters values and their uncer-214

tainty), before any observations are provided.27 The form and bounds of a prior distribution215

of the parameter(s) to be estimated can be derived based on existing theories, hypoth-216

esis, past experiments or simply experience and constrains due to logical reasons. Ac-217

cording to Gelman et al.,28 in theory the range of the prior distribution should be wide218

enough to cover all possible parameters’ values. Therefore, we firstly assumed that the219

prior distribution of the first-order reaction constants of EUbioj is informative and nor-220

mal. A normal distribution was fitted to the deterministically calibrated first-order reaction221

constants of all the detected organic micropollutants (Section 3.3), and their correspond-222
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ing reaction rate constants derived from the literature half-lives (Predicted biodegradation223

half-life values from quantitative structure–activity/property relationship (QSAR) model.29224

https://comptox.epa.gov/dashboard) using Eq. 23,225

λi =
ln(2)

t1/2,i
(23)

where t1/2 [time] is the literature half-life value, λ [time−1] the first-order reaction constant,226

and i [-] the compound’s index. The parameters of the normal distribution λ ∼ N (µ, σ2)227

thus can be determined and the log PDF is228

LnPrior(λ) = ln

[
1

σλ

√
2π

e
− 1

2

(
λ−µλ
σλ

)2
]

(24)

The standard deviation σϵ in the likelihood function (Eq. 26 below) was treated as a variable229

also sampled by MH-MCMC. The prior distribution of σϵ was assumed to be a bounded230

uniform distribution, of which the lower boundary is zero. σϵ represents the measurement231

error of the data, however this information can not be used to construct the prior distribution232

if it comes from the observations that are used during the posterior sampling process. The233

maximum value (σϵ,max) from the reported standard errors of the measured values of the234

grab samples collected at the WWTP effluent and 20% of the measurements’ values19 was235

computed. In an effort to cover as many reasonable values as possible, the upper boundary of236

the uniform distribution was set to be five times of the σϵ,max (σϵ ∼ U(0, ub) and ub = 5σϵ,max).237

The log PDF is expressed as238

LnPrior(σ) = ln(
1

ub
) (25)

Therefore, the hyperparameters (parameters of the prior distribution) are defined and the239

log probability density can be computed.240

The likelihood function. The model errors were assumed to be identically and indepen-241

dently distributed (IID). Apart from the first-order reaction rate constant λ, the standard242
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deviation σϵ in the likelihood function is also a variable that is sampled by MH-MCMC. If243

Θ = [λ, σϵ]
T is the parameter vector, yobs = [yobs,1, ..., yobs,n] the observation vector, then244

the log-likelihood function is defined as245

LL(Θ|yobs) =
n∑

i=1

ln

(
1√
2πσϵ,i

exp

[
−1

2

(ymodel,i(λi)− yobs,i)
2

σ2
ϵ,i

])
(26)

where i [-] is the observation index, n [-] the total number of the observations. Thus, by246

rearranging Eq. 24 – 26, the log posterior distribution is expressed as247

LnPost(Θ|yobs) = ln
n∏

i=1

(
1√
2πσϵ,i

exp

[
−1

2

(ymodel,i(λi)− yobs,i)
2

σ2
ϵ,i

])
(

1

σλ

√
2π

exp

[
−1

2

(
λi − µλ

σλ

])2
)

1

ub

(27)

The MH-MCMC algorithm was applied to observations from four cell lines: AhR, PPARγ,248

ER and AREc32. Five Markov chains ran sequentially. For the five chains to converge,249

iteration lengths differ (10000 to 50000 iterations each chain), depending on uncertainties250

in the data from different cell lines. After the burn-in period (the first 50% iterations),251

chains’ convergence was checked using the Gelman-Rubin diagnostic with the potential scale252

reduction factor R̂ < 1.1.30,31253

The starting point of the individual chain is a randomized value (details of randomization254

in Text S9).255

4 Results and Discussion256

4.1 ECd signals and unsteady flow257

The measured ECd signals at all MS (sampling map: Figure S1) not only characterized the258

one dimensional in-stream transport phenomenon, but also conveyed information regarding259
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the background river water quality, exhibiting a clear temporal pattern contrast between260

upstream and downstream locations from the WWTP effluent. There were no rain events261

recorded between 20:00, August 19 (AS1 started sampling) and 17:15, August 21 (AS3262

stopped sampling), apart from the two low precipitations of 0.22 mm h-1 and 0.1 mm h-1
263

at 21:00, August 19 and 06:00, August 20, respectively (https://www.wetter-bw.de/I264

nternet/AM/NotesBwAM.nsf/bwweb/4262596897754529c1257ca8002f9d19?OpenDocum265

ent&TableRow=3.7#3). During this period, the mean effluent discharge from the WWTP266

(0.12 m3 s-1, ± 0.27 m3 s-1) contributed 47% of the mean discharge in the main channel267

(0.26 m3 s-1, ± 0.13 m3 s-1). A distinct ambient in-stream ECd diurnal cycle was observed268

at the measuring station upstream (MS Up) from the WWTP, where the dynamics of ECd269

corresponded to the water temperature temporal pattern (Figure S6). The ECd values at the270

MS in the main channel downstream from the WWTP were approximately 1.5 times higher271

than that at MS Up during the sampling period, demonstrating the contribution from the272

WWTP release. The calibrated hydrological transport parameters based on the ECd time273

series were used in the unsteady discharge calculation (Figure S7; normalized rooted mean274

square error (NRMSE) of 0.0093 and 0.0084 (Table S7) for calibration results at MS2 and275

MS3 respectively). Figure 1 illustrates the modeled discharge in the studied river stretch.276

The WWTP effluent discharge was relatively steady after AS1 started sampling, but its277

contribution to the main river flow was high and dynamic. The WWTP effluent prompted278

the formation of a discharge wave (increase from 0.12 m3 s-1 to the peak of 0.64 m3 s-1 in279

Figure 1B) that traveled downstream in the main channel, causing flow in the main channel280

to become unsteady (Figure 1C – E). Overlays of discharge at all MSs demonstrate how the281

wave propagated (Figure S8). Dissolved organic carbon (DOC) (Figure S9A) was higher282

at day than at night and was also mainly influenced by the DOC of the WWTP. The pH283

followed the discharge and was at pH 8 at lower discharged but rose to over 9 at higher284

discharge (Figure S9B).285
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Figure 1: Computed unsteady flow during the sampling period: (A) Discharge at the loca-
tion upstream from the wastewater treatment plant (Up); (B) Discharge at the wastewater
treatment plant effluent (WWTP); (C) Discharge at measuring station one (MS1); (D) Dis-
charge at measuring station two (MS2); (E) Discharge at measuring station three (MS3).
Detailed sampling location information can be found in Figure S1.

4.2 In-stream concentration and effect dynamics286

Detected chemicals’ concentrations and mass fluxes. The in-stream dynamics of287

the concentrations of the detected micropollutants14 were captured well by the Lagrangian288

sampling scheme (Figure S10 – Figure S19, Table S4). The modeled (model details in289

Eq. S8 – S13) detected compounds’ concentrations, as well as their mass fluxes (Figure S20 –290

Figure S29) matched the observations well (NRMSE in Table S7). All analytical uncertainties291

were significantly smaller than the temporal variations observed in the data. Therefore, it292

can be concluded that the observed temporal variations reflected actual in-stream dynamics,293

not noise from measurement uncertainties.294
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Individual bioactive chemicals’ effects over time and space (EUchem,i and TUchem,i).295

The dynamics of the detected micropollutants’ specific effects expressed as EUchem,i and cy-296

totoxicity, TUchem,i, are closely related to their concentrations14 (Eq. 1 – 2). Figure S30297

illustrates the measured EUchem,i time series of compounds from MS2 and MS3 that were298

activating the AhR in AhR-CALUX assay. The pronounced EUchem,i peaks recorded be-299

tween 12:20 and 14:20 on August 20 were evidently caused by the earlier high release from300

the WWTP. Furthermore, the simulated time courses of EUchem,i were able to reproduce the301

temporal variations of the measurements (e.g. the EUchem,i peak for all compounds except302

2-Aminobenzothiazole and benzothiazole-2-sulfonic acid), as well as fall within the range of303

measurements uncertainties. Particularly in the cases of benzotriazole (Figure 2A), diuron304

and telmisartan (Figure S30), the modeled EUchem,i time courses were able to accurately305

capture the observed peaks, as well as the tailings (from 21:00 on August 20 to 10:00 on306

August 21) of the EU dynamics at both MS2 and MS3 (NRMSE (Eq. 22) of the nine com-307

pounds in Table S7). Benzothiazole-2-sulfonic acid (B-2-SA) displayed an entirely different308

temporal pattern from the rest of the eight compounds (Figure 2B). Instead of being ele-309

vated by the WWTP input, the EUchem,i observations experienced a drop between 12:20 and310

14:20, as well as observable fluctuations between 13:00 and 17:00 at both MSs on August 20.311

Afterwards, the pronounced peaks were observed at later hours between 21:00 on August 20312

and 05:00 on August 21. Previous study32 found that B-2-SA was the dominant compound313

among other benzothiazoles in the municipal wastewater and that surface runoff caused a314

substantial amount of B-2-SA into receiving waters. This conclusion might shed lights on315

the reason of different temporal pattern found in B-2-SA in our study. Still, the model was316

capable of reproducing most of the features in B-2-SA data. The modeled EUchem,i time317

courses for individual compounds in PPARγ and AREc32 can be found in Figure S31 –318

Figure S32. NRMSE for all detected compounds at MS2 and MS3 are shown in Table S7.319
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Individual bioactive chemicals’ effect unit fluxes. The high release from the WWTP320

not only functioned as a major contributor of effects in the Steinlach River, but also played321

a crucial role in characterizing the in-stream temporal patterns of EUchem,i fluxes. The322

EUchem,i fluxes of B-2-SA and benzotriazole in AhR are shown in Figure 2C – D. The modeled
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Figure 2: EUchem,i (A) – (B) and EUchem,i fluxes (C) – (D) of the two detected chemicals
that were activated in AhR-CALUX. Analytical uncertainties (one standard deviation) orig-
inating from the concentration measurements were illustrated in grey area. Discharges at
the corresponding locations are shown in light blue and green areas. Abbreviations: B-2-SA
– Benzothiazole-2-sulfonic acid; MS – Measuring station.

323

discharge time series was plotted alongside the EUchem,i fluxes. The major temporal patterns324

of the EUchem,i for AhR (Figure S30) were masked by the discharge features. The EUchem,i325

fluxes were heavily shaped by the unsteady discharge. The discharge waves that were caused326

by the sudden WWTP release led to the EUchem,i fluxes peaked at 12:00 at MS2 and 13:10327

at MS3. The modeled EUchem,i fluxes’ were able to produce the peaks that propagated from328

MS2 to MS3 in the observations of 4&5 methyl-benzotriazole, benzotriazole, climbazole,329

diuron, isoproturon and telmisartan (although slight deviations from the data can been seen,330

e.g. in the last six hours of sampling period for tramadol.). The EUchem,i flux of B-2-SA,331

similar to its EUchem,i, exhibited a different temporal pattern from the rest of the compounds332
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that were activating the AhR at both MSs. In particular, the EUchem,i flux of B-2-SA clearly333

peaked twice during our sampling period, and the modeled results at MS3 showed the largest334

deviation from the data in comparison to all other compounds approximately at mid-night335

of August 21st. Nevertheless, the modeled EUchem,i fluxes were able to reproduced the336

key features in the observations for the detected compounds in AhR-CALUX, PPARγ and337

AREc32 (Figure S33 - Figure S35).338

The model also performed well when applied to the cytotoxicity data. As the EUchem,i339

and TUchem,i only differed by a scaling factor, the modeled time course of the TUchem,i in six340

cell lines (AhR, PPARγ, ERα, AREc32, AR-GeneBLAzer (AR) and GR-GeneBLAzer (GR)341

in Figure S36 – Figure S41) again were able to reproduce the main features of the individual342

compound’s cytotoxicity time series. Similar results can be seen in the case of cytotoxicity343

fluxes (Figure S42 – Figure S47, Table S7). By applying the convolution-based transport344

model with the first-order reaction kinetics to the individual effects data, we demonstrated345

that the model was able to quantitatively characterize in-stream mechanisms of the individual346

effects.347

Predicted mixture effects of bioactive chemicals (EUchem and TUchem). The bioac-348

tive detected chemicals are expected to contribute to the mixture effects that were measured349

in a water sample. Figure 3A – C display the percentages of the mean EUchem,i of the indi-350

vidual micropollutants from MS1 over the whole sampling period. Within the mixture effect351

EUchem (Eq. 3), the contributions from the individual compounds varied over different bioas-352

says, but did not differ significantly between sampling locations. Benzothiazole-2-sulfonic353

acid contributed a relatively large fraction of EU chem in AhR, PPARγ and AREc32 (full354

results can be found in Figure S48 – Figure S49.). In all three bioassays, the contribution of355

all detected and activated compounds (EUchem) to the total effect (EUbio) was less than 1%356

regardless of the locations (Figure 3B and D), indicating that the majority of the effects in357

EUbio were contributed by the non-detected compounds. Neale et al. 33 reported similar low358
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Figure 3: Contribution (%) of the mean effect units over the sampling period from individual
micropollutants to the whole mixture at auto-sampler 1 for the bioassay AhR and PPARγ.
(A) and (C): Contribution of individual micropollutants effects to EU chem; (B) and (D):
Contribution of all detected micropollutants to EUbio; Abbreviations: 2-Amino-benzo –
2-Aminobenzothiazole; 4&5-MBT – 4&5 Methyl-benzotriazole; B-2-SA – Benzothiazole-2-
sulfonic acid; Detected – Effect of all detected compounds; Unknowns – Effect of the non-
detected compounds. Unit of EU: [Lbiosassy · Lwater

-1]

fractions of explained effects in the same three bioassays in water samples from diverse rain359

events in rivers of similar sizes.360

In the case of cytotoxicity, no single compounds showed the universal dominance at361

contributing individual effects (TUchem,i) to the mixture effects of the detected compounds362

(TUchem) across all bioassays. The percentages of TU contributed by individual compounds363

to TUchem in AhR, PPARγ, ERα, AREc32, AR and GR are shown in Figure S50 – Figure S52.364

Diclofenac, benzotriazole, sulpiride and terbutryn contributed the overall high percentages365

in PPARγ, AR, GR and ERα, respectively. In AhR and AREc32, TUchem was more evenly366

composed out of the effects of individual compounds. No significant spatial variations of the367

individual TU contributions were observed.368

The time patterns of the mixture effects from all the detected and active compounds,369

EUchem and TUchem (Eq. 3 – 4), were dominated by those compounds that contributed some370
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of the largest shares of the effects in the mixture (Figure S53 – Figure S56). Similar to371

the individual effects, the dynamics of the fluxes were dominated by that of the discharge.372

Modeled flux results were able to reproduce the major features (e.g. the main peak caused373

by the WWTP’s effluent sudden release) observed in the data from all three bioassays.374

The total mixture effects (EUbio and TUbio) and fluxes. The measured time series375

and modeled time series ensemble of EUbio in AhR, PPARγ, ERα and AREc32 at MS2 and376

MS3 are shown in Figure S57 – Figure S58, respectively. The EUbio, representing the total377

specific burden that resulted from all of the organic micropollutants in the water sample,378

displayed low variations and unclear transport patterns along the river course (Figure 4)379

presumably because the discharge was not stable during the sampling period (Figure 1) and380

therefore the composition of the components triggering the mixture effect were highly vari-381

able. Similar to the EUchem,i fluxes of the detected compounds, as well as the results from382

Müller et al. 34 in storm events, in this study the observed fluxes of EUbio were mainly dom-383

inated by the temporal patterns of the unsteady discharge (Figure 4). In all four bioassays,

Figure 4: EUbio fluxes ensemble at MS2

384
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pronounced flux peaks were seen at around 12:00 on August 20. However, the individ-385

ual temporal pattern in each bioassay could also be differentiated. In both PPARγ and386

ERα (Figure 4B – C), a pronounced drop of EUbio flux could be observed at around 15:00.387

At the same time, the mean TUbio flux also experienced the drop (Figure S61), indicat-388

ing that the observation could not have been caused by masking effect by the cytotoxicity.389

Furthermore, in comparison with the other three bioassays, the measured EUbio fluxes in390

AREc32 (Figure 4D) could clearly be seen experiencing smaller temporal oscillations. The391

convolution-based reactive transport model coupled with the MH-MCMC yielded the EUbio392

fluxes ensemble after all chains converged, and the statistics of the modeled effect fluxes393

ensemble were computed. Depicted in Figure 4, the means and three interval estimates (one394

to three standard deviations) of the modeled EUbio fluxes ensemble were demonstrating very395

good coverage of the observations. Most of the observations fell within certain envelopes of396

the modeled ensemble results. Moreover, the main features of the fluxes peaks in all bioas-397

says were clearly reproduced by the model. Particularly in the case of ERα, 11 out of the398

15 measurements (including the corresponding standard errors) fell within the range of one399

standard deviation of the mean of the model ensemble, and the observation at around 14:00400

on August 20th was within the range of two standard deviations of the ensemble mean. The401

poorest model fit was in the case of PPARγ (Figure 4B) where only six out of the 15 data402

points were inside the range of one standard deviation of the mean of the model ensemble.403

However, as previously discussed, the largest measurement standard errors were found in the404

data set in PPARγ, and as a consequence the low likelihood values during the parameter405

searching process by the Markov chains were produced, which was further substantiated in406

Figure S64 that PPARγ needed the largest number of iterations for all five Markov chains to407

converge. The ensemble of EUbio in the four bioassays at MS3 are displayed in Figure S58.408

In the case of the toxic unit of the whole bioactive mixture (TUbio), the measured TUbio409

values in different bioassays should be relatively similar, since TUs are quantified based on410

the same endpoint, even in different bioassays. The model coupled with MH-MCMC was411
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only applied to the mean TUbio (Section 2) measured in AhR, PPARγ, ERα and AREc32.412

The modeled time course ensemble of TUbio at MS2 and MS3 are plotted in Figure S59 –413

Figure S60, respectively. Figure S61 – Figure S62 depict the modeled TUbio flux ensembles.414

Similar to EUbio flux, the modeled TUbio flux ensemble were able to reproduce the flux peak415

in the data at both MS2 and MS3. At MS2, six out of the 15 the observations are in the range416

of one standard deviation of the mean ensemble, considering the measurement uncertainties.417

Five more are in the range of one standard deviation of the mean ensemble. At MS3, all418

observations are covered within the ensemble. The number of iterations the MH-MCMC419

took to converge for each bioassay data are given in Figure S63 - Figure S70.420

4.3 Sources of micropollutants421

To identify the source(s) of the micropollutants, grab samples were taken at MS up and mea-422

suring station Ehrenbach (MS Ehr), the measuring station at the WWTP effluent, measuring423

station Mühlbach (MS Muehl) and MS1 (sampling map: Figure S1). The concentrations of424

all compounds in grab samples are given in Table S3 and illustrated in Figure S73. As ex-425

pected the typical WWTP effluent substances were not detected at MS up and MS Ehr, but426

could be found at MS Muehl and MS1. Still, atrazine-2-hydroxy, mecoprop, terbuthylazine-427

2-hydroxy and carbendazim were found at MS up and MS Ehr. Additionally, atrazine,428

atrazine-desethyl, nicosulfuron, terbuthylazine and tebuconazole were also detected at MS429

Ehr (Table S3). All of these compounds are either herbicides (herbicides metabolites) or430

fungicides (Table S1) that could come from other sources, e.g. agricultural fields during431

their application periods.35432

Figure 5 depicts the grab samples’ EU of individual detected compounds (EUchemi
),433

the mixture of all detected compounds (EU chem) and the total mixture (EUbio) quantified434

in PPARγ. Results from bioassays AhR and AREc32 are shown in Figure S74. At all435

sampling locations, 15 out of the 42 contaminants found in the grab samples showed at436

least one specific effect (EC10 values of individual compounds are in Table S5). Diuron,437
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Figure 5: The effect units (EU) of grab samples: (A) Total mixture effect (EUbio); (B) Indi-
vidual effects EUchem,i; No grab samples were taken at MS2 and MS3. Measurement uncer-
tainties (standard deviation) are shown by the error bars. Abbreviations: Ehr – Ehrenbach;
Muehl – Mühlbach; B-2-SA – Benzothiazole-2-sulfonic acid; Chem – Effect units of the sum
of detected bioactive compounds (Eq. 3).

isoproturon, and tramadol were active in two of the three bioassays. 2-aminobenzothiazole438

and benzothiazole-2-sulfonic acid triggered specific effects in all three bioassays. At MS Up439

and MS Ehr, none of the detected compounds displayed any specific effects, indicating that at440

those two locations, the detected chemicals made no contributions to the EUbio, in terms of441

triggering the modes of action quantified by AhR, PPARγ and AREc32. None of the target442

analytes activated ERα. EUbio of grab samples in ERα is shown in Figure S75. At the same443

locations (MS Up and MS Ehr), the EUbio from grab samples were also less than 0.01 (inverse444

of 100 REF) in AhR, ERα and AREc32, but activated effects in PPARγ. Similar results can445

be found when looking at cytotoxicity. TUbio of grab samples were quantified and above the446

limit of detection in AhR, PPARγ, ERα and AREc32 (Figure S76 – Figure S78). The total447

bioactive mixture from MS Up and MS Ehr showed cytotoxicity in all four bioassays.448
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EUbio and TUbio were measured at unexpectedly high values at locations upstream from449

the WWTP. In PPARγ, EUbio from MS Up and MS Ehr were both higher than that from450

the WWTP effluent. In AhR and PPARγ, TUbio from MS UP and MS Ehr were both higher451

than that in samples from WWTP effluent (Figure S76). Oddly, in AREc32 and ERα, the452

TUbio of the WWTP effluent was less than 0.01. Still, in AREc32 and ERα, TUbio of MS453

Up and MS Ehr were measured at the same order of magnitude to that of measuring station454

Mühlbach (MS Mühl) and MS1.455

The results suggest that micropollutants from MS Up and MS Ehr can not activate the456

modes of action of aryl hydrocarbon receptor induction, estrogenicity and oxidative stress457

response. But even without the input from the WWTP, there are unknown chemicals in458

the river that are potent enough to activate the peroxisome proliferator–activated receptor459

activity, as well as to show cytotoxicity in AhR, PPARγ, ERα and AREc32. The presence of460

unknown compounds triggering specific effect in PPARγ, as well as showing strong cytotox-461

icity in all four bioassays, might be attributed to undetected biocides or pesticides diffusion.462

Previous study35 pointed out that biocides and pesticides can migrate from mixed lands and463

urban areas into rivers via routes caused by rain events (e.g. disperse losses and combined464

sewer overflows). Existing natural compounds in rivers may also activate effects in bioassays.465

Salam et al. 36 and Rau et al. 37 confirmed that strong PPARγ agonists can be from plants466

and herbs (e.g., psi-baptigenin and hesperidin), which were not on our list of target analytes467

(Table S1). Further discussion on TUchem,i of grab samples can be found in the Supporting468

Information (Text S24).469

From individual micropollutants to the total mixture: prior and posterior dis-470

tribution of the reaction constants The EUchem,i observations from the individual471

micropollutants were illustrated together with EUbio across all MSs in the main channel472

in Figure S79. Echoing grab samples shown in Figure 5, EUchem,i at all three MSs were473

out-weighted by EUbio. Corroboratory results were reported from numerous previous stud-474
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ies.6,14,26,33,38 The potentially large number of none-detected micropollutants in the mixture475

were considered the main contributors to the total specific mixture effects.476

Only limited numbers of micropollutants in the mixture could be identified, of which the477

reaction constants could be quantified. Within Bayesian inference, the reaction constants478

of the effects of the total mixture (EUbio and TUbio) were treated as random variables.479

The posterior distributions of the random variables were quantified (1) based on previous480

knowledge of individual micropollutants that were possibly in the mixture (the prior), and481

(2) conditioning on the data (the likelihood). Prior and posterior distributions of reaction482

constants for EUbio and mean TUbio are in Figure S63 – Figure S72.483

4.4 Outlook484

There is a lack of mechanistic models applied to mixture effects in rivers. We demonstrated485

that the in-stream processes of the mixture effects can be described by the 1D advection-486

dispersion-reaction equation. The computationally cheap convolution-based reactive trans-487

port model can be applied not only to simulate the effects of a large number of individual488

compounds detected in the mixture, but also to be coupled with stochastic methods to489

provide quantitative insights of the fate of the overall mixture effects.490

Different transfer functions can be tested so that more insights about the process of the491

mixture effects in different systems (e.g. on suspended particles) can be provided. Time492

dependent parameters can also included, for instance, when modeling transient source(s)493

from tributaries during rain events, even in the stochastic processes (e.g. hierarchical model).494

A next step should be to test if this approach can also be applied to the micropollutant495

mixture effects during storm events, including the micropollutant effects associated with496

river sediments.497
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Hilscherová, K.; Hollert, H.; Krauss, M.; Novák, J.; Schulze, T.; Seiler, T. B.; Serra, H.;593

Shao, Y.; Escher, B. I. Linking in Vitro Effects and Detected Organic Micropollutants594

in Surface Water Using Mixture-Toxicity Modeling. Environ. Sci. Technol. 2015, 49,595

14614–14624.596

(15) Neale, P. A.; Munz, N. A.; Ait-Aissa, S.; Altenburger, R.; Brion, F.; Busch, W.; Es-597
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