
This is the accepted manuscript version of the contribution published 
as: 
 
Fan, L., Xing, Z., De Lannoy, G., Frappart, F., Peng, J., Zeng, J., Li, X., Yang, K., Zhao, T., 
Shi, J., Ma, H., Wang, M., Liu, X., Yi, C., Ma, M., Tang, X., Wen, J., Chen, X., Wang, C., 
Wang, L., Wang, G., Wigneron, J.-P. (2022): 
Evaluation of satellite and reanalysis estimates of surface and root-zone soil moisture in 
croplands of Jiangsu Province, China 
Remote Sens. Environ. 282 , art. 113283 
 
The publisher's version is available at: 
 
http://dx.doi.org/10.1016/j.rse.2022.113283 



 

1 

Evaluation of satellite and reanalysis estimates of surface and root-zone soil 1 

moisture in croplands of Jiangsu Province, China 2 

Lei Fan a, Zanpin Xing b,c,*, Gabrielle De Lannoy e, Frédéric Frappart f,g, Jian Peng h,i, Jiangyuan Zeng j, Xiaojun Li k, Kun Yang 3 
l,m, Tianjie Zhao j, Jiancheng Shi j, Hongliang Ma k,n, Mengjia Wang k, Xiangzhuo Liu k, Chuanxiang Yi o, Mingguo Ma a, 4 
Xuguang Tang a, Jianguang Wen j, Xiuzhi Chen p, Chong Wang d, Lingxiao Wang d, Guojie Wang d, Jean-Pierre Wigneron k 5 
 6 
a Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, 7 
Southwest University, Chongqing 400715, China 8 
b Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute 9 
of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China 10 
c University of Chinese Academy of Sciences, Beijing 100049, China 11 
d School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China 12 
e Department of Earth and Environmental Sciences, KU Leuven, Heverlee, B-3001, Belgium 13 
f Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, 31400 Toulouse, French 14 
g Géosciences Environnement Toulouse (GET), 31400 Toulouse, France 15 
h Department of Remote Sensing, Helmholtz Centre for Environmental Research−UFZ, Permoserstrasse 15, 04318 Leipzig, 16 
Germany 17 
i Remote Sensing Centre for Earth System Research, Leipzig University, 04103 Leipzig, Germany 18 
j State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, 19 
Beijing 100101, China 20 
k INRAE, UMR1391 ISPA, Université de Bordeaux, France 21 
l Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, 22 
Beijing, 100084, China 23 
m Center for Excellence in Tibetan Plateau Earth Sciences, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 24 
Beijing, 100101, China 25 
n State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 26 
430079, China 27 
o Yancheng Meteorological Observatory, Yancheng 224005, China 28 
p School of Atmospheric Sciences, Center for Monsoon and Environment Research, Sun Yat-Sen University, Guangzhou, China 29 
 30 
Corresponding author: Zanpin Xing ( xingzp@lzb.ac.cn ) 31 
 32 

Abstract: 33 

High-quality and long-term surface soil moisture (SSM) and root-zone soil moisture (RZSM) data are 34 

critical for agricultural water management of Jiangsu province, which is a major agricultural province in 35 

China. However, few studies assessed the accuracy of SSM and RZSM datasets in croplands of Jiangsu 36 

province. The study addressed this gap by firstly using observations from ninety-one sites to assess thirteen 37 

satellite and model-based SSM products (Advanced Scatterometer (ASCAT), European Space Agency 38 
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Climate Change Initiative (ESA CCI) Combined/Passive/Active, Soil Moisture and Ocean Salinity in version 39 

IC (SMOS-IC), Land Parameter Retrieval Model (LPRM) Advanced Microwave Scanning Radiometer 2 40 

(AMSR2), Soil Moisture Active Passive (SMAP)-Multi-Temporal Dual-channel Algorithm (MTDCA)/Level 41 

3 (L3)/Level 4 (L4)/SMAP-INRAE-BORDEAUX (IB)/Multi-channel Collaborative Algorithm (MCCA), the 42 

fifth generation of the land component of the European Centre for Medium-Range Weather Forecasts 43 

atmospheric reanalysis (ERA5-Land), and the Noah land surface model driven by Global Land Data 44 

Assimilation System (GLDAS-Noah)), and four RZSM products (ERA5-Land, GLDAS-Noah, SMAP-L4 45 

and ESA CCI (retrieved using ESA CCI Combined SSM coupled with an exponential filter)). We also inter-46 

compared time-invariant and time-variant Triple Collocation Analysis (TCA)-based R with in situ-based R 47 

calculated using SSM anomalies. Various evaluation strategies were compared using different groups of 48 

available sites and temporal samplings. Our results showed that the model-based and combined SSM 49 

products (i.e., ERA5-Land, SMAP-L4, ESA CCI Combined/Passive/Active, GLDAS-Noah, ASCAT) 50 

performed better than the other SSM products and ERA5-Land, SMAP-L4 and ESA CCI RZSM generally 51 

performed better than the GLDAS-Noah RZSM product with higher R. Similar performance rankings were 52 

observed among time-invariant and time-variant TCA-R and in situ-based R, in which the TCA-R values for 53 

all SSM datasets were higher than the in situ-based R as the representativeness errors of the in situ 54 

measurements may bias in situ-based R. The accuracy of the ESA CCI, GLDAS-Noah and ERA5-Land SSM 55 

products was expected to be enhanced by considering the water effect and high uncertainties were observed 56 

for MTDCA and SMAP-MCCA SSM over dense vegetation periods and regions. Also, it is important to 57 

select appropriate evaluation strategies to conduct the SSM and RZSM evaluations according to the situation 58 

as the available sites and temporal samplings may bias the evaluation results. 59 

Keywords: Jiangsu province; microwave remote sensing; reanalysis datasets; surface soil moisture; root-60 

zone soil moisture; evaluation strategies; inter-comparison; triple collocation 61 

 62 

1 Introduction 63 

Surface soil moisture (SSM) and root-zone soil moisture (RZSM) are key state variables in the 64 

hydrological cycle and control the exchange of water and energy between land and atmosphere interactions 65 

(Peng et al. 2021; Seneviratne et al. 2010). Temporally and spatially continuous soil moisture datasets are 66 
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beneficial for numerous applications such as climate monitoring (Hirschi et al. 2010; Miralles et al. 2013), 67 

applied hydrology (Jackson et al. 2009), evaporation estimation (Martens et al. 2017), drought warning 68 

(Chatterjee et al. 2022; Watson et al. 2022), and water resources management (Zhao et al. 2020), especially 69 

as agriculture is the primary user of water. 70 

In situ measurements can provide accurate SSM and RZSM information but are insufficient for 71 

monitoring large spatiotemporal climate and environmental changes due to the limitations (very time-72 

consuming) of deploying dense networks (Bi et al. 2016; Ochsner et al. 2013). Microwave remote sensing is 73 

an effective global SSM monitoring approach owing to its immunity to bad weather and nighttime and the 74 

benefit of frequent revisits (Owe et al. 2008). The Advanced Microwave Scanning Radiometer-Earth 75 

Observing System/2 (AMSR-E/2) (Koike et al. 2004), Soil Moisture and Ocean Salinity (SMOS) (Kerr et al. 76 

2010), Soil Moisture Active Passive (SMAP) (Entekhabi et al. 2010), and Advanced Scatterometer (ASCAT) 77 

(Wagner et al. 2013) are widely known satellites/sensors for providing spatio-temporal SSM information. In 78 

addition, a combined SSM product from the European Space Agency Climate Change Initiative (ESA CCI) 79 

(Dorigo et al. 2017) benefits from regular updates to improve its quality. RZSM products mostly come 80 

currently from land surface model (LSM) outputs, including the enhanced global dataset for the land 81 

component of the fifth generation of European (ERA5-Land) (Muñoz-Sabater et al. 2021), the Global Land 82 

Data Assimilation System (GLDAS-Noah) (Rodell et al. 2004), etc., due to the constraint on microwave 83 

penetration depth (Reichle et al. 2007). 84 

Note that some uncertainties could exist in retrieving SSM in the croplands as vegetation development 85 

affects the radiative transfer mechanisms, and irrigation events could affect its spatial distribution (Fan et al. 86 

2015). Previous studies have also reported that the performance of the SSM products in China could be 87 

affected by radio-frequency interference (RFI), which corresponds to unwanted man-made emissions 88 

received by the satellite sensors, especially at L-band (Al-Yaari et al. 2019; Wigneron et al. 2021; Zhao et al. 89 

2015). In particular, their performance seems to be highly impacted by radio-frequency interference (RFI) in 90 

Jiangsu province, mainly for the SMOS L-band radiometer (http://www.grss-ieee.org/rfi_observations.html). 91 

Thus, evaluating remotely-sensed and model-based SSM and RZSM data over croplands is essential for their 92 

practical applications and further improvements.  93 

Rare investigations have been carried out over the croplands of Jiangsu Province. Until now, most 94 

evaluation studies have been conducted either over the whole country (Chen and Yuan 2020; Jia et al. 2015; 95 

http://www.grss-ieee.org/rfi_observations.html
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Ling et al. 2021; Sun et al. 2017) or in sub-regions (North China Plain (Wang et al. 2016), Central and Eastern 96 

Agricultural Area (Yang et al. 2021b), Southwestern China (Peng et al. 2015), Central Tibetan Plateau (Chen 97 

et al. 2013; Xing et al. 2021), and Mongolian Plateau (Luo et al. 2020), etc.) or specific watersheds (Heihe 98 

River (Wang et al. 2021), Luan River (Zheng et al. 2022)) of the Chinese mainland. This can be attributed to 99 

the scarcity of in situ sites within Jiangsu province that prevent sound evaluations.  100 

Jiangsu, covering an area of 10.26 × 104 km2, is one of China's most important agricultural provinces. 101 

Croplands covered about 60% of the Jiangsu Province. Winter wheat is the second major cereal crop 102 

accounting for approximately 30% of the total grain production in China. Thus, the accuracy of the soil 103 

moisture datasets is key to the agricultural water management of Jiangsu province (Xu et al. 2018). An in 104 

situ network including ninety-one sites, deployed by the Jiangsu Meteorological Information Center, provides 105 

an opportunity to assess the remotely sensed and model-based soil moisture datasets for croplands in Jiangsu 106 

province. This valuable dataset is totally independent of the soil moisture datasets, as these observations are 107 

not included in their calibration. 108 

Besides, different evaluation strategies may lead to very different results, which have not been 109 

comprehensively considered in previous studies, and thus deserve to be investigated further. Evaluating the 110 

SSM and RZSM products from various evaluation strategies could help investigate the impact of these 111 

approaches on evaluation results and obtain a relatively fair and comprehensive evaluation. For example, the 112 

evaluations can be conducted: i) using all available in situ sites and time samplings for each SSM and RZSM 113 

product, ii) using all available time samplings of common sites or, iii) using overlapped dates within common 114 

sites.  115 

In addition, direct comparison against in situ measurements from sparsely distributed networks may not 116 

be sufficient for a sound assessment, the results of which could be hindered by the sites' representativeness 117 

errors (Xing et al. 2021). The triple collocation analysis (TCA) is another tool that can be implemented at a 118 

footprint/pixel scale. TCA was first used in oceanography and then introduced to evaluate the SSM products, 119 

as it does not require high-quality reference data and can be used to estimate the error variance of three 120 

independent SSM products (Chen et al. 2018a; Dong and Crow 2017; Kim et al. 2020). Besides, agricultural 121 

applications of SSM information require accurate SSM accuracy estimates during the critical crop 122 

development period except for the time-invariant SSM accuracy for the whole research period (Wu et al. 123 
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2021a). Thus, considering both time-invariant and time-variant TCA-R are necessary for accurate SSM 124 

retrievals at different time scales, as the latter provides daily accuracy estimates with time (Su et al. 2014). 125 

This study focuses on the Jiangsu province using in situ measurements to (i) assess the accuracy of the 126 

thirteen SSM products and four RZSM products; (ii) analyze products’ performance under different 127 

evaluation strategies; (iii) investigate the potential impact factors on the performance of all soil moisture 128 

products used in the study.  129 

2 Datasets 130 

2.1 In situ measurements 131 

Ninety-one sites mainly distributed in croplands of Jiangsu province were used for the evaluation 132 

(Figure. 1 and Table S1). At each site, the sensors were installed in a horizontal orientation at the topsoil 133 

layer (i.e., 0 – 10 cm), and at other depths from 10 to 100 cm with an interval of 10 cm (Chen et al. 2018b). 134 

Each site can simultaneously provide measurements of volumetric soil moisture content, relative soil 135 

humidity, soil weight moisture content, and available soil water storage at a 1-hour time interval per day. 136 

Data was collected by the Jiangsu Meteorological Information Center and only the in situ measurements from 137 

January 2011 to December 2018 were available due to the in situ measurements in Jiangsu province are not 138 

publicly available, and observations after quality controls were retained only. With a flat average elevation 139 

of 54 m, Jiangsu province has fourteen different land surface types, of which four types dominate: croplands, 140 

savannas, urban areas, and water bodies. 141 
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 142 

Figure 1. Overview of the study area. (a) Locations of the in situ sites (black triangle). (b) MODIS 143 

International Geosphere-Biosphere Programme (IGBP) land cover maps. (c) Altitude above mean sea level 144 

in meters with a spatial resolution of 90 m shared freely by the Shuttle Radar Topography Mission (SRTM) 145 

(http://srtm.csi. cgiar.org/srtmdata/). 146 

2.2 Satellite and reanalysis SSM and RZSM datasets 147 

Thirteen SSM datasets and three RZSM datasets were collected in this study, including 1) the SMOS-148 

IC version 2 ascending (6:00 a.m.) and descending (6:00 p.m.) SSM product (Li et al. 2020; Wigneron et al. 149 

2021), 2) the AMSR2 LPRM Level 3 X-band (10.7 GHz) descending (1:30 a.m.) and ascending (1:30 p.m.) 150 

SSM product (Njoku et al. 2005), 3) the H115-Metop ASCAT  ascending (9:30 p.m.) and descending (9:30 151 

a.m.) SSM product (Wagner et al. 2013), 4) the ESA CCI combined, passive and active (hereafter ESA CCI, 152 

ESA CCI-P, ESA CCI-A) SSM product (Dorigo et al. 2017), 5) the SMAP-L3 version 8 (Chan et al. 2016), 153 

MTDCA version 5 (Konings et al. 2017), SMAP-MCCA version 1 (Zhao et al. 2021) and SMAP-IB version1 154 

(Li et al. 2022) descending (6:00 a.m.) and the SMAP-MCCA version 1 ascending (6:00 p.m.) SSM products, 155 

6) the SMAP-L4, ERA5-Land and GLDAS-Noah SSM (~0 – 5 cm for SMAP-L4, 0 – 7 cm for ERA5-Land 156 
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and 0 – 10 cm for GLDAS-Noah) and RZSM (0 – 100 cm) datasets at 0:00 and 12:00 UTC (Muñoz-Sabater 157 

et al. 2021; Reichle et al. 2017; Rodell et al. 2004). For more details refer to Table 1 and Supplementary 158 

Text. 159 

The retrievals considered “good” in these products are usually used only (Gruber et al. 2020). The 160 

quality flags for the above products used in the study are as follows: 1) AMSR2 LPRM SSM pixels were 161 

retained when “snow mass = 0” and “soil temperature > 0 ℃”; 2) SMOS-IC SSM pixels were filtered when 162 

“Scene flag > 1” and “TB-RMSE > 8 K”; 3) ASCAT SSM pixels were retained when “Frozen or Snow cover 163 

probability < 50%” and “Flag = 1”; 4) ESA CCI SSM pixels were retained when “Flag = 0”; 5) SMAP-L3 164 

and MTDCA SSM pixels were only kept when the retrieval quality is recommended. Namely, pixels with 165 

open “water fraction > 0.1”, “precipitation > 1 mm/h”, snow, frozen ground and strong topography were 166 

masked. 6) SMAP-IB SSM pixels were filtered when “Scene flag > 1”; 6) SMAP-L4, ERA5-Land and 167 

GLDAS-Noah SSM and RZSM grids were retained when “snow mass = 0” and “soil temperature > 0 ℃” 168 

(estimated from GLDAS-Noah).  169 

Table 1 Overview of the SSM and RZSM datasets used in this study.  170 

2.3 Auxiliary datasets  171 

Some auxiliary datasets used to explore the uncertainties of the SSM products are as follows (Table 2): 172 

1) the descending SMAP-L3 L-band VOD product used in the dual-channel algorithm (DCA) retrieval, which 173 

is used to characterize the vegetation density; 2) the MODIS IGBP land cover map, which is used to calculate 174 

WF to characterize the open water bodies’ effect, respectively; 3) the ascending SMOS-IC L-band TB-RMSE 175 

data, which is used to represent RFI to characterize the influence of the unwanted man-made emissions 176 

  Datasets Version Spatial 
resolution 

Temporal 
resolution Product 

Satellite 
products 

AMSR2 LPRM V001 0.25° Daily SSM 
SMOS-IC V2 25 km Daily  SSM 
SMAP-L3 V8 36 km Daily  SSM 
SMAP-IB V1 36 km Daily  SSM 
MTDCA V5 9 km Daily SSM 
SMAP-MCCA V1 36 km Daily  SSM 
ASCAT H115 12.5 km Daily  SSM 
ESA CCI 
Combined/Passiv
e/Active 

V6.1 0.25° Daily SSM 

SMAP-L4 V6 9 km Daily SSM and RZSM 

Reanalysis 
products 

ERA5-land V2 0.1° Hourly SSM and RZSM 

GLDAS-Noah V2.1 0.25° 3-Hourly SSM and RZSM 
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received by the L-band satellites (Wigneron et al. 2021). The daily average ERA5-Land precipitation was 177 

also collected. 178 

Table 2 Overview of the auxiliary datasets used in this study. 179 

Factors Database Spatial  
resolution 

Time  
period References 

VOD SMAP-L3 L-band VOD 0.25° 2015-2018 (Chan et al. 2016) 
WF IGBP MODIS land cover 500 m 2015 (Friedl and Sulla-Menashe 2019) 
RFI SMOS-IC TB-RMSE 25 km 2015-2018 (Wigneron et al. 2021) 
Precipitation ERA5-Land 0.1° 2015-2018 (Muñoz-Sabater et al. 2021) 

3 Methodology 180 

3.1 Data pre-processing 181 

To quantify a fair inter-comparison, the assessment was carried out for all datasets for the same period 182 

(from March 2015 to December 2018). The overpass/output time of each satellite/reanalysis product was 183 

matched with the observed time of in situ measurements in less than an hour. The product data were then 184 

obtained from the pixels/grids corresponding to each site following the nearest grid method (Al-Yaari et al. 185 

2019). Besides, we took multiple in situ sites within a satellite/reanalysis grid cell as independent sites and 186 

compared them separately, as each site could be partly representative of the grid cell truth values following 187 

Xu et al. (2021). Correlation coefficient (R) and ubRMSE were used as the major criteria for the assessment, 188 

as they are less affected by the depth difference between sites and satellite and reanalysis products (Yang et 189 

al. 2020). The metrics were only calculated for the sites with significant correlation coefficients (P-Value < 190 

0.05) so that the number of available sites used in the error metrics calculation may vary from one product to 191 

the other. The influence of different temporal sampling and available sites on the performance of all products 192 

will be discussed later using different evaluation strategies. 193 

3.2 Calculation of RZSM 194 

A depth-weighted mean method was applied to obtain in situ RZSM (i.e., the 0 – 100 cm soil layer) 195 

(Gao et al. 2017). The calculation was as follows: 196 

𝜃𝑅𝑍𝑆𝑀 = 2𝜃1𝐿1+(𝜃1+𝜃2)𝐿2+(𝜃2+𝜃3)𝐿3+⋯+(𝜃𝑖−1+𝜃𝑖)𝐿𝑖
2(𝐿1+𝐿2+𝐿3+⋯+𝐿𝑖)

                                                  (1) 197 
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Where θRZSM denotes RZSM, θi denotes soil moisture values at the ith layer, and Li denotes the ith layer depth, 198 

including eight specific depths (i.e., 0 – 10, 10 – 20, 20 – 30, 30 – 40, 40 – 50, 50 – 60, 60 – 80, 80 – 100 199 

cm).  200 

The RZSM product was provided by SMAP-L4 and GLDAS-Noah directly. ERA5-Land RZSM could 201 

be obtained using a weighted average method by combining the soil moisture values at the first (θ7cm), second 202 

(θ28cm), and third (θ100cm)) layers (González-Zamora et al. 2016): 203 

𝜃𝑅𝑍𝑆𝑀 = 0.07 ∗ 𝜃7𝑐𝑚 + 0.21 ∗ 𝜃28𝑐𝑚 + 0.72 ∗ 𝜃100𝑐𝑚                                        (2) 204 

The exponential filter proposed by Wagner et al. (1999) and later reformulated in a recursive form by 205 

Albergel et al. (2008) was extensively used to retrieve RZSM from satellite SSM products (Cho et al. 2015; 206 

Fan et al. 2018). The method assumes a constant pseudo-diffusivity factor that propagates fluctuations in 207 

SSM in the attenuated form to RZSM (Rossini and Patrignani 2021). The recursive formulation to retrieve 208 

RZSM from SSM can be written as: 209 

𝑆𝑊𝐼𝑛 = 𝑆𝑊𝐼𝑛−1 + 𝐾𝑛(𝑚𝑠(𝑡𝑛) − 𝑆𝑊𝐼𝑛−1)                                                  (3) 210 

Where SWIn (ranges from 0 to 1) is defined as the soil water index representing the degree of saturation of 211 

the RZSM at time tn. SWIn can be translated from relative (%) to absolute volumetric unit (m3/m3) by 212 

multiplying soil porosity information (Wagner et al. 2013). ms(tn) is the satellite SSM at time tn, scaled by 213 

the maximum and minimum values during the entire research period. The gain K at time tn can be written as: 214 

𝐾𝑛 = 𝐾𝑛−1

𝐾𝑛−1+𝑒−𝑡𝑛−𝑡𝑛−1
𝑇

                                                                 (4) 215 

where tn – tn-1 is the difference in days between SSM observations. T represents the infiltration time in days 216 

and the only unknown of the function, which is often assumed to be related to soil texture and bulk density 217 

(Albergel et al. 2008). The optimal T parameter (Topt) was determined by maximizing the correlation 218 

coefficients between the retrieved RZSM and in situ RZSM, in which the retrieved RZSM was computed 219 

using different T (1-60 days) (Wang et al. 2017). The filter was initialized with SWI1 = ms(t1) and K1 = 1. 220 

Since the in situ soil porosity information is hard to obtain, the soil porosity values for each site derived from 221 

the static information for the ASCAT product obtained from the Harmonized World Soil Database (HWSD) 222 

were used (Wagner et al. 2013). The average soil porosity of these sites is 0.54 m3/m3 with a standard 223 

deviation of 0.03 m3/m3. In the study, ESA CCI SSM was coupled with an exponential filter to estimate ESA 224 
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CCI RZSM for each site in Jiangsu province due to ESA CCI SSM outperformed the other satellite SSM 225 

products. 226 

3.3 Evaluation metrics 227 

3.3.1 In situ-based metrics 228 

Taylor diagram (Taylor 2001) was used to assess the products’ accuracy. Normalized standard deviation 229 

(SDV, Eq. (5)) indicates the ratio between the evaluated products (i.e., θEST) and referenced datasets (i.e., 230 

θREF) standard deviations (Cho et al. 2017; Kim et al. 2018). R (Eq. (6)) and cRMSE (Eq. (7)) are the Pearson 231 

correlation coefficient and the centered Root Mean Square Error between θEST and θREF, respectively.  232 

𝑆𝐷𝑉 =  
√(𝜃𝐸𝑆𝑇−𝜃𝐸𝑆𝑇̅̅ ̅̅ ̅̅ ̅)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

√(𝜃𝑅𝐸𝐹−𝜃𝑅𝐸𝐹̅̅ ̅̅ ̅̅ ̅)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                                                                 (5) 233 

𝑅 = √1 − (𝜃𝐸𝑆𝑇− 𝜃𝑅𝐸𝐹)2

(𝜃𝐸𝑆𝑇−𝜃𝑅𝐸𝐹̅̅ ̅̅ ̅̅ ̅)2                                                               (6) 234 

𝑐𝑅𝑀𝑆𝐸 =  √[(𝜃𝐸𝑆𝑇 − 𝜃𝐸𝑆𝑇̅̅ ̅̅ ̅̅ ) − (𝜃𝑅𝐸𝐹 − 𝜃𝑅𝐸𝐹̅̅ ̅̅ ̅̅ )]2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                     (7) 235 

where θEST is either the evaluated SSM or RZSM product; θREF is the in situ SSM or RZSM; the overbar 236 

indicates the temporal mean operator (i.e., 𝜃𝐸𝑆𝑇̅̅ ̅̅ ̅̅  and 𝜃𝑅𝐸𝐹̅̅ ̅̅ ̅̅ ). 237 

In addition, three commonly used statistical indicators, namely averaged bias (Bias, Eq. (8)), Slope (Eq. 238 

(9)) and RMSE (Eq. (10)), was also applied to examine the accuracy of these datasets (Entekhabi et al. 2010). 239 

Since the RMSE (Eq. (10)) could be compromised when biases exist between in situ measurements and 240 

satellite and model-based pixels/grids (Al-Yaari et al. 2016), the ubRMSE (Eq. (11)) is often optimal to 241 

evaluate soil moisture products (Yang et al. 2020). 242 

𝐵𝑖𝑎𝑠 = 𝜃𝐸𝑆𝑇 − 𝜃𝑅𝐸𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                                (8) 243 

𝑆𝑙𝑜𝑝𝑒 = [(𝜃𝑅𝐸𝐹−𝜃𝑅𝐸𝐹̅̅ ̅̅ ̅̅ ̅)(𝜃𝐸𝑆𝑇−𝜃𝐸𝑆𝑇̅̅ ̅̅ ̅̅ ̅)]
(𝜃𝑅𝐸𝐹−𝜃𝑅𝐸𝐹̅̅ ̅̅ ̅̅ ̅)2                                               (9) 244 

𝑅𝑀𝑆𝐸 = √(𝜃𝐸𝑆𝑇 − 𝜃𝑅𝐸𝐹)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                    (10) 245 

𝑢𝑏𝑅𝑀𝑆𝐸 = √𝑅𝑀𝑆𝐸2 − 𝐵𝑖𝑎𝑠2                                              (11) 246 

Considering the limited available sites with significant (P-Value < 0.05) correlation coefficients and low 247 

temporal sampling of and SMOS-IC SSM due to the L-band RFI issue in China (Al-Yaari et al. 2019; 248 



 

11 

Wigneron et al. 2021), the SSM products were evaluated against in situ measurements following four cases 249 

(the used SSM products for each case can be seen in Table 3):  250 

Case 1: All available sites with significant correlation coefficients for each product were used. The 251 

number of sites for the ESA CCI, SMOS-IC, ASCAT, LPRM, MTDCA, SMAP-L3, SMAP-L4, SMAP-252 

MCCA, SMAP-IB, ERA5-Land, and GLDAS-Noah products is 52, 79, 69, 69, 90, 89, 33, 43, 59, 56, 88, 70 253 

and 27, respectively. 254 

Case 2: The common sites with significant correlation coefficients for all products were used. The 255 

number of available sites for the six products is 6. 256 

Case 3: The common sites with significant correlation coefficients for all products except SMOS-IC and 257 

SMAP-IB were used. SMOS-IC is available for a limited data number compared to the other products and 258 

was therefore excluded in this case. There are 19 sites available for the other eleven products. 259 

Case 4: The overlapped dates within common sites in Case 3 (i.e., days where all satellite and model-260 

based SSM observations are available) for all products except SMOS-IC and SMAP-IB were used. There are 261 

3 sites available for the other eleven products. 262 

For RZSM, three cases were considered (the RZSM datasets for each case can be seen in Table 3): 263 

Case 1: All available sites with significant correlation coefficients for each product were used. The 264 

number of sites for the ESA CCI, ERA5-Land, GLDAS-Noah and SMAP-L4 products is 78, 83, 77 and 85, 265 

respectively. 266 

Case 2: The common sites with significant correlation coefficients for all products were used. The 267 

number of available sites for the four products is 75. 268 

Case 3: The overlapped dates (i.e., days where all RZSM observations are available) for all products 269 

were used. There are 73 sites available for the four products. 270 

Case1 for SSM and RZSM is used assuming that the final users may use these products separately (Al-271 

Yaari et al. 2019), and hence limiting the evaluation to common dates may not correspond to the actual 272 

accuracy that the end-user will obtain. Cases 2 and 3 for SSM and Case 2 for RZSM are used to evaluate the 273 

influence of the available sites on our evaluation results, and Case 4 for SSM and Case 3 for RZSM are used 274 

to evaluate the influence of time series length and data sampling in the comparisons. 275 

Table 3 List of the used SSM and RZSM products for each case. 276 

Cases  SSM RZSM 
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Case1 
ASCAT, ESA CCI, ESA CCI-P, ESA CCI-A, SMOS-IC, LPRM, 
MTDCA, SMAP-L3, SMAP-L4, SMAP-MCCA, SMAP-IB, 
ERA5-Land, GLDAS-Noah 

ESA CCI RZSM, SMAP-
L4, ERA5-Land, GLDAS-
Noah 

Case2 
ASCAT, ESA CCI, ESA CCI-P, ESA CCI-A, SMOS-IC, LPRM, 
MTDCA, SMAP-L3, SMAP-L4, SMAP-MCCA, SMAP-IB, 
ERA5-Land, GLDAS-Noah 

ESA CCI RZSM, SMAP-
L4, ERA5-Land, GLDAS-
Noah 

Case3 
ASCAT, ESA CCI, ESA CCI-P, ESA CCI-A, LPRM, MTDCA, 
SMAP-L3, SMAP-L4, SMAP-MCCA, ERA5-Land, GLDAS-
Noah 

ESA CCI RZSM, SMAP-
L4, ERA5-Land, GLDAS-
Noah 

Case4 
ASCAT, ESA CCI, ESA CCI-P, ESA CCI-A, LPRM, MTDCA, 
SMAP-L3, SMAP-L4, SMAP-MCCA, ERA5-Land, GLDAS-
Noah 

 

3.3.2 TCA-based metrics 277 

In addition to in situ measurements, TCA, an approach commonly used in the quality assessment of 278 

SSM products (Dong and Crow 2017), was also applied to provide a complimentary evaluation of the SSM 279 

quality in Jiangsu province. Prior to performing the TCA, we reserved the anomaly SSM data by removing 280 

the climatology of each SSM product, as its climatology can be correlated and thus cause the TCA-based 281 

numbers to be over-graded (Dong et al. 2020a; Draper et al. 2013; Kim et al. 2020). The anomaly SSM data 282 

was calculated as follows: 283 

𝜃𝑎𝑛𝑜𝑚(𝑡) = 𝜃𝑡−𝜃(𝑡−17:𝑡+17)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑆𝐷(𝜃(𝑡−17:𝑡+17))
                                                  (12) 284 

where 𝜃𝑎𝑛𝑜𝑚(𝑡) is the SSM value at day (t) and 𝜃(𝑡−17:𝑡+17)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑆𝐷(𝜃(𝑡−17:𝑡+17)) are the mean and standard 285 

deviation over a sliding window of 35 days, respectively (Albergel et al. 2012; Gruber et al. 2020). 286 

Since the TCA is based on the strong assumption of independent errors for the three SSM inputs (i.e., 287 

three collocated SSM products) (Gruber et al. 2016), a conventional combination of SSM triplets comprising 288 

passive/active microwave product and a model-based product was applied. If a product is combined or 289 

assimilated into another system, the two data sets should not be considered together (Kim et al. 2020). For 290 

example, the ESA CCI combined SSM products was not considered in TCA implementations. In addition, 291 

the triplets composing of both ASCAT and ERA5-Land were removed in the updated version, due to that the 292 

ASCAT SSM data was assimilated into ERA5. Also, the triplets composing of both ESA CCI and GLDAS-293 

Noah were removed due to that the GLDAS-Noah was used in the retrievals of ESA CCI. SMOS-IC was not 294 

used here due to very limited available data. Thus, from the thirteen SSM products, five triplets were 295 

considered possible for each product (Table 4). Considering the skill estimates for some SSM products could 296 

be obtained from more than one triplet, we averaged all skill estimates for each product for increased precious 297 

(Gruber et al. 2020; Zheng et al. 2022). Here, we focused on the TCA-based R (hereafter TCA-R), as follows: 298 
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𝑅𝑥 = √
𝜎𝑥𝑦𝜎𝑥𝑧

𝜎𝑥𝑥𝜎𝑦𝑧
                                                                     (13) 299 

where x, y, and z refer to the SSM triplets and σ is the covariance between collocated SSM products. The 300 

TCA-R indicates the linear correlation against the unknown truth (Gruber et al. 2020; McColl et al. 2014). 301 

To ensure the reliability of the metrics, the TCA was only performed for SSM triplets with at least 100 302 

samples (Kim et al. 2020). 303 

Here, both time-invariant and time-variant TCA-R were estimated by applying TCA to SSM data in the 304 

whole research period and to SSM samples that were collected for every daily time step by considering the 305 

same triplets. Following Wu et al. (2021a), we used a 100-day window to estimate time-variant TCA-R to 306 

keep sufficient statistical power. The TCA-R was calculated only when the number of triplet samples in the 307 

time window was greater than 90. Considering the temporal samples for each triplet within a 100-day window 308 

may not be sufficient to meet the sample number requirement (> 90) in our time-variant TCA implementation, 309 

a linear interpolation within a 3-day time window was applied to fill the temporal gap existing in the active 310 

and passive SSM time series in Table 4. Although the interpolation may introduce extra error into the TCA-311 

R, the extra error was assumed to be small enough to be ignored (see Wu et al. (2021a) and Leroux et al. 312 

(2013) for more details).  313 

Table 4 List of the possible triplets used in the TCA implementations. 314 

Triplets Passive Active Model 
1 LPRM 

ASCAT GLDAS-Noah 
2 SMAP-L3 
3  MTDCA  
4 SMAP-MCCA 
5 SMAP-IB 

4 Results 315 

Evaluations of the SSM and RZSM products for the nighttime and daytime were made, and the results 316 

showed the nighttime SSM and RZSM products had similar performances to the daytime SSM and RZSM 317 

products. Thus, the evaluation results for the nighttime products were presented to maintain a simplicity of 318 

presentation and interpretation. The evaluation results for daytime products were provided in the 319 

Supplementary Text. 320 
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4.1 SSM evaluation  321 

4.1.1 In situ-based metrics 322 

The performance criteria presented in Taylor diagrams and four scores were computed between products 323 

and in situ SSM from March 2015 to December 2018 (Figures 2, 3, and Table 5) and see Figure S5 for the 324 

performance of the SSM products for the individual in situ site. As mentioned before, four cases were 325 

carefully considered.  326 

Figure 2 shows the temporal variations of the thirteen SSM products, the in situ SSM and rainfall of one 327 

representative site (i.e., site M5401) with relative complete temporal samplings for nighttime. All SSM 328 

products except for LPRM and ESA CCI-P correspond well with rainfall, with the SSM increasing during 329 

rainfall events and decreasing after rainfall events. The ERA5-Land, SMAP-L4, GLDAS-Noah and ESA 330 

CCI SSM products captured well the annual cycle of the in situ measurements. In comparison, the other nine 331 

SSM products were more scattered than the products mentioned above. ESA CCI-P and LPRM overestimated 332 

in situ SSM with large wet biases, while ESA CCI-A, ASCAT and MTDCA SSM tended to underestimate 333 

in situ SSM. Despite the lowest number of retrievals for SMOS-IC due to the effects of RFI in the study area, 334 

it could marginally follow the temporal evolution of in situ SSM.  335 

Figure 3(a) shows the overall performance obtained by each product over all available sites (Case 1). 336 

Regarding R, the ERA5-Land and SMAP-L4 SSM products outperformed the other eleven datasets with a 337 

higher R of 0.58. It was followed by ESA CCI, ESA CCI-A and GLDAS-Noah (median R = 0.42 for ESA 338 

CCI and R = 0.40 for ESA CCI-A and GLDAS-Noah) (Table 5). LPRM failed to reproduce the temporal 339 

evolution of observed SSM with a low R and large variability in the SSM retrievals at available sites (median 340 

R = 0.20 and SD > 0.09). Regarding ubRMSE (Table 5), the ESA CCI and GLDAS-Noah products 341 

outperformed the others, with the same lowest ubRMSE of 0.04 m3/m3, followed by SMAP-L4 and ERA5-342 

Land with a value of 0.05 m3/m3 and 0.06 m3/m3, respectively. For the rest datasets, the ubRMSE values all 343 

exceeded 0.07 m3/m3, and LPRM occupied the highest (median ubRMSE = 0.10 m3/m3). Six SSM datasets 344 

(i.e., ESA CCI, ESA CCI-P, ERA5-Land, GLDAS-Noah, LPRM, and SMAP-L3) overestimated in situ SSM, 345 

in which LPRM and ESA CCI-P obtained overall higher bias (median bias = 0.19 m3/m3 for LPRM and bias 346 

= 0.12 m3/m3 for ESA CCI-P) than the other four SSM products (median bias < 0.03 m3/m3). In contrast, 347 
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ESA CCI-A, SMAP-L4 and ASCAT got large systematical dry biases against in situ SSM (median bias < -348 

0.05 m3/m3).  349 

Figure 3(b) shows the overall performance on common sites for all products (Case 2), which was almost 350 

the same as the performance of all available sites for each product above. ERA5-Land and SMAP-L4 351 

outperformed the others, with a higher R of 0.61 and 0.60, respectively. It was followed by ESA CCI, ESA 352 

CCI-A, GLDAS-Noah, ASCAT and ESA CCI-P (median R > 0.43). Similar to Case1, ESA CCI and GLDAS-353 

Noah obtained the lowest ubRMSE (median ubRMSE = 0.04 m3/m3), while LPRM had the poorest 354 

performance in Case 2 with the lowest R of 0.2 and the highest ubRMSE and wet bias (median ubRMSE = 355 

0.11 m3/m3 and bias = 0.15 m3/m3). 356 

Figure 3(c) shows the overall performance for all products except SMOS-IC and SMAP-IB over 357 

common sites (Case 3). With regard to R, SMAP-L4 and ERA5-Land outperformed the others, with a higher 358 

R of 0.60 and 0.59. It was followed by ESA CCI with R of 0.52. Regarding errors, the ESA CCI and GLDAS-359 

Noah products obtained the best estimates comparing the rest, with the lowest ubRMSE (median ubRMSE = 360 

0.04 m3/m3) and bias (median bias = -0.01 m3/m3), respectively, followed by ERA5-Land (median ubRMSE 361 

= 0.06 m3/m3 and bias = 0.01 m3/m3).   362 

Figure 3(d) shows the overall performance on common dates for all products except SMOS-IC and 363 

SMAP-IB (Case 4). SMAP-L4 performed better than the other SSM products, with the highest R (median R 364 

= 0.72). It was followed by GLDAS-Noah, ASCAT, ESA CCI, EREA5-Land, LPRM (median R > 0.54). 365 

Nevertheless, the largest errors were also obtained by LPRM with the highest bias (0.14 m3/m3) and ubRMSE 366 

(0.13 m3/m3). The good ability in capturing the SSM temporal variation was reconfirmed by the slope 367 

obtained between ERA5-Land and observed SSM with a value of 0.90, which is very close to 1. In addition, 368 

ERA5-Land had the lowest bias with a negligible value (close to zero) and ubRMSE (0.02 m3/m3). It was 369 

followed by GLDAS-Noah and ESA CCI (bias = -0.03 m3/m3 and bias = -0.04 m3/m3).  370 

Overall, the model-based and combined SSM products (i.e., ERA5-Land, SMAP-L4, ESA CCI/ESA 371 

CCI-P/ESA CCI-A, GLDAS-Noah) performed better than the active SSM product (i.e., ASCAT), than the 372 

passive satellite SSM products (i.e., SMAP-L3, SMOS-IB, SMAP-IC, MTDCA, SMAP-MCCA and LPRM) 373 

in Jiangsu province for all cases except Case4, in which LPRM had better performance than ESA CCI-P and 374 

ESA CCI-A when considering R values. It was suggested that the number of available in situ sites and 375 
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temporal sampling for the SSM products do influence their performances (note that the available number of 376 

SMOS-IC and SMAP-IB SSM retrievals is limited in Jiangsu province in comparison to the other products). 377 

 378 
Figure 2. Time series of the in situ SSM and the thirteen SSM products for site M5401 from March 2015 to 379 

December 2018 in Jiangsu province for nighttime. Blue solid lines represent in situ measurements at 6:00 380 

a.m. Averaged daily precipitation is represented by grey vertical bars. 381 

 382 
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 383 

Figure 3. Taylor's diagrams displaying a statistical comparison between ASCAT, ESA CCI, ESA CCI-P, 384 

ESA CCI-A, ERA5-Land, GLDAS-Noah, SMOS-IC, LPRM, MTDCA, SMAP-L3, SMAP-L4, SMAP-385 

MCCA and SMAP-IB SSM products with the in situ observed SSM for morning time during 2015-2018. The 386 

green dash lines represent the centered RMSE (cRMSE) values, which distance the 'Obs' point. (a) – (d) show 387 

the median error metrics from Case 1 to Case 4, respectively. 388 
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Table 5 Summary median metrics of comparing thirteen SSM products with in situ measurements for each Case for nighttime. Bias and ubRMSE are both in m3/m3. N 389 
is the average number of samples. The bold font highlights the best results for each error metric.  390 

Cases Products bias ubRMSE R slope N Sites  Cases Products bias ubRMSE R slope N Sites 

Case 1 

ASCAT -0.05  0.07  0.38  0.63  607  52   

Case 3 

ASCAT -0.09  0.07  0.40  0.77  612  19  
ESA CCI 0.03  0.04  0.42  0.30  1277  79   ESA CCI -0.01  0.04  0.52  0.46  1285  19  
ESA CCI-P 0.12  0.07  0.37  0.54  898  69   ESA CCI-P 0.10  0.07  0.43  0.71  996  19  
ESA CCI-A -0.07  0.07  0.40  0.71  1266  69   ESA CCI-A -0.09  0.07  0.45  0.88  1276  19  
ERA5-Land 0.02  0.06  0.58  0.88  1293  90   ERA5-Land 0.01  0.06  0.59  0.89  1271  19  
GLDAS-Noah 0.02  0.04  0.40  0.30  1292  89   GLDAS-Noah -0.01  0.04  0.45  0.36  1271  19  
SMOS_IC -0.04  0.09  0.30  0.63  110  33   SMOS_IC - - - - - -  
LPRM 0.19  0.10  0.20  0.41  632  43   LPRM 0.16  0.09  0.20  0.44  672  19  
MTDCA -0.09  0.09  0.29  0.63  636  59   MTDCA -0.10  0.11  0.27  0.67  644  19  
SMAP_L3 0.01  0.08  0.26  0.46  602  56   SMAP_L3 -0.04  0.08  0.31  0.54  596  19  
SMAP_L4 -0.06  0.05  0.58  0.68  1293  88   SMAP_L4 -0.10  0.05  0.60  0.69  1271  19  
SMAP_MCCA -0.02  0.08  0.24  0.45  626  70   SMAP_MCCA -0.07  0.10  0.21  0.46  593  19  
SMAP_IB -0.02  0.07  0.30  0.42  212  27   SMAP_IB - - - - - - 

Case 2 

ASCAT -0.10  0.07  0.45  0.86  623  6   

Case 4 

ASCAT -0.06  0.05  0.58  0.94  88  3  
ESA CCI -0.02  0.04  0.53  0.42  1270  6   ESA CCI -0.04  0.04  0.55  0.44  88  3  
ESA CCI-P 0.08  0.06  0.43  0.78  1032  6   ESA CCI-P 0.06  0.05  0.51  0.61  88  3  
ESA CCI-A -0.10  0.07  0.50  0.98  1275  6   ESA CCI-A -0.06  0.05  0.47  0.80  88  3  
ERA5-Land 0.01  0.06  0.61  0.90  1276  6   ERA5-Land 0.00  0.02  0.54  0.90  88  3  
GLDAS-Noah -0.01  0.04  0.45  0.37  1276  6   GLDAS-Noah -0.03  0.03  0.68  0.52  88  3  
SMOS_IC -0.12  0.10  0.30  0.71  138  6   SMOS_IC - - - - - - 
LPRM 0.15  0.11  0.20  0.47  762  6   LPRM 0.14  0.13  0.54  0.84  88  3  
MTDCA -0.09  0.11  0.24  0.73  656  6   MTDCA -0.06  0.02  0.34  0.70  88  3  
SMAP_L3 -0.05  0.09  0.37  0.63  602  6   SMAP_L3 -0.06  0.03  0.52  0.70  88  3  
SMAP_L4 -0.13  0.05  0.60  0.88  1276  6   SMAP_L4 -0.10  0.10  0.72  0.84  88  3  
SMAP_MCCA -0.08  0.10  0.21  0.56  597  6   SMAP_MCCA -0.07  0.04  0.28  0.42  88  3  
SMAP_IB -0.04  0.10  0.33  0.69  177  6   SMAP_IB - - - - - - 

391 
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4.1.2 TCA-based metrics 392 

Prior to the time-invariant and time-variant TCA implementation, it is necessary to clarify the impact of 393 

the error cross-correlation (ECC) for each SSM triplet comprising a passive/active microwave product and a 394 

model-based product. The ECC between passive and active satellite SSM products has been found to have a 395 

limited impact on the TCA implementation (Chen et al. 2018a). Here, the TCA-R calculated using the SSM 396 

anomalies of in situ-based triplets (i.e., in situ, active, passive) were also considered and compared with those 397 

of the model-based triplets in Table 4 to clarify the impact of the ECC between model-based and satellite-398 

based SSM products, as the in situ measurements was considered as an independent SSM data. A small ECC 399 

impact could be indicated by that model-based TCA-R values are consistent with in situ-based TCA-R and 400 

their differences are small (Wu et al. 2021a). 401 

Figure 4 shows the differences in R for GLDAS-Noah-based and in situ-based TCA-R for both time-402 

invariant TCA and time-variant TCA implementation. It can be seen that the differences between them for 403 

all triplets were small as associated median values of the difference in R were distributed in the range from -404 

0.19 to 0.14 for time-invariant TCA implementation and from -0.07 and 0.10 for time-variant TCA 405 

implementation, respectively. In addition, the scatterplots in Figures S6 and S7 also show that the majority 406 

of the scatter points are distributed near the 1:1 line, indicating that the GLDAS-Noah-based TCA-R values 407 

were highly consistent with the in situ-based TCA-R. Based on the aforementioned two reasons, we 408 

concluded that the ECC between model-based and satellite-based SSM products can barely impact the TCA 409 

implementations. Figure 5 shows the comparison between the time-invariant and time-variant TCA-R and in 410 

situ-based R calculated using the SSM anomalies for seven SSM products. Similar performances were 411 

observed between TCA-R and in situ-based R, indicating the robustness of the TCA method. Generally, the 412 

MTDCA, SMAP-IB, and GLDAS-Noah SSM products performed better than ASCAT, SMAP-L3, SMAP-413 

MCCA and LPRM with higher TCA-R. Besides, a combination of SSM triplets comprising in situ 414 

measurements, GLDAS-Noah and passive/active microwave products was applied to compare the 415 

performance of the active versus passive SSM products (Figure S8), and the performances for the 416 

passive/active microwave products were almost the same with the results above. In general, the R values for 417 

all SSM products obtained from both time-invariant and time-variant TCA implementations were higher than 418 

in situ-based R, suggesting that the TCA implementation may statistically correct the random errors of the in 419 

situ measurements.  420 
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In addition, the time-invariant and time-variant TCA-R values calculated using the simple SSM 421 

anomalies were also presented in the Supplementary Information (Figure S12) to provide complementary 422 

information for readers. Simple SSM anomalies were calculated by removing the climatology from the 423 

original SSM time series. Similar TCA-R values calculated by the simple SSM anomalies (Figure S12) and 424 

normalized SSM anomalies (Figure 5) were observed. 425 

 426 
Figure 4. Boxplots of the differences between triplets 1-5 (in Table 4) and in situ-based TCA-R calculated 427 

using SSM anomalies for both (a) time-invariant and (b) time-variant TCA implementations. The boxplots 428 

in blue and red indicate active and passive products, respectively. 429 

430 

Figure 5. Boxplots of the (a) time-invariant and (b) time-variant TCA-R for LPRM, MTDCA, SMAP-L3, 431 
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SMAP-MCCA, SMAP-IB, ASCAT and GLDAS-Noah. The black stars indicate the median R of in situ-432 

based R calculated using normalized SSM anomalies. 433 

4.2 RZSM evaluation 434 

Since ESA CCI outperformed the other satellite SSM products, it was first coupled with an exponential 435 

filter to estimate ESA CCI RZSM for each site in Jiangsu province. Then, four RZSM products (i.e., ESA 436 

CCI, ERA5-Land, GLDAS-Noah and SMAP-L4 RZSM) were evaluated against the in situ measurements by 437 

considering three cases and see Figure S13 for the performance of the RZSM products for the individual in 438 

situ site. The TCA implementation for RZSM was not conducted as the applied RZSM products could hardly 439 

meet the strong assumption of independent errors for the three RZSM inputs. 440 

Figure 6 presents the correlation coefficients (R) values computed between the in situ RZSM and ESA 441 

CCI RZSM retrievals using different T parameters (1-60 days) with the exponential filter method and the 442 

distribution of the number of sites with Topt. Although the Topt varies from one site to another, a relatively 443 

higher number of sites was ranged from 7days to 10 days than the other T values. Besides, it can be seen the 444 

optimal median R (R = 0.57) between in situ RZSM and the retrieved RZSM was observed in Topt = 10 days. 445 

Thus, an overall value of Topt for Jiangsu province was determined to be 10 days. As illustrated over one 446 

representative site, the temporal evolution of the ESA CCI RZSM retrievals was well consistent with the in 447 

situ RZSM, and present lower frequency variations than the ESA CCI SSM (Figure 7). 448 

 449 



 

22 

Figure 6. The distribution of the number of sites for Topt (left y axis) and the median R for all sites with a 450 

range of T values (right y axis). The median R was only calculated for the sites with significant correlation 451 

coefficients (P-Value < 0.05).  452 

  453 

Figure 7. Time series of (a) in situ SSM over the 0–10 cm soil layer and ESA CCI SSM, and (b) in situ 454 

RZSM over the 0–100 cm soil layer and ESA CCI RZSM at the site 58252 during 2015–2018. 455 

Figure 8 shows the temporal evolution of the four RZSM products along with the in situ RZSM for three 456 

representative sites (i.e., site 58235, 58252 and M5401) from March 2015 to December 2018. It can be seen 457 

that these products underestimated but captured well the temporal evolution of the in situ RZSM.  458 

For all three cases, the four RZSM products were almost performed the same (Figure 9 and Table 6). 459 

Regarding correlation coefficient (R), ESA-CCI, ERA5-Land and SMAP-L4 obtained better scores than 460 

GLDAS-Noah, with a higher median R > 0.54. The slope of SMAP-L4 was closer to 1 for all cases, relative 461 

to GLDAS-Noah, ranging from 0.52 to 0.58. Regarding ubRMSE, all products performed well with low 462 

median ubRMSE values (ubRMSE < 0.05 m3/m3). The RZSM products were mostly dryer than the in situ 463 

RZSM with median bias ranging from -0.04–-0.08 m3/m3. 464 
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 465 
Figure 8. Time series of the in situ RZSM and the four RZSM products for (a) site 58235, (b) site 58252 and 466 

(c) site M5401 from March 2015 to December 2018 in Jiangsu province. Blue solid lines represent averaged 467 

in situ measurements. Averaged daily precipitation is represented by grey vertical bars. 468 
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 469 
Figure 9. Taylor's diagrams displaying a statistical comparison between ESA CCI, SMAP-L4, ERA5-Land 470 

and GLDAS- Noah RZSM products with in situ RZSM during 2015-2018. The green dash lines represent 471 

the centered RMSE (cRMSE) values, which distance the 'Obs' point. (a) – (c) show the median error metrics 472 

from Case 1 to Case 3, respectively. 473 

 474 

Table 6 Summary median metrics of comparing four RZSM products with in situ measurements for each 475 

Case. Bias and ubRMSE are both in m3/m3. N is the average number of samples. The bold font highlights the 476 

best results for each error metric.  477 

Cases Products bias ubRMSE R slope N Sites 

Case 1 

ESA CCI -0.06  0.05 0.54  1.55  1080  78  
ERA5-Land -0.04  0.04 0.55  1.23  1154  83  
GLDAS-Noah -0.05  0.03 0.43  0.52  1154  77  
SMAP-L4 -0.08  0.03 0.55  0.82  1154  85  

Case 2 

ESA CCI -0.06  0.05 0.55  1.71  1082  75  
ERA5-Land -0.04  0.04 0.56  1.27  1154  75  
GLDAS-Noah -0.05  0.03 0.44  0.55  1154  75  
SMAP-L4 -0.08  0.03 0.56  0.95  1154  75  

Case 3 
ESA CCI -0.07  0.05 0.55  1.73  1084  73  
ERA5-Land -0.04  0.03 0.58  1.31  1084  73  
GLDAS-Noah -0.06  0.02 0.46  0.58  1084  73  



 

25 

SMAP-L4 -0.08  0.01 0.57  1.00  1084  73  

5 Discussion 478 

The evaluation results showed that the model-based and combined SSM products (i.e., ERA5-Land, 479 

SMAP-L4, ESA CCI/ESA CCI-P/ESA CCI-A, GLDAS-Noah) performed better than the other SSM and 480 

RZSM products. It could be partly attributed to that the LSM of the model-based products has been 481 

substantially updated, leading to better SSM and RZSM dynamics. For instance, a revised soil hydrology 482 

parameterization scheme for ERA5-Land (the Carbon Hydrology-Tiled ECMWF Scheme for Surface Ex155 483 

changes over Land: CHTESSEL) was used by introducing an improved soil hydrologic conductivity 484 

formulation, diffusivity, and surface runoff based on variable infiltration capacity (Muñoz-Sabater et al. 485 

2021). This result contrasts with our previous SSM and RZSM evaluation, which revealed the poor 486 

performance of ERA5-Land over the permafrost regions of the Qinghai-Tibet plateau (Xing et al. 2021). This 487 

could be partly explained by the impact of the freezing and thawing cycle in such areas, which does not exist 488 

in Jiangsu province, and has not been fully considered within the ERA5-Land LSM (Hu et al. 2020). This 489 

result is also in line with Wu et al. (Wu et al. 2021b), reporting that the ERA5-Land SSM products had better 490 

performance in southern humid areas than in northern arid and cold regions in China. 491 

5.1 Potential errors for the SSM datasets 492 

The evaluation results showed that the SSM datasets had different performances in Jiangsu province. 493 

The accuracy of these datasets could be impacted by many factors, like vegetation, topographic complexity, 494 

water bodies, RFI, etc. (maps of the relating reference variables like the land cover, DEM and VOD were 495 

presented in Figures 1(b) and (c) and Figure S14). Here, the correlation coefficients between the accuracy of 496 

the thirteen SSM datasets (i.e., correlation coefficients (R) between observations and each SSM product) and 497 

the values of the influence factors were calculated to explore the potential influence factors (Table 7). Since 498 

the errors for each SSM product were investigated separately, the significant R between the SSM products 499 

and the in situ measurements calculated by all available sites were used (i.e., Figure 3(a) and Case 1 in Table 500 

5). The available sites for the ASCAT, ESA CCI, ESA CCI-P, ESA CCI-A, ERA5-Land, GLDAS-Noah, 501 

SMOS-IC, LPRM, MTDCA, SMAP-L3, SMAP-L4, SMAP-MCCA and SMAP-IB products in Case 1 are 502 

52, 79, 69, 69, 90, 89, 33, 43, 59, 56, 88, 70 and 27, respectively. In the following section, only the potential 503 

factors having a significant (p-value < 0.05) correlation with the accuracy of the SSM products were shown 504 

and discussed. 505 
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5.1.1 Water fraction (WF) 506 

Open water bodies cause substantial uncertainties in the satellite-derived and model-based SSM 507 

retrievals (Yang et al. 2021a). The pixels or grids contaminated by coastal areas or inland water bodies 508 

physically lead to low TB, backscatters, and temperatures for passive, and active satellite sensors and models, 509 

respectively, resulting in increasing/decreasing values of SSM retrievals accordingly (Gouweleeuw et al. 510 

2012; Paulik et al. 2014).  511 

Figure S15 and Table 7 showed that the accuracy of the ERA5-Land and GLDAS-Noah SSM products 512 

were significantly negatively correlated with WF with R of -0.43 and -0.26, suggesting the higher accuracy 513 

of the two SSM products over the sites having low WF. Besides, the biases of the thirteen SSM products for 514 

different WFs were also displayed in Figure 10, it can be seen that ERA5-Land and GLDAS-Noah exhibited 515 

wet biases over the sites with high WF. For example, the median bias for GLDAS-Noah SSM was 516 

approximately 0.02 m3/m3 when WF ranges from 0 to 0.1, approximately 0.04 m3/m3 when WF ranges from 517 

0.1 to 0.3 and reached 0.09 m3/m3 when WF ranges from 0.3 to 0.5 (Figure 10). This is in line with the result 518 

of Li et al. (2012), which found that the grids associated with high WF lead to low temperatures and thus less 519 

water evaporation, leading to an increase in SSM.  520 

In addition, a similar increasing pattern of the SSM bias with the increase of WF was founded between 521 

ESA CCI and GLDAS-Noah, indicating the wet bias of ESA CCI could be resulted from the wet bias of 522 

GLDAS Noah SSM as the uncertainty of the GLDAS-Noah model was included during the unit scaling and 523 

the TCA hypothetical destruction during ESA CCI SSM's merging scheme (Al-Yaari et al. 2019; Zeng et al. 524 

2022). Thus, the accuracy of the ESA CCI, GLDAS-Noah and ERA5-Land SSM products was expected to 525 

be enhanced by considering the water effect. 526 

No significant R between WF and the accuracy of satellite SSM was observed. It could be explained by 527 

the fact that some filters related to WF were applied to filter the pixels contaminated by water bodies, though 528 

some uncertainties related to water fraction could still exist in some SSM products. 529 
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 530 

Figure 10. Box plots of bias for the thirteen SSM products considering WF classifications.  531 

 532 

Table 7. Summary R by comparing the significant R (between thirteen SSM products and in situ 533 

observations) with potential factors (i.e., VOD, and WF). The relationship with significant (P-Value 534 

<0.05/0.01, */**) correlation coefficients are shown. 535 

Products VOD WF 
R P-Value R P-Value 

ASCAT -0.05  0.70  0.05  0.75  
ESA CCI 0.23*  0.04  -0.20  0.07  
ESA CCI-P 0.32**  0.01  -0.05  0.70  
ESA CCI-A 0.04  0.77  -0.19  0.11  
ERA5-Land 0.18  0.08  -0.43**  0.00  
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GLDAS-Noah 0.23*  0.03  -0.26*  0.01  
SMOS-IC -0.09  0.63  0.26  0.15  
LPRM 0.26  0.10  -0.03  0.86  
MTDCA -0.46**  0.00  0.12  0.36  
SMAP-L3 -0.25  0.06  0.20  0.14  
SMAP-L4 0.07  0.52  0.00  0.99  
SMAP-MCCA -0.31**  0.01  -0.04  0.75  
SMAP-IB 0.09  0.62  -0.17  0.33  

5.1.2 Vegetation optical depth (VOD) 536 

VOD, related to the intensity of microwave extinction effects within the vegetation canopy layer, is 537 

often regarded as a vegetation index (Fan et al. 2018; Li et al. 2021). Its accuracy also highly impacted the 538 

accuracy of the radiometric SSM retrievals over the vegetated regions(Wigneron et al. 2017). 539 

Table 7 and Figure S15 showed that the accuracy of the GLDAS-Noah and merged (i.e., ESA CCI and 540 

ESA CCI-P) SSM product was significantly positively correlated with VOD with R of 0.23, 0.32 and 0.23, 541 

indicating the dense vegetation covers could hardly affect the accuracy of the above SSM products. While 542 

the accuracy of the satellite-based SSM products (i.e., MTDCA and SMAP-MCCA) was significantly 543 

negatively correlated with VOD with R of -0.46 and -0.31, suggesting that MTDCA and SMAP-MCCA SSM 544 

performed better over sites covered with sparse vegetation than over ones with dense vegetation covers in 545 

Jiangsu province. This could be explained that the VOD over dense vegetation layers was higher than that in 546 

sparsely vegetated regions, making the impact of the soil signal on the total above-canopy emission smaller 547 

and thus SSM retrievals less accurate over dense vegetation covers (Grant et al. 2008). 548 

5.1.3 Radio-frequency interference (RFI)  549 

RFI influences the quantity and quality of TB received by radiometers, influencing the SSM retrievals 550 

(Wigneron et al. 2021). Figure S16 presents the spatial distribution of L-band RFI (in terms of TB-RMSE < 551 

8 K) and correlation coefficients (R) between SMOS-IC and in situ SSM. The SMOS-IC pixels over most 552 

sites had high RFI values, preventing retrievals of high-quality SSM data. Besides, significantly positive R 553 

values between SMOS-IC and in situ SSM were observed over the region having lower RFI values (TB-554 

RMSE < 6 K), suggesting that the performance of SMOS-IC SSM could be mainly affected by RFI over 555 

Jiangsu province. We also plotted the scatterplots between RFI (i.e., TB-RMSE) and the significant R values 556 

of SMOS-IC for in situ sites (Figure S17), but no significant R between them was observed. 557 

  558 
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Apart from the above errors, some uncertainties should also not be ignored. For example, the spatial 559 

mismatch between in situ sites and satellite and model-based products could exist. Besides, differences in the 560 

sampling depths among the sensors and products may also bring some uncertainties to the assessment (Li et 561 

al. 2022). Nevertheless, despite these limitations, the method used to assess the products is relatively 562 

reasonable as 1) all the ninety-one in situ sites are evenly distributed throughout Jiangsu province. 2) we 563 

considered the R, ubRMSE, and cRMSE as the main metrics for the assessment as they are less impacted by 564 

the spatial mismatch between in situ site and products. 565 

5.2 Influence of the evaluation strategies on the metrics of the SSM and RZSM datasets 566 

Four cases for SSM and three cases for RZSM were used to investigate the influence of the available 567 

sites and data samplings on the SSM and RZSM performance metrics in the evaluation, respectively. Overall, 568 

all SSM products’ performance ranking was generally consistent for Case1-Case3, while slightly better 569 

metric scores and different performance were obtained in Case 4 when considering overlapped dates within 570 

common sites for all products. For RZSM, all cases have similar performance rankings as they were less 571 

affected by the influence of the available sites and data samplings.  572 

Previous studies have shown that the most frequently used evaluation method is Case 1, which uses all 573 

available sites and data samplings (e.g., (Al-Yaari et al. 2019; Xing et al. 2021; Zeng et al. 2015)). Case 1 574 

assumes that the potential users may use the SSM or RZSM products separately, hence, each product's actual 575 

accuracy was evaluated and presented separately (Al-Yaari et al. 2019). The evaluation results between the 576 

SSM and RZSM products with in situ measurements from 2011 to 2018 were added in the Supplementary 577 

Information (Table S4). However, the method could be biased for some products in the inter-comparison, as 578 

different sites and dates were used for these products. For instance, SMOS-IC (Sites = 33 and average N = 579 

110) has fewer dates and sites than LPRM (Sites = 43 and average N = 632) because RFI strongly influenced 580 

the former in Jiangsu province (Table 5).  581 

The common sites were used in Case 2 (Sites = 7) and Case 3 (Sites = 18) for SSM by either including 582 

or excluding SMOS-IC and SMAP-IB, respectively. Our results showed that the SSM products’ performance 583 

in the two cases (particularly Case 3) was almost consistent with that in Case 1, suggesting stable accuracy 584 

of the SSM products in the two cases due to the low uncertainties in flat areas in Jiangsu province and 585 

relatively complete temporal samplings of the products. 586 
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Slightly better performances were obtained for SSM and RZSM products in Case 4 and Case 3, 587 

respectively, when considering overlapped dates within common sites for all products. This is in line with 588 

the results obtained by Al-Yaari et al. (Al-Yaari et al. 2019), reporting increasing R when overlapped data 589 

points are conducted. This could be partly attributed to a much stricter filtering rule when using collocated 590 

data than in the other cases because only the high-quality satellite and model-based SSM and RZSM values 591 

were reserved for the evaluation in that case. Thus, a much stricter filtering rule could be applied by 592 

combining the quality controls of the different SSM products. Moreover, overlapped dates could be optimal 593 

to ensure fair inter-comparisons among different products (Gruber et al. 2020). However, a different 594 

performance ranking was obtained for SSM between Case4 and the other three cases, which may be due to 595 

the limited availability of the in situ sites (only 3 sites) and temporal samplings (only 88 data) that deviated 596 

from the evaluation results. Thus, it is important to select appropriate evaluation strategies to conduct the 597 

SSM and RZSM evaluations according to the situations. 598 

5.3 Comparisons among the two TCA and in situ-based R 599 

Our evaluation results showed that a similar performance for the SSM products was obtained using 600 

time-invariant and time-variant TCA-R and in situ-based R calculated using SSM anomalies, suggesting that 601 

the TCA method can be used for the satellite and reanalysis SSM evaluation in the absence of ground truth 602 

(Figure 5). However, the TCA-R for the SSM products was consistently higher than the in situ-based R. This 603 

could be due to the in situ-based R may contain errors associated with the representativeness of the in situ 604 

sites, as spatial mismatches could exist between the SSM values obtained from in situ sites and from remotely 605 

sensed reanalysis SSM products with a coarse resolution (Crow et al. 2015; Dong et al. 2020b).  606 

Considering both time-invariant and time-variant TCA-R are necessary for accurate SSM retrievals at 607 

different time scales over the cropland. Our evaluation results showed that the daily R values obtained by 608 

time-variant TCA implementation have larger temporal variability than the time-invariant R derived from 609 

long-term TCA (Figure 5). This is consistent with the results of previous studies (e.g., (Su et al. 2014); Wu 610 

et al. (2021a), etc.), which also found large SSM temporal variability at short time scales. This could be 611 

attributed to the influence of other factors (e.g., rainfall, vegetation growth, etc.) over the whole research 612 

period in the croplands, as dense vegetation covers and rainfall increase the difficulty and introduce large 613 

uncertainties in retrieving SSM using TB or backscattering coefficients. For example, we compared the 614 

median time-variant TCA-R at different VOD ranges and found that a decreasing accuracy for the satellite 615 
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SSM products (e.g., MTDCA, SMAP-MCCA and SMAP-IB) was obtained over the vegetation growth period 616 

(VOD > 0.15). This also confirmed our results above that the accuracy of MTDCA and SMAP-MCCA SSM 617 

could be affected by the influence of dense vegetation covers (Figure S18).  618 

6 Conclusions 619 

This study assessed the performance of thirteen SSM and four RZSM datasets using in situ 620 

measurements under different evaluation strategies in Jiangsu province. We also inter-compared time-621 

invariant, time-variant TCA-R and in situ-based R. The impacts of vegetation and water fraction on the 622 

accuracy of the reanalysis and satellite-based SSM products were also investigated. Our conclusions are as 623 

follows. 624 

(1) Regarding SSM, the model-based and combined SSM products (i.e., ERA5-Land, SMAP-L4, ESA 625 

CCI/ESA CCI-P/ESA CCI-A, GLDAS-Noah) performed better than the active SSM product (i.e., 626 

ASCAT), than the passive satellite SSM products (i.e., SMAP-L3, SMOS-IB, SMAP-IC, MTDCA, 627 

SMAP-MCCA and LPRM) in Jiangsu province with higher R and lower ubRMSE. Similar 628 

performance rankings were observed among time-invariant and time-variant TCA-R and in situ-629 

based R, in which the TCA-R values for all SSM datasets were higher than the in situ-based R as 630 

the representativeness errors of the in situ measurements may bias in situ-based R. Besides, 631 

considering both time-invariant and time-variant TCA-R are necessary for accurate SSM retrievals 632 

at different time scales.  633 

(2) Regarding RZSM, ERA5-Land, SMAP-L4 and ESA CCI RZSM (retrieved using ESA CCI SSM 634 

coupled with an exponential filter) generally performed better than the GLDAS-Noah RZSM 635 

product in capturing the temporal evolution of in situ RZSM with an average R > 0.55 for the former 636 

three products vs. an average R of 0.44 for GLDAS-Noah. All the RZSM products performed well 637 

with low median ubRMSE values (ubRMSE < 0.05 m3/m3).  638 

(3) Both the SSM and RZSM products provided slightly higher scores when the different datasets were 639 

temporally collocated, as many strict filtering rules were applied, and it could be regarded as an 640 

optimal way to ensure fair comparisons. However, it is important to select appropriate evaluation 641 

strategies to conduct the SSM and RZSM evaluations according to the situation as the available 642 

sites and temporal samplings may bias the evaluation results. 643 
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(4) By exploring the potential errors for the SSM products, we found the accuracy of the ESA CCI, 644 

GLDAS-Noah and ERA5-Land SSM products was expected to be enhanced by considering the 645 

water effect and large uncertainties were observed for MTDCA and SMAP-MCCA SSM over dense 646 

vegetation periods and regions in Jiangsu province. Besides, the limited available data number of 647 

SMOS-IC in the study region could be mainly attributed to RFI.  648 

Data availability 649 

The soil moisture observations in Jiangsu province is not publicly available but could be requested from 650 
the Jiangsu Meteorological Information Center (http://js.cma.gov.cn/). SMAP-MCCA SSM data is freely 651 
available at https://data.tpdc.ac.cn/en/disallow/591bb9c8-ed6f-4e86-8372-de1c39ba0283/. SMOS-IC and 652 
SMAP-IB SSM products from this study are freely available from SMOS-IC website (https://ib.remote-653 
sensing.inrae.fr/). MTDCA SSM data is freely available at http://afeldman.mit.edu/mt-dca-data. AMSR2 654 
LPRM SSM product is freely available at 655 
https://disc.gsfc.nasa.gov/datasets/LPRM_AMSR2_A_SOILM3_001/summary. SMAP-L3 SSM and VOD 656 
data (https://nsidc.org/data/spl3smp/versions/8) and SMAP L4 SSM and RZSM data 657 
(https://nsidc.org/data/spl4smgp/versions/6) are freely available from the National Snow & Ice Data Center. 658 
ASCAT SSM data is freely available at http://hsaf.meteoam.it/description-h25-h108-h111.php. ESA CCI 659 
Combined/Active/Passive SSM data is freely available at http://www.esa-soilmoisture-cci.org. ERA5-Land 660 
soil moisture and precipitation products are freely available at 661 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview. GLDAS-Noah SSM 662 
and RZSM products are freely available at 663 
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/summary. IGBP MODIS land cover product 664 
is freely available at https://modis.gsfc.nasa.gov/data/dataprod/mod12.php. Additional data used in the paper 665 
are publicly available, with their location provided in the respective references. 666 
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