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Highlights: 

⚫ A preference decision method (PDM) is developed to assist in making trade-offs. 

⚫ The PDM provides solid quantitative support for subjective preferences. 

⚫ The PDM draws on economic theories and has physical and mathematical 

connotations. 

⚫ The PDM is based on the Pareto set itself and can be extended into other areas. 

 

 

 



 

Abstract: The key to formulating a multi-objective reservoir operation scheme is 

coordinating the high/low priorities and achieving balance among various targets 

accordingly in the decision-making process. However, the traditional decision-making 

methods are either completely subjective or neglect the decision-maker's preferences, 

making it essential to optimize these methods to address such unsatisfactory aspects. 

Therefore, through drawing on some universally acknowledged economic theories and 

studying the geometric relationships among the Pareto solutions to such multi-objective 

decision-making problems, the concepts of "replacement rate", "profit-loss sensitivity 

ratio", and "preference equilibrium degree" are introduced, deduced, and elaborated on 

in this paper. On the basis of them, the preference decision method (PDM), entrusted 

with strict mathematical and physical connotations, is constructed and derived in detail, 

especially for addressing the bi-objective and tri-objective scenarios. The PDM can 

quantify the complex internal feedback relationship among various targets, providing 

objective support for decision-makers in the subjective trade-offs of the interests of 

multiple subjects and achieving the unity of subjective and objective. Furthermore, the 

proposed method is applied to the Wujiang cascade reservoirs in China, through which 

the benefits of power generation, water supply and ecological protection are enabled to 

be considered simultaneously. The application shows that the PDM can effectively 

shrink the Pareto set, which greatly reduces the difficulty of decision-making, and the 

obtained results prove feasible and satisfactory. In addition, the PDM is based entirely 

on the Pareto set itself, making it simple to utilize, and can be extended into solving 

other multi-objective decision-making problems. 
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1 Introduction 

A reservoir can change the natural runoff process through water storage and 

discharge to alleviate the uneven temporal distribution of water resources (Wang et al., 

2016). With the growing population and awareness of environmental issues, the 

functional requirements for reservoirs have been continuously expanding, not only 

concerning the initial objective of power generation but also to those of water supply, 

ecological protection, flood control, shipping, and others (Bai et al., 2015; Yang et al., 

2016; Liu et al., 2017; Cruz Courtois et al., 2021; C. Wu et al., 2022). However, 

irreconcilable conflicts among these goals do exist, leading to one goal often being 

achieved at the expense of others (Wang et al., 2020). Therefore, it is rather tricky and 

of concern to find a comprehensive, satisfactory scheme to achieve the best benefits of 

all objectives in the actual decision-making process of reservoir operation. 

The key to formulating a feasible reservoir operation scheme is to cope with the 

relationships among various competitive or coordinated targets that are difficult to 

quantify, sort out the priorities and achieve balance among them, which essentially turns 

into a multi-objective decision-making problem (MODP) (Labadie, 2004; Ngo et al., 

2007). Generally, for addressing MODPs, there are three available solving techniques: 

priori, progressive and posteriori (Coello Coello et al., 2002). The priori and 

progressive techniques can transform a multi-objective problem (MOP) into a single-

objective one. Yet, with either of the two methods applied, abundant information is 

omitted, which theoretically could have been taken into consideration to some extent, 

and the decision-makers can hardly compare their final decisions with the other 

schemes to obtain a comparatively reliable support. While the posteriori technique has 

gained an edge over them in that through this technique, a more comprehensive 

decision-making scheme set can be obtained with relatively less interference by 

subjective factors and higher computational efficiency. Thus, it has been widely used 

in the current multi-objective operation of reservoir groups (Yang et al., 2020). 

The posteriori techniques include two processes, multi-objective optimization 

(MOO) and multi-criteria decision-making (MCD) (Ridha et al., 2021). With the 



 

development of multi-objective evolutionary algorithms, the "Pareto frontier" emerges, 

representing a set of non-dominated solutions regarding conflicts and incomparability 

among objectives (Cohon, 1978), and is considered the carrier and direct embodiment 

of multi-dimensional targets' interactive feedback relations. How to obtain the Pareto 

approximate of the optimization problem is something that the MOO process has been 

working on. In comparison, the MCD process requires selecting and ranking a group of 

available choices leveraging the obtained information (Garg and Kumar, 2018). During 

the process, a final choice will be made after a thorough review of the several indices 

of different implementable operation schemes, manifesting various benefit 

combinations of the objectives mentioned beforehand. 

The Pareto sets carrying immense information gradually become the central 

processing target of MCD, with the posteriori technique introduced and utilized. 

According to real-time information, decision preferences and some other 

information,.some specific evaluation methods or screening tools are to be used to sort 

and optimize the Pareto set and select one solution (Malekmohammadi et al., 2011). 

Such a solution represents a satisfactory scheme that meets the actual needs. One 

evaluation method commonly applied to such kinds of problems is the "simple additive 

weighting method" (maximum-minimum weighting method) (Saaty, 2003). Though 

intuitive, the method can be somewhat subjective when assigning weights to different 

objectives. In fact, it isn't easy to establish a generally satisfactory weighting method 

because the benefits of different objectives can vary greatly in importance in different 

situations. With the deepening of research, new evaluation methods and theories such 

as Analytic Hierarchy Process (AHP) (Li et al., 2020), Grey System (GS) (Li et al., 

2015; Luo and Wang, 2012), Vague Set (VS) (Alhazaymeh and Hassan, 2015; Şahin 

and Liu, 2017), Set pair Analysis (SPA) (Garg and Kumar, 2018) and Fuzzy Decision 

Method (FDM) (Baghapour et al., 2020) have provided new ideas for addressing MCD. 

Unfortunately, these decision-making methods are subjective or have no precise 

physical meaning. They fail to answer the critical question of how an increase or 

decrease in one benefit will lead to changes in other benefits, leaving the decision-

makers in a "chaotic" state. In addition, formulating a qualified reservoir operation 



 

scheme requires reasonably considering the decision makers' subjective preferences 

and providing them with enough objective information to assist them in clearly 

understanding the consequences and implications of their choice and preference. It is a 

great challenge to quantify the trade-offs among objectives of the cascade reservoir 

system (Smith et al., 2019), which is essential and critical for decision-makers and 

stakeholders to make more rational decisions on operation schemes. 

Concerning dealing with the relationships of different objectives and making 

trade-offs, visual analysis is one of the most basic tools that vividly visualize the trade-

offs among objectives in graphical form (Reed and Kollat, 2013). It can help identify 

key decision variables and guides the balanced regulation of multi-objective benefits 

(Kim et al., 2006). The visual analysis has been effectively applied in dealing with 

trade-off problems such as water allocation (Fu et al., 2013), reservoir operation 

(Hurford et al., 2014), and sewage treatment (Meng et al., 2016). Nevertheless, visual 

analysis usually fails to fully reveal the complex relationships among objectives or to 

assess their competitiveness objectively, which means that further research is needed to 

quantify the interactive feedback among objectives. 

Some scholars have focused on the geometric properties of the distribution of 

Pareto solutions in the objective space. Some scholars have made some explorations on 

enhancing visual analysis. Tang et al. (2019) defined the Conflict Evaluation Index by 

projecting the Pareto frontier and measuring the distribution range of the projection to 

evaluate the intensity of competition quantitatively. Wu et al. (2020) derived the 

substitutive relationship between power generation and ecological protection by fitting 

the mathematical expression of the frontier. Wang et al. (2022) proposed two indicators, 

"Competitiveness Index" and "Competition Efficiency Index", to reconstruct the Pareto 

set between the two objectives to reduce the decision difficulty. Regarding the choice 

of specific solutions, the Technique for Order Preference by Similarity to an Ideal 

Solution (TOPSIS) (Tzeng and Huang, 2011) method is widely used. Further, based on 

the diminishing marginal substitution rate law, researchers believe that the "knee point" 

of the Pareto frontier has unique advantages. Li et al. (2021) find the tangent point to 

the Pareto front as the best compromise solution by constructing a linear spline utility 



 

function of the Pareto front. X. Wu et al. (2022) defined the ratio of the slope of the line 

between the scattered points as a "Multi-objective Trade-off Index" to quantify the 

relationships among different objectives. However, these studies have done a lot of 

mathematical derivation, which is a meaningful attempt. Still, there is no strict physical 

connotation and cannot explain the practical significance of each step of the 

mathematical operation. In addition, through these methods, decision-makers can only 

be given a mathematically "optimal" choice without any opportunity to weigh trade-

offs subjectively. More specifically, the research on quantitative trade-offs is still 

relatively preliminary, mostly limited to the analysis of two-dimensional relations, and 

there is a lack of effective analytical means for high-dimensional MCD. 

In summary, the existing technology for the MCD in reservoir operation is still 

relatively rough. Usually, these decision methods are directly introduced into 

application situations and rarely combined with the interactive feedback relationships 

among the multiple objectives of the reservoir itself. As a result, it can be wholly 

subjective, or the decision-maker's preferences can not be considered.  

However, these explorations are compelling and inspiring. By referring to the 

concepts of "price-performance ratio", "utility", and "Gini coefficient" in economics, 

this paper deduces the trade-offs among non-inferior schemes themselves in detail. It 

puts forward a novel practical ranking framework for MCD based on Pareto sets, 

namely the "preference degree decision-making method" (PDM). Compared to 

subjective methods represented by the AHP, the PDM is equipped with strict 

mathematical and physical connotations. Moreover, compared to objective methods 

based on "knee points", the PDM is capable of providing reliable support for decision-

makers to make decisions according to their preferences and comprehensively realizing 

the integration of subjective and objective aspects. 

The rest of this paper is organized as follows. Section 2 shows the detailed 

derivation process of the proposed PDM for the basic bi-objective situation and the 

extended tri-objective case regarding MCD. Section 3 takes the Wujiang River Basin 

in southwest China as a study case and establishes a cascade operation model for 

decision-making over three objectives: power generation, ecological protection, and 



 

water supply. Section 4 applies the PDM to decision-making on optimal reservoir 

operation and discusses its advantages over existing methods. Section 5 concludes the 

paper. 

2 Methodology 

The trade-offs of multiple objectives in MCD are similar to some economic 

problems in the underlying logic. Based on this understanding, the PDM is proposed in 

this paper, and its analytical steps are summarized and shown in the following Figure 

1. The corresponding mathematical derivation is carried out as below. 

 

Figure 1 Methodology of preference degree decision-making method (PDM)  

2.1 PDM for Bi-objective Optimization Problems 

Assuming that ( )1,2, ,nx n N=  is one of the non-inferior solutions of a MOP 

with a population size of N, the Pareto solution set of the problem is 

 1 2, , , , ,n NX x x x x= . The solutions to all actual problems, whether their original 

objective form is min-max or min-min (max-max), can eventually be transformed into a 

min-min (max-max) form by adding a positive or negative sign to the objective function. 

Based on this, this paper's subsequent derivation of the quantification process for the 

Pareto frontier is carried out in the objective space of the min-min form. 

In real life, when people buy items, they often consider how much more services 

can be obtained by spending an additional amount of money to measure the 

affordability of items which is the "price-performance ratio" (Schindele et al., 2020). 

Comparably, in terms of a bi-objective optimization problem, any non-inferior solution, 

xn, corresponds to an objective function value, ( )1 2,n nf f  , of two dimensions. To 

quantify the extent to which a change in the value of one objective function causes a 

change in another objective, with reference to the "price-performance ratio", a novel 

concept, "replacement rate", was put forward in this paper denoted as r. And the 

following definitions apply. 



 

Definition 1: replacement rate (RR). Replacement rate, r1 (r2), is the absolute 

average tangent value of the intersection angles, 1 ( 2 ), between the vectors (formed 

by any point on the Pareto front and both its two adjacent points separately) and their 

corresponding f1-axis (f2-axis) components. In particular, for either of the two endpoints 

of the Pareto front, the vector is formed by the point itself and the nearest adjacent point, 

and r1 (r2) equals the absolute tangent value of the intersection angle between the vector 

and its corresponding f1-axis (f2-axis) component. 

First, all non-inferior solutions are numbered with i (i = 1, 2,..., N) according to 

the order of values of the objective function, f1, sorted from small to large. All of the 

functions corresponding to the i-th solution are numbered with i as well. And then the 

RR of the two objective functions corresponding to each solution, numbered with i, on 

the Pareto frontier is: 
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where, i is the number assigned to the non-inferior solutions based on the ascending 

order of values of the objective function f1; N is the total number of non-inferior 

solutions; 
1

ir  (
2

ir ) is the RR of f2 relative to f1 (f1 relative to f2) at the i-th non-inferior 

solution, which, hereinafter, is described as the RR of f1 (f2); 
1

i (
2

i ) is the intersection 

angle between the vectors (formed by the i-th non-inferior solution point and both 

adjacent points separately) and the f1-axis (f2-axis) components; 
1

if  , 
2

if   are 



 

respectively the values of the two objective functions corresponding to the i-th non-

inferior solution. 

Taking the Pareto frontier of the bi-objective optimization benchmark test problem 

ZDT2 as an example, the geometric expression of the RR concept is shown in Figure 2 

below. 

 

Figure 2 Geometric expression of replacement rate (RR) in bi-objective optimization problems 

Actually, even if the absolute change of one objective function remains the same 

when the other objective function values change by one unit, the relative impact 

considerably varies depending on the place of the objective function values where such 

change occurs. That's why decision-makers often consider the relative influence degree 

rather than the absolute value change in engineering practice, which is similar to the 

law of diminishing marginal utility (Brewer and Venaik, 2010) in economics, 

manifesting that when consumers consume a certain commodity incrementally, the total 

utility may still increase, whereas the unit utility of the goods is gradually decreasing. 

Therefore, to meet the needs of examining the relative influence degree in multi-



 

objective decision-making, the concept "profit-loss sensitivity ratio" was proposed and 

defined below, denoted as  , with the concept of "unit utility" in economics used for 

reference. 

Definition 2: profit-loss sensitivity ratio (PLSR). Profit-loss sensitivity ratio is 

the ratio of the RR of one axis component (f1 or f2) to the corresponding objective 

function value for a non-inferior solution on the Pareto frontier. The formula is as 

follows. 
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where, 
1

i   and 
2

i   are, respectively, the PLSR of f1 and f2 at the i-th non-inferior 

solution, which represents the sensitivity of the RR to the change of the objective 

function value. 

Considering the different units and orders of magnitude of each objective in the 

actual MOPs, the PLSR is made dimensionless through data normalization as follows. 
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where, 
1

i  and 
2

i  are, respectively, the normalized PLSR (N-PLSR) of f1 and f2 at the 

i-th non-inferior solution. 

At this point, with the concepts of "price-performance ratio" and "unit utility" in 

economics utilized for reference, the degree of gains or losses caused by each non-

inferior solution of MOPs can be quantitatively compared through the RR and PLSR. 

However, there are too many individuals in the Pareto set, making it unrealistic to 

compare all of them in actual decision-making. Therefore, optimizing the decision-

making process and improving the simplicity of trade-offs is necessary. 



 

The concept of non-dominated sorting is used for reference to simplify the scope 

of decision-making. The dominance relationship of either set of N-PLSRs, {ɛ1} and 

{ε2}, is compared, a non-inferior solution subset is acquired by secondary screening, 

and finally, the solution individuals, most sensitive to profit and loss, are obtained and 

included in the decision support set: 

  *

1 1 2 2| ,  >  &  >u v v u v uX x X x X    =   ó  (7) 

where, X *is the decision support set, that is, the subset of non-inferior solutions after 

screening; X is the original non-inferior solution set; xu and xv represent different non-

inferior solution individuals with different numbers. 

According to the physical meaning of the PLSR, for an individual solution, the 

obtained profit and loss percentage will change faster with a more considerable relative 

weight of PLSR for one target. Thus the decision-makers are prone to select and 

optimize this target to achieve greater benefits. Based on such understanding, on the 

basis of the N-PLSR, a concept, "preference degree", is proposed in this paper, denoted 

as  , the value range of which is (0, 1). 

Definition 3: preference degree (PD). Preference degree is the relative weight of 

the N-PLSR for the two axis components of each solution in the decision support set. 

The calculation formula is as follows. 
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where, M is the scale of decision support set X *; m is the number assigned to the element 

in the decision support set based on the order of values of the objective function, f1, 

arranged in ascending order; 
1

m  and 
2

m  are the PDs of m-th non-inferior solution 

towards the objective function f1 and f2, respectively. There is 
1 2 1m m + = . 

The PD ( )1 2,m m   essentially reflects the extent to which the decision-makers 

prefer to optimize one specific objective at each individual solution on the Pareto 



 

frontier. Thus it can be used as the preference weight of different optimization 

objectives. 

Notwithstanding, in actual decision-making, comparing different combinations of 

preference degrees one by one is rather time-consuming and labour-intensive, leading 

to an index needed to unify the preference degrees towards different goals. Based on 

the Lorenz curve, the Gini coefficient (Ceriani and Verme, 2012) is often used to 

express the degree of equality of income distribution in economics. To be more specific, 

assuming that the enclosed area between the actual income distribution curve and the 

absolute equality curve is A, and the area at the lower right of the actual income 

distribution curve is B, the quotient of A divided by (A + B) is defined as "Gini 

coefficient". Enlightened by it, the equilibrium degree of objective preference can be 

measured by calculating the proportion of the envelope area to unify the preference 

degrees towards different objectives. Therefore, referring to the concept of "Gini 

coefficient" in economics, the concept of "preference equilibrium degree" was proposed 

in this paper, denoted as E, with its value range [0, 1]. 

Definition 4: preference area (PA). The preference area is the rectangular area 

formed by a PD's two-axis components (as two lateral edges) at a non-inferior solution. 

In particular, if the two axis components of the preference degree are equal, the area 

turns out to be the largest, called the balanced preference area (BPA). The value range 

of PA is [0, 0.25]. And the geometric expression of the PA is shown in Figure 3. 

 

Figure 3 Geometric expression of Lorenz curve and preference area (PA) 

Definition 5: preference equilibrium degree (PED). The preference equilibrium 



 

degree is the quotient of actual PA divided by BPA, calculated as follows: 
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Where Em represents the PED at m-th non-inferior solution, with its value range [0, 1], 

the higher the value, the more the bias towards the two objectives converges. 

The PED at each non-inferior solution, combined with the specific PD, can be used 

for reference to provide a feasible and effective solution for decision-making. 

The economic concepts involved in the proposed method (PDM) and their 

mapping are shown in Table 1 below. 

Table 1 Economics concepts reference in PDM and their mapping relationships 

Economics concepts Mapping connotation Mapping concepts 

Price-performance ratio Influence degree Replacement rate (RR) 

Unit utility Relative influence degree Profit-loss sensitivity ratio (PLSR) 

Gini coefficient Equilibrium degree Preference equilibrium degree (PED) 

2.2 PDM for Tri-objective Optimization Problems 

Based on the research on the bi-objective optimization problems, taking the min-

min-min problem as an example, the PDM was further developed and expanded in this 

paper to address the tri-objective optimization decision-making problems. 

Following the idea of coping with two-objective optimization problems, the 

individuals are numbered in the non-inferior solution set X of the tri-objective 

optimization problems. Whereas, compared with the bi-objective optimization 

problems, the spatial distribution of the Pareto frontier of the tri-objective optimization 

problems is way more complex. 

As for the bi-objective problems, a specific value of the objective function f1 

corresponds to a unique value of f2, meaning that there will be a unique solution 

individual. However, in the tri-objective problems, a specific value of the objective 

function f1 may correspond to multiple solution individuals, for which the numbering 

method needs to be improved. The new numbering system is implemented according 

to the order of distance values, Ln, arranged in ascending order between the non-inferior 



 

solution individuals ( )1 2 3, ,n n n

nx f f f  and the origin of spatial coordinates ( )0,0,0O . 

 ( ) ( ) ( )
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n n n
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where, Ln is the spatial Euclidean distance between the non-inferior solution individual 

and the origin. 

The RR is also used for tri-objective optimization problems to quantitatively 

investigate the change degree of the other two objectives caused by the value change of 

one objective function. In calculating the RR, it is a precondition to decern one or two 

points adjacent to a specific point on the Pareto front based on the new numbering 

system. However, compared with the bi-objective problems, where the adjacent points 

can be found simply by discerning the number assigned to the solution individuals, the 

process is more complex for the tri-objective optimization problems. First, the spatial 

Euclidean distance between the point xi and the other points on the Pareto front is 

calculated with: 
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where, Lii' is the Euclidean distance between two solution individuals i and i', o is the 

number of objective functions, o = 1,2,3. 

The two points with the shortest spatial Euclidean distance from xi are selected, 

denoted as the nearest point xj and the second-nearest point xk. Then, it is judged 

whether the sequent connection of xj, xi and xk is strictly 

monotonically increasing/decreasing or not, i.e. whether it meets the following 

requirements: 
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If satisfied, xi is called an internal point, otherwise, an external point. In particular, 

when an external point xi and its nearest point xj meet the requirement of 

( ) ( ) ( )1 1 2 2 3 3

i j i j i jf f f f f f= = =  , the external point xi actually becomes a two-

dimensional (2D) point. Assuming that X1 is the set composed of all internal points, X2 



 

of all external points and X3 of all 2D points, it is evident that the relationship between 

the three sets is as follows: 
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Referring to the definition of the RR in the bi-objective optimization problems, 

the calculation rule of the tri-objective RR is formulated as follows. As for an internal 

point, it is the average tangent value of the intersection angles between the vectors 

(composed of the specific point and its nearest point/second-nearest point separately) 

and the corresponding axis component, respectively. For an external point, it is the 

tangent value of the intersection angle formed by the vector (composed of the point and 

its nearest point) and the corresponding axis component. In particular, for 2D points, 

the RR of the objective dimensions with equal values is 0. 
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where, i is the number of a non-inferior solution; 
i

or  is the RR of the o-th objective 

relative to the other two objectives at the i-th non-inferior solution; 
i

o  is the angle 

between the vector (formed by the i-th non-inferior solution and its nearest 

point/second-nearest point separately) and its o-th axis components; 
i

of  is the value 

of the o-th objective function at the i-th non-inferior solution. 

Taking the Pareto frontier of the tri-objective optimization benchmark test problem 

DTLZ2 as an example, the geometric expression of the concept of tri-objective RR is 

shown in Figure 4. 



 

 

Figure 4 Geometric expression of RR in tri-objective optimization problems 

Furthermore, the PLSR for the tri-objective optimization problems are calculated 

with: 

 ( ) ( )  0         1,2,3
i

i io
o o ii

o

r
f x X o

f
 =   =  (17) 

 ( )

1

     1,2,3
i

i o
o N

i

o

i

o





=

= =


 (18) 

where, 
i

o  is the PLSR of the o-th objective function at the i-th non-inferior solution, 

and 
i

o  is the N-PLSR. 

According to the non-dominated sorting principle, the decision support set via 

secondary screening is: 

 ( ) * | ,  >  1,2,3u v v u

o oX x X x X o =    =ó  (19) 



 

And the PD of each solution individual in the decision support set is: 
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Where, M is the scale of decision support set X *; m is the number assigned to an element 

in the decision support set based on the order of values arranged from small to large of 

its spatial Euclidean distance from the origin; 
m

o  is the PD of the m-th non-inferior 

solution towards the o-th objective. And there is 
3

1
1m

oo


=
= . 

In the bi-objective optimization decision-making problems, referring to the 

concept and calculation method of the Gini coefficient, the ideas of PA and PED are 

proposed and utilized in this paper to unify the different PDs of the two objectives. 

While to unify the PDs for the tri-objective optimization problems, it is necessary to 

expand the planar idea of PA to a spatial one, i.e. preference volume. 

Definition 6: preference volume (PV). Preference volume is the cuboid volume 

formed by a PD's three-axis components (as three adjacent edges) at a non-inferior 

solution. In particular, if the three-axis components of the preference degree are equal, 

the volume turns out to be the largest, called the balanced preference volume (BPV). 

The value range of PV is [0, 1/27]. And the geometric expression of the PV is shown in 

Figure 5. 

 

Figure 5 Geometric expression of preference volume (PV) 



 

Furthermore, as for the tri-objective optimization problems, the PED is the 

quotient of the actual PV and the BPV, the formula of which is as follows. 
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where, Em is the PED of the m-th non-inferior solution, also its value range is [0, 1], 

and the higher the value, the more the bias towards the three objectives converges. 

The PDM proposed in this paper, respectively for the bi-objective and tri-objective 

optimization problems, are summarized and compared, as shown in Table 2 below: 

Table 2 Comparison of the PDM for bi-objective and tri-objective optimization problems 

Critical nodes Bi-objective Tri-objective Core idea 

Non-inferior solution 

numbering 

Ascending order of 

values of the 

objective function f1 

Ascending order of 

the distance between 

individuals and the 

spatial origin 

Sort to facilitate 

positioning 

Replacement rate 

(RR) 

The average tangent value of the intersection 

angles between the vectors and the 

corresponding axis 

Absolute degree of 

change 

Point category 
Endpoint 

Non-endpoint 

Internal point 

External point 

(2D point) 

Special cases 

separated and 

discussed according 

to geometric 

characteristics 

Profit-loss sensitivity 

ratio 

(PLSR) 

RR value of one axis

Corresponding objective value
 

The relative degree of 

change 

Nondimensionalization Normalization 

Enhance 

comparability of 

PLSR 

Non-inferior solution 

subset 
Non-dominating sorting of N-PLSR 

Narrow decision-

making scope 

Preference degree 

(PD) 

Specific objective s N-PLSR

Sum of all objectives  N-PLSR




 

Preference 

quantization 

Preference equilibrium 

degree (PED) 

Preference area 

(PA) 

Preference volume 

(PV) 
Equilibrium degree 



 

3 Case study 

To demonstrate the effectiveness of the proposed PDM, the study applies the 

method to the operational decision-making of the cascade reservoirs on the Wujiang 

River to examine trade-offs among power generation, water supply and ecological 

protection. 

3.1 The study area 

The Wujiang River basin is located at 104°18' ~ 109°22'E and 26°07' ~ 30°22' N, 

with a total area of 87920 km2. The river, with its mainstream length of 1,037 km, is 

the largest tributary on the south bank of the upper Yangtze River and a representative 

river in southwest China. The Wujiang River basin has a natural drop of 2124 m and a 

channel gradient of 0.205%, rich in hydropower resources. Since the 1970s, China has 

carried out large-scale hydropower development in the Wujiang River basin and 

planned a 12-level development scheme in the mainstream. Except for the Baima 

navigation and hydropower project at the most downstream, all the planned hydraulic 

engineering projects have been completed. The geographical location and the water 

system distribution of the Wujiang River Basin are shown in Figure 6(a).  

Out of the 12 reservoirs on the mainstream of the Wujiang River, five have the 

above-seasonal regulation capacity, and for the rest, the capacity is daily. For the runoff 

regulation, the reservoirs with above-seasonal capacity are comparatively worthy of 

investigation. The basic information about these five reservoirs is shown in Table 3. 

Their generalized topological relationships with rivers and important hydrological 

stations are shown in figure 6(b). 

Table 3 Parameters of main reservoirs in the mainstream of the Wujiang River 

Reservoir 
Regulation 

capacity 

Water level (m) Beneficial 

capacity 

(×108 m3) 

Installed 

capacity 

(MW) 
Dead Normal Flood control1 

Hongjiadu over-year 1076 1140 1138 33.61 600 

Dongfeng seasonal 936 970 970 4.91 970 

Wujiangdu seasonal 720 760 760 13.6 1250 

Goupitan over-year 590 630 626.24/628.12 29.02 3000 

Pengshui annual 278 293 287 5.18 1750 

1: The flood season in the Wujiang River Basin is from June to August every year. 



 

 

Figure 6 The map of the Wujiang River Basin (a) and generalized topological map of the 

cascade reservoirs group (b) 

According to the document "Water Distribution Plan of Wujiang River Basin" 

issued by the Ministry of Water Resources of PRC, the key monitoring sections and 

requirements for water supply of Wujiang River Basin are articulated. Wei and Dong 

(2021) proposed four key sections about the ecological protection of the Wujiang River 

and established the minimum flow requirements for maintaining a healthy ecological 

condition. These key sections are also marked in Figure 6(b). 

3.2 Multi-objective operation model of reservoir group 



 

The complex demand for power generation, water supply and river ecological 

protection of the Wujiang River Basin can be abstracted into the following 

mathematical model, composed of three objective functions and five constraints related 

to reservoir operation. 

3.2.1 Objective functions 

(1) Energy target, the maximum total power generation (PG) of the cascade 

reservoirs is defined by: 

 ( )1 ,

1 1

max max
I T

i t

i t

f E N t
= =

 
= =  

 
  (22) 
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where, E (kW·h) is the total PG of the cascade reservoirs. I and T are the total number 

of cascade reservoirs and the total period length, respectively. Ni,t (kW) is the output of 

the i-th reservoir during the t-th period, qi,t (m
3/s) and Hi,t (m) are the corresponding 

discharge and water head, respectively. ki is the output coefficient of the i-th reservoir, 

and Δt (h) is the length of a specific interval. 

(2) Water supply target, the maximum water supply guarantee rate (WSGR) is: 
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where, G is the total WSGR of the cascade reservoirs, and M is the total number of key 

sections for water supply. Gm,t is the WSGR of the m-th section during the t-th period, 

and Dm,t (m
3/s) is the corresponding water demand flow requirement, designated by the 

"Water Distribution Plan of Wujiang River Basin" mentioned above. 

(3) Ecological protection target, the maximum ecological satisfaction degree (ESD) 

is: 

 3 ,
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where, S is the total ESD of the cascade reservoirs, and N is the total number of key 

sections for ecological protection. Sn,t is the ESD of the n-th section during the t-th 

period, and Econ,t (m
3/s) is the corresponding optimal ecological flow, which refers to 

the achievements of Wei and Dong (2021). 

3.2.2 Constraint conditions 

(1) Water balance constraint 

 ( ), , 1 , , ,i t i t i t i t i tV V Q q E t−− = − −   (28) 

where, Vi,t, Vi,t−1 (m
3) are the storage capacity of the i-th reservoir at the end and the 

beginning of the t-th period, respectively. Qi,t, qi,t and Ei,t (m
3/s) are the average inflow, 

discharge, and loss of the i-th reservoir during the t-th period, respectively.  

(2) Water-level constraint 

 
, ,min , , ,maxi t i t i tZ Z Z   (29) 

where, Zi,t, Zi,t,min and Zi,t,max (m) are the real-time, lower limit, and upper limit water 

level of the i-th reservoir at the end of the t-th period, respectively. 

(3) Discharge constraint 

 
, ,min , , ,maxi t i t i tq q q   (30) 

where, qi,t,min and qi,t,max (m
3/s) are the minimum and maximum discharge of the i-th 

reservoir during the t-th period, respectively, generally as a function of the 

corresponding reservoir water level.  

(4) Output constraint 

 
, , ,maxi t i tN N  (31) 

where, Ni,t,max (kW) is the maximum output of the i-th reservoir during the t-th period, 

which is equivalent to the installed capacity of the reservoir.  

(5) Discharge variation amplitude constraint 

 
, , 1i t i t iq q q−−    (32) 



 

where, Δqi (m
3/s) is the maximum discharge variation amplitude of the i-th reservoir, 

which aims to control the discharge, making it as stable as possible. 

3.3 Datasets 

This study extracted the daily runoff data of key hydrological stations in the 

Wujiang River Basin from the past 64 years (1956 ~ 2019) from the Hydrological 

Yearbook of the People's Republic of China. The study also reviewed the reliability, 

consistency and representativeness of the data. 

The flow of three stations, respectively, Wujiangdu (upstream/midstream 

boundary section), Sinan (midstream / downstream boundary section) and Wulong 

(basin outlet section), were arranged by the P-III distribution (Zhang et al., 2018; Lei 

et al., 2019; Raynal Villaseñor, 2021). The flow values corresponding to the frequencies 

of 25%, 50% and 75% on the P-III curve are taken as the design values in wet, normal 

and dry years, respectively. Based on the flow situation of the upper, middle and lower 

reaches, three years, 1960, 1979 and 1976, in which the measured values are similar to 

the design values, were selected as typical years to represent the conditions of dry, 

normal and wet situations. The detailed parameters of reservoirs were obtained from 

the management departments. 

4. Results and Discussion 

The simulation of the multi-objective operation model in Section 3.2 was carried 

out using the measured flow data of three typical years as input, the discharge flows 

from individual reservoirs as the decision variable, with a 10-day operation scale. The 

solutions were dealt with through the improved VA-NSGA-III algorithm (Ni et al., 2019) 

to obtain the non-inferior ones in dry, normal and wet years. 

4.1 Visual analysis 

Drawing the non-inferior solution points of the three objective functions in the 

three-dimensional space. The Pareto frontiers of the MOP of Wujiang cascade 

reservoirs in typical dry, normal and wet years are shown in Figures 7-9 as below. 



 

 

Figure 7 The Pareto frontier and its 2D projection in a typical dry year 

 

Figure 8 The Pareto frontier and its 2D projection in a typical normal year 



 

 

Figure 9 The Pareto frontier and its 2D projection in a typical wet year 

In terms of the interrelationship of the various objectives, obviously, there is an 

intense competition between the two objectives of PG vs ESD. In contrast, the 

competitions between PG vs WSGR and WSGR vs ESD, although also observed, are 

significantly weaker. 

In addition, looking more specifically at the benefit values for each objective, as 

shown in Figure 10, they played out differently under different hydrological conditions. 

All three targets can be better optimized when the inflow is abundant, of which the 

improvement of PG is the most obvious. In particular, the water supply target can be 

fully met in the wet year. From this, it can be inferred that inflow's positive role can be 

further exploited and augmented to the ecological benefit in a wet year and the water 

supply benefit in a normal year by reliably weighing. 

 

Figure 10 Distribution range of each target objective values in different typical years 

Through visual analysis, it can be clearly understood that coordinating the three 

objectives of power generation, water supply, and ecological protection for the Wujiang 

cascade reservoirs effectively involves a trade-off between PG and ESD. Considering 



 

the water supply target is more accessible to satisfy than the other two, especially in a 

wet year when only two targets need to be traded off. In comparison, the trade-offs 

among the three objectives can be more complex in a dry year. 

4.2 Decision on operation schemes 

The PDM proposed in Section 2 was applied to quantify the three objectives' trade-

offs and decide the appropriate operation schemes. All non-inferior solutions were 

classified according to Equation (13), and the corresponding results are marked in 

Figures 7 and 8. The RR and N-PLSR of each solution were calculated in turn, and the 

sub-solution sets were filtered according to the principle of non-dominated sorting, as 

shown in Figure 11 below. Comparing Figures 7-9 reveals that the number of sub-set 

solutions has been significantly reduced compared to the original solution set, which 

greatly reduces the difficulty of decision-making. 

 

Figure 11 The sub-solution sets filtered by PDM, in which the red points represent the selected 

decision scheme 

The PD to each target and the total PED of all solutions in the subsets were 

calculated according to Equation (20) ~ (21) and Equation (8) ~ (10), respectively, as 

shown in Table A1-A3 in the Appendix. Suppose the decision-maker prefers the 

benefits of the three objectives to be evenly distributed. In that case, the solution with 

the greatest PED (value of E in table A1-A3) will be chosen as the final decision scheme. 

Otherwise, if the decision maker has a stronger preference for any specific target, the 

solution with a relatively more minor PED (value of E) and a more extensive PD to this 

target (value of ω1 or ω2 or ω3) will be chosen as the decision scheme. The overall 

process is intuitive and easy to operate. 

As an example, the decision-maker has no particular preference for any target. The 



 

schemes 78, 144 and 22 in Table A1-A3 can be selected as the operation schemes for 

dry, normal and wet years, respectively. The benefits obtained with the chosen schemes 

are shown in Table 4, and the corresponding reservoirs' water level processes are shown 

in Figure 12. 

Table 4 Benefits by the objective of example decision schemes  

 PG (×1010 kW·h) WSGR (%) ESD (%) 

Dry year 1.807 98.45 86.95 

Normal year 2.241 98.95 89.03 

Wet year 2.493 100.00 89.97 

 

Figure 12 Water level processes for the example decision schemes 

As a result, by optimizing the operation of the five reservoirs through the proposed 

PDM in this paper, the natural runoff can be fully used, and the comprehensive benefits 

can be enhanced considerably. The specific performance is shown as rationally 

increasing discharge during the non-flood season and utilizing the inflow during the 

flood season to replenish the water storage for the continuous profit-making function 

after the end of the flood season. 

4.3 Discussion with existing technology 

As mentioned earlier, many technologies are available for MCD in reservoir 

operation, and the application of PDM shows unique advantages. 

As shown in Figure 11, PDM can effectively shrink the solution set and reduce the 

decision difficulty. The ε-dominance-based technique (Kollat and Reed, 2007) and the 

Competitiveness Index method (Wang et al., 2022) have made fruitful attempts on the 

practical limiting solution set. The difference is that the ε-dominance-based technique 



 

improves the MOO process for the evolutionary algorithm (based on NSGA-II) using 

the ε-dominance strategy to improve the algorithm's efficiency without involving 

decision-making. In comparison, the Competitiveness Index method screens Pareto 

solutions based on the competitive efficiency among objectives. These methods limit 

the non-inferior solutions to a smaller size than the PDM method. Still, they can only 

retain a few solutions with the most conflicting benefits and will likely ignore some 

win-win options. 

Many existing studies on the MCD process are inspired by the same economic 

idea of diminishing marginal utility as PDM, such as the method of finding the "knee 

area points" of the Pareto frontier (Li et al., 2021) and quantifying individual linkage 

slope (X. Wu et al., 2022). These methods are fruitful and have a solid mathematical 

theoretical basis. In fact, the shrunk solution set of the PDM is likely to contain the knee 

point solutions obtained by the above methods. The difference is that these approaches 

are dedicated to providing a monotonous option to the decision-maker, weakening their 

subjective initiative. However, actual reservoir operation activities often require 

considering different external conditions, and a monotonous theoretical optimal scheme 

cannot meet the practical needs. The PDM takes a step forward relative to these 

methods. By drawing on the idea of the Gini coefficient, two indicators, PD and PED, 

are proposed to quantify the degree of decision-maker's bias toward specific goals at 

different solutions and provide an intuitive reference for decision makers' subjective 

trade-offs. In addition, the simplicity of practical engineering operation is also an 

advantage of the PDM over other methods. 

Overall, the most significant advantage of the PDM over existing technologies is 

that it can provide precise and reliable objective support for decision-maker's subjective 

preferences, which is more in line with the significance of "trade-off" in engineering 

practice. Finally, the above case study is a deterministic simulation operation using 

runoffs of three historical years. Besides, the PDM can also be applied to real-time 

operation through the loop of "hydrological forecast-optimization-decision making-

reservoir status update". 



 

5. Conclusion 

Aiming at the trade-offs among objectives in MCD, this paper proposed the 

concepts of RR, PLSR, and PED and derived the PDM in the bi-objective and tri-

objective scenarios. The PDM is based on the geometric relationship among Pareto 

solutions and uses universally acknowledged ideas of economics for reference. The 

method tries to provide a solid support for decision-maker's subjective preferences in a 

clear, quantitative, and objective manner and can achieve the unification of subjectivity 

and objectivity. 

Applying the PDM to the cascade reservoirs in Wujiang River Basin, a multi-

objective operation model with power generation, water supply, and ecological 

protection was developed and solved, and the results show that: 

(1) Under different hydrological conditions, there are competitive relationships of 

different degrees among the various objectives of the cascade reservoirs in Wujiang 

River Basin, with the most substantial competition lying between the two benefits of 

PG and ESD, and the intensity of the competition ascends with the increase of natural 

inflow. 

(2) Natural inflow has a significant influence on the benefit of each target at large 

favourably, particularly on power generation. Moreover, the positive effects of inflow 

can be more fully extended through reliable trade-offs for the benefit of environmental 

protection in wet years and water supply in normal years. 

(3) The PDM can effectively shrink the Pareto solution set and reduce the difficulty 

of decision-making. The PD and PED can quantify the complex internal feedback 

relationship among different goals and assist decision-makers in making trade-offs on 

the interests of multiple subjects. 

(4) The PDM is based entirely on the Pareto set itself, which requires no additional 

data, making it simple to utilize, and can be extended into solving other MODPs. 

Several improvements can be incorporated into our proposed method. First, when 

facing four-, five-, or even higher-dimensional objectives problem, how to further 

promote the PDM need more derivation. In addition, for different river sections in the 



 

upper, middle and lower reaches of the cascade reservoir group system, decision 

makers' preferences tend to change at different stages in the full cycle of reservoir 

operation. How to adapt to the spatial and temporal variability of decision makers' 

preferences is also an issue worthy of continued further study. 
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Appendix 

Table A1 The Pareto subset and its corresponding PD and PED in typical dry year 

No. ω1 ω2 ω3 E No. ω1 ω2 ω3 E No. ω1 ω2 ω3 E 

6 0.2669 0.0403 0.6927 0.2014 65 0.0001 0.3996 0.6003 0.0005 110 0.0157 0.0252 0.9591 0.0102 

8 0.3655 0.0050 0.6296 0.0310 67 0.9431 0.0193 0.0376 0.0185 111 0.0206 0.9363 0.0431 0.0225 

10 0.1444 0.0046 0.8510 0.0153 72 0.3125 0.6249 0.0626 0.3299 112 0.0206 0.9363 0.0431 0.0225 

11 0.2369 0.0058 0.7572 0.0283 78 0.6752 0.2060 0.1188 0.4460 115 0.6161 0.0141 0.3698 0.0868 

12 0.9517 0.0191 0.0292 0.0143 81 0.0186 0.8910 0.0904 0.0404 116 0.0433 0.0130 0.9438 0.0143 

14 0.3122 0.0873 0.6005 0.4418 82 0.2127 0.7107 0.0766 0.3125 120 0.9202 0.0138 0.0660 0.0226 

34 0.0039 0.0961 0.9000 0.0090 86 0.0900 0.7798 0.1302 0.2467 123 0.0433 0.0016 0.9551 0.0018 

35 0.9924 0.0064 0.0012 0.0002 87 0.0068 0.4966 0.4966 0.0453 124 0.1096 0.8499 0.0405 0.1019 

37 0.0239 0.9650 0.0112 0.0070 97 0.0530 0.8329 0.1141 0.1359 131 0.9680 0.0216 0.0105 0.0059 

40 0.0239 0.9649 0.0112 0.0070 98 0.0530 0.8329 0.1140 0.1360 133 0.0168 0.8827 0.1005 0.0402 

50 0.6241 0.0044 0.3716 0.0274 100 0.0011 0.1015 0.8973 0.0028 135 0.0035 0.1172 0.8793 0.0096 

52 0.5964 0.0043 0.3993 0.0277 102 0.0048 0.9915 0.0037 0.0005 147 0.0103 0.7221 0.2676 0.0537 

59 0.0001 0.3996 0.6003 0.0005 103 0.0328 0.0974 0.8698 0.0751 150 0.9827 0.0134 0.0039 0.0014 

62 0.1761 0.8110 0.0130 0.0499 109 0.0157 0.0252 0.9591 0.0102 154 0.9368 0.0227 0.0405 0.0232 

 

Table A2 The Pareto subset and its corresponding PD and PED in typical normal year 

No. ω1 ω2 ω3 E No. ω1 ω2 ω3 E No. ω1 ω2 ω3 E 

6 0.96213 0.01333 0.02453 0.00850 58 0.94418 0.00001 0.05581 0.00001 120 0.05807 5×10-7 0.94193 1×10-6 

8 0.54551 0.00001 0.45448 0.00003 59 0.05297 0.00001 0.94702 0.00001 125 0.10901 0.00004 0.89095 0.00010 

9 0.54544 0.00001 0.45455 0.00003 67 0.00413 4×10-6 0.99586 5×10-7 129 0.00877 0.82392 0.16730 0.03265 

10 0.25725 0.00002 0.74273 0.00010 68 0.91863 0.00085 0.08051 0.00170 131 0.00876 0.82397 0.16726 0.03261 

11 0.96218 0.01333 0.02448 0.00848 70 0.00413 4×10-6 0.99587 5×10-7 144 0.38688 0.42671 0.18642 0.83090 



 

13 0.36986 0.12157 0.50857 0.61742 82 0.99800 0.00003 0.00197 2×10-6 147 0.15851 0.30439 0.53710 0.69970 

15 0.56348 0.37413 0.06240 0.35515 88 0.01768 0.00002 0.98229 0.00001 149 0.15858 0.30440 0.53701 0.69993 

16 0.95866 0.00073 0.04061 0.00077 95 0.03377 0.00142 0.96480 0.00125 156 0.95782 0.00240 0.03979 0.00247 

17 0.93833 0.00071 0.06096 0.00110 99 0.18734 0.00001 0.81264 0.00005 157 0.01414 0.01863 0.96723 0.00688 

18 0.89207 1×10-6 0.10793 2×10-6 104 0.93636 0.00005 0.06359 0.00007 158 0.01413 0.01863 0.96724 0.00687 

21 0.93836 0.00071 0.06093 0.00110 109 0.66511 0.00000 0.33488 0.00002 160 0.95784 0.00240 0.03976 0.00246 

23 0.52625 0.00011 0.47364 0.00075 115 0.05806 5×10-7 0.94194 1×10-6 162 0.00068 0.99839 0.00092 0.00002 

35 0.84024 0.00307 0.15669 0.01090 116 0.99188 0.00005 0.00807 0.00001 163 0.22060 1×10-6 0.77940 4×10-6 

48 0.01957 0.00002 0.98041 0.00001 118 0.99189 0.00005 0.00806 0.00001      

 

Table A3 The Pareto subset and its corresponding PD and PED in typical wet year 

No. ω1 ω2 E No. ω1 ω2 E No. ω1 ω2 E No. ω1 ω2 E 

1 0.9991 0.0009 0.0038 22 0.5168 0.4832 0.9989 52 0.9739 0.0261 0.1017 80 0.0683 0.9317 0.2544 

19 0.9999 0.0001 0.0004 49 0.4229 0.5771 0.9762 65 0.0006 0.9994 0.0022 84 0.0015 0.9985 0.0061 

 


