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Abstract 

Urban green space (UGS) is a complex and highly dynamic interface between people and 

nature. The existing methods of quantifying and evaluating UGS are mainly implemented 

on the surface features at a landscape scale, and most of them are insufficient to 

thoroughly reflect the spatial-temporal relationships, especially the internal characteristics 

changes at a small scale and the neighborhood spatial relationship of UGS. This paper 

thus proposes a method to evaluate the internal dynamics and neighborhood 

heterogeneity of different types of UGS in Leipzig using the grey level co-occurrence 

matrix (GLCM) index. We choose GLCM variance, contrast, and entropy to analyze five 

main types of UGS through a holistic description of their vegetation growth, spatial 

heterogeneity, and internal orderliness. The results show that different types of UGS have 

distinct characteristics due to the changes of surrounding buildings and the distance to the 

built-up area. Within a one-year period, seasonal changes in UGS far away from built-up 

areas  are more obvious. As for the larger and dense urban forests, they have the lowest 

spatial heterogeneity and internal order. On the contrary, the garden areas present the 

highest heterogeneity. In this study, the GLCM index depicts the seasonal alternation of 

UGS on the temporal scale and shows the spatial form of each UGS, being in line with 

local urban planning contexts. The correlation analysis of indices also proves that each 

type of UGS has its distinct temporal and spatial characteristics. The GLCM is valid in 

assessing the internal characteristics and relationships of various UGS at the 

neighborhood scales, and using the methodology developed in our study, more studies 
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and field experiments could be fulfilled to investigate the assessment accuracy of our 

GLCM index approach and to further enhance the scientific understanding on the internal 

features and ecological functions of UGS. 

Keywords: Urban green space; urban planning; spatial heterogeneity; internal 

orderliness; RapidEye data, vegetation management 

Highlights (4-5) 

 The exploration of internal dynamics and heterogeneity in UGSs at a fine scale is 

limited. 

 GLCM index quantifies the vegetation growth, heterogeneity and textural 

regularity of UGSs. 

 Gardens show the greatest spatial heterogeneity, while urban forests have the 

lowest. 

 Each type of UGS has unique and distinctive spatio-temporal characteristics. 

 The spatial and texture analysis of UGSs provide evidence for their fine-scale 

management. 
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1. Introduction 

Urban green space (UGS) refers to the sum of the land and open space covered by 

vegetation in the urban planning area, including urban forests, parks, residential green 

spaces, and other open spaces (Kabisch et al., 2016). UGS plays an extremely important 

role in maintaining, improving the urban environments and the quality of human 

settlements and cities’ livability. UGS can provide multiple benefits to nature and people 

(Wang et al., 2022),  including air purification (Parsa et al., 2019; Xu et al., 2020;), 

climate change adaptation and mitigation (Gage and Cooper, 2017; Zhou and Cao, 2020), 

water quality improvement (Decina et al., 2020), stormwater runoff reduction (Kuehler et 

al., 2017; Machado et al., 2019), biodiversity conservation (Sandström et al., 2006), the 

removal of air pollution (Selmi et al., 2016) andnoise abatement (Gidlöf-Gunnarsson and 

Öhrström, 2007), as well as contributing to the social and psychological well-being of 

residents throughreducing in the possibilities ofdepression, anxiety, and body mass(Soga 

et al., 2017). ,The production of these benefits is affected by the growth and physiological 

functions of the plants in the urban ecosystem, as well as by the social-ecological 

environment that exists in the UGS (Lin et al., 2019; Sonti, 2019). Therefore, the study of 

UGS is of practical value for the prediction and intervention of these benefits (Li et al., 

2019). However, as a dynamic social ecosystem (Johnson et al., 2020; Ogden et al., 

2019), the complexity of UGS increases the difficulty of understanding and modeling the 

relationships between landscape structure and ecological functions. Therefore, an 

accurate and effective method to discover the spatio-temporal landscape characteristics of 
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UGS is crucial to solving the unique characteristics and scale requirements of the urban 

environment (McDonnell and MacGregor-Fors, 2016). 

 

In recent years, many studies based on hyperspectral remote sensing have developed 

methods to quantify and evaluate UGS (Liu et al., 2021; Qian et al., 2015; Shekhar and 

Aryal, 2019). Vegetation has always been the focus of UGS evaluation (Wania and 

Weber, 2007), in addition, a series of UGS characteristics such as size, shape, 

connectivity, composition, and configuration have also been discussed extensively 

(Grafius et al., 2018; Harris et al., 2018; Jaganmohan et al., 2016; Rudd et al., 2002; 

Schipperijn et al., 2010; Yu et al., 2020). However, in addition to the quantification of 

surface features, process characteristics should be used as the basis for quantitative 

analysis of landscapes, especially time and scale (Lausch et al., 2015). On the one hand, 

the current research on UGS at the landscape scale mainly focused on vegetation 

structure and composition (Templeton et al., 2019), although the connectivity (Pirnat and 

Hladnik, 2016) and fragmentation (Gong et al., 2013) have been widely discussed, there 

is still a lack of continuous landscape patterns measurements (Park and Guldmann, 2020), 

such as spatial heterogeneity measurement (Fan and Myint, 2014; Lausch et al., 2015), 

especially mosaic gradient landscapes composed of heterogeneous land cover in cities 

and suburbs (Van de Voorde et al., 2011), such continuous or discontinuous forest patches 

generally exist in cities and even national regions(Salvati et al., 2017). Relying on broad 

and common methods and indicators to conceptualize the ecological significance of 
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urban characters may oversimplify the relationship between urban ecosystem functions 

and landscape structure (Park and Guldmann, 2020). On the other hand, the existing 

studies on the time scale of UGS are more like a reflection of the construction and decline 

of green space (Derkzen et al., 2015; Liu et al., 2021; Wang et al., 2019). They usually 

evaluate the land use of UGS, rather than the interference and management of human 

activities on green spaces. Although the concept of neighborhood interaction between 

adjacent land use types is well-known (Fujita et al., 1999), most of the public managers, 

policymakers or scientists and their UGS evaluation still relies on land use size and 

vegetation richness (Annerstedt van den Bosch et al., 2016; Kabisch et al., 2016; Wu et 

al., 2019), overlooking the fact that the same land-use type could show a variety of spatial 

and temporal characteristics within different surrounding environments. For example, 

UGS presents a diversity green index for different building types and for the same land 

use such as forests, the green index substantially varies (Gupta et al., 2012; Liu et al., 

2016). With the development of the sustainable city, green space provision is a dauting 

challenge particularly in compact cities (Haaland and van den Bosch, 2015). Although 

UGS assessment has been mostly carried out at the landscape level rather than at the local 

site scale (Daniels et al., 2018), the research on different types of green space, especially 

on a small scale, can better reflect the diversity of ecosystem services (Kondo et al., 

2018; Pueffel et al., 2018; Xiao et al., 2018) and differentiation of human management 

(Aronson et al., 2017). At present, there is little research on these small patches (Wang et 

al., 2021), which necessitates more detailed analysis with abundant data sources 
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(Feltynowski et al., 2018). From this perspective, a method that can reflect the spatial 

heterogeneity of UGS and simultaneously demonstrate the intensity of human activities 

on a small scale is significant 

 

Successful management of UGS to ensure they sustainably provide ecosystem services 

requires timely, accurate, and abundant information to understand the ecological 

processes and neighbors relationships of forest patches on different temporal and spatial 

scales (Bartesaghi-Koc et al., 2019; Shive et al., 2018). In urban ecosystemsmapping, 

many popular vegetation indices have been used to extract the spatial information of 

urban greenery, including Normalized difference vegetation index (NDVI) proposed by 

Tucker (1979), Leaf area index (LAI) proposed by Chen and Black (1992), Green 

normalized difference vegetation index (gNDVI) proposed by Gitelson et al., (1996), and 

the GLCM (Haralick et al., 1973).   Among them, GLCM has fewer applications, despite 

some studies show it may have better performance in spatial heterogeneity (Wellmann et 

al., 2018) and boundary recognition. As a widely used method for extracting second-

order statistical texture features, GLCM constructs a combination of variables by 

analyzing a large number of variables and fitting training samples and plays an important 

role in image analysis and recognition (Hall-Beyer, 2017a; Haralick et al., 1973; 

Srivastava et al., 2020). It has been applied in high-precision feature classification 

(Dhumal et al., 2019), landscape patterns (Park and Guldmann, 2020), crowd retrieval 

(Alazawi et al., 2019; Hao et al., 2017), and medical imaging detection (Parvez and 
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Phadke, 2017; Xian, 2010). Although it is often used as a classification tool based on its 

advantages in boundary recognition (Hall-Beyer, 2017a), especially for confusing patches 

(Numbisi et al., 2019). It also has efficient applications in quantifying landscape features. 

First, it can predict landscape interior composition, aggregation, dispersion, and 

heterogeneity. For example, Park and Guldmann (2020) found that GLCM as a landscape 

spatial index can provide a more detailed explanation in urban canopy landscapes. 

Second, it can measure the heterogeneity of similar patches. Ozdemir et al., (2018) using 

GLCM homogeneity predicted birds species richness and using GLCM correlation 

predicted micro-habitat diversity. Furthermore, Ismail et al., (2018) quantified spatial 

heterogeneity in submarine canyons using GLCM entropy and evaluated the metric as a 

proxy for biodiversity. Blanco et al., (2020) used the GLCM feature combination of 

relatively homogeneous regions to describe the land surface temperature. Overall, since 

the GLCM map shows the status of texture features at a specific time, it can be used as an 

effective evaluation method to quantify the intensity of land use for  specific temporal 

scales (Wellmann et al., 2018). However, the functionality of GLCM has not yet been 

fully utilized, considering most of the investigations are conducted on the category-level 

landscape indicators, and there is a lack of exploration and measurement of landscape-

level models involving multiple land cover categories (Park and Guldmann, 2020). Thus, 

applying GLCM to  complex urban ecological environments will give a full picture of its 

richness in providing texture information, and its application for playing as a reference 

for the planning and protection of various UGS. 
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This study proposes a method for using GLCM as a spatial landscape index to evaluate 

the UGS spatiotemporal characteristics on a small scale. Taking the urban areas of 

Leipzig, Germany as a case, the aim of this study is to find out the temporal and spatial 

changes of different types of UGS using GLCM index. The advantages, potential 

applications, and limitations of the GLCM index for spatio-temporal heterogenous 

analysis have been discussed to give an insight on future work, regarding the way to 

employ the GLCM index as an informative spatial landscape metric for spatial planning.  

 

2. Study area and data used for sample analysis 

2.1 Study area 

Our study area is the City of Leipzig (Figure 1), a fast-growing and compact city located 

in eastern Germany with around 580,000 inhabitants. Leipzig has extensive urban forests, 

with trees covering 30% of the total area (Banzhaf et al., 2020). In the process of urban 

development in Leipzig, due to the economic crisis and political changes, the city lost a 

large amount of population from 1930 to 2010; however, since 2012, with the economic 

recovery, the demand for UGS has intensified due to urban population increase. To 

support the development and biodiversity of the city, Leipzig has supplemented numerous 

parks, public green spaces, and allotment gardens (Wilke and Fibich, 2017), resulting in 

almost 121 m
2
 of green space per capita (Banzhaf and Kollai, 2015). The wide alluvial 

forest belt from south to northwest forms a strong green backbone near the city center 
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(Jingxia Wang et al., 2019a). Furthermore, many parks, cemeteries, allotment gardens, 

and open green spaces interweave into a diverse green network. So far, as one of the 

leading cities in East Germany, it is a home for the continuous distribution of 

communities and open space in the neighborhood that represents the characteristics of 

urban configuration. Therefore, this study chooses its five most important UGS, including 

urban forests, parks, residential green spaces, allotment and community gardens, and 

fragmented green spaces. We explore their spatial-temporal characteristics in-depth to 

reveal the internal dynamics and neighbor heterogeneity to guide their sustainable 

development and efficient management in the future. 
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Figure 1. (A) The location of Leipzig city in Germany; (B) greenspace map of Leipzig (including agricultural areas), and the samples 

of UGS; (C) the example pictures of 5 types of UGSs, including urban forest (green points and square), allotment and community 

garden (red points and square), residential green space (brown points and square), urban park (blue points and square) and fragmented 

green spaces (black points and square)
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2.2 The inventory dataset 

In our study, we determined the four seasons from 2011 to 2012 based on the day of the 

year (DOY) and the European standard season division (Table 1). In this way, we 

generated an intra-year time series with 12 images per tile (Table 2). The RapidEye 

sensor contains five spectral bands ranging from 400 to 850nm: blue band (440~510nm); 

green band (520~590nm); red band (630~685nm); red edge band (690~730nm); near-

infrared band (760~850nm) with a spatial resolution of 5 m, an orbital height of 630 km, 

and synchronized with the solar orbit. Since its first launch in August 2008, it has been 

widely used in the fields of land, agriculture, forestry, resources, and environment (Adam 

et al., 2014; Kafy et al., 2021; Krischke et al., 2000; Tigges et al., 2013; Zhang et al., 

2021), because of its abundant spatial and spectral information. Its distinct red edge band 

is sensitive to changes of chlorophyll content (Ozkan et al., 2017) and thereby greatly 

assists our investigations in species separation. To accurately recognize the type of green 

spaces and surrounding environment, as ground truth data, a biotope map from the 

Saxony in 2014 was used, given the fact that it has a long tradition of more than 45 years 

(Schulte and Sukopp, 1993). Based on aerial photography and ground surveys of 

individual habitats, it has mapped diverse locations and biomes in different regions and 

conducted long-term monitoring. It provides a basis for further spatial analysis of 

ecological conditions on landscape-level (Löfvenhaft et al., 2002), it is widely used for 

policymaking in landscape planning and management (Jingxia Wang et al., 2019b; 
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Werner and Zahner, 2010). 

 

Table 1. The remote sensing and inventory dataset 

Datasets Masked out areas Date Source 

Satellite images Full region of Leipzig 2011-2012 

RapidEye 

(RapidEye, 2016) 

City border Rural surrounding 

2014 

The free state of 

Saxony 

(Schulte and Sukopp, 

1993; Jingxia Wang et 

al., 2019b)  

Biotope map 

Forests 

green and blue infrastructure 

Green and open spaces 

Built-up areas, traffic 

facilities, and special areas 

 

Table 2. Image acquisition dates of the RapidEye remote sensing data. 

Acquisition date Season Month DOY (Day of year) 

26.01.2012 Winter January 26 

01.03.2011 Winter March 60 

22.03.2011 Spring March 91 

21.04.2011 Spring April 111 

14.05.2012 Spring May 135 

03.06.2011 Spring June 154 

27.06.2011 Summer June 178 
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24.07.2012 Summer July 206 

20.08.2011 Summer August 232 

25.09.2011 Autumn September 265 

31.10.2012 Autumn October 305 

21.11.2012 Autumn November 326 

 

2.3 Sample selection 

UGS is an area for greening the environment in addition to urban built-up land, which has 

positive effects on urban ecology, and residents’ recreation. To reflect the impact and 

ecological function support of UGSs on the surrounding environment, a combination of 

different natural forms and management methods such as city central parks, residential 

parks, gardens, and urban forests has been formed. Considering the resolution of images 

and the green space composition status of Leipzig, we mainly discussed 5 types of urban 

green spaces, including urban forests, urban parks, residential green spaces, allotments 

and community gardens, and fragmented green spaces. Leipzig has about 2,160 hectares 

of forest area (Wilke and Fibich, 2017). The Leipzig alluvial forest in the lowlands of the 

Luppe, Pleiße, and Weißer Elster rivers is the most important and largest urban forest 

corridor. Similar green corridors are also distributed in Parthe and Rietzschkeaue in the 

north, as well as Grünzug Südost to Störmthaler See, and Anne-Crottendorfer railway 

lane (Stadt Leipzig 2013). Except for green corridors, there are is a large number of urban 

public green spaces, including parks and gardens. Hasse (2019) had surveyed and 
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mapped the distribution of residential green spaces, allotments and community gardens, 

forests, and parks in Leipzig. Based on these data, we adopted a stratified random 

sampling method to have a total of 110 samples from four types of urban forest patches 

(Table 3), including 27 in forest areas, 32 in parks, 24 in residential areas, 17 in gardens. 

As for the fragmented green spaces, we had 10 samples for them for our comparison 

considering Leipzig has some fragmented green spaces located near farmland and outside 

residential areas that separate the city and suburbs (The distribution of sample points is 

shown in Figure 1).  

 

Table 3. Selected samples of each UGSs type. 

 

3. Methods and data analysis 

3.1 Workflow 

In this study, based on remote sensing data and ground truth data, the temporal and 

spatial characteristics of 5 types of UGS in Leipzig were quantitatively identified and 

Type of UGSs Area(ha) Proportion Number of samples 

Urban forests 2160 27% 27 

Parks 2608 32% 32 

Residential green spaces 1990 24% 24 

Allotment and community garden 1364 17% 17 

Fragmented green spaces - - 10 

In total  8122 100% 110 Jo
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evaluated. The workflow is shown in Figure 2. In the first step, after performing 

radiometric and atmospheric corrections on the acquired remote sensing images using the 

Erdas imagine ACTOR 2 (Richter and Schläpfer, 2019), we extracted NDVI, and the first 

3 components in principal component analysis (PCA), proposed by Wold et al., (1987). 

We found that NDVI was more stable and was able to provide greater contrast, whereas 

principal components from PCA did not contribute to recognizable results. Thus, in the 

second step, we calculated the GLCM based on the gray image of NDVI and got 8 

indices (Table 4). Before sample selection, we randomly collected 500 circular samples 

with a radius of 10 m in the study area. Then, combined with the Biotope map, the UGS 

was divided into 5 categories, and a total of 110 sampling points (Table 3) were selected 

as our final sampling points using the stratified random sampling method. In the last step, 

the GLCM variance, GLCM contrast, and GLCM entropy were selected as the main 

indices to quantitatively analyze the vegetation growth, contrast, and potential human 

interference of the 5 types of UGSs. In order to further explore whether the vegetation 

growth, heterogeneity and regularity of urban green space affect each other, we discussed 

their correlation using Pairwise Pearson's correlation coefficient that calculated in SPSS 

software (SPSS Correlation Analysis Tutorial). 
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Figure 2. Flowchart of the methodology for GLCM computing, UGS samples selecting 

and the UGS temporal and spatial characteristics assessing 

 

3.2 GLCM computing 

GLCM is a texture extraction method that measures comprehensive information about the 

distance, direction, interval, and change range of the image, it has high accuracy in 

identifying the texture and regularity of the images (Srivastava et al., 2020). When 

describing the landscape patterns, it performs better than the landscape metrics, which 
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can be used as a reliable index for the spatial configuration (Park and Guldmann, 2020). 

As for texture statistics, the GLCM index includes variance, mean, homogeneity, 

contrast, dissimilarity, entropy, angular second moment (ASM), and correlation within a 

given window size and offset (Haralick et al., 1973). These texture statistics are defined 

as 3 main categories in general research applications: 1) statistical group, which describes 

the basic statistical variables of the gray value in the texture, such as mean, variance, and 

correlation; 2) contrast group, which measures local changes within the patch and the 

difference with surrounding pixels, such as contrast, homogeneity, and dissimilarity; 3) 

orderliness group that reflects the regularity and disorder of the pixel values, such as 

ASM and entropy. 

The calculation of GLCM is based on gray level images and the common methods for 

gray level conversion include using an index (e.g. NDVI or Normalized difference 

building index (NDBI) (Hall-Beyer, 2017a). Considering our study objects, as well as 

more accurate comparative information between vegetation and buildings in the city 

(Kuffer et al., 2016; Zhong et al., 2017), we used NDVI as the original information 

channel. The second step is to choose a moving window size and it is an important means 

to balance the amount of information extracted from texture features and the amount of 

noise. In our study, due to the high resolution of the RapidEye image and low 

heterogeneity inside the UGS (Chen et al., 2004), we chose a 5×5 window size which is 

the same spatial resolution of our data source. 

The texture is a descriptive statistic that will differ under distinct contexts. It can be 
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different due to the change of study scales and window size. . (Hall-Beyer, 2017b). 

Therefore, we applied a regional GLCM calculation in Leipzig on R-4.2.0 (R core team, 

2020) to undertake a comparative analysis of UGSs in different regions,. At the same 

time, the 8 indices obtained were according to their categories. 

Table 4. The category of GLCM indices. 

Group GLCM index Equation Description 

Stats group Mean 

∑ 𝑖(𝑃𝑖,𝑗)

𝑛−1

𝑖,𝑗=0

 

The average of gray level values in 

an image 

Variance 

∑ 𝑃𝑖,𝑗(𝑖 − 𝑀𝐸𝐴𝑁)2

𝑛−1

𝑖,𝑗=0

 

It increases when the gray level 

values differ from their mean 

Correlation 

∑𝑃𝑖,𝑗

[
 
 
 
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

√(𝜎𝑖
2)(𝜎𝑗

2)
]
 
 
 

𝑛−1

𝑖,𝑗=0

 

Returns a measurement of how 

correlated a pixel is to its neighbor 

over the whole image 

Contrast 

group 

Homogeneity 

∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑛−1

𝑖,𝑗=0

 

Returns a value that measures the 

closeness of the distribution of 

elements in the GLCM to the 

GLCM diagonal 

Contrast 

∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2

𝑛−1

𝑖,𝑗=0

 

Returns a measurement of the 

intensity contrast between a pixel 

and its neighbor over the whole 

image 

Dissimilarity 

∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑛−1

𝑖,𝑗=0

 

Similar to Contrast 

Orderliness 

group 

Entropy 

∑ 𝑃𝑖,𝑗(− ln 𝑃𝑖,𝑗)

𝑛−1

𝑖,𝑗=0

 

Returns the summation of squared 

elements in the GLCM 

Angular 

second 

moment 

∑ 𝑃𝑖,𝑗
2

𝑛−1

𝑖,𝑗=0

 

Returns the sum of squared 

elements in the GLCM 
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3.3 Indices selection 

We have identified 8 GLCM indices that can be divided into 3 groups. Indices belonging 

to the same group have similar descriptive information regarding the landscape texture. 

Among these 8 indices, contrast, dissimilarity, entropy, and variance are the most 

widespread that can be associated with visual edges of land-cover patches (Hall-Beyer, 

2017a). They have excellent edge recognition ability in reflecting the spatial relationships 

and resources exchange between diverse UGSs and their respective surroundings. GLCM 

variance is suitable for different urban environments with sharp contrasts between 

buildings and their surroundings (Kuffer et al., 2016). In the application of information 

science, entropy often means more information, and higher entropy indicates more 

complex variability, it is important to the textures of particular landscape metrics (Hall-

Beyer, 2017), and it is verified that it is the most relevant parameter to the landscape 

index (Ozdemir et al., 2012). Contrast and dissimilarity have a high degree of positive 

correlations in the description of texture features, and they all change significantly with 

displacement (Gebejea and Huertas, 2013). But GLCM contrast is related to the average 

gray level difference between adjacent pixels, which is similar to variance, and its unique 

visual evaluation can distinguish different texture patterns (Hall-Beyer, 2017a). 

Therefore, we choose variance, contrast, and entropy as the main indicators for the next 

analysis. In our experiment, the variance can well describe the vegetation coverage and 

the visual boundary between the vegetation and the built-up area; the contrast will be 
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used to supplement the contrast between the vegetation and the built-up area boundary, 

and reflect the spatial heterogeneity in the patch at the same time. As a measure of 

information richness, entropy can supplement contrast in expressing the heterogeneity 

within the patch, reflecting the regularity of the patch. In other words, its changes can 

reflect the interference between human activities and UGS. 

 

4. Results 

4.1 Texture features of UGS 

By executing GLCM extraction and calculation in Leipzig, we got the converted GLCM 

variance, contrast, and entropy map (Figure 3). According to the landscape and texture 

characteristics of the GLCM index, we found that the GLCM variance value is lower in 

waters and built-up areas, while the vegetation area is higher. It has an excellent ability to 

distinguish vegetation and building areas. In addition, due to its value range, different 

vegetation areas (such as forests, grasslands, gardens) and different vegetation coverage 

(inside or edge of the forest) can be well displayed on the map, so GLCM variance has 

great potential in UGS when evaluating vegetation growth and coverage; It can be seen 

from the GLCM contrast map that Leipzig’s urban patches present a sprawling unstructed 

trend gradient of spatial heterogeneity. The wide alluvial forest belt from south to 

northwest divides the city into east and west urban areas, and the construction area 

spreads outward in fragments. The urban sprawl trajectory and the transitional edge 

between urban and rural areas can be reflected in the map, especially the fragmentation 
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and density changes of urban patches; GLCM entropy, as the most informative index in 

the ordered group, reflects the regularity of the texture in the image. The closer to the 

dense or continuous building area, the higher the index value in Leipzig. It shows that the 

areas with denser human activities have higher entropy. 

From the visual map of the UGS patches (Figure 4), GLCM variance has better boundary 

recognition capabilities, especially in the boundary between vegetation and buildings. 

However, it performs poorly in the garden area. GLCM contrast reflects the spatial 

difference between patches in texture, it shows strong contrast in parks and residential 

areas, while the contrast in fragmented green space is not obvious. GLCM entropy is an 

index that reflects the richness of texture information. It has great potential in expressing 

the internal texture characteristics of patches. For example, urban forest patches with 

uniform variance and contrast, displays mottled graphics, which may because of the 

differences in tree species. This means that it has finer resolution capabilities on small 

scales. 
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Figure 3. The GLCM variance, contrast, and entropy map of Leipzig, the value from low to high displayed in color brown, green and 

blue.
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Figure 4. The GLCM variance, contrast, and entropy map of 5 types UGS in Leipzig, the value from low to high displayed in the color 

brown, green and blue. 
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4.2 The seasonal variation of UGS 

4.2.1 The seasonal vegetation growth of UGS 

As shown in Figure 5, the GLCM sample variance map for each type of UGS shows diverse discrepancies in four seasons. It can be 

observed that the GLCM variance had better boundary recognition when the vegetation grew well in summer and autumn. The right 

part of Figure 5 demonstrates the values of GLCM variance change from spring to winter. The values of the 5 types of UGS are 

highest in summer, especially in the urban forest with the densest canopy in summer. Compared between seasons, we found that 

vegetation growth in urban forest areas shows almost the same variation as the seasonal change. Compared with other UGS, the 

garden had the lowest variance, and the annual change was relatively stable. Residential green space also has a low variance, and its 

value is the lowest among all UGS in autumn and winter. It tends to have a lower amount of vegetation, which is scattered and small, 

and it is often surrounded by a large number of buildings. The fall of leaves and snow cover contribute to the similarity of the GLCM 

variance values for all 5 UGSs. Overall, GLCM variance shows obvious seasonal characteristics when it is used to describe vegetation 

growth and shows good visual boundary recognition ability in built-up areas.
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Figure 5. The GLCM variance of 5 UGSs in four seasons (left: GLCM variance sample map. Right: GLCM variance values and 

standard error graph of samples)

Jo
urnal P

re-proof

Journal Pre-proof



4.2.2 The seasonal heterogeneity of UGS 

GLCM contrast represents the contrast of local gray values, the larger the value, the 

stronger the heterogeneity. As shown in Figure 6, the closer to the built-up area, the 

higher the contrast of each UGP type. Among all five UGP types, the boundary 

recognition ability of residential green spaces performs best, especially those areas within 

high-density of buildings and continuous built-up areas. However, the forest areas have 

lower contrast values due to their high homogeneity in essence.  

The statistical analysis result on the right of Figure 6 shows that the heterogeneity of the 

5 UGSs has significant differences within the four seasons. The heterogeneity of urban 

forest areas and fragmented green spaces areas were relatively stable throughout the year, 

but the value is lowest in summer. Both residential areas and gardens belong to densely 

built-up areas, and their textural heterogeneity remained at a high level throughout the 

year. However, the vegetation composition of gardens was more complex and there was 

more evergreen vegetation, the heterogeneity of gardens maintained a high level although 

the leaves fall in autumn. In winter, the heterogeneity of UGS increased compared to 

autumn. However, the heterogeneity of the gardens was at the lowest level in the whole 

year in winter. Overall, in cold winter, the withering or death of the vegetation leads to 

the reduction of heterogeneity. 
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Figure 6. The GLCM contrast of 5 UGSs in seasons (left: GLCM contrast sample map. Right: GLCM contrast values and standard 

error graph of samples).  
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4.2.3 The seasonal GLCM entropy of UGS 

In Figure 7, we found that the closer to the built-up area, the higher the entropy value (the 

color tends to green-blue). The GLCM entropy in the patch shows obvious mottled 

pixels, and there were strong gray contrasts, such as in the interior of urban forests, bare 

ground, and different tree species created mottled patterns. The numerical analysis 

indicated that the garden area has the highest entropy and maintains a stable range of 

changes throughout the year. GLCM entropy in urban forests is the lowest, followed by 

fragmented green spaces, considering most of the fragmented green spaces are located at 

the edge of farmland, roads, or rivers. Although no strong human interference was 

observed, the GLCM entropy of fragmented green spaces could attribute to their 

surrounding environment (e.g. rivers diverged by green spaces or roads) and on-site 

activities (e.g. agricultural plantation and grain harvest). In general, the GLCM entropy is 

a manifestation of the complexity of information within the patch, it does not change with 

seasons.  
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Figure 7. The GLCM entropy of 5 UGSs in seasons (left: GLCM entropy sample map. Right: GLCM entropy values and standard 

error graph of samples).
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4.3 Correlation among GLCM indices 

Through the results above we found that the influence of seasonal changes on UGSs is 

mainly reflected in vegetation growth, and the changes in spatial heterogeneity are 

mainly reflected in fallen leaves and winter snow, but the impact of seasons on the 

regular and orderliness of green spaces is relatively small. 

To investigate the relationships between our derived GLCM indices, we conducted a 

correlation analysis on the GLCM indices of the 5 types of UGS. As Figure 8 shown, 

overall, the three indices of GLCM had an obvious correlation with each other in urban 

forest patches. First, GLCM variance has a strong negative correlation with GLCM 

entropy and the results can be interpreted as the stronger the human management and 

interference of UGS patches, the lower the green space naturality. As for the GLCM 

contrast and GLCM entropy, they have a strong positive correlation, which means that 

the stronger the human management and interference of UGS patches, the higher the 

spatial heterogeneity. However, the correlation between GLCM contrast and GLCM 

variance is not statistically significant. Allotment gardens and urban forests had the most 

significant correlation on GLCM indices, both indicate a positive correlation between 

GLCM contrast and GLCM entropy. But the correlation was opposite between GLCM 

variance and GLCM contrast, as well as between GLCM contrast and GLCM entropy. It 

means for urban forests, the better the trees grow and the lusher the canopy cover, the 

contrast observed through texture features will decrease and lose the information richness 

of texture features at the same time. While in allotment gardens, due to the diversity of 
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species and frequent manual management, the trees grow very well and show high 

contrast and information richness. The correlation of the indices is not significant in other 

types of UGSs, UGSs have similar performances in built-up and non-built-up areas 

respectively. But the correlation between GLCM variance and GLCM entropy is negative 

in parks and residential areas, as shown in the overall correlation chart, generally the 

stronger the human management and interference, the worse the vegetation growth; 

However, due to mostly frequent human management, the GLCM variance and GLCM 

entropy of garden areas change smoothly throughout the year (see Figure 4 and Figure 6) 

and they also present strong positive correlation. 
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Figure 8. Pairwise pearson`s correlation coefficient among the GLCM variance, GLCM contrast, and GLCM entropy of 5 

types of UGSs. (Note: Scatter plots indicating the degree of correlation between variables (below diagonal) and pairwise 

pearson`s correlation r values (above diagonal). Statistical significant correlation coefficients are indicated as following: * 

p<0.05, ** p<0.01 and *** p<0.00 
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5 Discussion 

5.1 The landscape description using GLCM indices 

We evaluated the temporal and spatial characteristics of UGSs through three indices of 

GLCM. The results show that, first, the variation of texture features can describe the 

spatial relationship of the interior of a patch and between patches, such as the complexity 

of the internal components of the patches (Kuplich et al., 2005) (i.e. the complexity in an 

urban forest in Figure 7); the spatial heterogeneity between patches (Numbisi et al., 2019) 

(e.g. the built-up area in Figure 6); the potential influence of human interference and 

management on the patches (Wellmann et al., 2018) (in Figure 6 and 7, the garden area 

maintains stable temporal and spatial changes). Second, both the GLCM contrast and 

entropy, there is a clear distinction between built-up areas and non-built areas, namely the 

denser the buildings the stronger the heterogeneity and human interference and 

management (Grimm et al., 2000). Third, on the time scale, the effect of seasonal change 

on UGS is mainly reflected in the vegetation growth (Figure 5), and the change in 

heterogeneity is mainly reflected in the fall of leaves and snow cover (Wang et al., 2014) 

(Figure 6), but the impact on human interference and management is relatively small. As 

shown in Figure 7, most of the UGS annual changes are not significant, except for forest 

areas. It might be resulted from that the GLCM entropy is an index describing the 

regularity of internal textures, and the natural changes of forests have caused this change 

(Wang and Zhao, 2018).  
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Using the GLCM index as a landscape metric is an attempt to study the spatial 

characteristics of ecological landscapes. Although we have not analyzed all of the GLCM 

indices, we have selected representative indices from the three categories of the GLCM 

index, considering the indices of the same category have strong correlations and usually 

reflect similar spatial variation information (Hall-Beyer, 2017b). GLCM is not only a tool 

for extracting information, but its spatio-temporal performance still has a broader 

development space. For example, predicting biodiversity (Ozdemir et al., 2018), 

assessing and quantifying land-use intensity (Wellmann et al., 2018). But it has still some 

gaps, such as the choice of the research object scale, the confusion of the index function 

and so on. In the future, the uses of higher resolution remote sensors and deep learning 

methods will assist in accurately quantifying its dynamics (Huerta et al., 2021). 

Therefore, we aware that using GLCM as a landscape metric requires more 

comprehensive and systematic research, although it is beyond the scope of this study.  

5.2 The computation of GLCM indices 

In general, the calculation of GLCM is highly dependent on the scale range (Josselin and 

Louvet, 2019), and it is impossible to apply from one scale to another (Hall-Beyer, 

2017b). For example, when extracting texture features in a forest range and a city range 

separately, the GLCM variance value of the same forest is totally different and cannot be 

compared. Therefore, in this study, we extracted texture features of the entire urban area 

(at the same spatial scale) to compare the landscape spatial attributes of different green 

spaces. Our study results proved that: 1) In terms of boundary recognition, GLCM 
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variance can better show the boundary of vegetation area and the built-up area in summer 

and autumn. 2) GLCM entropy can not only reflect the amount of information inside the 

patch, such as open spaces and species biodiversity but also express human management 

and interference by the orderliness of texture distribution. 3) GLCM contrast can express 

the spatial heterogeneity of urban landscape, especially the transition zone of different 

land-use types. From the GLCM map of the green space (Figure 3), we can find that even 

for the same land cover type, the patch has a mottled pattern. At the forest patch scale, we 

infer that it can distinguish between deciduous trees and evergreen trees, it is a promising 

method for detecting species diversity(Zhao and Wang, 2020). Therefore, GLCM can be 

used to reflect the heterogeneity within the patch, the diversity of species, and the edge 

effect of the ecosystem in future studies.  

5.3 The limitations of this study 

According to our statistical results, the spatial characteristics of the garden area change 

little in a year due to frequent human management. This is because the vegetation of the 

garden has a higher biodiversity than other types of urban green spaces (Dixon, 2022), 

and at the same time, these vegetations are managed and protected by the owner more 

carefully as a luxury (Cameron et al., 2012). Throughout the year, the vegetation 

maintained a consistent morphology, such as lawns that were regularly mowed, thus 

reflected little change in the annual remote sensing imageries. In addition, using older 

imagery in our study may be detrimental to predicting future trends in UGS, because 

alien plant species are currently naturalized (Pysek et al., 2017), especially in gardens 
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(Haeuser et al., 2018), this may give a different result with seasonal variation. Although 

our study revealed the spatial characteristics of the interior and neighborhoods of urban 

green space patches, it cannot perform a unified quantitative analysis of the time series of 

multiple satellites images in the study area. 

 

We are aware of the methodological limitation due to GCLM computation merely based 

on NDVI. Although NDVI has excellent identification and description capabilities 

(Defries and Townshend, 1994), it causes confusion when depicting the water area 

(Szabó et al., 2016). As shown in Figure 3, the value of the water area in the variance 

map is close to large continuous buildings and bare fallow land. Besides, the exploration 

of temporal and spatial characteristics of GLCM is different from land use classification, 

and there is still a lack of verification of accuracy. When evaluating the heterogeneity of a 

green space, a detailed field investigation is necessary, otherwise it can only be compared 

amongst different types of green space. As shown in Figure 6, we can find from the 

GLCM contrast map and statistical chart that the garden has a particularly high 

heterogeneity, but unsure about how many species it has indeed.  

5.4 The implications and challenges for urban green infrastructure planning 

Our study is a one-year analysis for the purpose of disclosing the seasonal vegetation 

growth and heterogeneous changes in the UGSs of Leipzig. It has verified the possibility 

of GLCM indices being used for the landscape description,,  excluding the reflection of 

urban expansion or renewal over a long term. In urban green infrastructure planning, we 
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should pay attention to the urban challenges caused by the interior heterogeneity of UGSs 

to people and nature (Haaland and van den Bosch, 2015), apart from the increase and loss 

of UGS coverage. These challenges ought to be addressed in urban green infrastructure 

planning, include but are not limited to, the impact of UGS on residents' health and well-

being (Bertram and Rehdanz, 2015), social equity (Kimpton, 2017), biodiversity loss 

(Ikin et al., 2013), and the lack of recreation areas. In the process of urban expansion, 

while more or the same amount of new green spaces can be created, it does not mean that 

urban residents are close to green space and thereby can obtain corresponding quality 

ecological functions (Feltynowski et al., 2018; Wang et al., 2019b). Therefore, from 

methodological perspective, our research may contribute to further studies in quantifying 

internal quality of various urban green spaces such as residential green spaces, 

allotments, and urban forests. 

Many cities are currently exploring more comprehensive UGS management and planning 

strategies in the context of urban growth (e.g., Wang et al., 2022) and regeneration. It is 

important to include the measurement of small-scale green space characteristics (Haaland 

and van den Bosch, 2015), particularly considering the internal textual distinction and the 

interactions between UGS and their surrounding environments (Wang et al., 2020). Given 

that the spatiotemporal features of UGSs are crucial for dealing with the challenges of 

climate change adaptation and mitigation (Demuzere et al., 2014), biodiversity 

conservation (Aronson et al., 2017), and human health (Wolch et al., 2014), our method 

may help  better understand the spatial functions and driving forces of UGSs. In urban 
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green infrastructure planning, green and blue spaces with lower GLCM variance could be 

firstly considered, as they would likely provide less ecological function (Semeraro et al., 

2021) such as uneven land surface temperature (Masoudi and Tan, 2019). Moreover, 

green and blue spaces with high GLCM contrast need to be focused since high 

heterogeneity areas are oftentimes related to high biodiversity hotspots (Lepczyk et al., 

2017; Sodoudi et al., 2018). The areas with high GLCM entropy reflect frequent human 

activities and high potentials of planning activities, and the stability of their ecosystems is 

deserved to be attention, such as the demise and fragmentation of green spaces (Colding 

et al., 2020; Huang et al., 2021). An in-depth analysis considering GLCM changes across 

years, with many on-site investigations, and respectively for each green infrastructure 

type will be insightful to further validate the value of the GLCM index for urban green 

infrastructure planning. Although it is out of scope of this study, our study can still 

provide a basis (i.e. the detailed interior characteristics of UGSs) for addressing urban 

challenges in green infrastructure planning, in particular in climate change adaptation and 

biodiversity conservation (Wang, 2020). 

 

5 Conclusion 

In this study, we combined remote sensing technology and texture feature extraction 

methods and employed the GLCM index to evaluate the spatio-temporal characteristics 

of UGSs in Leipzig. We unveiled the internal dynamics and neighborhood heterogeneity 

of different types of UGS (e.g. residential green spaces, allotment areas). We selected 
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GLCM variance, contrast, and entropy to analyze different types of UGSs based on the 

description of vegetation growth, spatial heterogeneity, and interior orderliness. The 

results show that different types of UGS have conspicuous characteristics considering 

their surrounded buildings and the distance from the built-up area. Notably, within one 

year, UGS far away from built-up areas has more pronounced seasonal variations; 

however, large and dense urban forests have the lowest spatial heterogeneity and interior 

orderliness. According to the correlation analysis, it is found that, in general, the variance 

and entropy are significantly negatively correlated amongst varied UGSs, while GLCM 

contrast and entropy are significantly positively correlated. It is worth noting that the 

correlation between variance and contrast of green space in built-up areas and vegetation 

areas is opposite.  

 

Conclusively, it is reasonable to use the GLCM index as a landscape metric to evaluate 

UGS, especially for measuring landscape heterogeneity at very fine scale. This method 

based on "form-structure" provides a better understanding on the spatial variation and and 

spatio-temporal relationships of different UGS. The insightful information demonstrated 

in this study could contribute to spatially explicit urban green infrastructure planning and 

support fine-scale UGS management with site-specificity. 
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