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Abstract
Coordination incentives (CI) like the agglomeration bonus that reward the spatial agglomeration (or
other spatial patterns) of biodiversity conservation measures are gaining increasing attention. 
Experiments on CI, accompanied by statistical analyses, reveal insights into the behaviour of human
subjects. However, the scope of statistical models is limited and one may, as in other sciences like 
physics or ecology, gain additional insights by fitting mechanistic process models to the 
experimental data. I present the first application of this type in the context of CI and fit a multi-
agent simulation model to a seminal experiment on the agglomeration bonus. Comparing two basic 
approaches for the decision making of the model agents, reinforcement learning and using 
expectations about the future, reveals that the latter is much better able to replicate the observations 
of the experiment. Improved models of agent behaviour are indispensable in the model-based 
assessment of CI for the conservation of biodiversity.  

Highlights

 A multi-agent model for actors under coordination incentives is developed 

 The model is used to replicate the dynamics of a seminal lab experiment

 Fitting the model to the observations reveals what drove players’ decisions
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1 Introduction

To halt the continuing loss of biodiversity, policies need to address both the loss and the 

fragmentation of species habitats. On private lands, regulations and land-use planning have limited 

applicability, since many biodiversity conservation measures can be implemented only on a 

voluntary basis. Conservation activities on private lands are therefore generally induced by 

economic instruments like conservation payments or tradable land-use permits (de Vries and Hanley

2016). In the face of scarce budgets, these instruments should be cost-effective, so that biodiversity 

is conserved at least costs.

A challenge in the design of conservation payment schemes is the spatial heterogeneity of the 

conservation costs. Unless the conservation agency has knowledge of these costs, it is not possible 

to explicitly target payments to ecologically valuable sites. To address the problem of habitat 

fragmentation, coordination incentives have been proposed, such as the agglomeration bonus of 

Parkhurst et al. (2002) in which each conserving landowner receives a spatially homogenous base 

payment, and on top of this a bonus for each adjacent conserved land parcel. This bonus offsets the 

added cost that arises if a more costly but connected land parcel is conserved rather than a less 

costly but isolated one (Drechsler et al. 2010).

Since 2002, an increasing amount of research papers have been published about the agglomeration 

bonus. These comprise modelling studies (Drechsler et al. 2010, Bell et al. 2016, Delacote et al. 

2016, Ifthekar and Tisdell 2017, Dijk et al. 2017), empirical analyses (Bell et al. 2018, Krämer and 

Wätzold 2018, Huber et al. 2021) and lab experiments (Parkhurst et al. 2002, Parkhurst and 

Shogren 2007, Banerjee et al. 2012, 2014, 2017, Parkhurst et al. 2016, Kuhfuss et al. 2018, 2022); 

for a comprehensive review on the literature on CI, see Nguyen et al. (2022).

While the agglomeration bonus idea is intriguing, the empirical analyses have identified a number 

of obstacles that may hamper the effectiveness and cost-effectiveness of this instrument. Probably 

the most critical obstacles are the strategic uncertainty the landowners are facing under an 

agglomeration bonus, and the landowners’ limited cognitive abilities (Parkhurst et al. 2002, 

Parkhurst and Shogren 2007).

The strategic uncertainty arises from the above choice between connected high-cost and isolated 

low-cost land parcels, which places the landowners into a coordination game (van Huyck et al. 

1990, Heinemann et al. 2004). Due to the bonus, the conservation of a costly land parcel adjacent to

the land parcel of another landowner is more profitable (compared to the conservation of a less 



costly but isolated land parcel) but this is only if the other landowner conserves as well. And 

whether the neighbour conserves or not is generally not known a priori, since their decision is 

dependent on the size of the bonus, their conservation cost, and the land-use in their neighbourhood.

Conserving the adjacent land parcel thus is termed the payoff-dominant strategy while conserving 

an isolated land parcel is termed the risk-dominant strategy (Parkhurst and Shogren 2007). Risk-

averse decision makers will favour the latter over the former, which can hamper coordination and 

the formation of spatially agglomerated pattern of conservation activities.

The second reason for such coordination failure identified by Parkhurst and Shogren (2007) is that 

even in their stylised model landscape in which four players managed altogether 100 land parcels, 

each player could choose from tens of thousands of land-use strategies, leading to thousands of 

Nash equilibria. Given the cognitive limitations of the average human brain, this complexity may 

prevent the players from finding the (most) payoff-dominant, coordinated Nash equilibrium, even if

the strategic uncertainty played no role.   

In the lab experiment of Parkhurst and Shogren (2007) the players were able to establish desired 

spatial patterns of conserved land parcels with high probabilities. While being encouraging, it is not 

clear how far this result carries over to landscapes with other spatial and economic features, and it is

difficult to predict how the subjects in the experiment would perform under alternative incentive 

designs that differ from the tested ones. 

To improve the transferability of the experimental results to other cases and help develop better 

(simulation) models of coordination incentives, it would be desirable to better understand the 

factors behind the players’ observed decisions, or in other words, to have a look into the players’ 

minds. Such knowledge then could be included in agent-based models to assess the performance of 

coordination incentives like the agglomeration bonus (Iftekhar and Tisdell 2016, Bell et al. 2018, 

Drechsler 2021, Drechsler et al. 2022).

Agent-based models have numerous applications in economic research, including their integration 

with economic experiments (Duffy 2006, Mignot and Vignes 2020). Iftekhar and Tisdell (2016), 

e.g., modelled agents in a conservation auction who could submit joint bids with their neighbours, 

which would increase their payoffs and the spatial agglomeration of conservation efforts. The 

authors assumed that the model agents learn from their payoffs from previous bidding rounds via 

reinforcement learning (Erev and Roth 1998, Charpentier et al. 2021) in order to derive their 



decisions. Here a successful strategy is repeated with higher probability than other strategies, but in 

addition, the agents test alternative similar strategies and adopt them if they lead to a higher payoff.

While the model of Iftekhar and Tisdell (2016) is of a generic nature, so that plausible ranges for 

their model parameters are assumed in an ad-hoc manner, agent-based models can be parametrised 

with data from economic lab experiments in order to consider human behaviour more specifically. 

Or the dynamics observed in agent-based models can be compared to and tested in lab experiments, 

such as Benito-Ostolaza (2015) who experimentally replicated Schelling’s (1971) famous model of 

social segregation and could confirm some but not all of the predictions of that rather stylised 

model.   

Despite the potential of agent-based models as complements of experimental research, integration 

of these two strands of research is still rare, while the majority of economic experiments is 

evaluated statistically. In the context of coordination incentives, Parkhurst and Shogren (2007), e.g.,

fitted a statistical model to the observed coordination success of the four players that included 

predictors such as “complexity” (number of neighbouring players affecting the own payoff) and 

“experience” (round of play in the session). Banerjee et al. (2012) predicted current player decisions

from own and neighbours’ past decisions. And Parkhurst et al. (2002) fitted a (probabilistic) Markov

model to the time series of player decisions to predict the steady state of the dynamics. 

Statistical models use observable parameters (such as previous player decisions) as predictors. On a 

sufficient data base they can provide excellent predictions of the future dynamics of a system. For 

instance, the statistical model of Banerjee et al. (2014) predicts how communication and 

information provision affect the coordination of players; and with a similar approach, Banerjee et al.

(2017) assessed the impact of transaction costs on coordination success.

However, the transferability of statistical models to other systems with different settings, conditions 

and constraints is often limited. Here an alternative are mechanistic (not to be confused with 

“mechanic”), process-based models that describe the behaviour and interactions of the entities 

(players) through mathematical equations or rules (in the present context, see as examples the 

agent-based models of Iftekhar and Tisdell (2016), Bell et al. (2018) and Drechsler (2021)). To 

illustrate the complementarity of statistical and mechanistic models, consider that one can forecast 

the weather by fitting a statistical (e.g., neural network) model to observed atmospheric data, or by 

fitting a mechanistic model built on the physical laws of thermodynamics. Both approaches have 



their pros and cons, where an advantage of mechanistic models is that they can generally be better 

adapted to other situations.

Fitting a mechanistic process model to observation data is called inverse modelling (Hartig et al. 

2011). Since the task here is to define patterns of the system’s spatio-temporal dynamics (such as 

the temporal mean or variance of a variable, or it spatial distribution) and identify parameter values 

of the process model so that the simulated patterns match the observed patterns, the approach is also

termed “pattern-oriented modelling” (Grimm et al. 2005). 

As an example from experimental economics, Shank et al. (2015) fitted an agent-based simulation 

model to observed dynamics of a public good game experiment in which players contribute, at some

individual cost, to some public good whose level depends on the players’ contributions. Among 

other results, the model in which players showed preferences both for their own and for the group 

payoffs fitted the data best.

While (at maximum) a handful of studies have fitted agent-based models to experimental data, none

exists to the author’s knowledge in the context of coordination incentives – which obviously 

involve particular challenges in the identification of appropriate decision models. The present paper 

provides a first application in this context.

As a test case, the above-mentioned study of Parkhurst and Shogren (2007) is taken. Two types of 

decision models are tested. The first is the above-mentioned reinforcement model of Erev and Roth 

(1998) that has by now a long history of several decades of application and is used in many 

economic contexts in which actors learn and adapt (Charpentier et al. 2021). The second model is 

novel and somewhat complementary to the first. Rather than basing decisions on past experiences, it

considers expectations of the future, in particular the expected future decisions of the other agents. 

This model, termed henceforth the “future-expectations model”, is motivated by the fact that in a 

coordination problem like the present one, with a large number of Nash equilibria, the actors’ 

beliefs of what other actors will do play a central role (Russell et al. 1990, Hellwig 2002, Neumann 

and Vogt 2009). Therefore the future-expectations model explicitly considers the players’ beliefs of 

how the future land-use decision of a neighbour depends on the current land use.

The dynamics induced by both agent decision models are simulated, and the emerging land-use 

dynamics are compared to those observed in the experiment of Parkhurst and Shogren (2007). It is 

analysed how the parameters of the two decision models affect the modeled land-use dynamics, and



which values of the model parameters lead to the best “model fit”, i.e. the highest agreement 

between modeled and observed dynamics.

As a main result, I show that the reinforcement-learning model is unable to replicate the data, while 

for the future-expectations model one can find combinations of parameter values so that the model 

output agrees with the experimental data. The evaluation of these parameter combination allows for 

some conclusions about the factors that may have driven the decisions of the subjects in the 

experiment.

2 Methods

2.1 The experiment of Parkhurst and Shogren, and its model simulation

Parkhurst and Shogren (2007) arranged four players on a square grid with ten by ten land parcels, so

that each player owned one quarter of the model landscape (Fig. 1). Each land parcel could be used 

for economic purposes (e.g., intensive agriculture) or for conservation. Conservation caused a loss 

of revenue (henceforth termed “conservation cost”) that was lowest at the northern and southern 

borders of the landscape and highest in the middle, while not depending on the east-west location of

the land parcel. 

Figure 1. Model landscape of the experiment. Each player owned one quarter of the land parcels.

The numbers represent the conservation costs (forgone agricultural revenues when the land parcel is

conserved).

Each player was offered a spatially homogenous base payment bp = 3 (per land parcel) for the 

conservation of up to six land parcels. Under this setting, profit-maximising players would conserve

the low-cost land parcels in the north and the south. To induce agglomerated conservation further in 

the middle of the landscape, the authors offered, in addition to the base payment,  three 

agglomeration bonuses:



 an own-border bonus obb that was paid for each border between own conserved land parcels

(which would, e.g., sum up to four times obb if the five adjacent land parcels on the outer 

row were conserved),

 a row-border bonus rbb that was paid for each border a conserved land parcel had to a 

conserved land parcel of another player that lied north or south, and

 a column-border bonus cbb that was paid for each border a conserved land parcel had to a 

conserved land parcel of another player that lied east or west.

Three target patterns of conserved land parcels (Fig. 2) were incentivised through an appropriate 

combination of bonuses (identified by the authors through a numerical game-theoretic analysis). 

Note that the authors also considered a fourth pattern with conservation in the four corners of the 

landscape, but this is trivial and the solution not unique, so it is not considered in the present 

analysis. The bonus levels used by Parkhurst and Shogren (2007) were

 obb = 16, rbb = 13, cbb = 8 for the core

 obb = 8, rbb = 16, cbb = 0 for the corridor

 obb = 19, rbb = 16, cbb = 16 for the cross.

Figure 2. Three target patterns (core, corridor and cross: panels a–c) incentivised by Parkhurst and

Shogren (2007) through appropriate settings of the agglomeration bonuses. 

Each experiment went over ten rounds. In some treatments, several sets of ten rounds were coupled,

so that the subjects played, e.g., ten rounds to achieve the corridor, followed by ten rounds for the 

core and then another ten rounds again for the corridor. 

In each round, Parkhurst and Shogren recorded, for each player, whether these conserved the five or

six targeted land parcels (Fig. 2) or not. If a player conserved “correctly”, this was denoted with a 

score of 1; otherwise a score of zero was denoted. The maximum score over ten rounds and four 

players that could be achieved per experiment therefore was 10  4 = 40. Other, supplementary 

indicators recorded by the authors are not considered in the present analysis. On average (see 



below), the players reached a score of 14.5 (36 %) in the core experiments, a score of 28 (70 %) in 

the corridor experiments, and a score of 12 (30 %) in the cross experiments.

2.2 Modelling the experimental dynamics

The present simulations try to mimic the experiments of Parkhurst and Shogren (2007), starting 

from an economically used landscape and running over ten simulation rounds. Two models of the 

players’ decision behaviour are considered (cf. the Introduction). The first is the “reinforcement 

learning model” by Erev and Roth (1998) that is used in many economic contexts (Charpentier et al.

2022), with an application in the context of CI by Iftekhar and Tisdell (2016). The second is the 

novel “future-expectations model” that acknowledges the relevance of beliefs in complex 

coordination games (Russell et al. 1990) and explicitly considers the model players’ (agents’) 

beliefs of how a neighbour’s future land-use decision depends on the current land use. In the 

development of the models, a number of simplifications is introduced for numerical simplicity or 

due to the absence of required data.

 

1) Communication between model players (considered as a treatment by Parkhurst and Shogren 

(2007)) is not considered, so each model agent decides independently, based on their information 

about their own and the other players conservation costs (Fig. 1) and the land-use pattern in the 

entire landscape of the previous round.

2) As described above, Parkhurst and Shogren (2007) carried out several 10-round experiments in a 

sequence, where the players could learn from previous 10-round experiments, which affected their 

decision behaviour in later experiments. In particular, e.g., the dynamics observed in the core 

experiment differed by whether the experiment was the first, second or third in a set of experiments.

These “long-term” dynamics are ignored in the present model, and the experimental results of 

Parkhurst and Shogren (2007) are averaged over the positions in the set (so the above score of 14.5 

observed in the core experiments is an average over all core experiments reported in Parkhurst and 

Shogren (2007), regardless of whether the individual experiment was first, second or third in a set.

3) Given the payment levels described above, a real player’s profit may be maximised by 

conserving five (in the corridor experiment) or six land parcels (in the core and cross experiments). 

In Parkhurst and Shogren (2007), the players were allowed to decide in each experiment how many 

land parcels (up to six) to conserve. For simplicity (but with negligible loss of generality), the 

present model agents can, in contrast, not choose whether to conserve five or six land parcels. 

Instead, in the core and the cross experiments (Fig. 2a and c) it is assumed that the agents always 



conserve six land parcels, while in the corridor experiments (Fig. 2b) they always conserve five 

land parcels.

4) In the experiment of Parkhurst and Shogren (2007), the players could choose among all 

mathematically possible land-use strategies (25  24  23  22  21 = 6,375,600 different strategies 

for five conserved land parcels and 25  24  23  22  21  20 = 127,512,000 different strategies 

for six conserved land parcels). In the decision models below, the players explicitly attach a value to

each strategy and sample a preferred strategy based on these values. Given the structure of the 

models, especially the future-expectations model which contains some dynamic optimisation, the 

consideration of so many strategies would lead to unacceptable computation times. Therefore I 

simplify by assuming that the agents are aware that it is always profitable to agglomerate the own 

conserved land parcels to collect at least the own-border bonus. Under this assumption is is 

plausible to consider only strategies in which each land parcel is connected to at least one other own

land parcel by an east-west or a north-south border (so that a chess rook could move throughout the 

five- or six-parcel network). The number of these strategies turns out to be 346 when conserving 

five and 1,400 when conserving six land parcels (Appendix A).

5) Lastly, Parkhurst and Shogren (2007) also measured other indicators, in addition to the above 

introduced score, such as how often the emerged habitat network was not of the desired shape but

contiguous; whether under allowed communication among players the played strategy equalled the 

announced one; and the “economic efficiency” defining the “percentage of available program rents 

earned by the group”.

2.3 The reinforcement-learning model

The core of the agent-based simulation model is the decision model of the agents (players). The first

variant to be considered is based on the reinforcement learning approach developed by Erev and 

Roth (1998) which has three parameters characterising the agent’s learning behaviour: the initial 

value q0 of the “propensity” q that determines how strongly the current decision depends on the 

associated payoff, the “recency” parameter j that measures how strongly the present decision is 

influenced by the present conditions compared to the conditions further in the past, and the 

“experimentation” parameter e that determines how willingly the agent explores and adopts 

alternative strategies.

Adopted to the present case, the reinforcement-learning model looks as follows (for a related 

application, see Iftekhar and Tisdell (2017)). The simulation starts in round t = 1 with the setting of 



parameter q0, and for each agent the initial propensities of all N = 346 (1400) strategies a1, …, aN 

are set at

. (1)

The probability of choosing strategy an is

(2)

Equation (2) models some form of bounded rationality so that the strategy with the highest 

propensity is not chosen with certainty but only with a rather high probability. To allow for a 

continuous transition towards “perfect rationality”, I scale the propensities q to the interval [0, 1] 

and raise them to some power k:

  (3)

which is inserted in eq. (2) instead of q. By choosing the “rationality parameter” k = 1 one obtains 

the original outcome of eq (2), and with increasing k the strategy with the highest propensity 

receives increasingly higher weight and is chosen with an increasingly higher probability, so that for

k → ∞ always the action with the highest propensity is chosen (Fig. 3). For each of the four agents, 

these probabilities form a probability distribution from which strategies Ai(t = 1) (I = 1, …, 4) are 

drawn randomly.

For the next round, t’ = t + 1, for each player i the payoff Ri(t) associated with strategy Ai(t) is 

calculated using the conservation costs and the payment and bonuses introduced in section 2.1. Due 

to the row- and column-border bonuses, the payoff Ri depends on the strategy Ai of player i as well 

as the strategies of the other players. So Ri is a function of all four players’ strategies: Ri(t) = 

Ri(A1(t), A2(t), A3(t), A4(t)). 



Figure 3. Propensities q (eq. 1) or utilities u (eq. 9) of five fictitious strategies (panel a) and

associated probabilities (eqs. (2) and (3)) or eq. (11), respectively, for three levels of the “rationality

parameter” k (panel b). 

As noted, in reinforcement learning the agents experiment with slightly varying strategies within 

some neighbourhood of the previous strategy. To define the neighbourhood Mk(d) of size d around 

strategy Ak I introduce a distance, or spatial adjacency, d(k, k’) for all other strategies k’ relative to 

strategy k. For this I consider the north-south and east-west coordinates (xkj, ykj) of the land parcels j 

= 1, …, J (with J = 5 or 6, respectively) conserved under strategy Ak, as well as the coordinates of 

the J land parcels conserved under the other N – 1 strategies, (xk’j, yk’j) (k’  {1, …, N} \ k). For each

pair (k, k’) I calculate the Euclidean distance between the land parcels within each of the J2 pairs 

formed by taking one conserved land parcel from strategy Ak and the other from strategy Ak’, and 

take the average over these J2 distances:

. (4)

The neighbourhood Mk(d) then contains all actions k’ that have a distance d(k’, k) ≤ d. The 

magnitude of the set Mk(d) is denoted by |Mk(d)|. According to Erev and Roth (1998) the change in 

the propensity qn’ (n’ = 1, …, N) induced by the payoff Ri from the previous round is given by

, (5)

which means that the propensity of the strategy n(i) chosen in the previous round is increased by the

associated payoff weighted by (1 – e), while the “rest” of the payoff is distributed evenly among the



propensities of the other strategies n’(i) in the neighbourhood Mn(i) around strategy n(i). By this, a 

small e gives a high weight to the previous strategy, while a large e gives a high weight to the other 

strategies in the neighbourhood. The propensities for the next round then are

, (6)

where for j = 0 the propensities of the previous round are fully considered, while for j = 1 only the

current payoffs are considered to determine the next propensities. From the new propensities of eq. 

(6) the probabilities pi,n(i) are calculated by eq. (2) to sample the strategies Ai(t’) for the next round, 

whose payoffs are calculated to update the propensities for the following round, and so on, until t = 

10. The behavioural parameters q0, d, e, j and k are assumed identical for all four model agents.

2.4 The future-expectations model

The future-expectations model is somewhat complementary to the reinforcement-learning model by

considering expectations about future payoffs rather than the knowledge of past payoffs. The 

motivation of the approach was the question, why a player would conserve one of the costly land 

parcels in the middle of the model landscape (Fig. 1). One answer could be that the players expect 

that if everybody conserved land parcels in the middle rows everybody would be better off than by 

conserving in the outer rows; and that each player expects the other players to have the same 

expectation. 

This interaction of expectations however, leads to a circularity, such that player 1 may have an 

expectation of what player 2 will do, who has an expectation of what player 1 will do, including 

player 1’s expectation of what player 2 will do, what might in turn be included in the expectations 

of player 1, and so on – which is difficult or even impossible to formalise correctly. To avoid this, I 

reconsider the decision problem as a temporal one and use the well-known economic concept of 

stochastic dynamic optimisation (Dixit and Pindyck 1994). If a player expects that the conservation 

of a land parcel at the boundary of their property in the current round would stimulate a 

neighbouring player to conserve their adjacent land parcel in the following round, s/he would 

altogether loose in the first round but would gain (together with the other player) in the next and 

possibly all following rounds. To formalise, I denote by 



u        [0, 1]   the “believed responsiveness”  , i.e. subjective belief (probability) of a model agent that if 

s/he conserves a land parcel at the property boundary in the current round, a neighbouring agent 

will conserve the adjacent land parcel in the following round.

In addition, it is plausible to assume some fidelity of the players’ actions, so that if a player 

conserves a particular land parcel in the current round s/he may be likely to conserve it in the next 

round, too. To formalise, I denote by 

v      [0, 1]   the “believed fidelity”  , i.e. subjective belief (probability) of a model agent that if another 

agent conserves a particular land parcel sh/e will conserve the same land parcel in the following 

round, too.

To join the two probabilities, consider two land parcels at a property boundary where one land 

parcel belongs to some agent A and the other to neighbouring agent B. Denote by xA(t) and xB(t) the 

states of the two land parcels in round t, where x = 1 represents conservation and x = 0 represents 

economic use. Agent A’s subjective probability of agent B conserving their land parcel in the next 

round t + 1 then is modelled as

, (7)

so that the belief of A that B will conserve their land parcel in the next round is highest if A and B 

conserve in the current round, and increases with increasing u and v. In terms of mathematical logic,

eq. (7) represents an OR operator so that (for sufficiently large u and v) either xA(t) = 1 or xB(t) = 1 

is sufficient for a high probability of obtaining xB(t + 1) = 1.

To model an agent’s strategy Ai(t) I assume that the agents maximise some utility derived from the 

payoff associated with the current action and the payoff associated with the (optimised) strategy Ai(t

+ 1) in the next round. To develop the approach, consider agent 1 in the upper left of the model 

landscape (Fig. 1) as the focal agent (for the other agents the arguments are analogous). The agent 

chooses in round t a strategy A1(t) for the current round and a strategy A1(t + 1) for the next round to

maximise the inter-temporal utility 

. (8)



 The inter-temporal utility is the weighted sum of the current and the next-round utilities, U1
(curr) and 

U1
(next), with weights w  [0, 1] and 1 – w, respectively, and is maximised through stochastic 

dynamic optimisation (Dixit and Pindyck 1994).

The utility U1
(next), accrues from the focal agent’s strategy and associated payoff in round t + 1. This 

payoff depends on the strategies of the other agents in t + 1 which are uncertain to the focal agent in

the current round t. 

The other agent’s strategies in round t + 1are not only uncertain to the focal agent in the current 

round t, but they also depend, via eq. (7) on the current land use, i.e. on the focal agent’s strategy 

A1(t) as well as the other agents’ strategies A2(t), A3(t) and A4(t). To consider the various 

dependencies and develop the utility for round t + 1, assume for the moment that the focal agent, at 

the time of his/her current decision A1(t), knows the other agents’ strategies A2(t), A3(t) and A4(t), so 

that all four Ai(t) are known.

From this information the focal agent builds for each of the neighbours’ land parcels (note that only 

the land parcels adjacent to the focal landowner’s property boundary are relevant) the probability 

(eq. 7) of being conserved in round t + 1.

Based on these probabilities, the focal agent samples the land-use on the neighbours’ land parcels 

(conserved or in economic use) l = 5 times and for each of the obtained land-use patterns calculates 

the payoff (as a function of the conservation costs, base payment and the three bonuses) for each of 

his/her N = 346 (1400) possible strategies an introduced above. This considers the focal agent’s 

uncertainty about the neighbour’s land use. The rather small number of l = 5 was chosen to keep 

computation time acceptable but may also be regarded as considering the real players’  cognitive 

limitations (“bounded rationality”).

The associated payoffs are denoted as R1
(next)(l’, n) (l’  {1, …, l}. Assuming a risk-neutral agent 

(but see the Discussion), the utility of strategy an is calculated by the mean of the payoffs over all l’:

 (9)

A perfectly rational agent would choose the an that maximises u1
(next). A bounded rational agent will 

choose that strategy only with a high probability. To determine the probability p1(an) of the focal 



agent choosing strategy an, similar to eq. (3) I scale the utilities u1
(next)(an)  to the interval [0, 1] and 

raise them to some power k:

(10)

to obtain the probability of choosing strategy an as

. (11)

As in the reinforcement-learning model, increasing k models a continuous transition towards 

“perfect rationality” by giving the strategy with the highest utility u1 an increasingly higher weight, 

so it is chosen with an increasingly higher probability. Using the probabilities of eq. (11), a strategy 

an* is sampled randomly and the associated utility u1(an*) (eq. 9) is taken as the utility U1
(next) in eq. 

(8):

. (12)

Finally, the above assumption has to be relaxed that the focal agent knows, in the current round t, 

the actions of the other agents in that round. But although these are not known with certainty, they 

can be predicted probabilistically from the known actions of the previous round, A1(t – 1), A2(t – 1), 

A3(t – 1) and A4(t – 1). From these, the focal agent can, analogous to the analysis of round t + 1 

above, via eq. (7), determine for each land parcel the probability that it will be conserved in the 

current round t. As above, the focal agent randomly samples l = 5 times which of the neighbours’ 

land parcels are conserved in round t and which are not. For each of these l’ = 1, …, l cases the 

agent calculates the current payoff R1
(curr)(l’, n) for each of its own strategies (n = 1, …, N), as well 

as the next round’s utility U1
(next) – which depends, as introduced above, on the current strategies, 

A1(t), A2(t), A3(t) and A4(t). Similar to above, a utility for the current round t is calculated via 

(13)



and identified by U1
(curr)(A1(t)) of eq. (8). To determine the chosen strategy A1(t) of the focal agent in 

the current round, the utility U1(t) of eq. (8) is calculated for each of the strategies an (n = 1, …, N), 

the obtained utilities are scaled to the interval [0, 1], raised to the power of k. The probabilities are 

calculated as in eq. (11) and a strategy is sampled (i.e., following the same procedure as for round t 

+ 1 described above).

This procedure is carried out for each round t = 1, …, 10 for all four model agents, assuming 

identical behavioural parameters (u, v, w, k) for all agents. For the initial round t = 1, it is assumed 

that there has been no conservation previously, so a focal agent’s belief, i.e. subjective probability 

of the other agents conserving any land parcel, is zero. 

2.5 Model analysis

Each of the three combinations of bonuses (section 2.1) is simulated for about L = 10,000 model 

parameter combinations, each built by randomly and independently drawing parameter values from 

the ranges given in Table 1. To motivate these ranges, according to preliminary analyses, the returns

Ri are of the order of magnitude of 100. Due to eqs. (5) and (6), small initial propensities at the 

chosen lower bound of q0 = 1 are thus strongly influenced by Ri, while large propensities at the 

chosen upper bound of q0 = 10,000 are weakly influenced by Ri. The considered numerical range of 

q0 thus represents a wide range of possible (relative) impacts of Ri on strategies’ propensities.

A value of d = 1 represents a small spatial neighbourhood, while d = 5 covers almost the entire 

model landscape (Fig. 1). The role of k and a motivation for its upper bound of 100 is given in Fig. 

3. The other model parameters, j, e, u, v, and w, range within the unit interval [0, 1] by their 

definition.

For each simulation, in each of the ten rounds it is recorded for each agent whether it is conserving 

the targeted land parcels (Fig. 2), and the total number of scores S is calculated by summing over 

rounds and agents (so that the maximum of S is 10  4 = 40).

To determine the influences of the model parameters, S is plotted as a function of each parameter 

(ignoring, or essentially averaging over, the respective other parameters). In addition, the 

distribution of S over all L parameter combinations is determined. 

For the future-expectations model (not for the reinforcement-learning model, for reasons to become 

apparent below) a second analysis is carried with the model parameters drawn from the restricted 



ranges given in Table 1, “Step 2”. Here I am interested in the parameter combinations that fit the 

model best to the data, i.e. lead to the highest agreement between the simulated score Ssim and the 

observed score Sobs in the lab experiments by Parkhurst and Shogren (2007) (cf. section 2.1).

Table 1: Ranges of the model parameters (q0 and k are distributed logarithmically).

Model Parameter Notation Range

Reinforcement-learning model

Common logarithm of initial propensity (eq. 1) lg(q0) [0, 4] 

Recency parameter (eq. 6) j [0, 1]

Experimentation parameter (eq. 5) e [0, 1]

Neighbourhood size (eq. 4) d [0, 5]

Common logarithm of rationality parameter (eq. 3) lg(k) [0, 2]

Future-expectations model Step 1 Step 2

Believed responsiveness (eq. 7) u [0, 1] [0.9, 1]

Believed fidelity (eq. 7) v [0, 1] [0, 1]

Weight of current utility (eq. 8) w [0, 1] [0, 0.2]

Rationality parameter (eq. 10) lg(k) [1, 2] [1.5, 2]

In particular I am plotting the distributions of model parameters, so that

1. for the core experiments |Ssim – 14.5| ≤ 0.1

2. for the corridor experiments |Ssim – 28| ≤ 0.1

3. for the cross experiments |Ssim – 12| ≤ 0.1

4. (|Ssim – 14.5| ≤ 2 for core) AND (|Ssim – 28| ≤ 2 for corridor) AND (|Ssim – 12| ≤ 2 for cross).

To detect pairwise interactions between the four model parameters I also determine all 3 + 2 + 1 = 6

bi-variate distributions of S.

Due to the stochasticity in the land-use decisions, S is subject to random variation. To use 

computation time more efficiently (still occupying a few dozens of PCs for several weeks), rather 

than replicating simulations of each model parameter combination and averaging the results, I 

determine S once for each of the L parameter combinations as described and smooth the results 

using a moving-window average. For this I rescale all model parameters to a range from zero to one



(considering instead of k its common logarithm lg(k)). Each of these unit ranges is split into 20 

even intervals, obtaining 21 nodes (0, 0.05, …, 1) for each parameter and a grid of 214 nodes y0 that 

cover the 4-dimensional model parameter space. 

For each node y0  (u0, v0, w0, lg(k0)) I identify all combinations y  (u, v, w0, lg(k0)) of model 

parameters whose Euclidean distance e to y0 is below some value emax 

, (14)

and take the average Ŝ  Ŝ(y0) of the S(y) of these parameter combinations.

With emax = 0.12, eq. (14) represents the equation of a 4-dimensional sphere whose radius is about 

one fourth of the extension of the 4-dimensional unit cube that represents the model parameter 

space. The value of 0.12 was chosen as a compromise between having enough data points in the 

sphere for a meaningful average (so choosing emax not too small) and detecting the local influence of

the model parameters on S (so choosing emax not too large).

3 Results

3.1 The reinforcement-learning model

With the reinforcement-learning model, simulated conservation efforts are only hardly coordinated 

in the entire model parameter space: For the core experiments, only about 0.5 percent of the L 

parameter combinations yield non-zero scores S, with S = 10 being the maximum observed; for the 

corridor experiments, 6 percent of the S are non-zero, mostly with a value of S = 1 and an observed 

maximum of 11; and for the cross experiments, about 0.3 percent of the S are non-zero, with a 

maximum 10. None of these scores comes close to the values observed in the lab experiments of 

Parkhurst and Shogren (2007) (cf. section 2.1). Therefore, this model appears unable to explain the 

observed players’ behaviour and will not be evaluated any further.

3.2 The future-expectations model: performance and parameter influences

The future-expectations model, in contrast, is able to yield scores S from the full range between zero

and 40 (Fig. 4). In most parameter combinations the score is zero, but a few parameter 

combinations in the core experiments and a considerable number in the corridor experiments lead 

to high scores close to the maximum of 40. In the cross experiments, scores up to 20 are observed. 

Comparison of these results indicates that the corridor is the easiest target pattern to establish by the



model agents, followed by the core and, closely, the cross – which very well reflects the outcome of

the lab experiments which had resulted in average scores of 28, 14.5 and 12, respectively (cf. 

sections 2.1 and 2.2). 

Figure 4. Frequency distributions of the score S for the three target patterns, core, corridor and

cross, in logarithmic scale.

Now turn to the influence of the model parameters on the score S. For all three target patterns, S 

increases with increasing believed responsiveness u, decreasing weight of the current utility w and 

increasing rationality k (Fig. 5). The influence of the believed fidelity v on S is weak and 

ambiguous. And a close look reveals that the weight w that maximises the score is not exactly but 

only close to zero (especially in the core experiments, Fig. 5, top row).

For all three target patterns (panels a–d) the experimental data are best fitted through a large 

believed responsiveness of u between 0.9 and 1.0, a rather large believed fidelity v between 0.8 and 

1.0 and a low weight of current payoffs w between 0.0 and 0.1. For the rationality parameter k the 

results are less clear, so that suitable lg(k) are found in the full considered range between 1.5 and 

2.0 (1.7 and 2.0 for the cross experiments) – which corresponds to k between ca. 30 and 100; and 

results differ somewhat between target patterns. 

If the model was fitted simultaneously to the data of all three target patterns (panels e–h) (note that 

here the allowed deviation between simulated and observed score was larger because otherwise no 

suitable model parameter combination could be found) the results are similar but clearer: values of 

u  0.95, v  0.9, w  0.025 and lg(k)  1.7–1.9 lead to the best fit.

There are a few pairwise interactions of the model parameters with respect to the best fit (Appendix 

B). In the core simulation experiments, decreasing u requires a decreasing w to obtain a good fit 

(Fig. B1, upper middle panel), so u and w are inversely “substitutable”; and in the cross simulation 



experiments, u and v and u and k are “substitutable” so that a decrease in u can be compensated for 

by an increase in v and k, respectively, to obtain a good fit.

Figure 5. Scatter plot of score S versus model parameter (over all L parameter combinations) for

the three target patterns, showing the influences of believed responsiveness u, believed fidelity v,

weight of current utility w and rationality parameter k.

3.3 The future-expectations model: fitting to the experimental data

Based on these observations, for the following analyses the ranges of the model parameters were 

restricted to the ranges that lead to relatively high scores of about S > 10 in all three target patterns 

(Table 1, “Step 2”). Again, the model was run for all three target patterns for about L = 10,000 

model parameter combinations. The model parameter combinations were selected (after averaging 

as described in section 2.5) that led to the best fit to the experimental data (section 2.5). The results 

are shown in Fig. 6.



Figure 6. Distributions of model parameter values (u, v, w, k), i.e, the proportion of model

parameter combinations that include the particular value of parameter u, v, w and k, respectively,

that fulfil the constraints on the score S introduced in section 2.5. The rationality parameter k is

considered by its common logarithm. Panels a–d: each target pattern fitted individually (constraints

(1)–(3)); panels e–f: simultaneous fit of all three target patterns (constraint (4)). 



4 Discussion

The present paper attempts to replicate results of Parkhurst and Shogren’s (2007) lab experiment on 

the agglomeration bonus in an agent-based simulation model. In particular, two alternative decision-

making concepts are compared: learning from the past via reinforcement learning, and deriving 

expectations of the future through subjective beliefs and stochastic dynamic optimisation.

The first and most obvious outcome of the analysis is that model agents whose land use is based on 

reinforcement learning are not able to coordinate their land use and the experimental data cannot be 

replicated. In contrast the model based on future expectations could be fitted quite well to the data. 

This was not only individually for each of the three target patterns of Parkhurst and Shogren (2007),

the core, the corridor and the cross, but also simultaneously for all three patterns. And in addition, 

the simulation confirmed the experimental result that the corridor was easiest to establish by the 

players, followed by the core and then closely by the cross.

For all three target patterns, the likelihood of coordination success increases with increasing 

believed responsiveness u (the player’s belief that another player’s neighbouring land parcel will be 

conserved in the next round if the own land parcel is conserved in the current round), increasing 

believed fidelity v (the player’s belief that another player’s neighbouring land parcel will be 

conserved in the next round if that land parcel is conserved in the current round), decreasing weight 

w of the current round’s payoff (thus, increasing weight of the next round’s payoff), and increasing 

rationality parameter k (where for small k  1 the probability of choosing a particular land-use 

strategy is given by the strategy’s relative payoff compared to that of the other strategies, and for 

large k >> 1 the strategy with the highest payoff is chosen almost with certainty). 

The experimental data were fitted best for rather high u  0.95 and v  0.9, low w  0.025 and k   

50–80, which indicates rather high believed responsiveness and fidelity, a high weight on future 

payoffs, and a rather high probability of (“rationally”) choosing the best land-use strategy.

The large fitted values for u and v indicate that spatial coordination requires expectations that the 

other players will coordinate as well, especially if they (v) and/or oneself (u) had chosen a 

coordinated strategy in the current round. This agrees well with experimental results in a two-by-

two coordination game by Neumann and Vogt (2009) which stress the role of the “player’s guess 

their partner choose the same strategy”. 



Given the relevance of payoff- and risk-dominance in coordination games, as they are induced by 

the agglomeration bonus, one may miss here the consideration of risk aversion. In fact, this was 

considered in preliminary model analyses by replacing the expected utilities in eqs. (9) and (13) by 

risk-utility functions. However, the parameter that measured the level of risk aversion only very 

weakly affected the simulated land-use dynamics and the players’ coordination success. This, too, 

agrees with the experimental results of Neumann and Vogt (2009) who found the players’ choices to

depend more on the subjective beliefs of the other players’ future decisions than their own risk 

attitude.

On the other hand, one could argue that in a short lab experiment the weight w of the current versus 

future payoffs, as introduced in the present model, does not really measure a time preference (as the

formal similarity with a discount factor might suggest) but rather a risk attitude, so that a high 

weight on current (future) profits represents high (low) risk aversion. Altogether, the role of players’

risk attitudes is an important issue for future research in coordination problems in general and 

coordination incentives in particular.

An interesting case is the rationality parameter k which could not be fitted very precisely. A reason 

for this could be a change of its value over time in the lab experiment, so that in the initial rounds 

the players would be more uncertain and sometimes choose suboptimal strategies (cf. Fig. 3 in 

Parkhurst and Shogren (2007), modeled by smaller k, and only in later rounds when they converged

to the agglomerated target pattern would become more certain about the best strategy, modelled by 

an increasing k. 

Lastly, one may wonder why model agents using reinforcement learning were not able to 

coordinate, while in Ifthekar and Tisdell (2016) they were; and while Banerjee et al. (2012) were 

able to fit a time series model to the observed game dynamics that predicts current player decisions 

from past decisions. The reason seems to be the complexity of the present game. In both mentioned 

papers each player owned only a single land parcel which could be conserved or not (although in 

Ifthekar and Tisdell (2016) the players could then choose from several coalitions with their 

neighbours), so the strategy space is much smaller than that in Parkhurst and Shogren (2007). In 

fact, the difficulty in Parkhurst and Shogren’s experiments seems to be that the risk-dominant 

strategy of conserving the outer rows (Fig. 1) is far away from the payoff-dominant strategy of 

conserving in the costly middle of the model landscape, physically separated by numerous 

suboptimal strategies that prevent a continuous shift from the risk-dominant to the payoff-dominant 

strategy.



To some extent this difficulty can be addressed by reinforcement learning that – similar to heuristic 

optimisation algorithms like “simulated annealing” (Kirkpatrick et al. 1983) – includes a random 

element (experimentation parameter e, eq. (5)) in the decision process. This is like a hiker in foggy 

weather who would occasionally have to descend into a valley to have a chance of reaching the 

highest mountain top, rather than always walking upwards with a high risk of ending only on the 

hilltop nearby. In Parkhurst and Shogren (2007) the payoff-dominant, coordinated strategy could in 

principle be found by a sufficiently large experimental search space (parameter d in Table 1), but 

this implies the consideration of many suboptimal strategies, and the chance of two neighbours 

independently deciding for coordination is very small. 

A more effective strategy to address coordination problems and strategic uncertainty is to learn not 

only from previous own rewards but also about the other players’ behaviour. In these “belief-based 

models” (Camerer and Ho 1999) the agents (probabilistically) consider the strategy sets of the other

players, which enlarges their own strategy sets – including not only actions that had been associated

with high own past rewards (as in reinforcement learning) but also actions that would have yielded 

a high reward if the other player(s) had played a different strategy. However, since the agents still 

learn from the past, they are most likely to be unable to solve the present coordination problem, in 

which coordinated actions (that would induce own coordination) are simply not included in the 

other players’ strategy sets. 

In a similar manner one may relate the results of Alós-Ferrer and Weidenholzer (2006, 2008) who 

simulated the dynamics of multiple players interacting with each other according to a two-by-two 

coordination game. The model agents were able to find the coordinated, pay-off dominant state 

(Alós-Ferrer and Weidenholzer 2006), but this is again likely to be due to the players’ small strategy

spaces. Nevertheless, an interesting insight for the present context is the result of Alós-Ferrer and 

Weidenholzer (2008) that coordination was facilitated when coordinated states could be established 

first in a small neighbourhood before they would spread into the larger network. This may be 

relevant when coordination incentives are applied to a large number of landowners and where the 

question is not only, which coalitions of neighbouring conserving land owners are stable (Bareille et

al. 2022), but what facilitates their establishment.

5 Conclusion

The present study proposes an alternative model for the behaviour of subjects facing a complex 

coordination problem with large strategy spaces. In the model-based replications of experiments 



with smaller strategy spaces (including those cited in the Introduction), model agents might be able 

to find observed coordinated states with reinforcement learning or belief-based models. However, 

real land use systems are generally more complex than considered in those experiments, so there 

seems to be a demand for models in which agents base their decisions not only on past experiences 

but also on expectations about the future. The developed future-expectations model is, of course, 

quite specific to the experiment of Parkhurst and Shogren (2007) and would require generalisation, 

but I hope that the ideas and arguments derived in the course of the model development and 

analysis well help to develop such a general model that is able to assess the performance of 

coordination incentives in various ecological and economic contexts. 
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Appendix A: Determination of the modelled actions

Here is is described how to determine those strategies, i.e. sets of five (for the corridor experiments)

or six (for the core and the cross experiments) conserved land parcels, so that each of them shares at

least one north-south or east-west border with another conserved land parcel of the same model 

agent.

To start with the 5-parcel strategies, I consider all possible 25  24  23  22  21 combinations of 

five conserved land parcels and exclude those in which there is at least one isolated conserved 

parcel (that has no conserved neighbours in the north, south, east or west, which is straight forward 

to identify). The only remaining combinations are: (i) one pair plus one triple (Fig. A1, shapes a, b),

or (ii) the desired quintuple (shapes c, d, e). To distinguish cases (i) and (ii), I identify in the focal 

combination of those (conserved) land parcels that have exactly one (conserved) neighbour: in case 

(i) there can be four of these (shape a) or two (shape b), while in case (ii) there can be two (shape c),

one (shape d) or zero (shape e). If there are four land parcels with exactly one neighbour one can 

thus conclude on case (i)  and discard. If there are two land parcels with exactly only one neighbour,

one has to distinguish between shapes b and c. The particularity that distinguishes the pair in shape 

b from shape c is that in the former each land parcel has as its neighbour the respective other 

conserved land parcel, while in shape c the land parcels with one neighbour are not adjacent to each

other. This difference is straight forward to test numerically, which allows excluding shape b. After 

all combinations of types b and c have been excluded, a number of 346 combinations remain which 

are considered as the strategies in the main analyses.

Figure A1. Typical shapes (the orientations may vary) of combinations of five land parcels which

all have in common that each land parcel has at least one neighbour. For the roles of the different

shapes, see the text.



Now turn to the 6-parcel strategies, and consider all possible 25  24  23  22  21  20 

combinations from which again those are excluded that contain at least one isolated conserved 

parcel. The remaining possibilities are (Fig. A2): three pairs (shape a), a pair and a quadruple 

(shapes b–e), two triples (shapes f and g) and the desired sextuple (shapes h–l). Inspection reveals 

that all shapes except for the sextuple have at maximum five inner borders (bold lines in shape e) 

whose identification is straight forward by identifying all pairs of adjacent land parcels (not to be 

confused with the pairs in shapes a–e); while the sextuples have at least five inner borders (shapes 

h, i and k). The only shape that has five inner borders but is not a sextuple is shape e which consist 

of a pair and a block. Thus, to distinguish this shape from the sextuples with five inner borders, I 

test whether the shape contains a pair – which is identified as in the 5-parcel combinations above. 

Altogether, excluding all shapes with less than ten inner borders as well as shape e (and its variants)

I obtain 1400 sextuples.

Figure A2. Typical shapes (the orientations may differ in other possible shapes) of combinations of

six land parcels which all have in common that each land parcel has at least one neighbour. For the

roles of the different shapes, see the text. The bold lines mark inner borders between adjacent land

parcels.



Appendix B: Interactions of the model parameters in the future-expectations model

Figure B1. Two-dimensional distributions of model parameter values (u, v, w, lg(k)) that fulfil
constraint (1) on the score S introduced in section 2.5, i.e. fit the model for the “core” experiments.

 

Figure B2. Two-dimensional distributions of model parameter values (u, v, w, lg(k)) that fulfil
constraint (2) on the score S introduced in section 2.5, i.e. fit the model for the “corridor”

experiments.



Figure B3. Two-dimensional distributions of model parameter values (u, v, w, lg(k)) that fulfil
constraint (3) on the score S introduced in section 2.5, i.e. fit the model for the “cross” experiments.

Figure B4. Two-dimensional distributions of model parameter values (u, v, w, lg(k)) that fulfil
constraint (4) on the score S introduced in section 2.5, i.e. fit the model for all target patterns

simultaneously.
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