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Abstract

In-situ bioremediation is a common remediation strategy for many groundwater contam-
inants. It was traditionally believed that (in the absence of mixing-limitations) a better
in-situ bioremediation is obtained in a more homogeneous medium where the even distri-
bution of both substrate and bacteria facilitates the access of a larger portion of bacterial
community to a higher amount of substrate. Such conclusions were driven with the typical
assumption of disregarding substrate inhibitory effects on the metabolic activity of enzymes
at high concentration levels. To investigate the influence of pore matrix heterogeneities on
substrate inhibition, we use a numerical approach to solve reactive transport processes in the
presence of pore-scale heterogeneities. To this end, a rigorous reactive pore network model
is developed and used to model reactive transport of a self-inhibiting substrate at both tran-
sient and steady state conditions through media with various, spatially correlated, pore-size
distributions. For the first time, we explore on the basis of a pore-scale model approach the
link between pore-size heterogeneities and substrate inhibition. Our results show that for a
self-inhibiting substrate (1) pore-scale heterogeneities can consistently promote degradation
rates at toxic levels, (2) the effect reverses when the concentrations fall to levels essential
for microbial growth, and (3) an engineered combination of homogeneous and heterogeneous
media can increase the overall efficiency of bioremediation.

Synopsis: Pore-size heterogeneities of subsurface environments help indigenous micro-
organisms better degrade toxic organic compounds.

Keywords: Pore-scale Heterogeneities; Contaminant Biodegradation; Substrate Self-
inhibition; Pore Network Modeling; Bioavailability
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1 Introduction1

Biodegradation of contaminants inside porous media like soils or aquifers is effective as long as2

the concentrations of biodegradable contaminant is not higher than a certain level triggering3

inhibitory effects on microbial degraders. At relatively high concentrations, organic substances4

can impose an adverse effect on degradation rates of catabolic enzymes. The mechanism is5

known as substrate self-inhibition and regarded as a limiting process in bioremediation of con-6

taminants in subsurface environments1,2. Substrate inhibition has been both experimentally7

and theoretically investigated and a vast number of contaminants at high concentration levels8

are shown to be toxic to the microorganisms metabolizing them3–6. Bioavailability effects on9

the other hand determine how much of a contaminant is accessible to bacteria. Hence, natural10

attenuation of contaminants inside porous environments such as soils and aquifers is effective11

as long as their bioavailability is guaranteed and their concentration is lower than inhibitory12

levels toxic for microorganisms. At certain conditions, the interplay between the two processes13

(substrate self-inhibition and its bioavailability) can improve the biodegradation efficiency and14

enhance the bacterial growth7. Whereas outside these conditions, it either results in extreme15

famine or causes microorganisms to develop a defensive mechanism against substrate toxicity,16

both leading to the further decay of degradation rates5,8.17

Natural porous environments such as soils and aquifers are characterized by various pore-scale18
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heterogeneities that are often considered as another rate-limiting factor for in-situ biodegrada-19

tion. The heterogeneities form as the result of overlapping sequences of sedimentary struc-20

tures possessing dissimilar transport properties such as permeability and porosity. Such hetero-21

geneities as indigenous characteristics of sedimentary basins play an important role in controlling22

the distribution of contaminants inside the porous media9–11, the mixing between contaminant23

and their reaction partners12–15, the formation of preferential flow paths16–18, the temporal24

variability of substrate supply19–21, the resilience of microbial ecosystems subjected to distur-25

bances22, and the spatial distribution of microorganisms23–25. As a consequence, optimum26

microbial degradation potential in a natural porous medium may differ from typical laboratory27

setups for studying microbial behavior26. The presence of pore-scale heterogeneities in natural28

environments often cause the formation of preferential flow paths that leads to complex dis-29

tribution patterns of both substrate and bacteria. This obstructs the even distribution of the30

substrate inside the media, increases the occurrence of stress periods on microbial population,31

and reduces the substrate accessibility to indigenous microorganisms27. The adverse effect of32

medium heterogeneity on degradation of a substrate was shown both experimentally and the-33

oretically28–30 unless a mixing effect with another reactant (e.g. an electron acceptor) plays a34

major role31–33. Although significant research efforts have been dedicated to understanding the35

mechanisms of substrate inhibition34–36 and the effects from pore-scale heterogeneities37–39 in36

singularity, the combined effects and the complex interplay between these two disadvantageous37

rate-limiting mechanisms are not yet understood in detail. Furthermore, while analytical equa-38

tions allow predicting the dampening effect of mass-transfer limitations on substrate inhibition7,39

the potential occurrence of the effects in-situ and in the presence of pore-scale heterogeneities40

has not yet been explored.41

This study considers an extended approach for the modeling of the in-situ biodegradation42

activities of microbial species that are adversely influenced by substrate inhibition at high con-43

centration levels. The concept is implemented into a reactive pore network model which allows44

simulating the heterogeneous transport and reactivity of substrate. The model considers the45

impact of pore-scale heterogeneities on the distribution and consumption of a toxic substrate46

in the porous medium and determines the biodegradation capacity of the indigenous microbial47

population as a function of medium heterogeneity.48

The purpose of this work is thus to understand the impact of pore-scale heterogeneities on49

biodegradation of a self-inhibiting substrate. To this end, the numerical reactive pore network50

model (PNBRNS) introduced in Gharasoo et al. 9 was upgraded and then used to theoret-51
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ically test the hypothesis of whether pore-scale heterogeneities improve biodegradation of a52

self-inhibiting substrate. The new, upgraded program (now called Two-dimensional Reactive53

Pore Network or RePoNet2D) is equally capable of building two-dimensional homogeneous or54

heterogeneous pore networks, accepting a wide range of pore-scale heterogeneities generated by55

a pore size distribution and a spatial correlation length, offering a reactive transport platform56

where an arbitrary combination of reactions can be simulated.57

This article is structured as follows: first we define the model equations and the underly-58

ing assumptions. Then, we describe the construction of heterogeneous pore networks and the59

simulated scenarios. Simulation results and model solution are presented and discussed at the60

end.61

2 Material and Methods62

The pore network assembly as well as the simulation of flow and transport follow the previous63

work of Gharasoo et al. 9 where the details are thoroughly explained. Here, we present only a64

brief overview of the techniques with some further details in the Supporting Information.65

2.1 Pore network assembly66

The model describes the porous medium structure as a two-dimensional network of intercon-67

nected pores in which every single pore has its own individual characteristics. Each pore is68

represented as a cylindrical micro tube (Supporting Information Fig. S1). All pores of the69

network have identical lengths, but the radius of each pore is assigned individually thus permit-70

ting the generation of heterogeneous pore networks. The connecting nodes are considered to be71

volumeless while each pore is treated as a finite volume. The network has a regular hexagonal72

or honeycomb structure since every three pores are connected at a 120°angle in respect to each73

other (Supporting Information Fig. S1). This forms a two-dimensional pore network with coor-74

dination number 3 which is in the range of 2 to 5 suggested as (effective) coordination numbers75

in the topological analyses of natural porous media40. More details on the structure of the pore76

network are provided in Gharasoo et al. 9 , section 2.2.77

2.2 Flow and transport model78

The dynamics of a contaminant inside a porous medium usually include contaminant transport79

(advection and diffusion) and reactivity (or biodegradation), and are described by the well-80

established advection-diffusion-reaction equation41:81
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∂c

∂t
= −~u · ~∇c+D∇2c−R(c) (1)

where t[T ] denotes time, c [ML−3] the contaminant bulk concentration in the system, D [L2T−1]82

the diffusion coefficient of contaminant, and ~u [LT−1] the laminar fluid velocity vector described83

by Hagen-Poiseuille equation u =
πr2∆p

8νl
where r is the pore radius, ∆p the pressure difference84

along the pore ends, ν the fluid viscosity, and l the length of pore. Fixed boundary conditions85

(or fixed pressure heads) were considered at the inlet and the outlet, or the left and the right86

medium boundaries respectively. Zero-flux boundary conditions were applied to the lower and87

upper boundaries (or at medium walls). The fluid flow and thus the solute transport are from left88

to right. For further details on the numerical computations of the flow and the transport see Gha-89

rasoo et al. 9 , section 2.3. The consumption rate of a substrate/contaminant R(c) [ML−3T−1],90

described here by a general degradation rate term, is a function of the substrate bioavailable91

concentration and the degradation capacity of the bacteria inhabiting the medium taking the92

form of one of the kinetic models described below.93

2.3 Substrate degradation models94

2.3.1 Michaelis-Menten95

Michaelis-Menten kinetics42 is the simplest form of enzymatic reaction rate law describing the96

breakdown of an organic compound due to microbial activity:97

R(c) = qmax
c

c+Km
(2)

with c [ML−3] as substrate bulk concentration, Km [ML−3] as substrate half-saturation constant,98

and qmax [ML−3T−1] as maximum volumetric degradation rate. Note that c here is equal to99

bioavailable concentration cb [ML−3] since no other rate-limiting step is present. We consider100

all other potentially rate-limiting compounds (e.g., a suitable electron acceptor) to be abundant101

at sufficiently high concentrations to avoid additional rate limitations.102

2.3.2 Bioavailability limitations103

Best 43 described the substrate degradation when a linear mass-transfer term links the bioavail-104

able portion of the substrate to its bulk concentration44,45. Contaminants and bacteria are105

usually distributed differently in the polluted soil, and the microbial uptake of a contaminant106

depends on its bioavailability. The bioavailable concentration cb [ML−3] is a fraction of the107

concentration of contaminant at bulk concentration c. The exchange rate between the bulk and108
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bioavailable phases is usually expressed by a linear driving force model and commonly referred109

to as ‘the penetration rate of substrate into the cells’ or bioavailability equation7,45:110

rex = ktr(c− cb) (3)

where ktr [T−1] is the limiting mass-transfer coefficient controlling contaminant bioavailability.111

At (quasi-) steady state conditions, the rate of contaminant exchange rex is considered equal to112

its degradation rate. The linear driving force model Eq. (3) can therefore be combined with the113

Michaelis-Menten kinetics (Eq. (2)) leading to the following equation43,114

R(c) =
ktr
2

(
c+Km + qmax/ktr

)(
1−

√
1− 4cqmax/ktr

(c+Km + qmax/ktr)2

)
(4)

where the contaminant degradation rate in the presence of small-scale bioavailability restrictions115

is expressed as a function of its bulk concentration. ktr can either be considered as constant11,46
116

or determined from an upscaled model. The pore network case studies here use the following117

equation suggested by Hesse et al. 47 to describe the intra-pore bioavailability limitation effects118

inside a cylindrical pore119

ktr =
π2

4

Dpav
r

(5)

where r is the average radius of pore, Dp is the intra-pore diffusion coefficient, and av [L−1] is120

the specific surface area of the porous matrix. It was assumed that bacteria access only the121

bioavailable fraction of substrate at the close vicinity of the biofilm, relying on the substrate122

mass transfer to their location at the pore wall (see the Supporting Information Fig. S1). In this123

model, intra-pore diffusivity was considered as the main mechanism for limiting mass transfer124

between the bulk concentration at the plume and the bioavailable concentration at the pore125

walls where the microbial biomass is located9.126

2.3.3 Non-competitive inhibition127

Substrate self-inhibition is described based on the fact that contaminants act as nutrients at128

low concentrations while they exhibit toxicity at high concentrations. There are currently many129

modeling approaches to describe the inhibitory effect of substrate on microbial/enzyme activity.130

The variation of the suggested equations for different inhibition kinetics (competitive, non-131

competitive, self-toxicity, mixed-toxicity, etc) have been already reviewed extensively in Ramsay132
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and Tipton 48 and Yoshino and Murakami 2 . Many of these equations modified and adjusted the133

classical inhibition model suggested by Haldane 1 :134

R(c) = qmax
c ki

(c+Km)(c+ ki)
(6)

with ki [ML−3] as inhibition constant. Eq. (6) was proposed to describe the non-competitive in-135

hibition of a substrate on the enzyme metabolism49,50 and has been regularly used for modeling of136

inhibitory effects in reactive transport models51. The presence of a maxima at SmaxH [ML−3] =137

√
ki Km in the Haldane equation means that the rates are lower at both concentration levels138

lower and higher than SmaxH
7. In fact, at very high contaminant concentrations the rates139

are inversely proportional to the concentrations R(c) =
ki
c

. The maximum observed degra-140

dation rate is calculated from the second derivative of the Eq. (6) as Rmax [ML−3T−1] =141

1/(1 +
√
Km/ki)

2.142

2.3.4 Inhibition and bioavailability143

To account for the combined effect of both mass-transfer limitation and self-inhibition together,144

the following system of ordinary differential equations (ODEs) must be solved either numerically145

or analytically:146


rex = ktr(c− cb) (7a)

R(c) = qmax
cb ki

(cb +Km)(cb + ki)
(7b)

147

Gharasoo et al. 7 solved the above system of equations and presented an analytical closed148

formulation for calculating substrate degradation rates under the effects of both mechanisms. It149

was shown that in presence of mass-transfer limitations, the maximum degradation rate Rmax150

of a self-inhibiting substrate was attained at higher concentration levels. This is due to the151

dampening effects that mass-transfer limitations impose on a substrate’s toxicity (i.e. toxicity152

is reduced at enzyme level because lower concentrations of substrate are available due to mass-153

transfer effects).154

2.4 Pore network case studies155

The case studies were designed to facilitate the assessment of the role of pore-scale heterogeneities156

on the total biodegradation capacity of a porous medium. In this study, two aspects were157
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used to generate the desired spatial heterogeneity: a normal distribution of pore-sizes (or a158

pore-size histogram) and a spatial correlation length9,28. Pore networks were constructed using159

normal distributions of the pore sizes described with an average pore radius and various standard160

deviations. Similar to Nowak et al. 52 , correlation length was used in an exponential covariance161

function for building the spatially correlated heterogeneous pore networks using the FFT-based162

random field generating technique by Dietrich and Newsam 53 . For further information see163

Gharasoo et al. 9 , section 3.4. Note that there is no limitations in generating different 2D164

heterogeneous scenarios at any desired size using the techniques explained above.165

In analogy to Gharasoo et al. 9 , six heterogeneously different scenarios were generated as166

the result of combining two standard deviations (45 and 70 µm) and three correlation lengths167

(1, 2.5, and 5 mm). As an example, a generated random realization from every pore-network168

scenario together with their associated histograms (of the pore-size distribution) are shown in169

Fig. 1. The generated pore network scenarios are an extension of the previous work of Gharasoo170

et al. 9 and the techniques employed here have been previously shown capable of addressing171

structural heterogeneities observed in soil environments27,54. A homogeneous pore network was172

also designed to serve as a basis for comparison. The homogeneous pore network was constructed173

with identical pores of the length of 1 mm and radius of 160µm. The heterogeneous pore networks174

were created using the same pore length but different pore radii distributions and correlation175

lengths as described above. For each heterogeneous scenario, five realizations with the same176

geostatistical properties were generated. The final results for each heterogeneous scenario are177

calculated as the averages between all the realizations from that scenario. In all scenarios a178

continuous and steady supply of a single substrate with the concentration of 1.55µM, the half-179

saturation constant Km = 0.261µM , and the inhibition constant ki = 1.5Km (for inhibitory180

mechanisms), was supplied to the system from the inlet boundary at the left side. The substrate181

degraded as a result of exposure to the biomass in the pores, and discharged from the outlet182

at the right boundary. The outlet concentrations at steady-state (Cout) and the normalized183

difference between the outlet and inlet concentrations (∆C/Cin) were considered as a measure184

for biodegradation capacity for the scenarios. Note that the inlet concentration was kept constant185

throughout the simulation.186

The pore network models ran until a constant concentration at the outlet was measured and187

the system reached steady-state. The governed equations were solved for a homogeneous pore188

network (similar to a homogenized artificial soil), and six heterogeneous pore network scenar-189

ios (similar to undisturbed soil). The degradation of contaminant under the above mentioned190
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reaction kinetics (Michaelis-Menten Eq. (2), Best Eq. (4), Haldane Eq. (6), and the cumulative191

effects of bioavailability and inhibition Eq. (7)) for every scenario (and the realizations) was sim-192

ulated (total of 124 compound profiles for all the heterogeneous scenarios plus the homogeneous193

scenario).194

Inside the pore networks, the inoculated biomass was assumed immobile and attached to195

the solid matrix forming a uniform biofilm on the pore walls (similar to the assumptions in196

Gharasoo et al. 9 , Lopez-Peña et al. 55). Note that unlike Lopez-Peña et al. 55 the biomass in197

our system was assumed fixed for the sake of simplicity and the reasons explained in the next198

paragraph. According to the experimental observations of Harms and Zehnder 56 from which199

the current model parameter values are taken (listed in the Supporting Information, Table S1),200

bacterial motilities (chemotaxis) or their detachment off the solid matrix did not occur in the201

experiments. Detachment was thus considered insignificant due to negligible shear stresses in202

the medium as the result of slow flow velocities (about 1.2 mm/s).203

Since the residence time of solutes in the pore network was much shorter than the typical204

time scale for growth, the biofilm growth or decay was assumed insignificant (similar to Jung205

and Meile 57). Given that the experimental measurements were performed after the system206

reached steady-state56, the model looks at a snapshot of experiment where the given biomass207

densities (and other reported parameter values in support information, Table S1) were measured.208

Allowing the system to balance itself (through the growth and decay) leads to dissimilar amount209

of final biomass at each scenario (or even realization) and compromises the validity of the210

comparison between the final results. Since the biomass density and the water residence time are211

initially set equal in all the scenarios (and realizations), to ensure that the observed differences212

in results are solely due to the heterogeneities and not to the changes of other parameters, it213

was crucial that biomass densities and water residence times stay fixed in time. Biomass growth214

or decay may jeopardize this equality and put the presented results under the question whether215

the observed differences were only due to the differences in pore-size heterogeneities. Moreover,216

due to the substrate inhibitory effects, it may not necessarily be the primary compound required217

for the growth.218

Due to no-growth conditions of biomass in the experiment, biomass surface density ρbac [ML−2]219

remained constant during the simulations. For the cylindrical shape of pores qmax was calculated220

as qmax = ρbac av Vmax where av [L−1] denotes the specific surface area of the porous matrix equal221

to 25× 103 m−1, ρbac the biomass surface density equal to 4.1 mg(protein) m−2, and Vmax [T−1]222

the maximum specific degradation rate equal to 3.27× 10−2 [mol(substrate) mg(protein)−1s−1],223
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measured from the experiments9,56. No further chemical species (e.g., terminal electron accep-224

tors or additional nutrients) were considered to influence the microbial degradation rates. Only225

the entering substrate limited the metabolic activity of the microorganisms in case of inhibition.226

All the pore network scenarios were equal in size and had equal length and width of 8.9 by 3.1227

cm.228

2.5 The new tool RePoNet2D229

The two-dimensional Reactive Pore Network model (RePoNet2D) uses the pore network trans-230

port code in Gharasoo et al. 9 and couples it with an internal reactive module similar to that in231

Gharasoo et al. 58 . Thus, unlike PNBRNS9 that uses BRNS (The Biogeochemical Reaction Net-232

work Simulator)59 as the internal reactive module, RePoNet2D uses a newly developed reactive233

module of its own that is more flexible and highly adjustable.234

For every scenario, we simulated the reactive transport of four substrates each following235

one of the degradation mechanisms as described above (Eq. (2), Eq. (4), Eq. (6), and Eq. (7)),236

leading to a system of ordinary differential equations(ODEs) that the internal reactive module237

of RePoNet2D numerically solves using the ODE suite of MATLAB (ode15s). To speed up the238

calculations, the Jacobian matrix of the ODE system is analytically calculated and passed to239

the ode15s. The reactive module is linked to the transport code using an operator splitting240

technique, similar to the coupling of BRNS to the MATLAB transport code in Gharasoo et al. 9 .241

In operator (or time) splitting technique which is also known as the sequential non-iterative242

approach (SNIA), we first solve the transport and then the reaction terms in a sequence for a243

single time step (similar to e.g., Sun and Duddu 60). To minimize the splitting error, relatively244

small time steps were taken following Courant-Friedrichs-Lewy criterion. Since the transport245

code solves the advection step with an explicit backward Euler technique, taking a small time246

step was already required.247

RePoNet2D is highly flexible in allowing users to define any arbitrary set of reaction mecha-248

nisms. The RePoNet2D reactive module uses parallel-computation to reduce the overall compu-249

tation time. Compared to codes such as those using modules of different origin (e.g., PNBRNS)250

RePoNet2D provides the advantage that all components are scripted in one environment (MAT-251

LAB).252

The computational wall-time for each heterogeneous realization assuming four reactive com-253

pounds, each following one of the four mechanisms of degradation, was in average about 6 hours254

on a quad-cores Intel Core i5–4590 CPU at 3.30 GHz with 16GB RAM. Simulating all the 30255
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realizations (five for each of the six heterogeneous scenarios) took approximately 180 hours.256

The results of the current setup showed relatively small deviations at the end (see Table 1).257

Therefore, although running the model for a larger number of realizations can be statistically258

beneficial, we assumed the current number of realizations to be a reasonable compromise between259

the computational demand and the statistical accuracy.260

3 Results and Discussion261

The spatial distributions of rates and concentration profiles during the transient expansion of the262

substrate plume and at the steady-state are shown in Figs. 2 and 3 for a heterogeneous sample263

scenario. Results highlight the differences in hot spots of degradation and the spatio-temporal264

effects of substrate self-inhibition. While in the absence of inhibition effects, highest degradation265

rates are found at the plume core where substrate concentrations are the highest, degradation266

of a self-inhibitory substrate is mostly limited to the plume fringes where the concentrations are267

relatively lower. This leads to the abundance of low rate regions and a larger plume size for the268

substrate with self-inhibitory effects. The average outlet concentration at steady state was used269

as a reference for the total substrate consumption, with lower outlet concentrations indicating270

a higher total in-situ degradation rate, and vice versa.271

Table 1 summarizes the outlet concentrations from all the case studies. While the pore-272

size heterogeneities had an adverse effect on degradation of a typical (non-inhibiting) substrate273

(reflected by increased outlet concentrations), the same heterogeneities slightly improved the274

degradation of a self-inhibiting substrate. The variations in both pore-size and correlation length275

impacted the variability of measured outlet concentrations, where the effect from correlation276

length was found to be stronger in comparison, indicated by proportionally larger confidence277

intervals as shown in Fig. 5.278

3.1 Bioavailability limitations in the absence of inhibition279

In the absence of substrate inhibition, pore-scale mass-transfer limitations can have only a280

negative effect on the total degradation regardless of whether structural heterogeneities are281

present or not. This is also evident from the theoretical analysis of the rate expressions showing282

that the degradation rate of a contaminant following Best kinetics is consistently lower than the283

one following Michaelis-Menten kinetics due to the extra linear mass-transfer term Eq. (3)7,44.284

For a pore of an average size (radius of 160µm), the mass-transfer limiting coefficient was285

calculated as ktr = 0.231s−1 according to Eq. (5). Solution of Eq. (4) reveals that at such a rela-286
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tively high ktr-value the bioavailability restrictions are mildly noticeable, therefore the observed287

differences between Michaelis-Menten and Best kinetics were insignificant in a homogeneous288

pore network9. A comparison between the steady-state solution of Michaelis-Menten and Best289

kinetics in a heterogeneous pore network scenario also indicates that the differences between290

final concentration profiles were relatively small (data not shown). As shown in Table 1, the291

steady outlet concentrations for Best kinetics were slightly higher meaning, as expected, the292

mass-transfer limitations reduced the total in-situ biodegradation.293

3.2 Spatial and temporal effects of substrate inhibition294

In the presence of inhibition, not only were the rates at any substrate concentration lower295

than, or at best equal to the non-inhibited rates, but also the maximum degradation rate Rmax296

was considerably lower than the maximum volumetric degradation rate qmax (see the differences297

between Eq. (6) and Eq. (2)). The toxicity effects exposed by a self-inhibiting substrate causes its298

overall degradation rate to be consistently lower than a non-inhibiting counterpart that follows299

Michaelis-Menten kinetics. This explains the results in Fig. 2 where for a typical non-inhibiting300

substrate the consumption rates within the pore network scenario were consistently higher and301

thus lower outlet concentrations were measured (Table 1).302

The high concentrations of substrate are logically observed around the inlet boundary. As303

such, the zones with highest degradation rates were found close to the inlet for a typical (non-304

inhibiting) substrate (Fig. 2: left column). The further expansion of contaminant plume into305

the medium only extended this pattern and did not change its initial form at earlier times.306

However, for a self-inhibiting substrate the highest rates were detected at the areas near the tip307

of the plume or at the fringes located far away from the inlet (Fig. 2: right column). In these308

zones, the concentration of substrate is reduced to some optimal levels due to the dispersion309

and the consumption at initial stages. By the expansion of the plume, the zones with high310

degradation rates were observed to shift away from the main flow stream towards the remote311

areas such as isolated segments of small pores where due to lower hydraulic conductivities a lower312

concentration of substrate is supplied. At steady state, high degradation rates were detected313

at the plume fringes, in the areas relatively close to the outlet, and in isolated patches of small314

pores.315
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3.3 Bioavailability limitations in the presence of inhibition316

Opposite to the observations in Section 3.1 which were predictable and theoretically straightfor-317

ward, no intuitive understanding exists between the two more complicated degradation kinetics:318

non-competitive inhibition Eq. (6) and inhibition plus bioavailability Eq. (7). Within the pore319

networks, the distribution of a substrate due to advection and diffusion develops variously dis-320

tributed gradients of concentration along the longitudinal and transverse directions. Substrate321

degradation along those pathways, especially in the presence of structural heterogeneities, makes322

it even more complicated to apriori predict the cumulative effects of pore-scale mass-transfer323

limitations, pore-scale heterogeneity and self-inhibition. Small-scale bioavailability restrictions324

can be either rate-limiting or beneficial to the degradation of a substrate as a result of the325

interplay between several factors such as contaminant inlet concentration, the initial level of326

contaminant toxicity to the biomass in pores, and the spatial distribution of the pores in the327

pore network7.328

Pore network simulation results show that inhibition in the presence of bioavailability lim-329

itations led to marginally higher degradation rates in both, homogeneous and heterogeneous330

pore networks, compared to the scenarios where only inhibition was present (Table 1). Not-331

ing that the Best kinetics in the absence of inhibitory effects consistently led to lower rates332

than Michaelis-Menten kinetics, the results presented in this study show that it is possible that333

bioavailability restrictions are able to facilitate the consumption of a self-inhibiting substrate. In334

this study, very small differences were noticed between the results of non-competitive inhibition335

and inhibition plus bioavailability kinetics. This might be due to the relatively high values of the336

mass-transfer coefficient ktr used in this study, which ultimately led to low dampening effects on337

the substrate toxicity. As shown by Eq. (5), the ktr value is inversely proportional to the mean338

pore-size value which is relatively large (160 µm) for generated pore networks in this study. It339

is speculated that in cases where the mass-transfer limitations are stronger (i.e. ktr is smaller),340

the resulting differences between degradation rates will be more pronounced.341

In a separate method of evaluation, the histogram of the degradation rates inside a hetero-342

geneous pore network for both kinetics: non-competitive inhibition Eq. (6) and inhibition plus343

bioavailability Eq. (7) is illustrated (Supporting Information, Fig. S2). It is clear that the num-344

ber of pores with higher in-situ degradation rates is slightly higher for the case of inhibition plus345

bioavailability. This additionally explains the slight differences observed between the average346

outlet concentrations (Table 1).347
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3.4 Pore-scale homogeneity vs. heterogeneity348

As the concentration of an inhibiting substrate inside a medium decreases away from the inlet,349

we observe higher degradation rates towards the outlet. In the homogeneous case, the trend is350

continuous and steady while in the heterogeneous cases, the presence of preferential flow paths351

and hotspots of degradation produce a heterogeneous pattern that is largely influenced by the352

spatial alignment of the pore-network heterogeneity (Supporting Information, Fig. S3). It also353

takes longer for a heterogeneous case to reach steady-state compared to the homogeneous case354

Fig. 4. In a heterogeneous medium, this is mainly due to irregular distribution of pores of355

different sizes that creates hotspots and preferential flow paths. In the presence of inhibition,356

the lag is even greater since the favorable zones for degradation change as the plume extends357

(see Fig. 2). Both rate profiles and concentration profiles support the findings that the presence358

of inhibition in general reduce the rates significantly, irrespective of the presence of small-scale359

bioavailability limitations or pore-scale heterogeneities.360

The heterogeneous pore networks here demonstrate the effects from structural heterogeneity361

as another limiting mechanism similar to the small-scale mass-transfer limitations47. In case of362

zero inhibition, lower degradation rates were observed in the presence of mass-transfer limitations363

or structural heterogeneities7. In the presence of inhibition effects, structural heterogeneities are364

predicted to lead to a reduced access of microorganisms to the toxic level of contaminant similarly365

to the effect caused by mass-transfer (or bioavailability) limitations. The only difference is that366

in homogeneous systems the mass-transfer limitations happen mainly at the intra-pore level (or367

across the cell membrane) while the effects from structural heterogeneities occur in addition to368

those at the inter-pore level9 (see Supporting Information Fig. S1). In the case of inhibition,369

although the relationships become more complex and less correlated, it was possible with the370

help of pore network modeling to show the stimulating effect of pore-scale heterogeneities on371

the degradation of a self-inhibiting substrate (see Table 1 and Fig. 5). Fig. 5 further shows372

that double rate-limiting effects caused by both small-scale mass-transfer limitations and pore-373

size heterogeneity can further improve the rates. The observed effects from heterogeneities,374

though small, are consistently positive (about 2% as seen in Fig. 5). To keep it in line with the375

experimental reference56 and the previous modeling study9, we used the same set of parameters376

values. Due to the specific combination of the parameter values in this study, for example a377

relatively high values of mass-transfer coefficient ktr (calculated by Eq. (5)), we did not notice378

a significant dampening effect on the substrate toxicity. In addition, we did not observe a wide379
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range of toxic concentrations in these scenarios and the changes in substrate concentration were380

within the same order of magnitude. The effect from pore-scale heterogeneities might turn381

more pronounced if a different combination of kinetic parameters (ktr, ki, qmax, and Km) are382

used, particularly at sufficiently small ktr values. It is however beyond the aim of this study383

to determine and explore further potential combinations of parameter values. It is also noted384

that the standard variation of results (Cout or ∆C/Cin) is higher both, in the presence of pore-385

scale mass-transfer limitations and at more heterogeneous pore network scenarios (generated by386

higher pore-size variance and larger correlation length).387

It has been traditionally believed that structural heterogeneities hinder the bacterial access388

to substrate and therefore reduce the overall degradation capacity of a medium. While this is389

true for a typical non-inhibiting substrate, the results for a self-inhibiting substrate was shown390

to evince the possibility of gaining a total higher degradation rate in the presence of structural391

heterogeneities (Table 1). In order to be able to find the relative impact of each parameter on392

the overall degradation efficiency, it is required to perform a global sensitivity analysis (GSA)393

on the model in a sufficiently large space of parameter values covered by a uniform sampling394

technique such as Latin-hyper cube or Sobol sequence46,61,62. To this end, the model requires395

to run at least for 1000 different combinations of the parameter values for every heterogeneous396

scenario. The present study only aims to show the general possibility of the concept, thus a full397

analysis of the parameters is beyond the scope of this study.398

3.5 Practical environmental implications399

The current study bridges the gap between geo-related limitations (small-scale mass-transfer400

limitations and pore-scale heterogeneities) and biological limitations (substrate self-inhibition)401

and explores their interactions when both limitations are present. The numerical simulations402

here thus aimed to unravel the extent of influence that typical pore-size heterogeneities have on403

natural attenuation of self-inhibiting contaminants, and to compare the results with previous404

studies where substrate inhibition was neglected. Structural heterogeneities, similar to small-405

scale bioavailability limitations, were always assumed to reduce the in-situ rate of substrate406

biodegradation. In this context, the arguments were concentrated on the role of structural407

heterogeneities as a limiting and negatively influencing factor that further reduce the microor-408

ganisms access to a substrate. The presence of substrate inhibition has a counter-intuitive effect409

since higher concentrations of substrate impose a negative impact on the enzymes metabolic410

activity. The results from this study revealed that in the presence of substrate inhibition, higher411
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biodegradation rates can be achieved in a more heterogeneous medium. Moreover, the pres-412

ence of small-scale mass-transfer limitations additionally improved the degradation rates of a413

self-inhibiting substrate in such scenarios.414

The current findings not only link the descriptions of pore-scale heterogeneities to substrate415

inhibition, but also have biotechnological and bioengineering applications in real life, leading416

to a new view on the design of biofilters and bioremediation sites. First, the medium hetero-417

geneities can be utilized in order to attain higher degradation rates at toxic levels of contam-418

inant concentrations. At high concentrations, the optimized use of mass-transfer limitations419

can therefore reduce the initial toxicity of contaminants to microorganisms, increase the bio-420

consumption rates and provide a lower, sustainable level of contaminant concentrations for the421

next stages of bioremediation. When the contaminant concentrations decrease to a lower level,422

the subsequent shifting to a less heterogeneous medium would further elevate the contaminant423

bioremediation. In this respect, designing a biofilter for a self-inhibiting contaminant requires424

a sequential decrease of heterogeneity from inlet towards outlet given the high concentrations425

at inlet are initially hazardous to bacteria. Secondly, while the usual solution of dealing with426

toxic concentrations of contaminant includes the dilution of the mixture, which in turn results427

in a pollution of even more water resources, the practical use of the presented findings can lead428

to the design of technologically sophisticated systems in which an advanced use of pore-scale429

heterogeneities ensures higher biodegradation efficiency. Thirdly, since highest degradation rates430

were observed at the tip of a self-inhibiting substrate plume Fig. 2, a pulse injection strategy of431

the toxic substrate into the media would result in a better degradation efficiency in comparison432

to a continuous injection.433

Compound-specific isotope analysis (CSIA) has been intensively used for assessing contami-434

nant fate and transport in ecosystems. Small-scale bioavailability limitations have been shown435

to be responsible for the differences observed between the measured and the expected (or actual)436

isotopic signatures63–65. Extension of this modeling approach by including substrate isotopic437

fractionation to the model might provide a theoretical clue about the impact that soil het-438

erogeneities or substrate inhibition have on the observed isotopic signatures in the natural or439

man-made environments.440
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Tables587

Michaelis-
Menten Eq. (2)

Mass-transfer
Best Eq. (4)

Self-inhibition
Haldane Eq. (6)

Bioavailability +
Self-inhibition Eq. (7)

Homogeneous 0.0594 0.1004 1.1007 1.0943

Heterogeneous
stdv = 45µm

lx=1mm
0.0713± 0.0007 0.1194± 0.0005 1.0985± 0.0001 1.0904± 0.0001

Heterogeneous
stdv = 45µm

lx=2.5mm
0.0899± 0.0072 0.1368± 0.0068 1.0968± 0.0006 1.0887± 0.0006

Heterogeneous
stdv = 45µm

lx=5mm
0.1085± 0.0134 0.1556± 0.01201 1.0946± 0.0009 1.0865± 0.0009

Heterogeneous
stdv = 70µm

lx=1mm
0.0923± 0.0056 0.1516± 0.0051 1.0968± 0.0003 1.0854± 0.0006

Heterogeneous
stdv = 70µm

lx=2.5mm
0.1272± 0.0252 0.1843± 0.0212 1.0925± 0.0037 1.0809± 0.0050

Heterogeneous
stdv = 70µm

lx=5mm
0.1694± 0.0581 0.2241± 0.0523 1.0866± 0.0093 1.0744± 0.0129

Table 1: Average outlet concentrations (µM) from pore network simulations for each scenario
at steady state, and for different kinetics of substrate degradation. The standard errors are
calculated from the five corresponding realizations for each scenario. Note that the inlet con-
centration was fixed at 1.55 µM in all the scenarios. Normalized results in respect to the inlet
concentration and the homogeneous case are summarized, illustrated, and compared in Fig. 5.
stdv = standard deviation, lx = correlation length.
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Figures588

Figure 1: Pore size (radius) distributions in heterogeneous pore networks. A random realiza-
tion of each scenario (except the homogeneous one) is shown. Pore-scale heterogeneities were
generated with a mean pore-size of 160µm and a standard deviation of 45µm (Top-Left panel)
and 70µm (Top-Right panel). In both panels, the correlation length decrease from top to bot-
tom (5, 2.5 and 1 mm, respectively). The pore size histograms associated with the two normal
distributions of the radii are shown at bottom. Dashed lines are the probability (or Gaussian)
density functions associated with the two histograms.
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Figure 2: Spatial and temporal distribution of rates in a heterogeneous medium. The expansion
of the contaminant plume inside one of the heterogeneous scenarios (pore-size stdv of 70µm and
the correlation length of 5mm shown in Fig. 1 top-right) at different times in the absence (Left
panel) and the presence of self-inhibition (Right panel). The histogram of distribution of the
rates at steady-state is shown for both cases (Bottom).
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Figure 3: Spatial and temporal distribution of concentrations in a heterogeneous medium. The
expansion of the contaminant plume inside the same heterogeneous scenario as in Fig. 2 is shown
at different times in the absence (Left panel) and the presence of self-inhibition (Right panel).
The histogram of pore concentrations at steady-state is shown for both cases (Bottom).
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Figure 4: The transient and steady-state outlet concentrations and dimensionless medium degra-
dation capacity (∆C = Cout−Cin

Cin
) compared between the homogeneous pore network scenario

(dashed lines) and a heterogeneous pore network scenario (solid lines) with pore size stdv = 70µm
and correlation length of 5mm (a realization from this scenario is shown in Fig. 1: Top-Right).
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Figure 5: Comparison between overall steady-state degradation in pore networks with various
pore-size heterogeneities and in reference to the homogeneous case scenario (at level zero). Left:
The results when only non-competitive inhibition was considered Eq. (6). Right: When both
inhibition and small-scale bioavailability limitations are present Eq. (7). The numeric values for
this chart are listed in Table 1. The error bars show the standard deviations calculated for each
scenario from their respective five realizations. The six different heterogeneous scenarios were
made by combining three spatial correlation lengths (lx) and two pore-size standard deviations
(σ).
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