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Abstract

Exposure to environmental pollutants via food, particularly during the prenatal and
early postnatal periods, has been linked to adverse effects on the immune system.
Among these pollutants, the widely used pesticide glyphosate has been associated
with endocrine disruption, autism, and cancer. Occupational high exposure to
glyphosate has also been shown to influence immune function and exacerbate allergic
asthma. However, there are no studies investigating the effect of a common low-dose
glyphosate exposure on the allergic immune response — neither directly nor across
generations. We therefore explored the impact of oral low-dose glyphosate exposure
(0.5 and 50 mg/kg body weight/day) on airway inflammation in dams (FO) and the
offspring (F1 and F2 generations) using a murine multi-generational asthma model.
While exposure to 50 mg/kg glyphosate induced a mild eosinophilic infiltration in the
bronchoalveolar lavage and Thu2 cytokine production in the dams, the F1 offspring
developed a reduced immune response after maternal exposure to 0.5 mg/kg
glyphosate. In particular, decreased lung inflammation, HDM-specific IgE levels, and
asthma-relevant cytokine production were primarily observed in the female F1
offspring. However, not only the Tu2 cytokines IL-13 and IL-5 but also the Tu17
cytokine IL-17 and Tu1 cytokine IFN-y were reduced indicating a more general
immunosuppressive function. Notably, the dampened immune response was no longer
observed in the female F2 generation. Furthermore, female F1 offspring showed an
increased abundance of bacteria in the gut, which have been associated with probiotic-
mediated reduced allergic immune responses. Our results suggest a potential
immunosuppressive effect of low-dose maternal glyphosate exposure in the F1
offspring that might be mediated by an altered microbiota composition. Further studies

are needed to explore if this type of immune response modulation might also be



62 associated with impairments in immune defense upon infectious diseases or even
63  cancer pathology.
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1. Introduction

Humans are ubiquitously exposed to multiple environmental pollutants (Mitro et al.,
2015). Next to well-investigated chemicals in plastic materials and commercial
household products like phthalates, bisphenol A and perfluoroalkyl substances
(PFASSs), pesticide residues are the most common chemicals found in the natural
environment (Kvalem et al., 2020; Martin et al., 2019; Ye et al., 2017). Pesticides are
used to eliminate active organisms like insects (insecticides), fungi (fungicides), or
weeds (herbicides) and are applied in agricultural contexts as well as in landscaping,
public parks, or domestic homes (Dabhiri et al., 2021; Kim et al., 2017). The general
population is most commonly exposed to pesticides via the food chain, air, and water,
however, dietary exposure seems to account for up to 90% of total pesticide exposure
(Anderson et al., 2014; Yilmaz et al., 2020). While acute toxicity is well-established for
a variety of pesticides, research is limited with respect to exposure scenarios seen in
the general public with chronic low-dose concentrations (Requena-Mullor et al., 2021).
These chronic low-dose exposures are suspected to trigger biochemical pathways in
the highly susceptible in-utero development and the early postnatal phase potentially

leading to adverse offspring health outcomes.

Among these pesticides, glyphosate is the most widely used pesticide worldwide. Even
though its use in agriculture has been approved since the 1970s internationally, there
is still a distinct lack of consensus between authorizing agencies like the European
Food Safety Authority (EFSA), International Agency for Research on Cancer (IARC)
or Food and Agriculture Organization (FAQO), about the range of concentration at which
glyphosate is to be considered safe (Agostini et al., 2020). Glyphosate and its residues
have been readily detected in and on different food products (Louie et al., 2021),

however, the quantities of glyphosate to which the general population is exposed daily
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via food residues is still unclear (Connolly et al., 2020; Gillezeau et al., 2020). Recent
human data extrapolated from glyphosate’s urinary excretion rate showed that average
glyphosate intake in westernized countries might be close to EFSA’s acceptable daily
intake (ADI) level (Connolly et al., 2020; Vandenberg et al., 2017), with exposures even
higher in occupational settings or lower-income countries due to greater pesticide use
and less restrictive pesticide regulations (Buralli et al., 2020). Indeed, it was shown
that the general population exposure has continuously increased over the past
decades (Gillezeau et al., 2020). So far, it is unclear whether low-dose glyphosate
concentrations that are deemed acceptable for the common exposure by regulatory
agencies, still have adverse effects in susceptible individuals like the unborn fetus
exposed in utero or via breastmilk (Gillezeau et al., 2020; Mamane et al., 2015). There
is increasing evidence that glyphosate may possess endocrine-disrupting properties,
but research on a potential immune-modulatory impact with consequences for asthma
development is still scarce (Maddalon et al.,, 2021). Epidemiological studies in an
occupational context suggest a potential correlation between direct exposure to
glyphosate-based herbicides (GBH) and wheeze and asthma in women (Hoppin et al.,
2008; Hoppin et al., 2017). Experimental investigations using different animal models
on whether glyphosate potentially affects innate and adaptive immune system remain
inconclusive (Peillex et al., 2020). So far, experimental perinatal glyphosate exposure
has been associated with autism, depression, or infertility (Milesi et al., 2021; Rueda-
Ruzafa et al., 2019). To the best of our knowledge, there are no published experimental
studies in mammals investigating the effects of maternal glyphosate exposure on the
allergic immune response in the FO, F1, or F2 generation. To provide insights into this
topic, we employed a well-established multi-generational mouse model (Jahreis et al.,
2018; Junge et al., 2021; Junge et al., 2022) in which dams were chronically exposed

to low doses of glyphosate during pregnancy, the lactational period and thereafter. In
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this context, we studied the influence of glyphosate gavage on asthma development in

the dams themselves but also in the next two generations.

2. Methods
1. Mice

Female Balb/cByJ mice (6-8 weeks of age) were purchased from the Elevage Janvier
Laboratory (Le Genest St Isle, France) with a 7-day adaption period before the start of
experiments. Animals were maintained in groups of 3-6 mice per cage in the animal
facility at the University of Leipzig (Germany) under conventional conditions with 21.5
- 23°C room temperature, an average of 55% humidity, and a 12-hour day/night rhythm.
Exposed and control dams as well as the offspring of exposed and control mice were
housed separately. All mice were kept in multiple sealed cages with HEPA filters by
Sealsafe® and bedded with LIGNOCEL® bedding material. Dams and pups received
a phytoestrogen-free diet (C1077 from Altromin, Lage, Germany) and water ad libitum.
All animal experiments were performed at least 3 times with at least 3 dams per group
resulting in = 8 pups per group and sex (with a maximum of 4 pups per sex per dam).
The F2 generation included = 4 female offspring. All animal experiments were
conducted in accordance with institutional and state guidelines. Animal protocols used
in this study were approved by the Committee on Animal Welfare of Saxony/Leipzig

(Permit Number: TVV14/18).

2.2. Chronic exposure to glyphosate
Female Balb/c mice were exposed to the active substance glyphosate (N-
(Phosphonomethyl)glycine; diluted in water) orally administered by gavage in 300 pl
distilled water three times per week. The intervention lasted from one week before

mating with unexposed BALB/c males until weaning of the pups at 3 weeks. After
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weaning dams were further exposed to glyphosate until the end of the asthma protocol
(total exposure: 95 days; Supplementary Figure E1). Mice received a weekly
glyphosate concentration of either 8.75 mg or 87.5 ug, respectively equating to the no
observed adverse effect level (NOAEL; 50 mg/kg body weight/day, GLYnoaeL) or
human acceptable daily intake (ADI; 0.5 mg/kg body weight/day, GLY abi) concentration
of glyphosate (EFSA, 2015). Control dams received distilled water. Respective
concentrations were chosen as they, per definition, should not induce direct adverse

effects on dams to allow an unbiased analysis of the progeny.

2.3. HDM-induced asthma model
To investigate the impact of glyphosate exposure on the development of allergic airway
inflammation in the dams and the offspring, mice were intranasally (i.n.) sensitized with
house dust mite extract (HDM, D. pteronyssinus 1, endotoxin: 1.273 EU/ml, Greer
Laboratories, USA) beginning at four weeks after weaning (dams) or the age of 10
weeks (offspring). Mice were first sensitized with an initial higher concentration of HDM
at 5 pg dissolved in 40 pyl NaCl on day 1. This was followed by an allergen challenge
on days 8 - 12 and 15 to 17 applying half of the initial concentration (Supplementary
Figure E1). Control mice received normal saline i.n. The asthma-like phenotype was
characterized by airway responsiveness, bronchoalveolar lavage (BAL) infiltration,
lung inflammation, allergen-specific IgE levels, and the production of the T helper 1

and 2 (Tu1/ Tu2) cytokines (Junge et al., 2021; Junge et al., 2022).

2.4. Measurement of airway responsiveness
Lung resistance (RL) was measured using a whole-body plethysmograph (EMKA
TECHNOLOGIES, Paris, France). Plethysmography was conducted 24 hours after the

last intranasal HDM administration as described earlier (Jahreis et al., 2018; Polte et
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al., 2015). Briefly, to determine RL mice were anesthetized (100 mg/kg ketamine and
10 mg/kg xylazine, Bayer, Leverkusen, Germany), intubated, and mechanically
ventilated at a tidal volume of 0.2 ml and a frequency of 150 breath/min. Firstly,
Baseline RL and responses to aerosolized saline (0.9% NaCl) were assessed, followed
by responses to increasing doses (2.5, 5, 10, 20, and 40 mg/ml) of aerosolized

methacholine.

2.5. Bronchoalveolar lavage (BAL) & lung histology
The extent of inflammation in asthma development was characterized by the
differential leukocyte count within the BAL fluid. BAL fluid was obtained after
euthanasia by making a small incision in the trachea and then inserting a syringe to
lavage the right lung three times with 400 pl with phosphate-buffered saline (PBS). All
cells within the lavage fluid were counted using a hemocytometer. Diffquick® (Medion
Diagnostics AG, Dudingen, CH) stained cytospins were differentiated into eosinophils,
macrophages, lymphocytes and neutrophils according to conventional morphological

criteria (Jahreis et al., 2018; Polte et al., 2015).

2.6. HDM-specific IgE
Blood was collected from the mice’s hearts after they were sacrificed. The blood was
centrifuged at 3500 rpm for 15 min. The serum was collected and stored at — 20 °C for
subsequent analysis of serum HDM-specific IgE. Serum HDM-specific IgE was
measured by sandwich ELISA according to a standard protocol. Briefly, 96-well
microtiter plates (Nunc) were coated overnight with 50 ug/ml HDM. After washing and
blocking of plates, samples were incubated for 2 hours. Subsequently, 96-well plates

were washed, and Biotin-anti-mouse IgE antibody (BioLegend) was added.
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Tetramethylbenzidine was used as substrate, and the optical density (OD) was

determined at 450 nm.

2.7. Lung histology
Left lung was fixed in 10% formalin and stained with Haematoxylin & Eosin (H&E,
MERCK, Darmstadt, Germany) to analyze inflammatory infiltrates in the airways

(Junge et al., 2021; Petzold et al., 2014; Polte et al., 2015).

2.8. Cytokine production
One day after airway function test splenocytes (1 x 107 cells/ml per well) were isolated
and re-stimulated in vitro with 100 pyg/ml HDM in culture medium (RPMI medium
supplemented with 10% FCS, 100 U/ml penicillin, 100 pg/ml streptomycin). After a 48-
hour incubation period, the cultures were frozen for later cytokine expression analysis.
Cytokines were measured in supernatants from re-stimulated spleen cells using
DuoSet ELISA kits (R&D Systems, Wiesbaden-Nordenstadt, DE) according to the

manufacturer’s instructions.

2.9. Measurement of 8-isoprostane
To investigate lipid peroxidation/oxidative stress in the lung, tissues were homogenized
using lysing matrix A (FastPrep®24 homogenizer, MP Biomedicals, LLC, Eschwege,
Germany) and aliquots of the obtained supernatants were hydrolyzed (15% KOH) and
deproteinized (ethanol containing 0.01% BHT). 8-isoprostane concentration was
determined by specific immunoassay according to manufacturer’s instructions
(Cayman Chemical Company, Ann Arbor, MI, USA) as described previously (Junge et

al., 2021).
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2.10. Microbiota assessment
To assess microbiota community structure we used 16 S rRNA gene profiling of
caecum samples of dams as well as three-week-old offspring upon sacrificing. DNA
was extracted with QIAmp DNA Mini Kit (Qiagen, Hilden, Germany) as previously
described (Haange et al., 2020). V3-V4 variable regions of the 16 S rRNA genes were
amplified by PCR and a library was constructed, followed by paired-end 2x250bp
lllumina sequencing (StarSEQ GmbH, Mainz, Germany). Raw data were processed by
Starseq using the QIIME 2 workflow (Bolyen et al., 2019). Here, data was de-
multiplexed and quality checked, primers removed, paired-end reads were joined, and
low-quality reads removed (de Sena Brandine et al., 2019). Amplicon Sequencing
Variants (ASVs) were obtained, after read correction and chimera removal using the
deblur workflow (Quast et al., 2013). The read counts per ASV with taxonomic
annotation were normalized and relative abundances of each ASV and taxa were

calculated using the R scripts Rhea (Lagkouvardos et al., 2017).

2.11. Statistical analysis
Experimental data sets were processed and analyzed in GraphPad PRISM 9.1.2 for
macOS (GraphPad Software, Inc.). Data were expressed as mean + SEM and P values
of less than 0.05 were considered significant by t-test or Wilcoxon-Mann-Whitney test
according to the individual data sets. Microbiome alpha-diversity (Richness and
Shannon-Effective) and beta-diversity (Principal Component Analysis) analysis of taxa
was done using an in-house written R-tools. For group statistics, Kruskal-Wallis test
was used followed by a posthoc pairwise Dunn test. For global beta-diversity statistics,
a PERMANOVA was performed to determine significant differences between
treatment groups using the vegan R package (Dixon, 2003). Visualization of data was

done in ggplot2 (Ginestet, 2011). For genus level, data with the highest relative
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abundance/sample > 0.2 were included and analyzed using ANOVA with Dunnet

correction for multiple comparisons.

3. Results

3.1. Asthma development in the FO generation after direct glyphosate exposure
Chronic exposure to GLYnoaeL increased the eosinophilic infiltration in the BAL without
reaching significance (Figure 1A) in the dams while lung inflammation, IgE levels and
lung function were only slightly or not affected (Figure 1B-D, Figure 2A). However, the
production of the Th2 cytokines IL-4 and IL-13 but also of IL-17 and IFN-y was
significantly increased in mice directly exposed to GLnoaeL (Figure 2B). Furthermore,
8-isoprostane levels as a marker for lipid peroxidation in lung homogenates were
slightly but not significantly increased after GLYnoaeL exposure (Supplementary figure
E2A). Exposure to GLYapi had no effect on the asthma phenotype in the FO generation

(Figure 1A-D, Figure 2A, B).

3.2. Effects on asthma development in the F1 generation
Next, we assessed the effect of maternal glyphosate exposure on the offspring’s
asthma development in later life. In this context, maternal exposure to GLYapi led to a
significant decrease of eosinophils in BAL fluid (Figure 1A) as well as a diminished
lung inflammation in the female but not in the male offspring as demonstrated by HE-
stained lung sections (Figure 1B) and verified by an objective, investigator-
independent computer analysis (Figure 1C). Furthermore, HDM-specific IgE serum
levels were also significantly reduced in female mice from GLY abi-exposed dams while
no significant effects were observed in the offspring of GLYnoeL-exposed dams (Fig.
1D). In contrast, glyphosate exposure during the pre- and postnatal period was not

associated with changes in lung resistance in the offspring at both concentrations

10
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(Figure. 2A). Solely, maternal GLYabI exposure diminished Tu1 and Tu2 cytokine

production in both males and females significantly (Figure 2B).

3.3. Effects on asthma development in the F2 generation
To investigate whether the diminished immune response in the female F1 generation
of glyphosate-exposed dams persists up to the female F2 generation, female F1 mice
from exposed dams were mated with non-exposed males and an asthma-like
phenotype in the F2 generation was induced. In contrast to the F1 generation, there
were no significant effects on eosinophils, lung inflammation, or lung resistance (Figure
3A-C). Also, neither HDM-specific IgE serum levels nor cytokine expression in

splenocytes were affected in the female F2 offspring (Figure 3D, E).

3.4. Effects of glyphosate exposure on gut microbiota
Since the gut microbiome is assumed to be a crucial factor in asthma development in
the first year of life (Depner et al., 2020) and glyphosate is supposed to induce
alterations in microbiota (Rueda-Ruzafa et al., 2019), we have investigated the
bacteria community structure using 16S rRNA gene profiling of caecum samples
comparing the 3-weeks-old female offspring from glyphosate-exposed dams with the
female offspring from control mice. While alpha-diversity of the gut microbiome was
not affected in the F1 mice by maternal glyphosate exposure (Figure 4A) the variation
of microbial communities between the groups was significantly different (Figure 4B).
The distribution of microbial families did not indicate significant differences between
groups (Figure 4C). To find mechanisms which may explain the immune-modulating
effect of low-dose glyphosate (GLY ani) the relative abundance of the gut microbiota on
genus level in female F1 offspring from glyphosate-exposed dams was investigated

(Supplementary Table E1). Here, we observed a significantly increased relative
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abundance of Odoribacter and Lachnospiraceae NK4A136 at the genus level in the
juvenile offspring after maternal GLYapi exposure compared to the offspring from
GLYnoaeL-exposed or control dams (Figure 4E).

To determine if the changes oberserved in the F1 generation constitue a mere
transmission of the maternal microbiota, we also analyzed the dams’ microbiota
composition (Supplementary Table E2). Interestingly, increased relative abundance of
Odoribacter and Lachnospiraceae NK4A136 that was seen in the F1 generation after
maternal GLYapi exposure, was not observed in dams that were directly exposed to
GLYapi. However, GLY api expsosure of dams led to alterations in the relative abudance
of Akkermansia, Bacteroides, Clostridium sensu stricto 1, Lachnospiraceae UCG-006
and Lactobacillus at genus level compared to control dams without glyphosate

exposure.

4, Discussion

Within this study, we investigated both the direct effect of chronic low-dose exposure
to glyphosate on the allergic immune response in dams and the impact of glyphosate
exposure during pregnancy and breastfeeding on the offspring’s asthma development
until the F2 generation. To our knowledge, cross-generational long-term effects of in-
utero exposure to glyphosate have not yet been examined in the context of allergic

diseases (Maddalon et al., 2021).

Our results show an increased eosinophilic infiltration in the BAL and increased lipid
peroxidation in the lung of FO mice directly exposed to GLYnoaeL - although the effects
did not reach significance level compared to unexposed control animals. However, a
pro-inflammatory impact on the lung was also recently demonstrated in a mouse study

after repeated exposure to LPS and low-dose glyphosate (Pandher et al., 2021). This
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is in line with the significantly enhanced production of pro-inflammatory Th2 cytokines
we found after GLYnoaeL exposure compared to unexposed controls. There are several
observational human studies on direct asthma effects in association with occupational
exposure to glyphosate; however, there are discrepancies in the observed outcomes.
While Hoppin et al. (2017) reported a positive association between occupational
glyphosate exposure in farmers and wheeze or asthma severity, Henneberger et al.
(2014) on the other hand found an inverse relationship between glyphosate exposure
and asthma exacerbation in pesticide-using farmers with active asthma. Nonetheless,
these studies’ participants were exposed to exceedingly high concentrations of
glyphosate via air in addition to common exposure via food, so these scenarios cannot
be compared to the situation in the general population (Agostini et al., 2020; Peillex et

al., 2020)

With respect to cross-generational effects of glyphosate exposure, it has been shown
recently that low-dose maternal glyphosate concentrations can in fact lead to adverse
health outcomes across several generations. For instance, low concentrations of
glyphosate have been suggested to induce epigenetic changes in both sperm and
ovaries in murine models leading to reproductive issues up to the F2 and even F3
generation (Guerrero Schimpf et al., 2021; Kubsad et al., 2019; Rossetti et al., 2021).
We too observed fewer successful offspring deliveries in particular in the maternally
exposed F1 generation leading to a limited number of mice we could characterize in
the F2 generation in the glyphosate exposed groups. With respect to the asthma
outcome, we found that maternal exposure to glyphosate during pregnancy and the
lactational period was associated with a reduced immune response in the F1 but not
in the F2 offspring. Interestingly, the asthma-reducing effects in our multi-generational

mouse model were found only at the lower glyphosate concentration and primarily in
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the female F1 offspring. With respect to concentration differences, this might suggest
a U-shaped dose-response curve as described for other chemicals before (Calabrese
et al., 2001; Vandenberg et al., 2012). The sex-specific effect could be an indicator of
the known endocrine disruptive properties of glyphosate (Maddalon et al., 2021).
Furthermore, it is also important to note that maternal glyphosate exposure not only
alleviated the asthma-relevant Tu2 cytokines IL-13 and IL-5, but the Tn17 cytokine IL-
17, and Tu1 cytokine IFN-y as well, indicating a more general immunosuppressive
function (Leung et al., 2010). The decrease in serum IgE level can likely be attributed
to the observed reduction of Tn2-cytokines, as these cytokines in fact induce the
conversion of B-cells into IgE-producing plasma cells. A general glyphosate-
associated down-regulation of the T-cell immune response would also be of concern
with respect to cancer risk — to which glyphosate exposure has been controversially
linked for several years (Davoren et al., 2018; Peillex et al., 2020). Additionally, it is
tempting to speculate that low-dose glyphosate can affect immune responses to
bacterial, viral or parasitic infections, as recent data indicated an altered defense

capacity to infections in glyphosate-exposed fish (Le Du-Carrée et al., 2022).

So far, the majority of experimental studies on glyphosate addressing its impact on the
immune system have been conducted in fish models supporting the idea of a U-shaped
dose-response relationship of glyphosate regarding immunomodulation. In summary,
these studies indicated an immunosuppressive effect of glyphosate when low-doses
were applied while an over activation of the immune system was observed in studies
that applied excessive concentrations (Peillex et al., 2020). This is in line with our
findings in the female F1 offspring showing immunosuppressive effects after exposure
to low ADI concentration, while the 100 times higher NOAEL concentration did not

exert significant effects. Further, Ma et al. (2015) also showed a reduction of cytokine
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expression in splenocytes in carps due to low doses of glyphosate. Kreutz et al. (2010)
demonstrated that low dosed glyphosate rendered fish more susceptible to infection -
presumably due to reduced phagocytosis. Unfortunately, studies in mammals are
scarce and merely investigated extremely high concentrations of glyphosate in air
stating inflammatory immune responses with local inflammation and increased
cytokine production (Kumar et al., 2014; Tang et al., 2020). However, it can be
summarized that these studies are less comparable to occupational and common
public scenarios as applied glyphosate concentrations are known to exert toxicity
(Maddalon et al., 2021). Additionally, observational and experimental evidence on how
low-dose exposures to pesticides during the perinatal phase affect the offspring’s
asthma development in a non-occupational context is still inconclusive — depending on
how pesticide exposure was measured or which type of pesticide applied (Mamane et
al., 2015; Rosa et al., 2018). A further limitation of most studies and also our’s is the
fact that while we study exposure to pure glyphosate, real-life exposure occurs to the
commercially available solution that further contains additional substances, like
surfactants. Thus, results obtained in mouse studies may not be easy to extrapolate to
population studies as secondary effects of the herbicide may not be due to the main

active substance only (Mesnage et al., 2019).

It has long been known that chronic exposure to low doses of pesticides like malathion
or atrazine can impede immune functions, which might bear harmful effects for non-
communicable diseases, like allergic diseases or even cancer, especially in the later
life of unborn children (Corsini et al., 2008; Corsini et al., 2013; Dietert, 2014; Mansour,
2004). The in-utero environment, characterized by rapid cell division and organ growth
in the developing fetus is particularly susceptible to certain low-dose chemical

exposures that would otherwise not exert adverse effects in fully-grown children or
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adults (Maddalon et al., 2021; Peillex et al., 2020). Furthermore, it has been shown
that glyphosate passes the placental barrier, is present in amniotic fluid and placenta
and is also found in breastmilk (Mufioz et al., 2021; Serra et al., 2021). Glyphosate has
long been believed to be harmless in humans, as it targets the 5-enolpyruvylshikimate-
3-phosphate synthase (ESPS) - an enzyme which exists in plants only and not in
human cells. However, the human gut consists of a wealth of bacteria which are
dependent on EPSP (Marques et al., 2007). Therefore, it has been proposed that,
mechanistically, glyphosate may exert its adverse effects by causing dysbiosis in the
gut microbiome and thus inducing changes in the gut-brain as well as gut-immune
system crosstalk (Aitbali et al., 2018; Maddalon et al., 2021). It can also be speculated
that glyphosate may disturb the interaction between the gut and certain immune cells
affecting the onset, exacerbation or perpetuation of disease, or like in our experimental
study, in the deviation of the immune response. The fact that the gut microbiome is of
importance for childhood asthma development has been shown e.g. in relation to the
well-accepted protective farm effect (Depner et al., 2020). In the current study, we
observed an increased abundance of Odoribacter and Lachnospiraceae NK4A136 in
the gut of female F1 offspring of GLYabpi-exposed dams, which showed a reduced
allergic immune response. Both species have been shown to be enriched in the gut
microbiota of mice treated with probiotic strains inducing tolerance in a cow milk allergy
model (Esber et al., 2020). An increased abundance of Odoribacter was also found in
human fecal samples after prebiotic intervention (Srivastava et al., 2021). The use of
probiotics for prevention of atopic diseases like allergic asthma in infants has also been
discussed for some time (Zuccotti et al., 2015). Therefore, the alteration in the gut
microbiota in the offspring of low-dose GLYap-exposed dams might at least in part
contribute to the observed asthma-reducing effects. However, whether this

observation is causally linked or whether there are other or additional mechanisms
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leading to the detected rather general immune suppressive effect still has to be
elucidated. Notably, a transmission of the dams’ microbiota was not found since the
increased relative abundance of Odoribacter and Lachnospiraceae NK4A136 seen in
the F1 generation, was not observed in dams directly exposed to GLYapi. Instead,
dams showed an altered abundances of Akkermansia and Bacteroides that is in line
with earlier studies investigating glyphosate-induced effects on the microbiome (Liu et
al.,, 2022; Mesnage et al., 2021). While we found an increased abundance of
Lactobacillus after glyphosate exposure, other studies indicated the opposite (Blot et
al., 2019; Tang et al., 2020). For the remaining altered taxa identified, Clostridium
sensu stricto, Lachnospiraceae UCG 006, Turicibacter have not yet been identified as
potential targets of glyphosate in murine models.

Considering the low number of studies on potential effects of glyphosate and the
immune system, more studies in animals and humans are needed. In view of the
immune suppressive findings within this study, further experiments should be
conducted employing animal models in particular in models of other immune diseases
like infections or cancer. In addition, the experimental results have to be validated in
human mother-child cohorts may be also by using new methods to quantify glyphosate
e.g. in in human hair (Alvarez et al., 2022). Moreover, immune system-related effects

of formulated glyphosate products also needs to be addressed.

5. Conclusion

Low-dose glyphosate exposure in a multi-generational asthma mouse model was
associated with concentration-dependent and sex-specific effects. In detail, GLYNoaeL
direct exposure of dams induced a slight eosinophilic infiltration in the BAL and a
significantly increased Tw2 cytokine production. In contrast, maternal GLY apbi exposure

was associated with a reduced immune response primarily in the female F1 offspring.
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Next to the observed phenotype of a mildered asthma outcome, changes in the gut
microbial pattern were also identified. In particular, the multi-generational findings
display initial evidence of a potential effect on the immune system of low-dose in-utero
glyphosate exposure in mammals which has not been shown before. Further studies
are required to deeper explore the link between perinatal glyphosate exposure and its

immunomodulatory impact.
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Figure legends

Figure 1: Effects of glyphosate exposure on airway inflammation and IgE levels
in HDM-sensitized FO or F1 mice. Cell number in BAL fluid (A), airway inflammation
examined by lung histology (B, H&E, x100), airway inflammation quantified by an
investigator-independent computer-based analysis (C) and HDM-specific IgE levels (D)
were examined in directly exposed mice (dams) or in the F1 generation from
glyphosate-exposed dams. Data are shown as means + SEM, n = 8 animals per group.

*P < .05.

Figure 2: Effects of glyphosate exposure on lung function and splenocyte
cytokine production in HDM-sensitized FO or F1 mice. Lung resistance (A), and
respective cytokine levels (B) were examined in directly exposed mice (dams) or in the
F1 generation from glyphosate-exposed dams. Data are shown as means £+ SEM. n =

8 animals per group. *P < .05.

Figure 3: Effects of maternal glyphosate exposure on asthma development in
female HDM-sensitized F2 mice. Cell number in BAL fluid (A), airway inflammation
(B, H&E, x100), HDM-specific IgE levels (C), lung resistance (D), and respective
cytokine levels (E) were examined in in the F2 generation from glyphosate-exposed

dams. Data are shown as means + SEM. n =4 animals per group. *P < .05.

Figure 4: Effects of maternal glyphosate exposure on the gut microbiota in
female F1 offspring. Alpha diversity (A), Beta diversity (PERMANOVA) (B),
distribution of families (relative abundance per sample) (C), and relative abundance of

significantly affected bacteria on genus level in caecum samples of female offspring
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from glyphosate-exposed dams are shown. Data are shown as means + SEM (n = 4

for A and D).
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Supplementary Table E1: Relative abundance of gut microbiota on genus level in female
F1 offspring from glyphosate-exposed dams in alphabetical order. Significant p-values
are printed in italic; significances only in the GLYapi group, related to the phenotype are
printed in bold.

CON(n=4) GLYawi(n=5)  GLYnowr (n=5)

Genus Mean SD Mean SD p-value? Mean SD  p-valueb
A2 055 048 067 094 0997 028 027 0917
Acetatifactor 001 006 000 017 099 076 122 0766
Aerococcus 0,00 001/ 000 000 >0999 | 010 011 0995
Akkermansia 539 3,18 002 338 0178 060 116 0,002
Alistipes 533 146 | 7,96 211 0034 | 978 385 0002
Anaerotruncus 0,00 0,18 0,00 0,66 0,957 0,04 0,04 0,999
Bacteroides 2,99 4,87 : 4,05 2,92 0,824 : 4,09 3,38 0,970
Blautia 434 388 024 350 0126 869 48 0,001
Butyricicoccus 0,17 0,29 - 0,04 0,05 0,977 0,06 0,05 0,975
Clostridia UCG-014 1,85 444 070 175 0200 150 2,59 0,185
Clostridium sensu stricto 1 000 003|001 003 >0999 | 007 015 0998
Colidextribacter 1,40 049 425 115 0051 2,45 142 (583
Corynebacterium 000 002 000 000 >0999 | 025 013 0972
Enterococcus 0,16 0,16 - 0,00 0,03 0,977 0,80 0,63 0,845
Enterorhabdus 002 002 009 003 0999 009 009 0998
Erysipelatoclostridium 000 000 019 030 0962 000 000 0999
Escherichia-Shigella 0,42 0,38 : 0,20 0,24 0,965 0,50 0,53 1,000
Eubacterium brachy 009 003 029 010 098 010 006 0,999
Eubacterium coprostanoligenes 3,00 1,29 1,27 0,43 0,299 2,52 1,77 0,861
Gastranaerophilales 0,00 0,03 0,00 0,33 0,986 0,46 0,70 0,904
GCA-900066575 127 037 | 054 029 0847 | 1,09 074 0999
Harryflintia 015 007 027 013 09% 011 006 0,999
Incertae_Sedis 0,55 0,537 0,95 0,64 0,919 : 1,61 0,88 0,616
Intestinimonas 040 019 027 012 0993 025 018 0,995
Jeotgalicoccus 0,00 0,00: 0,00 0,00 >0,999 : 0,08 0,09 0,997
Lachnoclostridium 160 063 013 051 0444 351 3,16 0218
Lachnospiraceae FCS020 026 018 018 017 0995 | 014 008 0988
Lachnospiraceae NK4A136 2,76 1,11 12,72 7,42 <0,001 @ 4,34 1,58 0,274
Lachnospiraceae UCG-006 0,32 1,28 4,09 1,15 0,072 3,11 2,48 0,123
Lactobacillus 2,99 418 443 126 0738 983 582 <0001
Muribaculaceae 576 252 ° 735 260 093 ‘& 785 1,43 0,132
Odoribacter 016 038 285 094 0020 020 032 099
Oscillibacter 078 073 228 087 0355 109 055 0,983
Parabacteroides 1440 570 2,07 351 <0001 069 082 <0001
Rikenellaceae RC9 gut 154 1,37 098 012 0657 | 072 099 0,517
Roseburia 042 048 027 026 0974 047 047 0,995
Staphylococcus 005 005 011 009 09% | 014 011 0,99
Turicibacter 0,00 000 000 002 >0999 018 032 0984
Tuzzerella 0,44 0,35 : 0,19 0,04 0,960 : 0,11 0,05 0,936

@ 2way ANOVA with Dunnets; CON vs GLYap,
b 2way ANOVA, with Dunnets; CON vs GLYnoaeL



Supplementary Table E2: Relative abundance of gut microbiota on genus level in
glyphosate-exposed dams in alphabetical order. Significant p-values are printed in italic;
significances only in the GLYapi group, related to the F1 phenotype are printed in bold.

CON (n=5) GLYapi (n=5) GLYnoaeL (n=5)

Genus Mean SD Mean SD p-value? | Mean SD p-value®
A2 0,21 0,13 0,23 0,17 1,000 0,23 0,11 1,000
Acetatifactor 0,58 0,36 0,06 0,08 0,831 0,23 0,08 0,918
Acinetobacter 0,42 0,57 0,00 0,00 0,887 0,14 0,15 0,949
Akkermansia 1,01 1,50 6,84 4,97 <0,001 | 1,29 2,07 0,949
Alistipes 8,52 1,18 7,74 2,64 0,670 8,53 1,17 >0,999
Alloprevotella 0,34 0,32 0,66 1,42 0,934 0,10 0,10 0,960
Anaerotruncus 0,30 0,27 0,69 0,38 0,899 0,30 0,09 >0,999
Bacteroides 1,77 0,80 4,40 5,07 0022 0,85 0,23 0,578
Blautia 2,01 1,79 4,16 2,97 0,070 4,49 2,06 0,032
Butyricicoccus 0,10 0,07 0,05 0,06 0,998 0,17 0,11 0,996
Clostridia UCG-014 0,61 0,81 0,36 0,62 0,959 0,50 0,31 0,992
Clostridia vadin BB60 0,08 0,09 0,15 0,16 0,997 0,28 0,19 0,974
Clostridium sensu stricto 1 3,86 1,74 0,59 0,59 0,003 3,55 1,81 0,939
Colidextribacter 2,07 0,51 1,98 0,80 0,994 2,29 0,44 0,968
Corynebacterium 0,64 0,54 0,64 0,78 >0,999 0,16 0,20 0,856
Dubosiella 0,30 0,19 0,38 0,52 0,996 0,34 0,75 0,999
Enterococcus 6,26 4,33 3,30 4,18 0,008 3,08 2,91 0,004
Erysipelatoclostridium 0,00 0,00 1,00 1,72 0,525 0,00 0,00 >0,999
Escherichia-Shigella 0,04 0,06 0,57 1,03 0,829 0,07 0,09 0,999
Eubacterium coprostanoligenes 0,94 0,15 0,51 0,73 0,886 0,49 0,18 0,874
Facklamia 0,06 0,11 0,10 0,11 0,999 0,00 0,00 0,998
Faecalibaculum 0,25 0,15 0,19 0,32 0,998 0,21 0,40 0,999
Gastranaerophilales 0,02 0,05 0,05 0,11 1,000 0,00 0,01 1,000
GCA-900066575 2,32 1,25 0,74 0,31 0,219 1,01 0,41 0,343
Incertae Sedis 1,78 0,66 1,88 1,06 0,993 1,71 0,53 0,997
Intestinimonas 0,29 0,24 0,04 0,04 0,960 0,15 0,08 0,986
Jeotgalicoccus 0,47 0,47 0,90 1,18 0,881 0,04 0,06 0,881
Lachnoclostridium 1,67 0,95 2,62 1,60 0,555 2,48 1,52 0,653
Lachnospiraceae FCS020 0,25 0,07 0,13 0,06 0,991 0,18 0,10 0,997
Lachnospiraceae NK4A136 2,73 1,60 4,69 1,64 0,107 4,05 1,15 0,338
Lachnospiraceae UCG-006 10,84 1,97 6,67 4,71 <0001 | 10,12 4,96 0,715
Lactobacillus 3,62 1,83 9,74 654 <0,001 | 2,43 2,65 0,411
Muribaculaceae 4,36 1,40 6,05 3,63 0,180 533 1,14 0,544
Odoribacter 2,00 0,88 1,45 1,51 0,817 3,84 1,82 0,136
Oscillibacter 1,54 0,42 1,03 0,41 0,839 2,11 0,83 0,806
Parabacteroides 0,21 0,12 0,93 1,16 0,711 0,12 0,10 0,994
Rikenellaceae RC9 gut 0,32 0,14 0,35 0,34 1,000 0,23 0,04 0,994
Roseburia 035 029 | 011 015 0963 | 021 017 0987

continues next page
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Solibacillus 0,00 0,01 ;0,00 0,00 >0,999 0,04 0,10 0,999

Sporosarcina 002 002 | 036 053 0925 | 001 001 1,000
staphylococcus 1,10 1,92 | 1,53 1,74 0879 | 021 019 0,597
Turicibacter 416 135 | 058 072 0001 | 435 212 0974
Tuzzerella 016 008 | 008 007 0996 | 028 022 0,991

@ 2way ANOVA with Dunnets; CON vs GLYap,
b 2way ANOVA, with Dunnets; CON vs GLYnoaeL



Supplementary Figure E1. Experimental procedure. Balb/c mice (dams) were exposed starting
one week before mating until weaning of the pups at 3 weeks. After weaning dams were further
exposed to glyphosate until the end of the asthma protocol. Dams and 10-weeks-old F1
generation were sensitized via the airways with house dust mite extract (HDM) on day 1
followed by HDM given intranasally (i.n.) on days 8 to 12 and 15-17. Control mice received
normal saline i.n. Airway hyperreactivity (AHR) was measured on day 18 and mice were
sacrificed on day 19. A subgroup of female F1 offspring was further mated with unexposed males
with subsequent asthma induction within the F2 offspring.

Supplementary Figure E2. Effect of glyphosate exposure on isoprostane levels. Isoprostane
concentrations in lung homogenates after GLYap or GLYnoaeL €xposure in HDM-sensitized and
control mice. Data are expressed as mean = SEM, n 2 2
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