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Summary

The phase field approach is widely used to model fracture behaviors due to the
absence of the need to track the crack topology and the ability to predict crack nucle-
ation and branching. In this work, the asynchronous variational integrator (AVI) is
adapted for the phase field approach of dynamic brittle fracture. The AVI is derived
from Hamilton’s principle and allows each element in the mesh to have its own local
time step that may be different from others’. While the displacement field is explic-
itly updated, the phase field is implicitly solved, with upper and lower bounds strictly
and conveniently enforced. In particular, two important variants of the phase field
approach, the AT1 and AT2 models, are equally easily implemented. Several bench-
mark problems are used to study the performances of both the AT1 and AT2 models,
and the results show that the AVI for the phase field approach significantly speeds
up the computational efficiency and successfully captures the complicated dynamic
fracture behavior.
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1 INTRODUCTION

Dynamic fracture refers to crack development processes accompanied by fast changes in applied loads and rapid crack propaga-
tion, where inertial forces play an important role during the evolution. Application examples of dynamic fracture include drop
tests of electronic devices1, oil recovery2, and impact of automotive laminated glass3.

Dynamic fracture of solids has been extensively studied4,5,6,7. Over the past decades, various numerical methods8 to simulate
dynamic fracture have been proposed, which can be classified into two groups: discrete approaches and smeared-crack ones. A
discrete approach explicitly describes the crack topology, such as the extended finite element method9, cohesive zone model10,
element deletion method11, cracking element method12, and phantom nodes method13, just to name a few in the context of
dynamic fracture. Conversely, a smeared-crack approach represents the crack by a smeared crack band, which includes the
gradient damage model14, the thick level set approach15, and so on.

The regularized variational fracture method16, also called the phase field method for fracture, belongs to the group of smeared-
crack approaches. It originates from Griffith’s energetic theory and was developed based on the variational approach to brittle
fracture by Francfort and Marigo17. The formulation solves crack problems by minimizing an energy functional that consists
of the elastic energy, the external work, and the crack surface energy. This way, crack evolution is a natural outcome of the
solution. The phase field method possesses the following advantages: (1) the crack evolves naturally and there is no need of a
crack tracking algorithm; (2) there is no need of additional criterion for crack branching and merging; (3) the implementation
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2 Zongwu Niu ET AL.

is straightforward even for complicated crack problems in 3D. These advantages facilitate its application for various fracture16

problems, such as shell fracture18, beam fracture19, and carbon dioxide fracturing20. For details about the implementation of17

this approach, we refer the reader to the work by Shen et al.21
18

For dynamic fracture, Borden et al.22 combined the phase field method with isogeometric analysis with local adaptive refine-19

ment to simulate dynamic brittle fracture. Nguyen and Wu23 presented a phase field regularized cohesive zone model for dynamic20

brittle fracture. Hao et al.24,25 developed the formulations for high-speed impact problems for metals, accounting for volumetric21

and shear fracture.22

However, the phase field model suffers from high computational cost partly because of the small critical time step, which, in23

turn, results from the necessary fine spatial discretization near the crack to resolve the regularization length scale. In order to24

overcome this challenge, various schemes to accelerate such computation have been proposed. Tian et al.26 presented a multilevel25

hybrid adaptive finite element phase field method for quasi-static and dynamic brittle fracture, wherein the refinement is based on26

the crack tip identified with a certain scheme. Ziaei-Rad and Shen27 developed a parallel algorithm on the graphical processing27

unit with a time adaptivity strategy to speed up the computation. Li et al.28 proposed a variational h-adaption method with both a28

mesh refinement and a coarsening scheme based on an energy criterion. Engwer et al.29 proposed a linearized staggered scheme29

with dynamic adjustments of the stabilization parameters throughout the iteration to reduce the computational cost.30

In this work, we adapt the asynchronous variational integrator (AVI) to accelerate the computation for the phase field approach31

to dynamic fracture. The AVI is an instance of variational integrators. Variational integrators are a class of time integration algo-32

rithms derived from Hamilton’s principle of stationary action and have the advantages of symplectic momentum conservation33

and remarkable energy (or Hamiltonian) behavior for long-time integration. In essence, they can be classified into synchronous34

variational integrators and asynchronous variational integrators. The former, such as central difference, requires all unknown35

variables to be solved with the same time step, taking into account the global requirement of stability and accuracy.36

In contrast, the latter allows independent time steps for each term contributing to the action functional, effectively independent37

time steps for each element in the context of finite elements. This asynchrony allows the elements with smaller time steps to be38

more frequently updated. Moreover, the method may be made fully explicit and even in the implicit case, only assembly of the39

local reaction force vector and stiffness matrix instead of global ones is needed. For linear elastodynamics, the AVI was first40

introduced by Lew et al.30,31, and the stability and convergence of AVI have been proved by Fong et al.32 and by Focardi and41

Mariano33, respectively. In addition, the AVI has been extended to the contact problem34, wave propagation35 and computer42

graphics36.43

In the case of AVI for the phase field approach to fracture, a few adjustments need to be made. First and foremost, the overall44

Lagrangian is free of the time derivative of the phase field; hence solving the phase field is a local steady-state problem. More45

precisely, the coupled multi-field system is solved by employing a staggered scheme, in which the displacement and velocity46

fields are integrated with an explicit scheme while the phase field is the solution of an inequality-constrained optimization47

problem. In essence, the phase field of only one element is solved at a time, for which it is very convenient to enforce the inequality48

constraint compared to doing so for the entire domain. This feature allows implementing the AT1 variant37 of the method with49

a similar cost to the more widely used AT2 variant16, the two variants differing in terms of the crack surface density function.50

The AVI for the phase field approach has many advantages. Firstly, the formulation is derived from the (discrete) Hamilton’s51

principle and possesses a variational structure, which conserves the local symplectic momentum and possesses good global52

energy behavior of the system. More importantly, this formulation alleviates the high computational cost for certain problems53

such as those involving bi-materials or functionally graded materials, by allowing each element to have an independent time step54

only restricted by the respective elemental critical time step for stability. In addition, the formulation only needs to assemble55

the elemental (or patchwise) residual vector and tangent stiffness matrix and enforces the irreversibility condition on only one56

element instead of over the entire domain. These features render the proposed formulation highly efficient.57

There are other asynchronous methods for dynamic fracture with the phase field. For example, Ren et al.38 proposed an58

explicit phase field formulation where the mechanical field is solved with a larger time step while the phase field is updated59

with smaller sub-steps. Suh and Sun39 presented a subcycling method to capture the brittle fracture in porous media, where the60

heat transfer between the fluid and solid constituents is solved with different time steps as integer multiples of each other. Note61

that the formulations in Refs. 38,39 are not variational but obtained by directly discretizing the time-dependent mechanical62

and phase field differential equations, and hence may not enjoy the said advantages of variational integrators, i.e., they may not63

preserve the symplectic and variational structure of the system.64
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Zongwu Niu ET AL. 3

The paper is organized as follows. In Section 2, we briefly review the formulation of the phase field model for brittle fracture65

and introduce Hamilton’s principle in the continuum Lagrangian framework. In Section 3, we present the asynchronous space-66

time discretization scheme and derive the discrete Euler-Lagrange equations by discrete variational principle, then we present67

how to solve the mechanical field and phase field by a staggered scheme. In addition, we summarize the overall implementation68

of AVI for the phase field approach to fracture. In Section 4, we showcase four benchmark examples under dynamic loading for69

verification and examining the performance. Finally, we conclude this work in Section 5.70

2 FORMULATIONS71

This section devotes to the formulation of a dynamic fracture phase field model through Hamilton’s principle for an elastic body72

with possible cracks represented by a phase field.73

2.1 Hamilton’s principle74

Let Ω ⊂ ℝ𝑛, 𝑛 = 2, 3, be the domain occupied by the reference configuration of a body with possible cracks. Hamilton’s75

principle states that the true trajectory of a body with prescribed initial and final conditions is the stationary point of the action76

functional with respect to arbitrary admissible variations. Here, we consider Ω with possible internal cracks during a specified77

time interval 𝑡 ∈ [𝑡0, 𝑡𝑓 ] with the action functional given by78

𝑆(𝒖, 𝑑) =

𝑡𝑓

∫
𝑡0

𝐿(𝒖, �̇�, 𝑑) d𝑡, (1)

where 𝒖(𝑿, 𝑡), 𝑿 ∈ Ω, denotes the displacement field of the body, and �̇� = d𝒖∕d𝑡 is the velocity field. The scalar field 𝑑 ∶79

Ω×[𝑡0, 𝑡𝑓 ] → [0, 1] is called the phase field, which approximates possible sharp cracks in a diffusive way. Herein, the Lagrangian80

function is in the form81

𝐿(𝒖, �̇�, 𝑑) = 𝑇 (�̇�) − 𝑉 (𝒖, 𝑑) − Γ(𝑑), (2)

where 𝑉 (𝒖, 𝑑) is the potential energy, Γ(𝑑) is the crack surface energy, and82

𝑇 (�̇�) = ∫
Ω

1
2
𝜌�̇� ⋅ �̇� dΩ (3)

is the kinetic energy, where 𝜌 is the initial mass density.83

2.2 Phase field approximation84

In this subsection, we revisit the two versions of the phase field model as a basis for subsequent development. In the phase field85

model of fracture, the sharp crack surface is approximated by a scalar phase field 𝑑 as shown in Figure 1. The range of this field86

𝑑 has to be between 0 and 1. In particular, our convention is such that the region with 𝑑 = 1 represents the fully cracked state and87

that with 𝑑 = 0 represents the pristine state of the material. Following Ref. 16, the crack surface energy Γ(𝑑) in (2) is given by88

Γ(𝑑) = ∫
Ω

𝑔𝑐𝛾(𝑑,∇𝑑) dΩ, (4)

where 𝑔𝑐 > 0 is the critical crack energy release rate, and 𝛾(𝑑,∇𝑑) is the crack surface density per unit volume,89

𝛾(𝑑,∇𝑑) = 1
4𝑐𝑤

(
𝑤(𝑑)
𝓁

+ 𝓁|∇𝑑|2) , (5)

where 𝓁 > 0 is the regularization length scale parameter, which controls the width of the transition region of the smoothed90

crack. Crack geometric function 𝑤(𝑑) and normalization constant 𝑐𝑤 = ∫ 1
0

√
𝑤(𝑑) d𝑑 are model dependent. Specifically, for91

the brittle fracture, classical examples are 𝑤(𝑑) = 𝑑2 and 𝑐𝑤 = 1∕2 for the AT2 model; and 𝑤(𝑑) = 𝑑 and 𝑐𝑤 = 2∕3 for the92

AT1 model37. In addition, a notable difference between the AT2 and AT1 models is that the former gives rise to a more diffuse93

phase field profile while the latter generates a phase field profile with a narrow support near the crack.94
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4 Zongwu Niu ET AL.

(a) (b)

FIGURE 1 Body with an internal crack with: (a) a sharp crack; (b) a crack approximated by the phase field.

The potential energy 𝑉 (𝒖, 𝑑) in (2) is expressed as95

𝑉 (𝒖, 𝑑) = ∫
Ω

𝜓(𝜺(𝒖), 𝑑) dΩ − ∫
𝜕Ω𝑡

𝒕𝑁 ⋅ 𝒖 d𝐴 − ∫
Ω

𝒃 ⋅ 𝒖 dΩ, (6)

where 𝜓 is the strain energy density, 𝒕𝑁 ∶ 𝜕Ω𝑡 → ℝ𝑛 is the prescribed traction boundary condition, and 𝒃 ∶ Ω → ℝ𝑛 is the body96

force. The strain tensor is given by 𝜺 = (∇𝒖 + ∇𝒖𝑇 )∕2, where ∇(⋅) is the gradient operator with respect to 𝑿.97

Here we adopt a form for 𝜓 that accounts for the unilateral constraint following Miehe et al.40 which involves spectral decom-98

position of 𝜺. Other choices are, for example, the volumetric-deviatoric split by Amor et al.41, the micromechanics-informed99

model by Liu et al.42, and the model by Wu et al.43 In the chosen formulation, the strain energy density takes the following form100

𝜓(𝜺, 𝑑) = 𝑔(𝑑)𝜓+ + 𝜓−, (7)

where 𝑔(𝑑) = (1 − 𝑑)2 is the degradation function, and 𝜓+ and 𝜓− are, respectively, the crack-driving and persistent portions of101

the strain energy density as102

𝜓±(𝜺) =
𝜆
2
⟨tr(𝜺)⟩2± + 𝜇 tr

(
𝜺2±

)
, (8)

where 𝜆 and 𝜇 are Lamé constants such that 𝜇 > 0 and 𝜆 + 2𝜇 > 0, the Macauley bracket is defined as ⟨⋅⟩± = (⋅ ± |⋅|)∕2, and103

𝜺± =
3∑

𝑎=1
⟨𝜀𝑎⟩±𝐧𝑎 ⊗ 𝐧𝑎, (9)

where {𝜀𝑎}3𝑎=1 denote the principal strains, 𝐧𝑎 are the corresponding orthonormal principal directions, and the operator ⊗104

represents the dyadic product. Correspondingly, the Cauchy stress tensor is105

𝝈±(𝜺) =
𝜕𝜓±

𝜕𝜺
= 𝜆⟨tr(𝜺)⟩±𝟏 + 2𝜇

3∑
𝑎=1

⟨𝜀𝑎⟩±𝐧𝑎 ⊗ 𝐧𝑎, (10)

where 𝟏 is the second-order identity tensor.106

2.3 Spatial discretization107

In this subsection, we obtain the semi-discrete Lagrangian by discretizing the displacement field and the phase field with a finite108

element mesh ℎ for Ω. Let 𝜂 be the set of nodes of ℎ. The discretized fields take the following form109

𝒖(𝑿) =
∑
𝑎∈𝜂

𝑁𝑎(𝑿)𝐮𝑎, 𝑑(𝑿) =
∑
𝑎∈𝜂

𝑁𝑎(𝑿)𝑑𝑎, (11)

where 𝐮𝑎 ∈ ℝ𝑛 and 𝑑𝑎 ∈ ℝ are the displacement vector and phase field value at node 𝑎 ∈ 𝜂, respectively, and 𝑁𝑎 is the finite110

element shape function associated with node 𝑎.111

The Lagrangian 𝐿 may be decomposed as112

𝐿(𝒖, �̇�, 𝑑) =
∑
𝑒∈ℎ

𝐿𝑒
(
𝐮𝑒, �̇�𝑒,𝐝𝑒

)
, (12)
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Zongwu Niu ET AL. 5

where 𝑒 is an element of the mesh ℎ, and 𝐮𝑒, �̇�𝑒, and 𝐝𝑒 are the vectors containing the displacements, velocities, and phase field113

values of all the nodes of element 𝑒, respectively. The quantity 𝐿𝑒 is given by114

𝐿𝑒
(
𝐮𝑒, �̇�𝑒,𝐝𝑒

)
= 𝑇𝑒

(
�̇�𝑒
)
− 𝑉𝑒

(
𝐮𝑒,𝐝𝑒

)
− Γ𝑒(𝐝𝑒), (13)

where 𝑉𝑒 and Γ𝑒 are the elemental potential energy and elemental surface energy, respectively, and115

𝑇𝑒
(
�̇�𝑒
)
= 1

2
�̇�𝑇𝑒 𝐦𝑒�̇�𝑒 (14)

is the elemental kinetic energy, where 𝐦𝑒 is the diagonal element mass matrix. Hence, the space-discretized action is in the form116

𝑆
(
{𝐮𝑒}, {𝐝𝑒}

)
=

𝑡𝑓

∫
𝑡0

∑
𝑒∈ℎ

(1
2
�̇�𝑇𝑒 𝐦𝑒�̇�𝑒 − 𝑉𝑒

(
𝐮𝑒,𝐝𝑒

)
− Γ𝑒(𝐝𝑒)

)
d𝑡, (15)

where the curly braces {⋅} represent the collection of all components of all 𝑒 ∈ ℎ over the entire time span.117

3 ASYNCHRONOUS VARIATIONAL INTEGRATOR WITH THE FRACTURE PHASE118

FIELD119

The main feature of the AVI is to assign different time steps to different elements of ℎ. The key idea is the stationarity of (15),120

a functional over space and time, which allows to divide the total Lagrangian into contributions from elemental terms which121

may possess independent time steps. For example, the smaller elements in the mesh may be updated a few times while the larger122

elements are held, according to either a preset schedule or a schedule determined on the fly.123

In the context of fracture phase field in this work, the phase field is implicitly solved at the element level instead of at the124

global level, permitting more efficient solvers of inequality constraints.125

In this section, we detail a phase field formulation and implementation for dynamic fracture through the AVI. The reader inter-126

ested in the overall algorithmic implementation can directly go to Algorithm 2. In essence, we derive the proposed formulation127

from the discrete Hamilton’s principle of stationary action with the fracture phase field incorporated. In addition, we adapt the128

reduced-space active set method to enforce the irreversibility constraint involved in the phase field problem.129

3.1 Asynchronous discretization130

This subsection presents the discretization of the time domain through an asynchronous strategy. Such an asynchronous dis-131

cretization allows each element to have an independent time step. As an example, Figure 2 shows the spacetime diagram of a132

three-element mesh with asynchronous time steps.133

Here, we assign to the element 𝑒 ∈ ℎ the update schedule134

Θ𝑒 =
{
𝑡0 = 𝑡0𝑒 < 𝑡1𝑒 < 𝑡2𝑒 … 𝑡𝑁𝑒−1

𝑒 < 𝑡𝑓 ≤ 𝑡𝑁𝑒
𝑒

}
. (16)

At these instants, the displacements and velocities, and the phase field values of all nodes 𝑎 ∈ 𝜂(𝑒) are updated, where 𝜂(𝑒) is135

the set of nodes of 𝑒. In addition, we define the discrete elemental displacements 𝐮𝑗𝑒 ≡ 𝐮𝑒(𝑡
𝑗
𝑒) and the discrete elemental phase136

fields 𝐝𝑗𝑒 ≡ 𝐝𝑒(𝑡
𝑗
𝑒) at 𝑡𝑗𝑒 ∈ Θ𝑒, and the entire update schedule of the mesh is137

Θ =
⋃
𝑒∈ℎ

Θ𝑒. (17)

For simplicity, we assume that there are no coincident instants for any pair of elements except for the initial time, i.e., Θ𝑒∩Θ𝑒′ =138

{𝑡0} if 𝑒 ≠ 𝑒′. The general case with coincident update instants can be handled without much difficulty and will not change the139

results as long as elements with coincident instants are far away enough from each other. More discussions on the case of update140

coincidences for the adjacent elements are given in Appendix A.141

Similarly, we also gather the schedule for node 𝑎 ∈ 𝜂 as142

Θ𝑎 =
⋃
𝑒∋𝑎

Θ𝑒 =
{
𝑡0 = 𝑡0𝑎 < 𝑡1𝑎 < ⋯ < 𝑡𝑛𝑎−1𝑎 < 𝑡𝑛𝑎𝑎

}
. (18)
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⋯
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FIGURE 2 Asynchronous discretization of the time domain for a three-element mesh in the reference configuration. The entire
update schedule follows the chronological order, i.e., Θ =

{
𝑡0𝑒1 , 𝑡

0
𝑒2
, 𝑡0𝑒3 , 𝑡

1
𝑒1
, 𝑡1𝑒3 , 𝑡

1
𝑒2
, 𝑡2𝑒1 , 𝑡

2
𝑒3
, 𝑡3𝑒1 , 𝑡

2
𝑒2
, 𝑡3𝑒3 ,⋯

}
, where 𝑡𝑛𝑜𝑤 = 𝑡2𝑒3 is the

current time and 𝑒3 is the current active element.

We additionally define 𝐮𝑖𝑎 ≡ 𝐮𝑎(𝑡𝑖𝑎), 𝑑
𝑖
𝑎 ≡ 𝑑𝑎(𝑡𝑖𝑎), 𝑡

𝑖
𝑎 ∈ Θ𝑎, and the set of nodal displacements143

𝑎 =
{
𝐮𝑖𝑎 ∶ 𝑖 = 0, 1,… , 𝑛𝑎

}
, 𝑎 ∈ 𝜂, (19)

and the set of nodal phase fields144

𝑎 =
{
𝑑𝑖
𝑎 ∶ 𝑖 = 0, 1,… , 𝑛𝑎

}
, 𝑎 ∈ 𝜂. (20)

The triple (Θ,𝑎,𝑎) defines the discrete trajectory of the system. To solve for this triple, we write the discrete action sum as145

𝑆dis(Θ,𝑎,𝑎) =
∑
𝑒∈ℎ

𝑁𝑒−1∑
𝑗=0

𝐿𝑗
𝑒, (21)

where 𝐿𝑗
𝑒 ≈ ∫ 𝑡𝑗+1𝑒

𝑡𝑗𝑒
𝐿𝑒 d𝑡.146

This approximation can be realized by multiple schemes. In this paper, we adopt one such that each node 𝑎 ∈ 𝜂 follows a linear147

trajectory within the time interval [𝑡𝑖𝑎, 𝑡
𝑖+1
𝑎 ]; consequently, the corresponding nodal velocities are constant in the said interval.148

Moreover, the potential energy and the crack energy terms are approximated with the rectangular rule using their values at 𝑡𝑗+1𝑒 .149

Then the discrete Lagrangian is150

𝑡𝑗+1𝑒

∫
𝑡𝑗𝑒

𝐿𝑒 d𝑡 ≈ 𝐿𝑗
𝑒 =

∑
𝑎∈𝑒

∑
𝑡𝑖𝑎∈

[
𝑡𝑗𝑒,𝑡

𝑗+1
𝑒

)12𝑚𝑒,𝑎
(
𝑡𝑖+1𝑎 − 𝑡𝑖𝑎

) ‖‖‖‖‖𝐮
𝑖+1
𝑎 − 𝐮𝑖𝑎
𝑡𝑖+1𝑎 − 𝑡𝑖𝑎

‖‖‖‖‖
2

−
(
𝑡𝑗+1𝑒 − 𝑡𝑗𝑒

) (
𝑉𝑒
(
𝐮𝑗+1𝑒 ,𝐝𝑗+1𝑒

)
+ Γ𝑒

(
𝐝𝑗+1𝑒

))
, (22)

where 𝑚𝑒,𝑎 is the mass matrix entry of node 𝑎 contributed by element 𝑒 and 𝐝𝑗+1𝑒 ≡ 𝐝𝑒(𝑡
𝑗+1
𝑒 ) is the elemental phase field vector.151

Finally, the discrete action sum (21) takes the following form152

𝑆dis =
∑
𝑎∈𝜂

𝑛𝑎−1∑
𝑖=0

1
2
𝑀𝑎

(
𝑡𝑖+1𝑎 − 𝑡𝑖𝑎

) ‖‖‖‖‖𝐮
𝑖+1
𝑎 − 𝐮𝑖𝑎
𝑡𝑖+1𝑎 − 𝑡𝑖𝑎

‖‖‖‖‖
2

−
∑
𝑒∈ℎ

𝑁𝑒−1∑
𝑗=0

(
𝑡𝑗+1𝑒 − 𝑡𝑗𝑒

) (
𝑉𝑒
(
𝐮𝑗+1𝑒 ,𝐝𝑗+1𝑒

)
+ Γ𝑒

(
𝐝𝑗+1𝑒

))
, (23)

where 𝑀𝑎 =
∑

𝑒,𝑎∈𝜂(𝑒) 𝑚𝑒,𝑎.153
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Zongwu Niu ET AL. 7

3.2 Discrete variational principle154

In this subsection, we derive the formulation of the AVI for the phase field approach to dynamic fracture using the discrete155

Hamilton’s principle44. Taking the partial derivative of the discrete action sum (23) with respect to 𝐮𝑖𝑎 follows156

0 =
𝜕𝑆𝑑𝑖𝑠

𝜕𝐮𝑖𝑎
= 𝜕

𝜕𝐮𝑖𝑎

(
1
2
𝑀𝑎

(
𝑡𝑖𝑎 − 𝑡𝑖−1𝑎

) ‖‖‖‖‖𝐮
𝑖
𝑎 − 𝐮𝑖−1𝑎

𝑡𝑖𝑎 − 𝑡𝑖−1𝑎

‖‖‖‖‖
2

+ 1
2
𝑀𝑎

(
𝑡𝑖+1𝑎 − 𝑡𝑖𝑎

) ‖‖‖‖‖𝐮
𝑖+1
𝑎 − 𝐮𝑖𝑎
𝑡𝑖+1𝑎 − 𝑡𝑖𝑎

‖‖‖‖‖
2

−
(
𝑡𝑗𝑒 − 𝑡𝑗−1𝑒

)
𝑉𝑒

(
𝐮𝑗𝑒,𝐝

𝑗
𝑒

))
, (24)

where 𝑎 ∈ 𝜂(𝑒) such at 𝑡𝑖𝑎 = 𝑡𝑗𝑒, which yields the discrete Euler-Lagrange equations157

𝐩𝑖+1∕2𝑎 − 𝐩𝑖−1∕2𝑎 = 𝐼 𝑖
𝑒,𝑎 = −

(
𝑡𝑗𝑒 − 𝑡𝑗−1𝑒

) 𝜕𝑉𝑒
(
𝐮𝑗𝑒,𝐝

𝑗
𝑒
)

𝜕𝐮𝑖𝑎
, (25)

where 𝐼 𝑖
𝑒,𝑎 may be regarded as the impulse component of node 𝑎 ∈ 𝑒 at the time 𝑡𝑖𝑎 = 𝑡𝑗𝑒, and the discrete linear momentum is158

defined as159

𝐩𝑖−1∕2𝑎 = 𝑀𝑎
𝐮𝑖𝑎 − 𝐮𝑖−1𝑎

𝑡𝑖𝑎 − 𝑡𝑖−1𝑎
= 𝑀𝑎𝐯𝑖−1∕2𝑎 . (26)

Similarly, we take the partial derivative of (23) with respect to 𝐝𝑗𝑒 as follows160

0 =
𝜕𝑆𝑑𝑖𝑠

𝜕𝐝𝑗𝑒
= 𝜕

𝜕𝐝𝑗𝑒

[
𝑉𝑒
(
𝐮𝑗𝑒,𝐝

𝑗
𝑒

)
+ Γ𝑒

(
𝐝𝑗𝑒
)]

, (27)

for element 𝑒 at time 𝑡𝑗𝑒, then the phase field of element 𝑒 are updated by161

𝐝𝑗𝑒 = arg min
𝐝⋆𝑒 ≤𝐝𝑒≤1

{
𝑉𝑒

(
𝐮𝑗𝑒,𝐝𝑒

)
+ Γ𝑒

(
𝐝𝑒
)}

, (28)

where 𝐝⋆𝑒 represents the phase field value of 𝜂(𝑒) at their most recent time of update; namely, for node 𝑎 ∈ 𝜂(𝑒), at step 𝑖, 𝐝⋆𝑒162

contains the phase field value 𝑑𝑖−1
𝑎 . Note that normally in the same element 𝑒, 𝐝⋆𝑒 may contain phase field values at different163

times. Here the stationarity condition (27) becomes a minimization in (28) since Γ𝑒 is elliptic. The irreversibility constraint in164

(28) may be enforced in many ways, for which we have chosen the reduced-space active set strategy, to be discussed in Section165

3.4.166

Now, we consider an element 𝑒 ∈ ℎ with 𝐮𝑗−1𝑒 and 𝐩𝑖−1∕2𝑎 , 𝑎 ∈ 𝜂(𝑒), known at time 𝑡𝑗−1𝑒 , also known 𝐝⋆𝑒 , the provisional167

solution procedure is thus:168

• For all 𝑎 ∈ 𝜂(𝑒), solve 𝐮𝑖𝑎 from (26): 𝐮𝑖𝑎 = 𝐮𝑖−1𝑎 + (𝑡𝑖𝑎 − 𝑡𝑖−1𝑎 )𝑀−1
𝑎 𝐩𝑖−1∕2𝑎 .169

• Solve 𝐝𝑗𝑒 from (28).170

• For all 𝑎 ∈ 𝜂(𝑒), solve 𝐩𝑖+1∕2𝑎 from (25): 𝐩𝑖+1∕2𝑎 = 𝐩𝑖−1∕2𝑎 −
(
𝑡𝑗𝑒 − 𝑡𝑗−1𝑒

)
𝜕𝑉𝑒

(
𝐮𝑗𝑒,𝐝

𝑗
𝑒
)
∕𝜕𝐮𝑖𝑎.171

3.3 Reformulation for solving the phase field with element patches172

The solution procedure mentioned above is variational; however, the results obtained with (28) show an unreasonable crack173

pattern (see Appendix B), hence we reformulate the constrained optimization problem (28) as follows. Essentially we want to174

minimize 𝑉 +Γ with the newly obtained 𝐮𝑗𝑒 (same as before) while the field values of all nodes not belonging to 𝑒 frozen to their175

most recent values. To this end, we define the patch for element 𝑒176

𝑒 = {
𝑒′ ∈ ℎ ∶ 𝜂(𝑒) ∩ 𝜂(𝑒′) ≠ ∅

}
, (29)

as shown in Figure 3. In this way, Eq. (28) is modified to take into account the contributions of its neighboring elements177

𝐝𝑗𝑒 = arg min
𝐝⋆𝑒 ≤𝐝𝑒≤1

∑
𝑒

[
𝑉𝑒

({
𝐮∗𝑒′ ,𝐮

𝑗
𝑒

}
,
{
𝐝∗𝑒′ ,𝐝𝑒

})
+ Γ𝑒

({
𝐝∗𝑒′ ,𝐝𝑒

})]
, (30)

where the superscript ∗ represents the nodal values of 𝜂(𝑒′)⧵ 𝜂(𝑒) (hollow nodes in Figure 3) at their most recent time of update.178

Based on the spatial discretization, the minimization problem (30) leads to the phase field residual of the element179

(𝐫𝑒)𝑎 ∶= ∫
𝑒

[
𝑔′(𝑑)𝜓+(𝜺)𝑁𝑎 +

𝑔𝑐
4𝑐𝑤

(
𝑤′(𝑑)𝑁𝑎

𝓁
+ 2𝓁∇𝑑 ⋅ ∇𝑁𝑎

)]
dΩ, 𝑎 ∈ 𝜂(𝑒), (31)
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8 Zongwu Niu ET AL.

where 𝑔′ = d𝑔∕d𝑑 and the tangent stiffness matrix of the element180

(𝐤𝑒)𝑎𝑎′ ∶= ∫
𝑒

[
𝑔′′(𝑑)𝜓+(𝜺)𝑁𝑎𝑁𝑎′ +

𝑔𝑐
4𝑐𝑤

(
𝑤′′(𝑑)𝑁𝑎𝑁𝑎′

𝓁
+ 2𝓁∇𝑁𝑎 ⋅ ∇𝑁𝑎′

)]
dΩ, 𝑎, 𝑎′ ∈ 𝜂(𝑒). (32)

For the detailed derivation of (31) and (32), the reader is referred to Shen et al.21
181

e
: 𝜂(𝑒)

: 𝜂(𝑒′) ∖ 𝜂 𝑒

: e

: e′

FIGURE 3 Diagram of a patch 𝑒 that consists of the element 𝑒 (gray element) and its adjacent elements 𝑒′ ∈ 𝑒 (white
elements). At the beginning of an iteration for element 𝑒 at time 𝑡𝑗𝑒 for solving the phase field 𝐝𝑗𝑒, the displacements 𝐮𝑗𝑒 are known.
Correspondingly, both the displacements 𝐮∗𝑒′ and the phase fields 𝐝∗𝑒′ of nodes in 𝜂(𝑒′) ⧵ 𝜂(𝑒) (hollow nodes) assume their most
recent values for the iteration.

3.4 Reduced-space active set method for irreversibility constraint182

There are several approaches to impose the inequality constraints of the phase field when solving (30), such as the local history183

variable method40, the penalty method45, and the augmented Lagrangian method46.184

In this work, we employ the reduced-space active set strategy47 to ensure the phase field bounds 𝑑 ∈ [0, 1] and the185

irreversibility condition �̇� > 0. In the discrete setting, the phase field needs to satisfy the condition186

0 ≤ 𝑑𝑖−1
𝑎 ≤ 𝑑𝑖

𝑎 ≤ 1, ∀𝑖 = 1, 2,⋯ , 𝑛𝑎 and 𝑎 ∈ 𝜂(𝑒). (33)

Note that we solve this inequality-constrained optimization problem efficiently for only one element instead of for the entire187

domain. Then the solutions are determined by a mixed complementarity problem48
188 ⎧⎪⎨⎪⎩

𝑑𝑖−1
𝑎 = 𝑑𝑖

𝑎, 𝑟𝑎 ≥ 0,
𝑑𝑖−1
𝑎 ≤ 𝑑𝑖

𝑎 ≤ 1, 𝑟𝑎 = 0,
𝑑𝑖
𝑎 = 1, 𝑟𝑎 ≤ 0,

(34)

where 𝑑𝑖
𝑎 is the nodal phase field at time 𝑡𝑖𝑎 = 𝑡𝑗𝑒, and 𝑟𝑎 is the phase field residual corresponding to node 𝑎. For each iteration,189

with 𝐝⋆𝑒 , 𝐮𝑗𝑒, 𝐝∗𝑒′ , and 𝐮∗𝑒′ of the patch at time 𝑡𝑗𝑒 known, the phase field value of element 𝑒 can be updated through Algorithm 1.190

An explanation of Algorithm 1 is as follows. Firstly, the phase field residual 𝐫𝑒 is computed from (31) and the new phase field191

𝐝𝑗𝑒 is initialized with the old phase field 𝐝⋆𝑒 . Next, the set 𝜂(𝑒) is divided into an active set  and its complementary inactive192

set  = 𝜂(𝑒)∖ according to which case of (34) each node falls into, up to the given tolerance. If  is an empty set, then the193

procedure is returned with 𝐝𝑗𝑒. Otherwise, the components of 𝐫𝑒 corresponding to nodes of  need to be close enough to zero,194

up to a certain tolerance. For this purpose, Newton iteration is performed until convergence. After that, the sets  and  are195

adjusted based on (33). This process of Newton iteration and adjustment of node sets is iterated until all nodes of  satisfy (34).196
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Zongwu Niu ET AL. 9

Algorithm 1 Reduced-space active set method for solving the phase field
Input: 𝐝⋆𝑒 ,𝐮

𝑗
𝑒,𝐝∗𝑒′ ,𝐮

∗
𝑒′ , ∀𝑒

′ ∈ 𝑒 and tol ⊳ tol may be chosen differently at each occurrence
Output: 𝐝𝑗𝑒
1: Compute 𝐫𝑒 from (31) and initialize 𝐝𝑗𝑒 = 𝐝⋆𝑒
2: ⊳ Let 𝑑𝑖

𝑎 and 𝑑𝑖−1
𝑎 denote the components of 𝐝𝑗𝑒 and 𝐝⋆𝑒 corresponding to node 𝑎, respectively, where 𝑑𝑖

𝑎 is the nodal phase
field at time 𝑡𝑖𝑎 = 𝑡𝑗𝑒. Initially 𝑑𝑖

𝑎 = 𝑑𝑖−1
𝑎 .

3:  =
{
𝑎 ∈ 𝜂(𝑒) ∶ 𝑟𝑎 > tol or

(
𝑑𝑖
𝑎 = 1, 𝑟𝑎 < −tol

)}
, = 𝜂(𝑒) ⧵ ⊳ All components of 𝐝𝑗𝑒 are in either  or  at any time

4: while  ≠ ∅ do
5: while ‖𝐫‖ > tol do ⊳ {} is the component of {}𝑒 corresponding to nodes of 
6: Compute 𝐤 from (32), solve 𝐝 ← 𝐝 − 𝐤−1 𝐫 , and update 𝐫
7: end while
8: for 𝑎 ∈  do
9: if 𝑑𝑖

𝑎 > 1 + tol then
10: Set 𝑑𝑖

𝑎 ← 1 and  ←  ∪ {𝑎},  ←  ⧵ {𝑎}
11: else if 𝑑𝑖

𝑎 < 𝑑𝑖−1
𝑎 − tol then

12: Set 𝑑𝑖
𝑎 ← 𝑑𝑖−1

𝑎 and  ←  ∪ {𝑎},  ←  ⧵ {𝑎}
13: end if
14: end for
15: Compute 𝐫 from (31)
16: if ∀𝑎 ∈  satisfy (34) then
17: return with 𝐝𝑗𝑒
18: else
19: For each 𝑎 ∈  not satisfying (34),  ←  ∪ {𝑎},  ←  ⧵ {𝑎}
20: end if
21: end while

3.5 Algorithmic implementation197

This section focuses on the algorithmic implementation of the AVI for the phase field fracture. The overall pseudo-code is198

provided in Algorithm 2. The time step of each element is taken as a fraction of their critical time step and is computed by199

𝑡𝑐𝑟𝑖𝑡 = 𝐶𝐶𝐹𝐿
2
𝜔𝑒

, (35)

where 𝐶𝐶𝐹𝐿 is taken as 0.6 and 𝜔𝑒 is the maximum natural frequency of the element, which is the square root of the maximum200

eigenvalue of the generalized eigenvalue problem 𝐤𝑒𝐔 = 𝜔2𝐦𝑒𝐔. The time step of each element allows certain adaptivity,201

although we keep 𝐶𝐶𝐹𝐿 constant in this work for simplicity.202

Due to the asynchrony of the algorithm, we employ the priority queue49 to keep track of the causality. The priority queue203

assigns each element a priority according to their next update time where the element to be updated at a sooner time has a higher204

priority. In other words, the priority queue ensures that all elements in the queue are ordered according to their next time to be205

updated, and the top element in the queue is always the one whose next update time is the closest to the current time in the future.206

The implementation details are shown in Algorithm 2. First, the first time steps of all elements in the mesh are computed and207

pushed into the priority queue to establish the initial queue. Within each iteration, the priority queue pops an element (calls the208

active element) and its next update time. The nodal displacements, phase fields, and momenta of the active element are updated209

accordingly. Subsequently, the next update time of this element is computed and if this time is less than 𝑡𝑓 , it is pushed into the210

priority queue. The algorithm continues until the priority queue is empty.211

4 NUMERICAL EXAMPLES212

In this section, we showcase four benchmark examples to demonstrate the ability of the proposed formulation in capturing the213

key features of dynamic fracture. In addition, we compare the computational costs and the energy conservation behavior of214
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10 Zongwu Niu ET AL.

Algorithm 2 Algorithm of AVI for the phase field to fracture
Input: ℎ, 𝜂, Θ, 𝑄 = ∅ and {𝐮0𝑎, 𝐝

0
𝑒 , 𝐩

1∕2
𝑎 |𝑎 ∈ 𝜂}

Output: 𝐮𝑖𝑎,𝐝
𝑗
𝑒,𝐩

𝑖+1∕2
𝑎 , where 𝑖, 𝑗 = 1, 2, 3,⋯ , corresponding to Θ

1: Initialization: 𝐮𝑎 ← 𝐮0𝑎, 𝐝𝑒 ← 𝐝0𝑒 , 𝐩𝑎 ← 𝐩1∕2𝑎 , 𝜏𝑎 ← 𝑡0 for all 𝑎 ∈ 𝜂
2: for all 𝑒 ∈ ℎ do
3: 𝜏𝑒 ← 𝑡0
4: Compute 𝑡1𝑒 and push (𝑡1𝑒 , 𝑒) into priority queue 𝑄
5: end for
6: while 𝑄 is not empty do
7: Extract next element: pop (𝑡, 𝑒) from 𝑄
8: Compute displacements 𝐮𝑒 with (26) and update node’s time 𝜏𝑎 ← 𝑡 for all 𝑎 ∈ 𝜂(𝑒)
9: Compute the phase fields d𝑒 with (30) following Algorithm 1

10: if 𝑡 < 𝑡𝑓 then
11: Compute momentum 𝐩𝑎 with (25) for all 𝑎 ∈ 𝜂(𝑒)
12: Update element’s time: 𝜏𝑒 ← 𝑡
13: Compute 𝑡𝑛𝑒𝑥𝑡𝑒 and schedule 𝑒 for next iterate: push (𝑡𝑛𝑒𝑥𝑡𝑒 , 𝑒) into 𝑄
14: end if
15: end while

TABLE 1 Material properties for the numerical examples of Section 4.1 through Section 4.3.

Parameter Symbol Section 4.1 Section 4.2 Section 4.3

Material - Silica glass Soda-lime glass Maraging steel 18Ni(300)
Young’s modulus (GPa) 𝐸 32 72 190
Poisson’s ratio 𝜈 0.2 0.22 0.3
Density (kg/m3) 𝜌 2450 2440 8000
Critical energy release rate (J/m2) 𝑔𝑐 3 3.8 2.213×104
Rayleigh wave speed (m/s) 𝑣𝑅 2119 3172 2803

our approach for the AT1 and AT2 models. While all examples conducted here are two-dimensional, the proposed formulation215

is easy to be generalized to three dimensions. In particular, we use an unstructured mesh with first-order quadrilateral finite216

elements, which is refined along the potential crack paths.217

A note on the post-processing is as follows. We sample the solution at a frequency of every 500,000 elemental iterations.218

For example, if the current time 𝑡𝑛𝑜𝑤 = 𝑡2𝑒3 in Figure 2 happens to be a sampling time, then post-processing results are obtained219

using the most recent nodal displacement, velocity, and phase field values prior to 𝑡𝑛𝑜𝑤, i.e., values at nodal times 𝑡2𝑎1 , 𝑡
3
𝑎2
, 𝑡3𝑎3 , 𝑡

2
𝑎4

220

for the nodes shown. For example, the crack patterns to be plotted are obtained using the most recent phase field values prior to221

the sampling times. More accurate results can be obtained by interpolation using the values before and after the sampling time,222

which is not undertaken in this work for simplicity.223

4.1 Boundary tension test224

In this section, a pre-notched rectangular plate loaded dynamically in tension is modeled. The geometry and boundary conditions225

are shown in Figure 4. A constant traction 𝜎∗ = 1MPa is applied on the top and bottom edges throughout the simulation and the226

remaining boundary is traction free. This benchmark problem has been widely studied, for example by Song et al.50 using the227

extended finite element method, by Nguyen10 with the cohesive zone method, and by Borden et al.22 with a synchronous phase228

field approach to fracture, as well as in experimental studies51,52. As described in Ref. 51, a crack emerges at the notch tip and229

starts propagating to the right in a stable way. Over a certain distance, the main crack branches into two symmetrical sub-cracks230

and continue growing until it reaches the right surface.231
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50 mm
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𝜎∗ = 1 MPa

FIGURE 4 Geometry and boundary conditions of the boundary tension test, in which a pre-notched plate is under tension.

The material used in this test is silica glass and its properties are listed in Table 1. A plane strain state with a unit thickness232

is assumed. The length scale parameter takes 𝓁 = 1 × 10−3 m, which is small enough with respect to the specimen dimensions.233

Two different mesh levels are used: Mesh 1 with ℎ = 5 × 10−4 m = 𝓁∕2, and Mesh 2 with ℎ = 2.5 × 10−4 m = 𝓁∕4 in the234

refined region.235

The final phase field results are shown in Figure 5. As seen, there is no significant difference of in the crack pattern between236

the AT2 and AT1 models. The crack branches at between 34 and 36 𝜇s and reaches the right boundary at 𝑡 ≈ 80𝜇s. The upper237

crack branching angle is around 27.5◦, which agrees well with the results in Refs. 53,23. In addition, the bifurcation angle of238

the lower branch is slightly different from that of the upper one, which may be caused by the non-symmetric discretization of239

the mesh. This non-perfect symmetry was also observed by Ren et al.38.240

(a) AT2 with ℎ = ℓ/2 (b) AT2 with ℎ = ℓ/4

(c) AT1 with ℎ = ℓ/2 (d) AT1 with ℎ = ℓ/4

27.5°

FIGURE 5 Phase field results of the test in Section 4.1.

Figure 6(a) shows the evolution of the total crack tip velocity calculated by241

𝑣𝑡𝑖𝑝 =
1
𝑔𝑐

dΓ
d𝑡

, (36)

and normalized by the Rayleigh wave speed. In particular, the derivative is obtained by comparing the values of Γ at consecutive242

sampling times. It is observed that at the beginning, a single main crack propagates to the right with a speed of less than 60%243

of the Rayleigh wave speed. Then, the main crack branches into two sub-cracks and in this respect the total crack tip velocity of244

both branches is plotted, which is still less than 60% of twice the Rayleigh wave speed. Therefore, whether before or after the245

branching emerges, the velocity is within a reasonable range. Moreover, the overall propagation speed during the evolution is246
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in good agreement with the results reported by Borden et al.22 Note that the velocity of Borden et al.22 is only for one of the247

branches while it is the total velocity of both branches in this work.248

（a）

（d） （e） （f）

（b） （c）

FIGURE 6 Results of the test in Section 4.1 compared with those of Borden et al.22 Evolution of: (a) normalized total crack tip
velocity; (b) crack energy Γ(𝑑); (c) strain energy; (d) kinetic energy 𝑇 (�̇�); (e) external work; and (f) free energy 𝑇 (�̇�)+𝑉 (𝒖, 𝑑)+
Γ(𝑑). Note that for (a), the velocity result in Borden et al.22 is only for one of the branches while it is the total velocity of both
branches in this work. Here for (e) as well as for (b)(c)(d) the results are obtained by sampling, see the text for more details. It
can be seen that the free energy is 1.32% of the external work at the end, indicating the conservation of energy.

Figure 6 (b)-(d) present the evolution of the crack surface energy, the strain energy, and the kinetic energy, respectively. The249

crack surface energy monotonically increases as expected due to the unilaterality of the phase field. In addition, the strain energy250

evidently shows the periodic oscillation at the beginning and this trend gradually weakens with crack evolution, because the251

stress wave is reflected at the boundaries and cracks, and interacts with itself.252

Figure 6(e) shows the evolution of the external work, which is calculated from the second term on the right hand side of253

Eq. (6). It is clear that the kinetic energy accounts for most of the energy converted from external work.254

Figure 6(f) shows the evolutions of the free energy 𝑇 (�̇�) + 𝑉 (𝒖, 𝑑) + Γ(𝑑). The free energy is negative and its magnitude is255

only 1.32% of the external work at the end. This small negative numbers demonstrate that the method possesses remarkable256

energy conservation property and is energetically stable.257

Figure 7 shows the maximum principal stress with Mesh 1 at 𝑡 = 70 𝜇s. Therein, stress concentration is clearly seen at the258

crack tips and the results are in good agreement with those in Ref. 54.259

Figure 8(a) shows the number of updates per element for Mesh 1. By construction, the elements near the cracks are updated260

more frequently than those far away from the cracks. Figure 8(b) shows the wall time corresponding to 𝑡𝑓 = 80 𝜇s for the AVI261

and a synchronous method (central difference). The simulations are conducted using an in-house MATLAB code on a personal262

computer with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and 16.0 GB RAM. The results indicate that the AVI for both AT2263

and AT1 models take similar computational time. In addition, the computational efficiency of the AVI is approximately four264

times that of the synchronous method.265
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（a）AT2 （b）AT1

FIGURE 7 Maximum principal stress of the test in Section 4.1 with Mesh 1 at 𝑡 = 70 𝜇s, where the region 𝑑 > 0.9 is removed.

（a） （b）

FIGURE 8 The performance indicators of the tests in Section 4.1 with Mesh 1: (a) number of updates per element; and (b) wall
time corresponding to 𝑡𝑓 = 80 𝜇s, where ’Syn.’ represents the results of a synchronous method (central difference).

Table 2 collects statistics of the computational cost for the example at hand. As a platform-independent indicator, the number266

of updates of each element throughout the simulation for each case is counted. The second, third, and fourth columns represent267

the minimum, maximum, and median numbers of updates among the elements, respectively. The fifth column is the total numbers268

of updates for all elements of AVI. The sixth column is the total numbers of updates of synchronous integration, where the data is269

estimated by assuming the global critical time step is used for the same time interval [𝑡0, 𝑡𝑓 ]. As shown, the total numbers of AVI270

updates is approximately 31% of those of a synchronous integration. Considering that it is even more costly to implicitly solve271

for the phase field with a synchronous method per time step, the data in Table 2 indicates that the proposed scheme effectively272

reduces the computational cost compared with a synchronous method.273

TABLE 2 Numbers of elemental updates for the test in Section 4.1 during the entire simulation.

Mesh Minimum Maximum Median AVI total† Synchronous integration (estimated)‡

Mesh 1 178 5,983 2,106 27,400,002 86,382,554
Mesh 2 160 10,150 3,440 62,285,189 201,051,200

†Total numbers of the elements involved in the update of the mechanical field and phase field.
‡This column of data is estimated by assuming the global critical time step is used throughout the computation for the same
desired time interval [𝑡0, 𝑡𝑓 ].

4.2 Compact tension test274

In this section, we investigate a series of dynamic loads applied on pre-crack surfaces as the compact tension (CT) test. The275

geometry and boundary conditions are shown in Figure 9. Three different constant normal tractions 𝜎∗ = {0.5, 3, 6} MPa are276

applied on the pre-crack surfaces. This benchmark problem has been studied by Bobaru and Zhang55 using peridynamics and277

Mandal et al.56 with a synchronous phase field approach.278
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50 mm

2
0
 m

m

100 mm

𝜎∗

4
0
 m

m

FIGURE 9 Geometry and boundary conditions for the dynamic CT test.

The material is assumed to be soda-lime glass, whose properties are given in Table 1. Plane strain state is assumed. The length279

scale parameter 𝓁 = 5×10−4 m and the mesh size ℎ = 2.5×10−4 m = 𝓁∕2 in the refined region are used for all cases. Figure 10280

shows the phase field results for the CT test. For 𝜎∗ = 0.5 MPa, a straight crack without branching is obtained. For larger values281

of 𝜎∗ crack branching is observed and the branching location moves to the left with the increase of 𝜎∗. The crack branching282

happens at around 17.3 𝜇s and 9.2 𝜇s, and the branching angles are 52◦ and 46◦ for 𝜎∗ = 3 MPa and 6 MPa, respectively. Also,283

there is no significant difference of the crack patterns between the AT2 and AT1 models for the same load. Moreover, the crack284

patterns, branching instants, and branching angles are all in good agreement with the results reported in Ref. 56.285

(a) (b) (c)

(d) (e) (f)

A
T
2

A
T
1 52° 46°

𝜎∗ = 0.5MPa, 𝑡 = 110 𝜇𝑠 𝜎∗ = 3MPa, 𝑡 = 35 𝜇𝑠 𝜎∗ = 6MPa, 𝑡 = 30 𝜇𝑠

FIGURE 10 Phase field results of the test in Section 4.2 under different loads.

Figure 11(a) illustrates the evolution of the normalized total crack tip velocity of CT test for 𝜎∗ = 3 MPa. Like the case of286

Figure 6(a), a main crack propagates to the right with an increasing speed less than 60% of the Rayleigh wave speed. Then, then287

main crack branches into two sub-cracks and the total speed is still less than 60% of twice the Rayleigh wave speed. Note that288

the velocity of Mandal et al.56 is only for one of the branches while our results are the total velocity of both branches. Figure289

11(b) shows the evolution of the crack energy, and the results of both models are slightly higher than the result reported by290

Mandal et al.56 . Figure 11(c) shows the evolution of the strain energy. An interesting observation is that the curve presents a291

periodic oscillation with a period of approximately 6.8 𝜇s, which can be explained as follows. During the process, the stress292

waves propagate from the crack to the top and bottom boundaries and then are reflected until they meet the crack again. The293

time it takes the stress wave to travel a round trip can be estimated by 𝑙∕𝑣𝐷 = 6.89 𝜇s, where 𝑙 = 40 mm is twice the half-width294

of the specimen and 𝑣𝐷 = 5800 m/s is the dilatational wave speed of soda-lime glass. This process is repeated, and hence the295

periodicity. Figure 11(d-e) show the evolution of the kinetic energy and the external work, both of which monotonically increase.296

Figure 11(f) shows the free energy of the AT2 and AT1 model during the evolution. As we can see, the magnitude of the free297

energy only accounts for 1.69% of the external work, which indicates the conservation of energy.298

Figure 12 shows the maximum principal stress for 𝜎∗ = 3 MPa and 6 MPa, respectively. Therein, stress concentration is299

clearly seen at the crack tips.300

Figure 13(a) shows the number of updates per element with the mesh of the case 𝜎∗ = 3 MPa. Like the previous example, the301

elements in the refined region are updated more frequently while those without refinement are updated less frequently. Figure302
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(a) (b) (c)

(d) (e) (f)

FIGURE 11 Results of the test in Section 4.2 with 𝜎∗ = 3 MPa compared with Mandal et al.56 Evolution of: (a) normalized
total crack propagation velocity. Note that the velocity of Mandal et al.56 is only for one of the branches while our result is the
total velocity of both branches.; (b) crack energy; (c) strain energy; (d) kinetic energy; (e) external work; and (f) free energy.
The free energy is only 1.69% of the external work, which indicates the conservation of energy.

(a) 𝜎∗ = 3 MPa, 𝑡 = 35 𝜇𝑠 (b) 𝜎∗ = 6 MPa, 𝑡 = 30 𝜇𝑠

FIGURE 12 Maximum principal stress of the test in Section 4.2.

13(b) shows the wall time corresponding to 𝑡𝑓 = 35 𝜇s of the AVI and a synchronous method for both models. As can be seen,303

the AVI takes one third time of a synchronous method.304

4.3 The Kalthoff-Winkler test305

This section studies the Kalthoff-Winkler experiment in which an edge-cracked plate is under impact velocity. Due to symmetry,306

only half of the plate is considered. The geometry and boundary conditions are shown in Figure 14. In the experiment57,58, the307

brittle failure mode with a crack propagating at about 70◦ was observed at a certain impact speed, and the relevant numerical308

results were reported by other researchers using the extended finite element method50, peridynamics59, and the gradient damage309

method14.310

The material is maraging steel 18Ni(300), whose properties are given in Table 1. A plane strain state is assumed. The length311

scale parameter 𝓁 = 3.9 × 10−4 m and two different meshes are used: Mesh 1 with size ℎ = 1.95 × 10−4 m = 𝓁∕2 and Mesh 2312

with ℎ = 9.75 × 10−5 m= 𝓁∕4 in the refined region.313
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（a） （b）

FIGURE 13 The performance indicators of the tests in Section 4.2 with the mesh of the case 𝜎∗ = 3 MPa: (a) number of updates
per element; and (b) wall time corresponding to 𝑡𝑓 = 35 𝜇s.

50 mm

100 mm
7
5
 m

m

1
0
0
 m

m

Symmetry
𝑣

FIGURE 14 Geometry and boundary conditions of the Kalthoff test, where 𝑣 = 16.5 m/s.

Figure 15 shows the final phase field patterns at 𝑡 = 87 𝜇s for different meshes and models. The crack propagates at 25.5 𝜇s314

and with an angle of about 67◦ with the horizontal line, which is in good agreement with the experimental results57 and the315

numerical results using the phase field method60,61.316

Figure 16(a) presents the evolution of the normalized crack tip velocity of the Kalthoff test. The velocity results here are317

almost two times that reported by Liu et al.54 The differences in crack tip velocity may be caused by the different post-processing318

methods, where Ref. 54 employed an alternative method that is different from ours by Eq. (36), to be discussed later. Figure319

16(b) shows the evolution of the crack energy calculated by (4), which agrees well with the numerical results in Ref. 46. In320

addition, the crack energy of the AT2 model is a little higher than the AT1 model for both meshes. Figure 16(c) and (d) show321

the evolution of the strain energy and kinetic energy, respectively, and the results are consistent with numerical results reported322

by Zhang et al.62 Figure 16(e) shows the evolution of the external work, to the best of our knowledge, there is no relevant report323

on external work of the Kalthoff test by the phase field method at present. However, our result is in good agreement with the324

result using the cohesive zone model by Park et al.63 Figure 16(f) shows the evolution of the free energy. As we can see, the325

free energy gradually increases, reaching between 715.34 J and 1403.51 J at the end of the simulation, which seems to violate326

the law of conservation of energy. This phenomenon appears to be an open question.327

Figure 17 shows the distribution of the maximum principal stress for Mesh 2. The stress concentration is clearly seen at the328

crack tip and the bottom right corner, in both AT2 and AT1 models. The result is in good agreement with those in Liu et al.54
329

Figure 18(a) shows the number of updates per element of the Kalthoff test with Mesh 1. Similar to the previous examples,330

the elements near the crack are updated more frequently by design while those far way are updated less frequently. Figure 18(b)331

shows the wall time corresponding to 𝑡𝑓 = 87 𝜇s, indicating that the AVI takes only one-third of the wall time of a synchronous332

method.333

Alternative method to calculate the crack tip velocity334

As an attempt to reconcile the discrepancy, we employ the iso-curve strategy to calculate the crack tip velocity, as also done by335

Liu et al.54 In this approach, the position of the crack tip is determined by the iso-curve with phase field 𝑑 = 0.9. Therefore,336

the crack tip velocity is recalculated by 𝑣𝑛 = ‖𝒙𝑛 − 𝒙𝑛−1‖∕(𝑡𝑛 − 𝑡𝑛−1), where 𝒙𝑛 represents the location of the crack tip at 𝑛th337
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FIGURE 15 Phase field results of the test in Section 4.3 at 𝑡 = 87 𝜇s.

(a) (b) (c)

(d) (e) (f)

FIGURE 16 Results of the test in Section 4.3 compared with Liu et al.54 Evolution of: (a) normalized crack tip velocity; (b)
crack energy; (c) strain energy; (d) kinetic energy; (e) external work; and (f) free energy. The external work (e) is obtained
by sampling the power of the reaction force, and then integrating this power with respect to time. The free energy gradually
increases, reaching between 3.74% and 7.34% of the external work in the end, which seems to violate the law of conservation
of energy. See Figure 19 for a comparison.
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（a）AT2 （b）AT1

FIGURE 17 Maximum principal stress of the test in Section 4.3 with Mesh 2 at 𝑡 = 70 𝜇s.

（a） （b）

FIGURE 18 The performance indicators of the tests in Section 4.3 with Mesh 1: (a) number of updates per element; and (b)
wall time corresponding to 𝑡𝑓 = 87 𝜇s.

sampling time 𝑡𝑛, and the result is shown in Figure 19(a). As can be seen, the crack accelerates to near 0.6𝑣𝑅 and then remains338

with this velocity during the propagation until it reaches the top boundary, which agrees well with the result reported in Ref. 54.339

With this iso-curve scheme, the four cases of Kalthoff test show a similar final crack length of approximately 𝑙𝑐𝑟𝑎𝑐𝑘 = 83 mm,340

see Figure 19(b) with the right vertical axis. Correspondingly, the crack energy can be computed as341

Γ̂ = 𝑔𝑐𝑙𝑐𝑟𝑎𝑐𝑘, (37)

with the value of 1836.79 J for a sharp crack, see Figure 19(b) with the left vertical axis. A significant difference is that Γ̂ is342

much smaller than Γ, and the ratios of Γ∕Γ̂ are 1.9 and 1.75 for the AT2 and AT1 models, respectively.343

In addition, we recalculate the free energy by using (37) instead of (4), i.e., 𝑇 (�̇�) + 𝑉 (𝒖, 𝑑) + Γ̂, and the result is shown in344

Figure 19(c). As seen, with Γ̂, the results are energetically stable and satisfy the conservation of energy.345

Discussions346

In the Kalthoff test, the crack energy calculated by (4) is higher than that by (37). This phenomenon is not unique to this work347

but also reported in Refs. 22,54,61,46,62,64,65, in which the ratio of Γ∕Γ̂ is between 1.90 and 2.45, equal to or even higher than348

our value. Meanwhile, in Ref. 23, this ratio is 1.37. In addition, this phenomenon was also reported in other dynamic phase field349

fracture by Ziaei-Rad and Shen27, where the ratio is approximately 2.350

Although the main reason why Γ is higher than Γ̂ need to be further investigated, we suggest that the way of enforcing351

irreversibility constraint is not an ideal candidate. Borden et al.22 suggested that the strain-history field (alternative way to352

enforce the irreversibility) could play an important role, but the ratio of Γ∕Γ̂ is still 1.4 despite the strain-history field being353
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（a） （b） （c）

FIGURE 19 Results of the test in Section 4.3. Evolution of: (a) normalized crack tip velocity calculated by iso-curve strategy;
(b) crack energy calculated by Eq. (37), i.e., Γ̂ (left vertical axis), and crack length (right vertical axis); and (c) free energy
𝑇 (�̇�) + 𝑉 (𝒖, 𝑑) + Γ̂(𝑑), which satisfies the conservation of energy.

removed which allows the crack to heal. In addition, Geelen et al.46 employed the augmented Lagrangian method to enforce the354

irreversibility and the resulting ratio is 2.355

Moreover, Li et al.14 stated that the numerical phase field of the Kalthoff test is wider than the analytical one, and the wider356

damage profile will lead to an amplified effective fracture toughness, which had also been reported by Bourdin et al.66 Further-357

more, Bleyer et al.67 suggested that the mesh size has an influence on the result of both quasi-static and dynamic fracture and358

that will further lead to an overestimated crack energy (see Eqs. (16) and (17) in Ref. 67 for more details).359

This issue appears to be an open question for the Kalthoff test.360

4.4 The fiber-reinforced composite test361

This section studies the cracking behavior in a fiber-reinforced composite with two asymmetric initial explicit cracks. Figure362

20(a) illustrates the geometry and the boundary conditions, where the cracks are located at the end of the parallel fibers and with363

a length of 3 mm. Plane stress state is assumed. The material parameters for the matrix are selected as 𝐸𝑚 = 35 GPa, 𝜈𝑚 = 0.42,364

𝜌𝑚 = 1450 kg/m3, 𝑔𝑐𝑚 = 5 × 102 J/m2, 𝓁𝑚 = 2 × 10−4 m while those for the fiber are 𝐸𝑓 = 208 GPa, 𝜈𝑓 = 0.42, 𝜌𝑓 = 8000365

kg/m3, 𝑔𝑐𝑓 = 1 × 104 J/m2, 𝓁𝑓 = 1 × 10−3 m. The mesh size in the refined region is ℎ = 5 × 10−5 m = 𝓁𝑚∕4.366

Figure 20(b) and (c) show the phase field results of the AT2 and AT1 models, respectively. It is observed that the cracks367

propagate from the pre-crack tips and toward each other in a curved shape. This crack pattern was also observed in Refs. 68,69.368

Figure 21(a) shows the evolution of the normalized crack tip velocity. The cracks propagate at 3 𝜇s and rapidly increase369

to the Rayleigh wave speed 𝑣𝑅, then decrease to 𝑣𝑅∕2 at the end of the simulation. Figure 21(b) shows the evolution of the370

crack energy, which increases monotonically during the simulation. Figure 21(c) shows the evolution of the strain energy, which371

increases at the beginning and then decreases after the cracks begin to propagation. Figure 21(d) shows the evolution of the372

kinetic energy. Interestingly the kinetic energy shows a plateau at the beginning of the crack propagation (about 3 𝜇s) and then373

increases. Figure 21(e) and (f) show the evolution of the external work and the free energy respectively, indicating that the free374

energy is approximately 6% of the external work at the end of the simulation.375

Figure 22(a) shows the number of updates per element. Again, by design, the elements near the cracks are updated more376

frequently. Furthermore, it is noted that the fiber elements are updated three times more frequently than the matrix elements far377

away from the cracks. Figure 22(b) shows the wall time corresponding to 𝑡𝑓 = 5.5 𝜇s for the AVI and a synchronous method,378

and the results indicate that the time the AVI takes is approximately a quarter times that of a synchronous method.379

5 CONCLUSIONS380

In this paper, we have proposed an asynchronous variational formulation for the phase field approach to dynamic brittle fracture.381

The formulation is derived from Hamilton’s principle of stationary action and to a great extent, retains the advantages of varia-382

tional integrators. A major characteristic of the formulation is that it allows elements to have independent time steps. The result383

indicates that the formulation is able to simulate dynamic fracture propagation and branching successfully. As a result of the384
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𝐸𝑚 , 𝜈𝑚 , 𝜌𝑚

(a) (b) AT2 (c) AT1

FIGURE 20 The fiber-reinforced composite test. (a) The geometry and boundary conditions, where 𝑣 = 5 m/s. The phase field
results of the (b) AT2 and (c) AT1.

(a) (b) (c)

(d) (e) (f)

FIGURE 21 Results of the fiber-reinforced composite test in Section 4.4 as the evolution of: (a) normalized total crack tip
velocity; (b) crack energy; (c) strain energy; (d) kinetic energy; (e) external work; and (f) free energy.

variational structure, the formulation performs a remarkable energy behavior during the simulation. Compared to synchronous385

method, the presented formulation is computationally more efficient for problems involving a high contrast in element sizes or386

material properties, such as bi-materials.387

Another characteristic is that the phase field irreversibility condition is enforced by the reduced-space active set method at the388

level of element patches. As a result, the AT2 and AT1 variants of the phase field approach may be implemented with similar389

costs. The present study shows that these two variants lead to similar results at roughly the same computational cost.390
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（a） （b）

FIGURE 22 The performance indicators of the tests in Section 4.4: (a) number of updates per element; and (b) wall time
corresponding to 𝑡𝑓 = 5.5 𝜇s.
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APPENDIX395

A THE CASE WITH COINCIDENCE IN THE UPDATE SCHEDULE396

The assumption of no coincident instants is not a restrictive assumption but for simplifying the derivation. Without this397

assumption, consider the case in which there are coincidences in the update instants for multiple adjacent elements sharing node398

𝑎. Let the set of these nodes be denoted 𝑎. It can be shown that the result of the simulation is equal for the pure elasticity case399

even if the update order of the elements in 𝑎 is exchanged.400

However, when considering the phase field, the results are slightly dependent on the update order due to the irreversibility of401

the phase field. An alternative and the most orthodox treatment is to rewrite (24) as402

0 =
𝜕𝑆𝑑𝑖𝑠

𝜕𝐮𝑖𝑎
= 𝜕

𝜕𝐮𝑖𝑎

(
1
2
𝑀𝑎

(
𝑡𝑖𝑎 − 𝑡𝑖−1𝑎

) ‖‖‖‖‖𝐮
𝑖
𝑎 − 𝐮𝑖−1𝑎

𝑡𝑖𝑎 − 𝑡𝑖−1𝑎

‖‖‖‖‖
2

+ 1
2
𝑀𝑎

(
𝑡𝑖+1𝑎 − 𝑡𝑖𝑎

) ‖‖‖‖‖𝐮
𝑖+1
𝑎 − 𝐮𝑖𝑎
𝑡𝑖+1𝑎 − 𝑡𝑖𝑎

‖‖‖‖‖
2

−
∑
𝑒∈𝑎

(
𝑡𝑗𝑒 − 𝑡𝑗−1𝑒

)
𝑉𝑒

(
𝐮𝑗𝑒,𝐝

𝑗
𝑒

))
,

with the last term modified compared with (24). In this treatment, the elements in 𝑎 need to be simultaneously updated. It is403

believed that such more rigorous treatment will not alter too much the numerical results.404

B PHASE FIELD RESULT WITHOUT USING ELEMENT PATCHES405

Figure B1 shows the phase field result obtained with (28), i.e., without patches, the boundary conditions and material properties406

are the same as those of Section 4.1. As seen, the crack patterns are too diffused.407
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（a）AT2 （b）AT1

FIGURE B1 Phase field result with the formulation without using patches.
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