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Abstract.
Bottom-up methods for water resources modeling rely on

acceptability thresholds to find, through a response surface,
which deeply uncertain futures lead to system failure. They
commonly treat water users as aggregate actors, which may5

preclude analysis of the equity impacts of interventions. This
paper explores how aggregation choices for large groups of
water users lead to different policy recommendations in re-
sponse surface assessments. Two aggregation methods with
varying parameters are considered: percentile satisfaction10

targets and generalized mean. A 2-dimensional stress-test
assessment across groundwater availability and population
is applied to household water supply in Jordan. The study
compares six different policies covering supply enhancement
and rebalancing, using a country-wide multi-agent model15

that characterizes households across socioeconomic strata.
For different aggregation levels, policies are ordered by their
associated robustness index. Results show that aggregation
choices strongly determine policy preference. A focus on the
most vulnerable households favors the equalization of ac-20

cess to water, in terms of regional allocation and weekly sup-
ply durations, as it substantially reduces robustness disparity.
Combined policies with additional resources allow to with-
stand higher levels of stress under most aggregation choices.
Preferences defined by aggregation intervals provide a finer25

understanding of trade-offs among water users and may im-
prove deliberation over equity under deep uncertainty.

1 Introduction

Water resources modeling and management can be hampered
by the difficulties to anticipate the future state of a given30

water system. The economic, demographic or geopolitical
upheavals of human societies are drivers of water demand
fraught with deep uncertainties (Maier et al., 2016), while
climate change challenges the assumption of hydro-climatic
stationarity under which water systems could be designed 35

(Milly et al., 2008). At the same time, model-based planning
under such uncertainties also needs to consider the fairness
of any policy recommendation, based on distributional out-
comes of uncertain futures (Hallegatte and Rozenberg, 2017;
Jafino et al., 2021). 40

Complementary approaches exist to assess and plan wa-
ter systems under uncertainty. The most common relies on
building a discrete set of scenarios to explore internally co-
herent, representative sets of future trajectories for climate,
economic growth, land use or demographics (Riahi et al., 45

2017). Such scenarios are built upon different categories of
projections, often informed by models. Such approaches are
often called "top-down" (Mastrandrea et al., 2010; Brown
and Wilby, 2012), or forward-oriented (Maier et al., 2016).

Another group of approaches, often called “bottom-up”, 50

flip the procedure instead focusing on the robustness of
current decisions to deeply uncertain assumptions, reduc-
ing reliance on predictive approaches or probabilistic as-
sumptions. Bottom-up approaches have been used across a
diverse set of methodologies including inverse climate im- 55

pact response functions (Füssel et al., 2003; Marcos-Garcia
et al., 2020), robust decision making (Lempert et al., 2006;
Lempert, 2019), info-gap (Ben-Haim, 2006), or decision-
scaling (Brown and Wilby, 2012), often in combination with
other methods. Instead of calculating the impacts of pro- 60

jected changes on different performance indicators, inverse
approaches generally seek to identify the range of possible
changes that can lead to adverse outcomes, and thus usually
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expand the range of uncertainty in comparison to classic sce-
narios (Maier et al., 2016). They do not seek to find the im-
pacts of specific conditions, but the conditions that lead to
specific impacts on a system’s performance. This range of
conditions typically supports the construction of a response5

function or surface (Prudhomme et al., 2010): possible con-
ditions are sampled through a few stressor variables, which
define an exposure space. System performance is simulated
over this exposure space with a computer-based model. An
acceptability threshold then divides the domain of perfor-10

mance values into acceptable and unacceptable sub-sets. This
allows one to draw acceptable and unacceptable sub-spaces
of the exposure space, which are further used to compare the
robustness of different policies and interventions, based on
their respective areas.15

Importantly, water systems are inherently complex and en-
tail a number of actors with diverse objectives that are of-
ten conflicting (Loucks and van Beek, 2017). In particular,
assessments using some form of robust or inverse approach
have been considering increasingly large numbers of stake-20

holders or objectives, such as in Poff et al. (2016); Culley
et al. (2016); Trindade et al. (2017); Kim et al. (2019); Gold
et al. (2019). But each considered objective aggregates the
stakes of multiple water users belonging to the same cat-
egory of water use; e.g. households supplied by the same25

utility, farmers from the same irrigation scheme. Whereas
in reality, users can experience differential impacts based
on physical, geographic, and socioeconomic characteristics.
Thus response surfaces can be substantially different among
water users of a same category. This was illustrated in Had-30

jimichael et al. (2020) with the disparities of vulnerability
profiles among farmers in the Colorado River Basin, showing
the need for case-by-case analysis. For systems with a large
number of actors, model aggregation risks hiding potential
inequalities and undermining the relevance of the vulnerabil-35

ity assessment and public support for selected policies.
Eventually though, if a group of water users is very

large, case-by-case assessments become impractical, requir-
ing some form of aggregation to evaluate system-wide per-
formances. For example, intermittent water supply systems40

can involve large numbers of households with very unequal
access to water. In such cases, aggregation remains necessary
to quantify the unequal vulnerabilities of different segments
of the population. A key issue at the heart of distributional
assessments and fairness considerations is the adequacy of45

the aggregation method (Jafino et al., 2021).
Aggregation does not only shape the description of a prob-

lem, but also the preferred policies to solve it. Aggregation
of potentially misaligned individual preferences is thus ar-
guably central to political theory, and more explicitly at the50

heart of social choice theory (Arrow, 1951). A strictly egali-
tarian worldview such as J. Rawls’ maximin principle could
consider a policy choice as fair if it maximizes the outcome
for the worse-off individual among a group (Rawls, 1970).
A more utilitarian worldview, as often found with average-55

based performance indicators, would seek to maximize the
sum of individual outcomes, accepting that better and worse
outcomes even each other out.

In the present paper, the question of aggregation specifi-
cally applies to robustness of water availability, understood 60

as the acceptable share of the exposure space. Our goal is
thus to explore how aggregation among the same type of
water users affects response surfaces and policy recommen-
dation in an inverse or bottom-up framework. We analyze a
range of aggregation choices, translating different attitudes 65

towards inequalities, and how it can affect response surfaces
and the policy recommendation of a bottom-up assessment.
Furthermore, in a similar manner to the inverse paradigm
of the response function itself, we identify the aggregation
ranges that lead to preferring one policy over another, to sup- 70

port equity and trade-off analysis under uncertainty within a
group of similar water users.

In section 2, the conceptual methodology of the paper
presents how to parameterize the aggregation and to identify
the aggregation ranges that lead to certain policy preferences. 75

Section 3 presents the studied system – the Jordanian house-
hold water supply – using the Jordan Water Model (Yoon
et al., 2021), and describes the experimental design to apply
an inverse approach using the model. Results are detailed in
section 4, followed by a discussion regarding their potential 80

implications and shortcomings.

2 Methodology

We explore multiple approaches to vary the aggregation level
of a response function, in order to assess (i) the distribution
of acceptable outcomes among a large group of water users 85

and (ii) the effect of such aggregation choices on the policy
recommendation. Just as the inverse approach looks for the
conditions that lead to certain outcomes, here the question
is what levels or types of aggregation lead to certain options
being favored over others. 90

The proposed methodology relies on a simple version of
the response surface as a common tool among bottom-up
methodologies. In its simplest expression, a response func-
tion maps the values of a performance indicator, r, to a dis-
crete number of stressor variables, (x1,x2, . . .xn), which de- 95

fine the exposure space or "states of the world" (fig. 1). The
performance indicator r such as average consumption, re-
liability, resilience or vulnerability (Loucks and van Beek,
2017) is measured over a single time series. An acceptabil-
ity threshold θ separates performance values between accept- 100

able and unacceptable, and thus allows one to trace a frontier
between acceptable and unacceptable shares of the exposure
space. The response surface can be calculated for different
policies or interventions that modify the system. Comparing
the positions of the frontiers associated with different poli- 105

cies allows for the selection of preferred policy options.
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Figure 1. Conceptual response function, mapping system perfor-
mance r as function of two variables x1,x2. An acceptability
threshold θ qualifies performance r, and thus subsets of the ex-
posure space, as acceptable or unacceptable. Alternative decisions
can be compared based on their respective divisions of the exposure
space

Here we consider a response surface specific to a water
user, or an “agent”. n agents can be grouped into a specific
category of water users (e.g., households with unequal access
to water supply), who share the same performance indicator,
r, and acceptability threshold, θ. For a given agent, i, an indi-5

vidual response surface ri(x1,x2) is obtained by expressing
the agent-specific performance of each simulation as a func-
tion of the two stressors, x1,x2 (e.g. changes in precipita-
tion, temperature, demography, etc). The response surface is
transformed into a binary acceptability surface. The accept-10

ability ai equals 1 if the measured performance ri for agent
i satisfies an acceptability threshold θ, 0 otherwise.

ai(x1, x2) =

{
1 ri(x1,x2)≥ θ

0 ri(x1,x2)< θ
(1)

While the acceptability ai is specific to a given agent,
the objective is to produce aggregated response surfaces for15

the group of n agents, and understand the effect of differ-
ent aggregation choices on the acceptability surface. Explor-
ing a range of aggregation options allows the representation
of different social priorities. For example, if all agent per-
formances are aggregated through an arithmetic mean, ex-20

treme values will compensate for each other and the assess-
ment will produce a policy recommendation that would ig-
nore strong inequalities. In contrast, focusing on the 5 per-
cent most vulnerable might lead to a different aggregation
choice, that might lead to policy recommendations that are25

more equalitarian but might not benefit the majority of users.
Comparing a few isolated aggregation options would re-

veal the potential effect they can have on the assessment out-
come. However, here we want to characterize (i) how un-
equally distributed the acceptability fronts can be depending30

on the aggregation and (ii) which exact aggregation choices
produce different policy recommendations - similarly to how
inverse approaches look for the range of conditions that lead

to a specific impact. If a continuous parameter controls the
aggregation, it is possible to answer to explore points (i) and 35

(ii) by regularly sampling the aggregation parameter. It is
thus a way to represent the effect of social preferences with
a continuous approximation.

Two parameterized aggregations are thus selected for this
study: a percentile-based approach and a generalized mean 40

approach. They can be understood as generalizations (or pa-
rameterizations) of the particular cases that are the (arith-
metic) mean and the median.

The percentile-based method provides a simple compos-
ite indicator to control the aggregation choice. A percentile 45

operator considers a given position within a ranked sample
as an adequate level of representation of the population. For
example, the objective can be to satisfy a target of 90% of
the population according to the threshold θ. In that case, the
acceptability space is defined as the share of the exposure 50

space where less than 10% of the population experiences an
unacceptable performance r.

Defining S(x1,x2) as the percentage of the population
whose performance r does not meet the threshold θ, the pa-
rameterized acceptability function can then be defined for 55

any percentile level L.

AL(x1, x2) =

{
1 S(x1,x2)< L

0 S(x1,x2)≥ L
(2)

For example, if the acceptability front should be drawn as
to satisfy at least 90% of the population, then L=10%, the
sub-space of the response surface where more than 10% does 60

not reach the threshold is deemed unacceptable. By sampling
L at different levels, the distribution of acceptability ranges
for different parts of the population are explored. A compos-
ite response can thus be displayed, tracing in the same ex-
posure space the acceptability fronts corresponding to differ- 65

ent percentiles of the population (fig. 2). Over the exposure
space, this allows for the assessment of (i) the spread between
levels, an indication of how unequal the water users can be
in terms of vulnerability, (ii) the relative effect of percentile
targets and policy choice on the front position, possibly indi- 70

cating that the policy is relatively ineffective for parts of the
population, and (iii) the possibility that preference between
policies (the respective position of their fronts) switches for
different percentile targets.

This aggregation method also allows for an explicit dis- 75

tributional assessment. The difference with highly disaggre-
gated impact assessments such as in, e;g., Hallegatte and
Rozenberg (2017) or Jaeger et al. (2017), is that in an inverse
approach, the key metric is not so much the impacts under
certain conditions, but the range of conditions before a spe- 80

cific impact is reached. Thus here the distribution measures
the spread of robustness rather than the spread of impacts.

The second parameterization method, the generalized
mean, is sometimes used in economic development research,
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Figure 2. Aggregated response surface: acceptability fronts for dif-
ferent values taken by an aggregation parameter p.

for example to monitor Sustainable Development Goals –
SDGs (Rickels et al., 2016) or design human development in-
dices (Kawada et al., 2019). For example, the Human Poverty
Index for developing countries computed by UNDP uses
the generalized mean with parameter p = 3 (Mariani and5

Ciommi, 2022).
This method first aggregates the performance values be-

fore tracing the acceptability front. For any coordinate
(x1,x2), and for a number of agents n, the generalized mean
Mp with parameter p of the n performance values ri(x1,x2)10

is defined for positive values of r as:

Mp (r1, ...rn) =

(
1

n

n∑
i=1

rpi

) 1
p

(3)

For p= 0, the generalized mean is defined as equal to its
limit when p approaches zero:

M0 (r1, ...rn) =
n

√√√√ n∏
i=1

ri (4)15

A weighted version allows for further modulation of the
generalized mean, either to introduce additional priorities, or
in case each single agent represents a larger population.

Mp (r1, ...rn) =

(
n∑

i=1

wir
p
i

) 1
p

(5)

M0 (r1, ...rn) =

n∏
i=1

rwi
i (6)20

The parameter p controls how skewed the aggregation is
towards lower or higher performance values ri. For each
value of p, the aggregate acceptability at any given coordi-
nate of the exposure space is given by:

Ap(x1, x2) =

{
1 Mp(x1,x2)≥ θ

0 Mp(x1,x2)< θ
(7) 25

The aggregated acceptability function over the response
surface is thus the satisfaction of the threshold by the gener-
alized mean, at different values of p. The front between ac-
cepted and rejected sub-spaces is drawn for different values
of p, translating a different weighting given to performance 30

values at different positions within a ranked sample. A no-
table drawback is that the generalized mean is not defined
for r = 0.

A few special cases illustrate the effect of the parameter
p. When p tends towards negative infinity, the generalized 35

mean is equal to the minimum value of the sample. When
p= 1, it becomes the arithmetic mean. When p tends to-
wards positive infinity, it gives the maximum performance
value. The generalized mean thus allows to parameterize in
an almost continuous manner different aggregation choices 40

between minimum, mean, and maximum. Just like choosing
an acceptability percentile target, choosing a value of p when
applying a generalized mean operator also translates differ-
ent collective choice paradigms (Tilmant et al., 2007), that
can be linked to social choice theory (Arrow, 1951; Moulin, 45

1985). Considering only the minimum water use (p→+∞)
of the entire sample when drawing the acceptability surface
would correspond to a strictly egalitarian worldview: poli-
cies would be designed to improve the least robust water use,
following a maximin rule, the Rawlsian definition of justice 50

(Rawls, 1970). Respectively, considering only the maximum
consumption would be considered as "dictatorial", as poli-
cies are selected to increase the robustness of the single agent
with the highest performance. In between, different values of
p express different degrees of utilitarianism. The arithmetic 55

mean (p= 1) corresponds to a fully utilitarian worldview,
seeking to improve the average performance among a pop-
ulation indifferent to the statistical distribution of such per-
formance.

For both approaches, percentile-based and generalized 60

mean, interventions are then compared based on the respec-
tive position of acceptability fronts on the aggregated re-
sponse surfaces. This comparison is done for different levels
of the controlling parameter, either the percentile of unac-
ceptability L, or the generalized mean parameter p (fig. 2). 65

The final goal of this method is to express policy prefer-
ence as a function of the aggregation parameters. To do so,
a single metric should represent the acceptability space. As
opposed to the performance indicator r, this metric is not
calculated over a time series but should be suited to qualify 70

the whole set of simulations constituting the response sur-
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Figure 3. Comparing aggregation-robustness functions for alterna-
tive policies allows to identify the aggregation ranges that favor one
policy over another ("Policy1≻ Policy2" means policy 1 is pre-
ferred to policy 2)

face. For each acceptability surface, a robustness index (RI)
is calculated (Moody and Brown, 2013) to represent the dis-
tribution of the acceptable surface area across the population.
Similar indices exist with additional weights to measure ro-
bustness over scenario ensembles or if the stressor domains5

can be weighted with probabilities. In this case, we consider
the range of stressor values as equiprobable and select the
simplest variant of the RI. For any tested policy, and for a
given aggregation parameter value,

RI =

∫∫
A(x1, x2)dx1dx2∫∫

dx1dx2
(8)10

With acceptable ranges being simplified to a single metric,
alternative policies and interventions can be quantitatively
compared either through the empirical cumulative distribu-
tion function (ECDF) across agent percentiles, or as a func-
tion of the parameter p with the generalized mean aggrega-15

tion. RI thus becomes dependent on a parameterized accept-
ability AL or AP , and can therefore be expressed as a func-
tion of L or p.

For any value taken by an aggregation parameter, policies
can thus be ordered by preference, by comparing their ro-20

bustness index. Break-even points can then be identified for
aggregation values where robustness is the same for two poli-
cies, and thus policy ordering is indifferent. Such aggregation
values form the boundaries of aggregation ranges. Each of
these aggregation bins is thus defined by a specific ordering25

of policy preference based on their RI values ordering (fig.
3).

It is thus possible to define the aggregation ranges that
would lead to favor a policy over another, when applied to
a large number of agents. In the end, the objective is to ac-30

knowledge and quantify the winners and losers associated
with each policy option, the trade-offs within a group of sim-

ilar water users in the face of deep uncertainty, and promote
informed dialogue among stakeholders.

3 Application 35

3.1 Case study: the Jordanian water system

As a prime example of a tense water situation and looming
uncertainties, the country of Jordan (fig. 4.a) faces a widen-
ing gap between dwindling freshwater resources and rapidly
increasing demand, with difficult trade-offs among water 40

uses (Whitman, 2019; Yoon et al., 2021). With an overall
dry climate ranging from Mediterranean to arid, Jordan relies
on limited natural freshwater resources (Gunkel and Lange,
2012). Its almost exclusive source of surface water, the Jor-
dan River Basin, is shared with the neighboring countries, 45

with Israel and Syria using an important part of the upstream
flow (Courcier et al.; Avisse, 2018; Avisse et al., 2020).
Groundwater resources are heavily overexploited, leading to
a rapid decline of water tables that can reach 3.5 meters per
year (Goode et al., 2013; Ministry of Water and Irrigation - 50

MWI). Ecosystems are strongly affected, with the disappear-
ing of the Ramsar-classified Azraq oasis (Al-Kharabsheh,
2000; Mustafa and Tillotson, 2019), and the shrinking of
the Dead Sea (Salameh et al., 2019). Meanwhile, water de-
mand persistently increases. Agriculture remains a major wa- 55

ter consumer despite efforts to curb groundwater abstraction
for irrigation (Ministry of Water and Irrigation - MWI). De-
mographic changes have been sudden, with a population in-
crease of 50% since 2010 in part due to migration from the
Syrian civil war, reaching about 11 million today (Central 60

Intelligence Agency (CIA), 2021), even while the population
growth rate has declined to 1%. Urban water consumption
also includes industries and services, with tourism playing
an important role in the country’s economy. As a result, Jor-
dan has one of the lowest per capita water availabilities in the 65

world.
Jordan has few options for developing new water re-

sources. Wastewater is reused at 90% for agriculture (Min-
istry of Water and Irrigation - MWI). All fossil aquifers are
now being exploited, including the deep Disi aquifer shared 70

with Saudi Arabia (Müller et al., 2017). Desalination and
conveyance from the Red Sea is expensive and depends on
uncertain international financing. Increasing Jordan’s share
of transboundary surface water requires complex negotia-
tions with upstream countries (Haddadin, 2009), though wa- 75

ter imports from Israel are substantially increasing under re-
cent agreements.

Important uncertainties are attached to many of the stres-
sors, external or internal, that are relevant for Jordan’s wa-
ter system. Since 1947, demographic growth has not fol- 80

lowed a steady and predictable rate but has been punctuated
by sudden increases from populations displaced by neigh-
boring conflicts in Israel, Lebanon, Iraq, Yemen, and impor-
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tantly Syria since 2011 (Courcier et al.; Müller et al., 2016).
Rainfall has decreased over the 20th century (Rahman et al.,
2015), and climate change is expected to be particularly se-
vere, with droughts becoming twice as frequent, long, and
intense by the end of the 21st century (Rajsekhar and Gore-5

lick, 2017). Meanwhile, the state of groundwater resources
at any point in the future is hard to predict, as it depends on
many factors and decisions made today.

Jordan’s water system, characterized by such severe uncer-
tainties, is a prime candidate for analysis using a deep uncer-10

tainty paradigm with a stress-test approach. For example, the
time needed to reach current population levels was impossi-
ble to project before the Syrian war, thus hampering any form
of predictive water planning in the view of high-ranking of-
ficials (Mustafa and Tillotson, 2019). The Disi aquifer and15

conveyance project, developed with the objective of satisfy-
ing a projected demand, strongly underestimated the demo-
graphic changes to come. Water availability at any given time
in the future will also depend on climate change, transbound-
ary renegotiations, and the previous trajectory of groundwa-20

ter depletions. Decisions taken now, be they infrastructure
projects or reallocation policies, can be hard to change later
given their financial and political cost. Selecting a course
of action based on its robustness to highly uncertain factors
would thus make sense.25

Once propagated through the system, these uncertainties
affect a spatially and socially heterogeneous water supply.
The case of Jordanian households is an example of a spe-
cific category of users (domestic water consumption) that
can experience high disparity levels in terms of supply per-30

formance. Like many countries in the world, Jordan imple-
ments a rationing policy through intermittent water supply
over most of the country (Rosenberg et al., 2008; Klassert
et al., 2018a). Such intermittency varies strongly between
neighborhoods, from less than one day per week in poorer35

districts to five days in wealthiest neighborhoods (Talozi,
2018), increasing reliance on private vendors.

The system comprised of Jordanian households and their
sources of water supply thus provides an adequate case to ex-
plore the question of representativeness of bottom-up water40

vulnerability assessments for large numbers of water users.

3.2 The Jordan Water Model

This work builds on the Jordan Water Model - JWM
(Yoon et al., 2021). Watershed and groundwater modules
are process-based and spatially explicit. Watershed rainfall-45

runoff is computed with SWAT, providing inflows for the
major reservoirs. A groundwater response function is pre-
computed with a detailed MODFLOW model at the sub-
district level and dynamically reacts to pumping decisions
with a drawdown response. The coupled multi-agent, hydro-50

economic model employs an object-oriented software archi-
tecture (Knox et al. 2018). Here we focus on the simulation
of dynamic interactions between a hierarchy of diverse actors

and the natural/engineered water system primarily involving
the piped water supply system (fig. 4.b). Components and 55

features that are particularly relevant for this study are sum-
marized in this section.

Using monthly time-steps, the 1,923 human agents
make autonomous decisions based on inputs from natural-
engineered modules and other human agents, in a hierarchi- 60

cal manner. Government bodies define high-level constraints
and decisions, such as transboundary water availability or
groundwater extraction limits. Among them, the Water Au-
thority of Jordan (WAJ) determines monthly allocation and
transfers of bulk water volumes between the twelve gover- 65

norates of Jordan, based on regional per-capita targets and
physical/topological constraints from the conveyance net-
work.

From there, local piped supply institutions distribute the
available water among sub-districts and among different and 70

competing categories of households and commercial estab-
lishments. The quantity of water made available to each sub-
district in the JWM is based on the number of agents and the
rationing schedule, following Klassert et al. (2015). Weekly
supply durations can range between 7.5 hours and uninter- 75

rupted supply. Agents buy a certain amount from the pub-
lic supply based on tariffs and their respective demand func-
tion estimates derived from 16,153 observations (Sigel et al.,
2017; Klassert et al., 2018b). Urban consumers can supple-
ment piped water with purchases from private vendors who 80

largely obtain groundwater sourced by farmers (Selby et al.,
2016).

Each of the 800 household agents represents a certain
share of the Jordanian population for specific characteris-
tics, such as location (sub-district), income, refugee status, 85

etc. Households decide purchases of piped water based on
econometric demand estimates. Water demand functions no-
tably depend on each household conservation options. These
can rely on storage capacities or water saving behaviors de-
pending on the education level of the female household head 90

(Klassert et al., 2018b))”.
This multi-agent framework provides an opportunity to

test a response surface approach for Jordanian households
in a highly disaggregated manner. As economic decisions
are dynamic at the agent level, one can interrogate how the 95

frequency distribution function of water use changes under
stress, in a coherent, calibrated manner.

The model also allows for the evaluation of results based
on other household characteristics that shape the dynamics
that are simulated. For example, income, which is particu- 100

larly relevant for equity-oriented questions, plays a central
role in the amount of purchased water, the district of resi-
dence, and the rationing pattern of household users. Socio-
economic causes of vulnerability underlying the analyses
here, such as disparities in income and price elasticities, are 105

described in Klassert et al. (2018b).
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Figure 4. Map of Jordan and simplified model concept (a) The Jordanian population is concentrated in its north-west area, particularly in
the capital Amman and its larger agglomeration. Water supply comes mostly from different aquifers throughout the country, the Yarmouk
River, shared with Syria, and transfers from Israel through Lake Tiberias. A bulk water conveyance network connects most of the cities.
Future desalination projects could convey water from the Red Sea to the northern cities. (b) A simplified view of the water flows through the
hierarchy of agents on the JWM. The schematic focuses on the modules most relevant to the present study. Blue: water resources / natural
modules. Red: intermediary institutions. Yellow: consumers. Households are the studied system

3.3 Experimental design

Using the multi-agent framework, with a focus on house-
hold water use, provides an opportunity to test a response
surface approach for Jordanian households in a highly disag-
gregated manner. As economic decisions are dynamic at the5

agent level, one can interrogate the distribution of agent wa-
ter use to discover the impact of changes in system stresses.
The model allows for the evaluation of results based on other
household characteristics that shape the dynamics that are
simulated. For example, income, which is particularly rele-10

vant for equity-oriented questions, plays a central role in the
amount of purchased water, the district of residence, and the
rationing pattern of household users.

To illustrate the general approach, the bottom-up method-
ology is implemented as a linear change applied to two vari-15

ables of the system without any associated probabilities (i.e.
assuming a uniform probability distribution for all sampled
states of the world). In practice, stress-testing is often only
a first screening step along more complete decision frame-
works with probabilistic approaches, directed exploration,20

adaptive planning, robust optimization, etc.
This exploratory work is complementary to the scenario

approach deployed with the JWM in Yoon et al. (2021),
where many more variables were considered in a consis-

tent set of time-dependent narratives. For example, in the 25

present stress-test approach, the time required to reach cer-
tain degrees of change on the selected variables is treated as
a deep uncertainty. For consistency and comparability, the
acceptable consumption threshold and the tested policies are
adopted from Yoon et al. (2021) with some modifications that 30

are described further below. The experimental design is fur-
ther described in the following sub-sections.

3.3.1 Problem delineation

While the JWM simulations involve many more modules and
other agents that have dynamic effects on household water 35

use, such as highland farmers deciding to sell water to ur-
ban consumers, this study focuses on household agents. The
two selected variables are groundwater availability and to-
tal population. While it is also subject to deeply uncertain
factors like climate change or geopolitical upheavals, surface 40

water is not selected as stressor in this study, as it has a lim-
ited impact on household water use specifically. Urban water
supply relies in majority on groundwater. The surface wa-
ter share comes from the Jordan Valley and takes precedence
over other uses, and is thus secured to a large degree from cli- 45

matic or geopolitical perturbations. Groundwater availability
can still reflect unknown changes in precipitation and tem-
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Table 1. Labels and description of tested policies

Policy label Policy effects
B
Baseline

No intervention besides all projects that were already planned in 2017.
They are all set as active in the first year.

R
Rebalancing

Supply and demand management
- water availability per sub-district is modified as to represent equalized rationing patterns,
now only depending on the number of agents.
- tariffs are doubled on the higher tier blocks
- administrative losses (theft or wrong billing) are halved
- Per capita targets for bulk water allocation have a floor set at 50 m3/cap/year
to tone down geographic disparities.

S / S+
Supply enhancement

- New projects are developed at either half (S) or full (S+) capacity
(Red Sea desalination, increased transfers from Lake Tiberias ...)/
Available resource before losses is thus increased from 365 million cubic meters (MCM)
each year to 500 MCM (+37%) or 624 MCM (+70%).
- For both cases, physical losses are halved (from 25% to 12.5%) through pipe replacement
and better management of system pressure to prolong the system lifespan.

RS / RS+
Combined policies

Rebalancing policy R combined with new supply S or S+
- Again, new supply at either half (RS) or full capacity (RS+)

perature that would reduce the natural recharge and increase
irrigation needs.

These two variables are considered as stressors, in the
sense that at any moment in time, water availability in the
system is affected by both variables. Stressors represent sets5

of possible future conditions. The trajectory that led to any
given condition, or its associated probabilities, are consid-
ered as unknown. Here, groundwater availability can be the
result, at an unknown date, of past depletion rates, of political
decisions, without having to make a statement about which of10

these factors lead to a specific level of availability. Similarly,
the stress-test assumes that population reaches a certain level
at an unknown moment in time, without the need to know if
it comes from higher or lower growth rates, or sudden shifts
due to war or peace. However, with a different system delin-15

eation and approach, those variables might not be considered
as independent external stressors as they are heavily path-
dependant. Such a difference with time-dependent simula-
tions will be further addressed in the discussions section.

For groundwater, a single capacity reduction factor is ap-20

plied to all groundwater nodes, reducing in such proportion
the maximum allowed monthly extraction. The model still
dynamically determines abstractions within this limit and
the drawdown response. Similarly, for the population vari-
able, the same increase factor is applied to all representative25

households, regardless of location, income, etc. (in practice,
demographic changes have been, and will be, much more het-
erogeneously applied).

3.3.2 Simulations, policies, and post-processing

For each tested intervention or policy, 72 simulations of the 30

Jordan Water Model are performed. They combine nine lev-
els of groundwater extraction decline (from 0 to 40%) and
eight levels of population growth (from 0 to 175%). Such
changes are consistent with those considered in the previous
work with the JWM for the 2100 horizon. Simulations are 35

performed over two years and results are recorded for the
second year only. This allows agents to adapt to the circum-
stances as applied to the first year (typically expected market
prices). The baseline year is 2016, the last one for which the
supporting data were available when developing the JWM. 40

The specific hydrological intra-year variability has little im-
pact in the present study, though it would have to be consid-
ered if agriculture were included.

Response surfaces seek to compare options based on the
respective position of their acceptability fronts. Six differ- 45

ent interventions or policies are stress-tested, consistent with
those that were simulated in Yoon et al. (2021). As presented
in table 1, the tested policies focus either on supply improve-
ment (adding new resources to the system, in two stages),
supply and demand management (reshaping the distribution 50

without increasing the total available resources), or a combi-
nation of both.

For each simulation, we record monthly water use for each
household agent. To build response surfaces, the common
performance indicator is the average water consumption over 55

a year, in liters per capita per day [L/c/d], calculated over the
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Figure 5. (a) average water use response surface, L/cap/d, for all 800 household agents, baseline policy B. Results from the initial 72
simulations (9 groundwater reduction levels x 8 population growth levels). (b) average after linear interpolation (113x129) is performed.
Policies are compared based on the average acceptability front. Only the baseline policy front (solid black line) and the rebalancing policy
front (dotted red line) appear on the response surface, the other policies show an acceptable average performance over the entire exposure
space and, thus, their acceptability does not show here

second year. The acceptability threshold is set at 40 L/c/d
following Yoon et al. (2021).

For a given household i, the response surface ri(x1,x2)
is obtained by expressing the performance of each simula-
tion (the average water consumption per capita par day) as5

a function of the two stressors x1,x2 (here groundwater and
population changes). Composite response surfaces are then
calculated by sampling aggregation parameters (satisfaction
percentiles or generalized mean parameter). Finally, a robust-
ness index RI is expressed as a function of the aggregation10

parameters, revealing the aggregation ranges that correspond
to specific preference orderings of the 6 tested policies. A
sensitivity analysis showing how the value of the acceptabil-
ity threshold θ (testing 30, 50 and 60 L/c/d) affects policy
preference is provided in supplementary information (tables15

S.I.2 and S.I.3). The S.I. also includes additional results as-
sessing the spread of the robustness index for different in-
come deciles and governorates, and how the Gini coefficient
of water use changes over the response surface.

4 Results20

Across the 72 simulations, sampling 9 levels of groundwater
availability decline and 8 levels of population growth, av-
erage water use declines are as expected along with average
water per capita (fig. 5a). The average consumption only gets
below the acceptability threshold of 40 L/cap/d in the most25

extreme combinations of groundwater reduction and popu-
lation growth. To trace the frontier between acceptable and
unacceptable subspaces, linear interpolation is performed for
each of the 800 individual response surfaces. The average is

then recalculated, and the exposure space is divided between 30

acceptable and unacceptable average use (fig. 5b). The ac-
ceptability gradient mostly follows a constant anisotropy in
all tested sub-spaces, thus in all figures hereafter the accept-
able sub-space is southeast of the front and the unacceptable
sub-space is northwest of the front. The effect of different 35

policies and interventions can be compared based on the po-
sition of their respective fronts, though this policy compar-
ison reveals the limitations of evaluating acceptability with
an aggregate measure of average water use. Fig. 5, for exam-
ple, shows that the baseline policy (B) seems to be preferable 40

to the rebalancing policy (R), since households have a larger
average water use under policy B for any given combination
of stressors, and the sub-space that would be evaluated as ac-
ceptable under policy B is correspondingly larger. The reason
for this, however, is not a better supply situation under policy 45

B. Rather, policy B reflects the highly unequal distribution of
piped water supply durations that currently prevails in Jor-
dan.

Under the unequal distribution resulting from policy B,
some households are unable to meet their essential water 50

demands with piped water and have to purchase expensive
supplementary water from private vendors, while others re-
ceive much more water. When policy R distributes about the
same overall quantity of piped water more equitably, more
households are satisfied with the amount of piped water they 55

receive and fewer have additional demand for expensive sup-
plementary water purchases. This leads to a lower total water
use quantity. As a result, the higher aggregate measure of
average water use under policy B seems to indicate that pol-
icy B is strictly preferable, while in most cases, policy R is 60
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actually better at meeting households’ demands, as the sub-
sequent analyses show.

4.1 Percentile-based approaches

To further explore the disparity of policy preference among
Jordanian households through the 800 representative agents,5

different aggregation levels are sampled for the two meth-
ods presented in section 2: percentile-based and generalized
mean.

We first proceed by percentile slicing. The percentage of
households with insufficient water use is calculated over10

the exposure space, i.e., every combination of population
and groundwater change. Acceptability fronts are defined by
drawing contour plots for specific percentiles of unsatisfied
users. Percentiles are weighted by the number of households
that each agent represents. Thus, the “5%” line delineates the15

border of the region in which 95% of the population is sat-
isfied, the 10% line is the limit where 90% of households
are satisfied, etc. In Fig. 6, the alternative policies and in-
terventions are compared based on their acceptability fron-
tiers, for different percentiles. With the baseline intervention20

(fig. 6a), the acceptability fronts for different percentiles are
widely spaced. The 50% front is the median acceptability
front, where half the households have an acceptable water
consumption. The 5% front is not visible; thus, the corre-
sponding share of the population is already in an unaccept-25

able state under initial (2017) conditions.
Gradient slopes slightly change across percentiles, indicat-

ing that the more vulnerable percentage of households is also
more vulnerable to demographic growth, while more robust
percentiles are more sensitive to groundwater availability de-30

cline, as they rely more on private water sales and thus pri-
vate wells. Another notable feature is that the spread between
percentiles under baseline policy can be much wider than the
difference between policies B and R based on the average
water use, while such a difference would have been used to35

select one option above another in fig. 5. The local gradient
change for the 25th percentile front (southwest corner) is due
to the response surface of one particular agent, which locally
becomes the 25th percentile and thus modifies the aggregated
front. The location of that agent in Aqaba governorate means40

it is more sensitive to groundwater changes than most others
and thus shows a different performance gradient

The following sub-plots compare this baseline policy re-
sponse with alternative policies and interventions. Figure 6b
shows the effect of the supply and demand rebalancing pol-45

icy (detailed in table 1) on the distance between acceptability
fronts for different percentiles. It is much more compact than
under baseline policy, with obvious winners and losers. By
providing more water to households with lower water use,
the equalization of supply durations within rationing sched-50

ules, combined with the raise in minimum regional targets,
massively expands the acceptable space for the 40% most
vulnerable households, while it decreases for the median or

above. This also shows that, for moderate levels of stress,
changes in allocation rules are extremely effective at protect- 55

ing the most vulnerable households, while for higher levels
of stress, most households fall under unacceptable consump-
tion if no additional resources are added. The change in ra-
tioning schedule also means supplementary purchases from
private vendors are decreased, as described for fig. 5.b. The 60

respective roles played by the rationing schedule and the bulk
water allocation targets are further separated and discussed in
S.I., additional results. This difference between percentiles is
also further analyzed in subsection 4.3. Additional resource
interventions, at either half (6c) or full (6e) capacity, shift 65

the distribution away from the axis origin (“current” condi-
tions), effectively increasing the acceptable space for all per-
centiles while slightly increasing the spread between them.
Combined policies (6d) drastically increase the acceptable
space for all household categories, as well as reducing the 70

spread between them. In the case of the combined policy at
full capacity (6f), no household reaches unacceptable water
use in the sampled exposure space. This is also a case where
the rebalancing policy, through supply duration equalization
and increase in minimum bulk water regional supply, consid- 75

erably improves the robustness equity, this time compared to
the supply enhancement.

For most household percentiles, increasing supply with
new projects at half capacity provides a larger acceptable
space than the rebalancing policy. Both interventions pro- 80

vide about the same acceptable space for the 10-percentile.
For the 5% most vulnerable share of households, the rebal-
ancing policy increases the acceptable space further than the
new supply policy at half capacity.

Combining policies has a massive effect in expanding the 85

acceptable space for the most vulnerable percentiles, while
remaining positive for most percentiles. A combined policy
with new supply at half capacity (6d) provides more accept-
able space than a full supply expansion policy without rebal-
ancing (6e) for at least 25% of the population. 90

A more explicit distribution function of the varied re-
sponses in the household population can be obtained if the
acceptable sub-space area is computed for each agent. This
abstraction can be a loss of information, as a single area
value can hide varied shapes of acceptability fronts, but in the 95

present case the gradients of the acceptability range remain
quite similar. To quantify the acceptability ranges we use the
simplest version of the Robustness Index (RI, Moody and
Brown, 2013), which is the ratio of the acceptable sub-space
over the entire exposure sub-space. The robustness index RI 100

(section 2, eq. 8) is calculated for each policy and for dif-
ferent values of the aggregation parameters. Figure 7 shows
the quantile function of the RI distribution (weighted by the
number of real households that each agent represents). Each
distribution corresponds to a given policy or intervention. It 105

allows us to quantify the difference between interventions in
terms of acceptability space. Break-even points can be iden-
tified when comparing interventions to see the percentage of
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Figure 6. percentile-based acceptability fronts. Ex: a front with a value of 10 delineates the acceptability space for the 10% most vulnerable
share in terms of water use. (a) baseline - no intervention. (b) rebalancing supply/demand (c) new supply at half capacity (d) half capacity +
rebalancing (e) new supply at full capacity (f) new supply + rebalancing (fully acceptable response).
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Figure 7. Quantile functions of the individual Robustness Index (i.e. share of the exposure space or sampled simulations that yield an
acceptable outcome) for the different interventions.

the population that benefits or is penalized by switching poli-
cies. For example, the rebalancing policy strongly increases
the RI for the 40% of the population with lower water use
and decreases it for the remaining 60%. Figure 6 shows that
a combined policy (rebalancing + new supply at half capac-5

ity) was more beneficial than new supply at full capacity for
the low consumption households. In fig. 7, we see the break-
even point is at 30% (thin dash-dotted magenta line vs thick
dashed blue line). Break-even points can be considered as the
boundaries of preference groups: shares of the population de-10

fined by how they prioritize policies based on the robustness
index metric (table 2). Percentile intervals corresponding to
specific preferences can also be found in pair-wise tables in
the Supplementary Information appendix, additional results
(table SI2), among a sensitivity analysis changing the value15

of the threshold θ.
For certain metrics, fig. 7 also shows the compounding ef-

fect of combining policies, as noted in Yoon et al. (2021).
With the baseline scenario, 60% of the population have a
RI below 0.9. The rebalancing policy (red line) is detrimen-20

tal in that regard, increasing the share to 80%. The supply
enhancement at half capacity (thin blue dashed line) lowers
the share to 35%. Combining both (thin magenta dash-dotted
line) leads to 0% of the population below 0.9, thus having
far more than additive effects compared to the baseline and25

outperforming the full supply enhancement policy.
Finally, we further disaggregate results based on other

household characteristics that shape the dynamics that are

Table 2. preference ordering for specific ranges of the household
population

Percentile range Policy preference ordering
0%< L< 8% RS+≻RS ≻R≻ others
8%< L< 20% RS+≻RS ≻ S+≻R≻ S ≻B
20%< L< 31% RS+≻RS ≻ S+≻ S ≻R≻B
31%< L< 34% RS+≻ S+≻RS ≻ S ≻R≻B
34< L< 40% others≻RS ≻ S ≻R≻B
40%< L< 48% others≻ S ≻RS ≻B ≻R
48%< L< 63% others≻RS ≻B ≻R
63%< L< 68% others≻B ≻RS ≻R
68%< L< 84% others≻R
84%< L< 100% indifferent

With: B: baseline; R: rebalancing; S: new supply (half); S+: new supply (full);
RS: combined (half); RS+ combined (full). L: robustness-ordered percentile
level Full/combined policy excluded.

simulated, in particular household income. In fig. 8, the same
percentile-based fronts are used for 3 interventions, but only 30

for households at the top and bottom 10% of incomes. Un-
der the baseline policy (8a) there is a large spread between
households within each income category, thus strongly over-
lapping with the other income group over the exposure space
despite a notable difference. For example, the 75th percentile 35

of poor households (dotted red line, "75") is roughly as robust
as the 50th percentile of rich housheolds (solid black line,
"50"). In a similar way to the overall population figures, the
rebalancing policy erases most of the differences (8b), while
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Figure 8. further disaggregation for top (solid black) and bottom (dotted red) income deciles. (a) baseline - no intervention. (b) rebalancing
supply/demand (c) new supply at half capacity

a new supply policy (half capacity, 8c) shifts the fronts to-
wards higher stress levels without changing the spread. Fur-
ther results in supplementary information show the spread of
the robustness index for different income deciles and for the
different governorates.5

4.2 Generalized mean

The alternative way to explore the disparity of the response
surfaces is to first aggregate individual water use, in a simi-
lar way to the mean operator but controlled by a parameter
that can take different values for skewness. Figure 9 shows10

the use of the generalized mean. Interventions are compared
for an array of values of p that control the skewness of the
generalized mean towards lower or higher values. As cov-
ered in section 2, the parameter p in eq.5 and eq. 6 can be
seen as a continuous cursor between the household with the15

smallest water use (p→−∞), the arithmetic mean of wa-
ter use (p= 1), and the household with highest water use
(p→+∞), all particular cases of the generalized mean. The
acceptability threshold is then simply applied afterwards to
divide the exposure space for each value of p. Results show20

similar dynamics compared to a percentile-based approach.
The parameter p plays a similar role to the percentile L, in-
ferior values of p mean more weight is given to the house-
holds with lowest use, while high values of p give more im-
portance to the households with higher water use. Rebalanc-25

ing reduces the spread between levels of aggregation while
new supply shifts the fronts and tends to slightly increase the
spread between levels. Fig 9b shows the effect that a single
household agent can have when getting closer to a MIN oper-
ator, as one outlier has different front slopes than the others.30

The robustness index RI can similarly be computed for dif-
ferent values of p (fig. 10). Policies can be compared based
on their RI, representing different social choices. A more
egalitarian approach (lowest values of p) favors rebalancing
over new supply, while a more utilitarian approach (p around35

Table 3. Preference ordering for p intervals (generalized mean)

Parameter range Policy preference ordering
−∞< p <−17 RS+≻RS ≻R≻ others
−17< p <−5.3 RS+≻RS ≻R≻ S+≻ S ≻B
−5.3< p <−3.6 RS+≻RS ≻ S+≻R≻ S ≻B
−3.6< p <−1.8 RS+≻RS ≻ S+≻ S ≻R≻B
−1.8< p <−0.4 others≻ S ≻R≻B
−0.4< p <−0.2 others≻R≻B
−0.2< p < 1.6 others≻B ≻R
1.6< p < 2.6 others≻R
2.6< p <+∞ indifferent

With: B: baseline; R: rebalancing; S: new supply (half); S+: new supply (full); RS:
combined (half); RS+ combined (full). L: robustness-ordered percentile level
Full/combined policy excluded.

1) prefers even the baseline policy over the rebalancing one
(same result as fig. 5). High values of p give more impor-
tance to households with high water use, which are more
indifferent towards policy choice. This figure shows a dis-
crepancy with the percentile-based method, as this time com- 40

bined policies are preferred in any case. Again, break-even
points can be used to identify decision-specific intervals of p,
each defined by a given policy ordering (table 3). This classi-
fication is more abstract than percentages of the population,
it rather integrates all household consumptions like the arith- 45

metic mean, but with varying degrees of skewedness towards
those with lowest use or those with highest use. Aggregation
intervals corresponding to specific preferences can also be
found in pair-wise tables in the Supplementary Information
appendix, additional results (table SI3), among a sensitivity 50

analysis changing the value of the threshold θ.

4.3 Distribution of water use

To better understand the structure of the response surfaces for
different segments of the population and the role played by
the model dynamics, we look at the consumption distribution 55
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Figure 9. aggregation of response surfaces by generalized mean. The parameter p controls the importance given to higher or lower values.
A very high p is equivalent to MAX, a very low p equivalent to MIN. p=1 equals the arithmetic mean. (a) baseline - no intervention. (b)
rebalancing supply/demand (c) new supply at half capacity (d) half capacity + rebalancing (e) new supply at full capacity (f) new supply +
rebalancing
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Figure 10. robustness index RI vs generalized mean parameter p

functions sampled within the exposure space at different lev-
els of stress: groundwater availability decline of -15%, popu-
lation growth of +75% (fig. 11a), respectively -30% / +150%
(fig 11b).

One apparent dynamics is that the benefits of supply en-5

hancement policies (blue, dashed lines) are shared unevenly
across the population compared to the baseline policy. This
explains the low preference ranking of these policies on the
lower end of the aggregation spectrum, for both aggregation
methods. As new supply follows existing rationing patterns,10

it tends to increase availability within neighborhoods with al-
ready good supply duration. Such policies thus benefit more
the upper half of the population in terms of water consump-
tion and is relatively inefficient at increasing the acceptability
sub-space for the population with the lowest use.15

Importantly, fig. 11 also exemplifies one of the reasons for
the compounding effect of combining policies (redistribut-
ing and increasing the resource pool are more effective com-
bined than alone). This is closely linked to the evaluation
of policy performance based on the share of a population20

that is above a given threshold. The more vertical is the dis-
tribution, the more egalitarian is the water use (dotted red
and dash-dotted magenta lines). This mechanically makes
those policies much more susceptible to resource fluctua-
tions as it leads to very large shares of the population sud-25

denly crossing a threshold, in one way or the other, thus pro-
ducing strong non-linearities with such metrics. Most house-
holds currently below the threshold generally benefit from
more equal supply durations, while those above the thresh-

old see their consumption reduced. Without additional sup- 30

ply there is a point where many households fall below the
threshold, even though having the policy is still beneficial
to the most vulnerable households. Combined policies ben-
efit at the same time from the somewhat homogeneous shift
upwards that added supply brings, and from the more egal- 35

itarian distribution that lifts low use households much more
effectively.

5 Discussion

5.1 Significance

Even within the same category of water users, aggregation 40

choices can lead to different preferences when comparing
possible policies in a water system. This can be particularly
relevant for bottom-up methods in water vulnerability assess-
ments, as those commonly rely on limited numbers of ac-
ceptability thresholds in order to establish policy preferences 45

under uncertainty.
This study shows how different aggregated response func-

tions can be obtained using a multi-agent hydro-economic
model for large groups of water users, by continuously shift-
ing an aggregation parameter either through percentile or- 50

dering or generalized mean. Results not only illustrate that
water users within the same category can have differing pref-
erences among a set of possible policies and interventions,
but also reveal how aggregation choices, and thus socio-
political attitudes towards equity, lead to the selection of one 55
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Figure 11. empirical CDFs of water use for different levels of stress (a) -15% groundwater availability, +75% population growth (b) -30%
groundwater availability, +150% population growth.

course of action over another. One advantage the generalized
mean has over the percentile-based approach is that the gen-
eralized mean is affected by the actual value of water use,
not only its position compared to the threshold. With the
percentile-based approach, being slightly below the thresh-5

old or having no water consumption at all makes no differ-
ence. However, the generalized mean is also a more abstract
method, while the percentile-based approach provides an ex-
plicit distribution of robustness. Both approaches do produce
similar results, in terms of how relative preferences change10

along with aggregation parameters. This illustrates how, in
this given case study, the aggregation parameter can matter
more than the aggregation method. It can also facilitate the
interpretability of the generalized mean.

The Jordan Water Model offers a high level of complexity15

and detail that allows for the exploration of such robustness
distributions across a large number of representative agents,
and to design policies that modify the demand and the sup-
ply distribution apart from the development of new water re-
sources. Statistical distributions are also affected by the inter-20

nal dynamics of the model, such as the rationing structure or
the private water sales, allowing them to evolve under stress
and further justifying the use of a distributed stress-test.

The disaggregation of the JWM enables analysis on the
compounding benefits from combined policies, compared to25

their standalone performance, in this case within a bottom-up
framing. The present stress-test, with its inherent emphasis
on a satisficing metric (meeting an availability threshold), un-
derlines the advantages and drawbacks of changing the slope
of the water use distribution through policy. It thus partially30

explains how it can lead to non-linear benefits if combined
with supply enhancement that shifts the distribution away
from the acceptability threshold. Developing new water re-
sources or reallocating existing ones often represent conflict-

ing narratives, with different national or international institu- 35

tions favoring one or the other (Hussein, 2018). In addition
to their standalone or combined benefits, the present work
further asks "for whom?", exploring how aggregation deter-
mines preference.

With the tested aggregation functions, an aggregation pa- 40

rameter can modify the preference ordering for the set of
different considered policies. Once such a divergence is ac-
knowledged, society is faced with a trade-off between in-
creasing the acceptable space for the most vulnerable house-
holds or increasing that for average or median households. 45

This exploratory work can inform such discussions, and
more generally the concept of equity in the face of uncer-
tain change, by quantifying such trade-offs within groups of
similar water users. By applying different aggregation met-
rics, managers can identify more effective solutions to reduce 50

vulnerabilities more equally, notably by combining new in-
vestments with changes in allocation rules. In turn, informing
vulnerabilities for different socioeconomic strata may also
facilitate a broader negotiation process to identify acceptable
policies in face of deeply uncertain stress. 55

When producing a response surface at the scale of a coun-
try, exploring aggregation ranges also allows one to circum-
vent loaded narratives about tracing a country’s “safe space”
with a single threshold, that could be seen as an excessively
Malthusian perspective at best - particularly when water al- 60

ready feeds into internal tensions over migration and Jor-
danian identity (Mustafa and Tillotson, 2019) - while still
considering the tangible benefits of increasing available re-
sources for specific levels of demographic growth. Disaggre-
gating the notion of “acceptable space“, of the “time left“ 65

for Jordan as a whole before reaching some levels deemed as
catastrophic, shows that such levels will be reached at very
different times by different parts of the population, and that
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this is strongly influenced by allocation policies. This can
help design the most effective solutions to ensure equitable
robustness under uncertainty.

5.2 Caveats and future research

The readability of results is here favored by several circum-5

stances and assumptions. Slopes and gradients can slightly
change but the surfaces are still roughly oriented in the same
direction for all household agents, while the performance in-
dicator itself remains the same for all. In other cases, the di-
versity of indicators, of relevant stressors, of response shapes10

and gradients, as in Hadjimichael et al. (2020), can make ag-
gregation much more challenging. While this study remains a
proof of concept, the selected indicators, the problem fram-
ing and their underlying values (Jafino et al., 2021) should
receive further scrutiny within an actual policy recommen-15

dation paper. In particular, the selection of the satisfaction
threshold can shape the results considerably, all the more so
for the percentile aggregation method.

For the scope of this paper, we have only considered a
few levels of complexity that the JWM can handle, leaving20

many others for future work. For example, it is highly un-
likely that population growth would happen homogeneously
over the country or social strata, as was assumed in this sim-
ple stress test. Among the notable factors that were not con-
sidered but would affect the results, income is considered as25

constant, thus effectively assuming a stable, null economic
growth outside of population changes. GDP per capita in Jor-
dan could increase 8 times by 2100 according to the SSP2
scenario from the Shared Socio-economic Pathways (Riahi
et al., 2017). Different growth or crisis trajectories would30

have an impact on many levels of the models such as the abil-
ity of households to purchase water from the private sector.
Besides, integrating cost-benefit analyses and socio-political
assessments of the tested policies within the present approach
should be an avenue for future research. The implementation35

of a cost-benefit analysis would require estimated costs on
the various intervention strategies (including both supply in-
frastructure and demand management), while benefits from
the interventions can be estimated via modeling results. The
benefits analysis could further be enhanced to account for the40

distributive effects among the population utilizing the aggre-
gation approaches introduced in this work.

Another economic aspect that should be incorporated in
a complete vulnerability analysis is the relationship between
income and robustness of water use, which in this modeliza-45

tion are only partially correlated over the entire sample (ge-
ographic disparities being an important factor). For exam-
ple, here the 10% most vulnerable share of the population in
terms of water use does not correspond entirely to the bot-
tom 10% of incomes. Households with acceptable water use50

might face other difficulties due to their low income, house-
holds with average income might have other ways to miti-
gate a low water availability. A related research continuation

would be to assess the effects of household’s conservation
options (technical and behavioral) on their water vulnerabil- 55

ity using the present framework.
Fluctuations in surface water were not considered either

as they have limited impact on direct drinking water sup-
ply. However, there would certainly be an influence through
changes in the agriculture sector and the effect on mobile 60

providers. And while this study focuses on the household
sub-system, a complete, multi-sectoral assessment should in-
clude agriculture, with climate change as an additional stres-
sor, and rural-to-urban transfers as an additional policy.

These limitations highlight the trade-offs and comple- 65

mentarity between a narrative, scenario-focused forward ap-
proach as originally used with the JWM, and the present in-
verse stress-test approach. The bottom-up method can iden-
tify the exact levels of stress from a few variables that would
lead to unacceptable performance, independently of time or 70

without needing a mechanistic explanation to reach such lev-
els. However, one of the challenges in applying a bottom-up
sensitivity framework to a large group of water users is that
it requires a binary outcome (acceptable/unacceptable water
use) excluding information on the magnitude of the deficit. 75

Besides, if more variables were to be considered (even after a
preliminary selection of the most impactful ones), a bottom-
up assessment would quickly run into a curse of dimension-
ality. Not only in terms of computational resources, where
each added dimension increases the number of simulations 80

by an order of magnitude, but also in terms of visualization
for policy makers. Besides, the non-temporal stress-test also
precludes analysis of path dependent dynamics, which are
particularly important in the Jordanian case (e.g. groundwa-
ter depletion). It is important to note that there is a likely 85

degree of dependence between the stressor variables. More
population at any given time may prevent curbing ground-
water abstractions and lead to a reduced availability later. Or
a collapse in water availability could have dire economic im-
pacts and lead to emigration. For the present experiment un- 90

der a deep uncertainty assumption, we choose to apply a veil
of ignorance on the relative likelihood of stressor combina-
tions, but further weighting could be applied to the response
surfaces based on trustworthiness of future scenarios. While
the conceptual simplicity of the stress-test is convenient for 95

use with a complex model, it should be be viewed as com-
plementary to other decision frameworks such as adaptive
planning (Haasnoot et al., 2019). Future avenues of research
would also involve using this framework with the option to
screen more intermediate degrees of intervention, in order 100

explore trade-offs more methodically and strategically de-
sign new policy portfolios that target specific robustness and
equity outcomes.

5.3 Conclusions

This study explores the effect of aggregation choices on wa- 105

ter vulnerability assessments that rely on response surfaces,
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when applied to a large number of water users. To do so, it re-
lies on a dynamic, multi-agent model of the Jordanian water
system, and tests combinations of supply enhancement and
distributional policies under groundwater decline and popu-
lation growth. Response functions are aggregated with per-5

centile targets or generalized mean. By relating the accept-
able share of the exposure space to an aggregation parame-
ter, this work illustrates how the safe range provided by dif-
ferent supply enhancement and rebalancing polices depends
on aggregation assumptions, but also allows one to identify10

specific ranges of aggregation - and thus social choices - that
lead to each different policy preference ordering. The pro-
posed methodology can be used to quantify the benefits of
more equitable policy design under a deep uncertainty frame-
work. In the case of Jordan, different policy portfolios have15

different equity implications, and changes in allocation and
rationing patterns can be particularly effective to equitably
reduce water vulnerabilities. This exploratory work provides
a proof of concept for more theoretical frameworks to define
distributed freshwater security, and thus formulate equity and20

trade-offs within a given type of water user in the face of
deeply uncertain changes.
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