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ABSTRACT 37 

In a context of accelerated human-induced biodiversity loss, remote sensing (RS) is emerging as a 38 

promising tool to map plant biodiversity from space. Proposed approaches often rely on the Spectral 39 

Variation Hypothesis (SVH), linking the heterogeneity of terrestrial vegetation to the variability of the 40 

spectroradiometric signals. Yet, due to observational limitations, the SVH has been insufficiently tested, 41 

remaining unclear which metrics, methods, and sensors could provide the most reliable estimates of plant 42 

biodiversity. Here we assessed the potential of RS to infer plant biodiversity using radiative transfer 43 

simulations and inversion. We focused specifically on “functional diversity,” which represents the spatial 44 

variability in plant functional traits. First, we simulated vegetation communities and evaluated the 45 

information content of different functional diversity metrics (FDMs) derived from their optical reflectance 46 

factors (R) or the corresponding vegetation “optical traits,” estimated via radiative transfer model inversion. 47 

Second, we assessed the effect of the spatial resolution, the spectral characteristics of the sensor, and signal 48 

noise on the relationships between FDMs derived from field and remote sensing datasets. Finally, we 49 

evaluated the plausibility of the simulations using Sentinel-2 (multispectral, 10 m pixel) and DESIS 50 

(hyperspectral, 30 m pixel) imagery acquired over sites of the Functional Significance of Forest 51 

Biodiversity in Europe (FunDivEUROPE) network. We demonstrate that functional diversity can be 52 

inferred both by reflectance and optical traits. However, not all the FDMs tested were suited for assessing 53 

plant functional diversity from RS. Rao’s Q index, functional dispersion, and functional richness were the 54 

best-performing metrics. Furthermore, we demonstrated that spatial resolution is the most limiting RS 55 

feature. In agreement with simulations, Sentinel-2 imagery provided better estimates of plant diversity than 56 

DESIS, despite the coarser spectral resolution. However, Sentinel-2 offered inaccurate results at DESIS 57 
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spatial resolution. Overall, our results identify the strengths and weaknesses of optical RS to monitor plant 58 

functional diversity. Future missions and biodiversity products should consider and benefit from the 59 

identified potentials and limitations of the SVH. 60 

1. INTRODUCTION 61 

Human activities are leading to a massive and accelerated loss of Earth’s life forms (Barnosky et 62 

al. 2011; Ceballos et al. 2015); at the same time, the efforts to understand and prevent this loss still lack 63 

global, continuous, and systematic information connecting biodiversity and its decline drivers (Hardisty et 64 

al. 2019; Pereira et al. 2012). While remote sensing (RS) provides operational monitoring of some of the 65 

major drivers of biodiversity variation at a global scale (e.g., land cover, land use, and climatic variables) 66 

(Small and Sousa 2016; Sohl and Sleeter 2012; Yang et al. 2013), there are no comparable capabilities for 67 

mapping plant biodiversity and its changes. A first step towards developing such a capability was the 68 

definition of the Essential Biodiversity Variables, a set of “measurements required to study, report, and 69 

manage biodiversity change” (c.f., (Pereira et al. 2013)). The Essential Biodiversity Variables are analogous 70 

to the Essential Climate Variables (GCOS 2003), designed to understand and monitor climate change 71 

(Scholes et al. 2012). The majority of Essential Climate Variables rely on RS to provide continuous and 72 

systematic information over the whole Earth’s surface (Yang et al. 2013). Similarly, RS is expected to 73 

provide a significant fraction of the Essential Biodiversity Variables (Hardisty et al. 2019; Jetz et al. 2019).  74 

The interest of the RS community in biodiversity has grown over the last decade in parallel with 75 

advances in computer science and RS technology (Rocchini et al. 2010; Turner et al. 2003; Wang and 76 

Gamon 2019). Biodiversity is a complex concept involving multiple facets: taxonomic as the diversity of 77 

taxonomic groups (often species), phylogenetic as the branch length of the evolutionary tree of a 78 

community, and functional as the diversity of functional traits; consequently, many RS-based Essential 79 

Biodiversity Variables have been proposed (Skidmore et al. 2021). However, there is no clear community 80 

consensus, as is the case for the meteorological and biophysical variables considered Essential Climate 81 
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Variables, about which EBVs should be taken forward. One of the most promising methods to assess 82 

biodiversity from optical RS relies on the Spectral Variation Hypothesis (SVH), which states that the 83 

variability of the spectral signals of a remote sensing image, termed “spectral diversity.”, should reflect the 84 

spatial variation of the environment. The environmental heterogeneity would relate to the variability of 85 

plant species, traits, and/or canopy structure (Palmer et al. 2002; Ustin and Gamon 2010), among other 86 

factors (Rocchini et al. 2010; Wang and Gamon 2019). At the same time, plant diversity could relate to the 87 

diversity of species of other taxa dependent on particular plant species (Jetz et al. 2019). According to Wang 88 

and Gamon (2019), the main approaches proposed to quantify plant diversity from RS rely on a) 89 

classification and mapping of individual species or broad functional types (Ibarrola-Ulzurrun et al. 2019; 90 

Stagakis et al. 2016; Sun et al. 2019), b) classification and mapping of habitats (Kerr and Ostrovsky 2003; 91 

Stein et al. 2014), c) estimation of vegetation traits (optical traits) and the analysis of their variability, 92 

mimicking trait sampling in field surveys (Hauser et al. 2021a; Schneider et al. 2017; Torresani et al. 2021), 93 

and d) direct analysis of the spectral diversity (Hauser et al. 2021b; Rocchini et al. 2021; Wang et al. 2018a; 94 

Warren et al. 2014). The first two approaches, while valuable, strongly depend on the spatial scale and the 95 

classification method. Limitations for classifying individual species are sometimes overcome by targeting 96 

instead functional types, which might be too rigid to describe the ecosystem’s functionality (Van Cleemput 97 

et al. 2021; Wang and Gamon 2019). Alternatively, the characterization of functional diversity might 98 

provide a deeper insight into the biodiversity-ecosystem function relationships than taxonomic estimates 99 

(Jetz et al. 2016). The last two approaches seek to characterize vegetation’s taxonomical, functional, and 100 

even phylogenetic diversity through its spectral diversity or the diversity of optical traits derived from 101 

spectral information (Cavender-Bares et al. 2020). Still, recent literature suggests that spectral and 102 

taxonomic diversities might not be robustly correlated (Fassnacht et al. 2022). Nonetheless, most of these 103 

methods have only been evaluated over relatively small extents (Féret and Asner 2014; Gholizadeh et al. 104 

2018; Schneider et al. 2017; Schweiger et al. 2018; Torresani et al. 2019; Wang et al. 2018a), and as of now, 105 

there are no comprehensive databases to assess their robustness and applicability in a global context.  106 
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RS missions must consider the trade-offs between spatial, spectral, and temporal resolutions 107 

(Gamon et al. 2020). For biodiversity studies, pixel size should ideally allow the identification of individual 108 

plants without being confounded by variability within the plant signal (e.g., shading and the presence of 109 

different plant elements such as branches, soil, or understory vegetation) (Nagendra 2001; Nagendra and 110 

Rocchini 2008). However, individual plants are typically smaller than pixels, which hampers the 111 

characterization of biodiversity. For example, Wang et al. (2018a) explored how increasing pixel size 112 

reduced spectral sensitivity to taxonomic diversity in a grassland. Alternatives to reduce the need for 113 

accurate plant discrimination include fuzzy classification (Feilhauer et al. 2021), estimation of optical traits 114 

at the resolution of the RS sensor (Torresani et al. 2021), or direct estimation of plant functional diversity 115 

from spectral diversity (Ma et al. 2019). However, these approaches are still sensitive to sensor spatial 116 

resolution since larger pixels integrate more species and traits and, therefore, more and more variability. At 117 

the same time, mixing species can reduce the capability of retrieving vegetation optical traits (Darvishzadeh 118 

et al. 2008). In addition, the sensor spectral configuration (resolution, sampling, and range) must provide 119 

sufficient information to discriminate between different species or quantify optical traits. Hyperspectral 120 

data continuously and finely resolve the spectral properties of Earth surfaces (Goetz 2009) and therefore 121 

offer the best chances for successful classification (Dalponte et al. 2009; Sluiter and Pebesma 2010) or trait 122 

retrieval (Lee et al. 2004; Lu et al. 2019). Nonetheless, spaceborne sensors must sacrifice either the spectral 123 

or the spatial resolution, and it remains unresolved whether high-resolution multispectral or mid-resolution 124 

hyperspectral missions are more useful for biodiversity assessment.  125 

Spectral and functional diversities can involve multiple variables (i.e., plant traits or spectral bands). 126 

Different authors have compared the variability of spectral signals in individual wavebands, combinations 127 

of these, or averaged statistics in certain spectral regions (Féret and Asner 2014; Ma et al. 2019; Wang et 128 

al. 2018a), as well as the variability of individual optical traits estimated from RS (Rossi et al. 2020; 129 

Torresani et al. 2021) with field biodiversity data. Alternatively, ecologists have proposed several functional 130 

diversity metrics (FDMs) to summarize the information in multidimensional datasets of species traits. These 131 



6 

 

metrics quantify different aspects of functional diversity (i.e., richness, evenness, and divergence) with 132 

single scalars (Laliberté and Legendre 2010; Mason et al. 2005; Villéger et al. 2008). The computation of 133 

FDMs often requires removing the covariance between variables (Anderson 2006); however, despite the 134 

abstraction, FDMs are informative and sensitive to underlying assembly processes (Mouchet et al. 2010). 135 

Typically, FDMs are constructed from plant functional trait data collected in the field (e.g., measurements 136 

of pigment and mineral nutrient concentrations taken on leaf samples). These metrics can also be computed 137 

from RS variables such as spectral reflectance factors and optical traits (Schneider et al. 2017; Torresani et 138 

al. 2019), being possible to replace taxonomic species with the “spectral species” concept (Féret and Asner 139 

2014). What remains unclear is to what extent FDMs computed from spectral data or optical traits can be 140 

translated to FDMs computed from vegetation functional traits collected in the field, and the role of the 141 

spectral configuration (resolution, sampling, and range), spatial resolution, and signal noise.  142 

So far, the SVH has been inconsistently tested. The works mentioned above evaluated the potential 143 

of different metrics, methods, and sensors with little overlap, preventing a solid comparison of their 144 

performance. Moreover, the lack of accurate validation data covering broad ranges of traits and 145 

communities consistently imaged by multiple sensors of well-known uncertainties has limited the 146 

generalization of the results. To overcome these issues, we evaluate the potential of different FDMs to relate 147 

spectral and functional diversity using both synthetic and observational datasets. Our study aims to answer 148 

the following questions: a) Which remote sensing-based FDMs are able to capture functional diversity from 149 

field plant traits? b) What are the advantages and disadvantages of computing FDMs directly on the spectral 150 

reflectance factors (R) or optical traits (Toptical) estimated via radiative transfer model (RTM) inversion? c) 151 

Are the relationships between field and remote sensing-based FDMs consistent when compared at local and 152 

global scales? d) How do RS features such as spectral configuration, spatial resolution, and signal noise 153 

affect the relationships between vegetation and remote sensing-based FDMs? To answer these questions, 154 

we first developed an RTM simulation framework that allowed us to produce synthetic vegetation 155 

communities and the related spectral signals featuring different spectral and spatial configurations and 156 



7 

 

noise. Then, using these simulations, we evaluated and compared two common RS methods to map 157 

functional diversity: spectral signals (i.e., reflectance factors) or optical traits estimated from inverse 158 

modeling. Finally, we evaluated the coherence of the simulation results using DLR Earth Sensing Imaging 159 

Spectrometer (DESIS) and Sentinel-2 imagery and field taxonomic and functional diversity estimates from 160 

forest plots of the Functional Significance of Forest Biodiversity in Europe (FunDivEUROPE) network 161 

(Baeten et al. 2013). 162 

 163 

2. METHODS 164 

Fig. 1 summarizes the simulation and data analysis workflows. First, we simulated artificial 165 

communities of plant species, each defined by a unique set of traits (i.e., RTM parameters) and the 166 

individual species’ reflectance factors using an RTM. Then, we applied different RS features (spatial 167 

resolution, spectral configuration, and noise) to the reflectance factors to represent how different remote 168 

sensors perceived the plant communities. Using this simulation framework, we evaluated the relationships 169 

between quantitative FDMs computed from the plant traits (as could be measured in the field) and RS 170 

variables (either reflectance factors or optical traits estimates) and how these were affected by the RS 171 

features (Fig. 1a, section 2.3). Finally, we analyzed different sets of satellite imagery acquired over 172 

FunDivEUROPE biodiversity monitoring plots and assessed if the relationships between field and remote 173 

sensing FDMs were coherent with the former simulations (Fig. 1b, section 2.4). 174 

 175 
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 176 

Figure 1. Flowchart outlining analyses of simulated (a) and observational data (b) to assess the capability of 177 

different functional diversity metrics (FDMs) to link spectral and vegetation functional diversity and the effect of 178 

different remote sensing features. Solid lines indicate the direct use of the data or models; dashed lines indicate the 179 

inverse use of a radiative transfer model (RTM). In the simulations (a), some analyses include the effects on plant 180 

traits of added noise and different spatial resolutions. 181 

 182 

2.1 Functional diversity metrics 183 

We evaluated the capability of Functional richness (FRic), evenness (FEve), diversity (FDiv), 184 

dispersion (FDis), and Rao’s quadratic entropy Q (RaoQ) metrics (Botta-Dukát 2005; Laliberté and 185 

Legendre 2010; Villéger et al. 2008) to connect field and RS-based functional diversity. These metrics were 186 

computed with the dbFD R-package (Laliberté and Legendre 2010) using traits Euclidean distance as the 187 

dissimilarity measure. The package applies standardization of the variables and Principal Coordinates 188 

Analysis (Anderson 2006) on the distance matrix to remove the influence of variables’ magnitude and 189 

redundant information, respectively. Moreover, we used a parametric formulation of Rao’s Q (Eq. 1) as 190 

proposed by Rocchini et al. (2021) with values of the parameter α, ranging from 0 to infinity. In this case, 191 

we first applied standardization and principal component analysis (PCA) (Pearson 1901) to the traits before 192 



9 

 

computing the Euclidean distance, keeping only the components that explained 98 % of the variance in 193 

total. This approach allowed us to reduce the number of variables and evaluate the effect of noise (section 194 

2.3.4). 195 

 196 

Rao𝑄𝛼 = (∑ 𝑝𝑖𝑝𝑗𝑑𝑗𝑖
𝛼

𝑁

𝑖,𝑗

)

1
𝛼

 

(1) 

 197 

where i and j are indices for each species in the community, p their respective probabilities, and d is a 198 

symmetric measure of multidimensional distance between the species traits or, in this case, a set of their 199 

principal components. 200 

We computed these FDMs from remote sensing variables that were either reflectance factors or 201 

optical traits estimated by inverting an RTM against the reflectance factors (Toptical, section 2.3.4 and 2.4.3). 202 

We also used plant traits at the field level (“field plant traits”), either inputs of the RTM used to simulate 203 

reflectance factors (TRTM, section 2.2) or sampled in the FunDivEUROPE plots (Tfield, section 2.4.1). Notice 204 

that not all of these traits are “functional traits” sensu Dıáz and Cabido (2001), but vegetation characteristics 205 

or structural state variables as they are not species-specific and change with ontogeny, environment, and 206 

forest management (e.g., canopy height or leaf area index). Still, we used these traits since ecologists have 207 

selected them to characterize functional diversity in mature forests (i.e., Tfield) (Baeten et al. 2013; Benavides 208 

et al. 2019a; Benavides et al. 2019b), or since modelers use them to describe light-vegetation interaction 209 

(i.e., TRTM) (North 1996; Verhoef 1985). The implications of this choice are discussed in section 4.4. 210 

 211 

2.2 Radiative transfer model and emulation 212 
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RTMs describe light-matter interaction. They mechanistically link vegetation parameters (here 213 

referred to as traits), describing plant structure and biochemistry with the spectral signals perceived by 214 

remote sensors. Therefore, RTMs allow simulating canopy reflectance factors from a set of model 215 

parameters and retrieving plant traits from spectral observations through inverse modeling (Jacquemoud et 216 

al. 2009). In this work, we used the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) 217 

model (van der Tol et al. 2009) to simulate vegetation’s optical properties as a function of plant traits (i.e., 218 

TRTM). SCOPE includes the leaf RTM Fluspect-CX (Vilfan et al. 2018), which incorporates anthocyanins 219 

specific absorption coefficients from PROSPECT-D (Féret et al. 2017). SCOPE TRTM includes 1) leaf traits 220 

such as the number of internal leaf layers (N, layers), and chlorophyll a and b (Cab, μg cm-2), carotenoids 221 

(Cca, μg cm-2), anthocyanins (Cant, μg cm-2), senescent pigments (Cs, a.u.), dry matter (Cdm, g cm-2) and water 222 

(Cw, g cm-2) contents; and 2) traits describing vegetation structure as the mean and bimodality of the leaf 223 

inclination distribution function (LIDFa and LIDFb, respectively), leaf area index (LAI, m2 m-2), canopy 224 

height (hc, m), and the leaf width (lw, m). Additional model parameters describing soil optical properties 225 

and illumination-observation conditions are described in Table S1. 226 

In addition, we used statistical models or emulators (Gómez-Dans et al. 2016) to enable fast 227 

computation of large datasets of reflectance factors with SCOPE. We trained and validated two shallow 228 

neural networks predicting specie’s reflectance factors from their traits, each with a different set of look-up 229 

tables. We used the first for simulation (section 2.3.3) and the second to retrieve optical traits via RTM 230 

inversion (section 2.3.4). Using two different emulators allowed us to force a model error in the retrieval, 231 

making it more realistic (Supplementary SM1 and Table S2 describe the emulators’ training and comparison 232 

and present their statistics, respectively). 233 

 234 

2.3 Simulation of traits and spectral diversity 235 
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Fig. 2 represents a schematic with the details of the simulation of synthetic vegetation communities 236 

and their spectral signals, the simulation of different remote sensing features on these signals, and the 237 

various comparisons of the FDMs computed from field plant or remote sensing data. 238 

 239 

 

Figure 2. Detailed simulation and analysis workflow. Each species (i) is defined by a plausible set of field plant traits 

(TRTM), the input of a radiative transfer model (RTM) that predicts the associated reflectance factor (R) (a). Several 

species (9 in this example) are gathered within a regional species pool (b). Some species feature traits with close or 

similar values (similar species), whereas others feature dissimilar trait values (dissimilar species). Then, the species 

from the pool are sampled with different abundances (A) to produce 81 communities per region (c); the original 
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traits and reflectance factors (solid lines) are transformed by different remote sensing features (dashed lines). In both 

cases, the plant traits are also estimated from the optical signals via radiative transfer model inversion (optical traits, 

Toptical). In total, 1000 regions are produced from a corresponding number of species pools (d). Functional diversity 

metrics (FDM) are computed from the abundances and either the field vegetation traits (FDMRTM), the optical traits 

(FDMoptical), or the spectral reflectance factors (FDMR) of each community. The relationships between the FDMs at 

different spatial resolutions are compared for each region (e) and all the regions at the same time (f) 

 240 

2.3.1 Species, communities, and regions 241 

We defined each synthetic plant species with 1) a unique set of plausible biochemical and structural 242 

traits (i.e., TRTM) and 2) the corresponding reflectance factors predicted by the emulator (Fig. 2a). Field 243 

plant traits were randomly sampled; however, we ensured plausible combinations of traits by accounting 244 

for known ranges in different types of vegetation (e.g., forests, crops, grasslands, etc., reported in Table S1) 245 

and traits covariance identified in spectral libraries (Appendix A). Since we emulated a unidimensional 246 

RTM, we did not further describe these species (e.g., stem type or crown shape) nor attempted to focus on 247 

any specific vegetation type or ecosystem. The limitations of the modeling framework are discussed in 248 

section 4.3. 249 

Between 5 and 30 synthetic species were gathered to produce regional species pools (Fig. 2b). The 250 

pools contain all the species present in a region (or remote sensing image) that mix later in different 251 

communities (or moving windows used for image analysis). In practice, the pools are a species-by-traits 252 

matrix containing the traits (i.e., TRTM) of the species present in a region. In nature, biotic and abiotic 253 

filtering and interactions determine species assemblages according to their traits (Jucker et al. 2018). These 254 

processes can prevent or enable the combination of traits with very similar or very different values in the 255 

same community. Therefore, we ensured assemblage variability by different fractions of similar and 256 

dissimilar species in the pools. We forced part of the pool species to be similar by sampling their traits 257 

within narrow ranges. For example, chlorophyll content (Cab) could be limited between 20 and 30 µg cm-2. 258 
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In contrast, we also produced dissimilar species by sampling their traits within wide plausible bounds (0-259 

100 µg cm-2 for Cab in Table S1). The fraction of similar and dissimilar species and the width of the sampling 260 

range for the similar species were randomly set. We set the same soil properties for all the species for each 261 

pool, but these varied between pools. Contrarily, we fixed a constant diffuse-to-global radiation ratio (δDG 262 

= 0.20) and sun zenith angle (θsun = 30˚) for all the simulations. 263 

Finally, we simulated 81 communities per region by combining the regional pool species with 264 

different relative abundances (A) (Fig. 2c). First, we numbered the species, clustering similar and dissimilar 265 

species separately (e.g., in Fig. 2b, similar species range from 1 to 6, and dissimilar species from 7 to 9). 266 

Then we assigned the abundances using the probability predicted by a Gaussian distribution for these 267 

numbers maximizing the range of possible combinations of the species pool (Appendix B). To do so, we 268 

gradually modified the dominant species (the mean) and the degree of dominance (the standard deviation) 269 

of each community. Fig. 3 exemplifies the relative abundances of the 81 communities produced for the 270 

species pool in Fig. 2b and highlights the most extreme cases.  271 

 272 

Figure 3. Example of the relative abundances (A) simulated for the regional species pool in Fig. 2b (9 species). The 

species are indexed with integer values (nsp), separating similar from dissimilar species. The relative abundances are 
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generated by gridding the mean (µ) and standard deviation (σ) of the Gaussian distribution assigning species 

abundances. The figure highlights the most extreme cases where species 1 (similar) or 9 (dissimilar) are dominant 

(determined by µ), with maximum and minimum degrees of dominance (with σ = 0.2 and σ = 5.0, respectively).  

2.3.2 Remote sensing features 273 

We evaluated the effects of three features of the RS data on the relationships between FDMs (Fig. 274 

2c): 1) spectral resolution and configuration (i.e., bands width, range, location), 2) spatial resolution, and 275 

3) signal noise. Since field data are also uncertain, we applied the same noise level to reflectance factors 276 

and field plant traits (Fig. 2c). We simulated three levels for each RS feature and tested all the possible (27) 277 

combinations (Table 1). This analysis envisaged evaluating the trade-offs between different mission 278 

concepts to study functional diversity from space.  279 

 280 

Table 1. Remote sensing features tested in the simulation analysis. The noise level reported was applied to the 

simulated reflectance factors and the field plant traits. Regarding the spectral configuration, DESIS and Sentinel-2 

Multi-Spectral Instrument (MSI) spectral response functions were obtained from imagery metadata (section 2.4.1) 

and the European Space Agency (ESA 2017), respectively. The first row presents the ideal combination of features 

(maximum resolution, noiseless) on which the rest of the simulations are based. 

Spectral configuration Spatial Resolution Noise 

Full-hyperspectral  

2001 bands between 400-2400 

nm, 1 nm step 

High: Sres,100 

All the species of the 

community are individually 

discriminated 

Low: σnoise = 0 % 

Noiseless signal 

DESIS 

58 bands (4x binned) between 

410-986 nm 

Medium: Sres,50 Medium: σnoise = 5 % 

5 % of Gaussian noise 
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Half of the species of the 

community are observed as a 

mixture  

Sentinel-2 

10 bands between 490-2190 nm  

Low: Sres,0 

None of the species of the 

community can be individually 

identified; they are all mixed by 

the sensor 

High: σnoise = 10 % 

10 % of Gaussian noise 

 281 

Species’ reflectance factors were initially simulated at 1 nm step between 400 and 2400 nm (“full-282 

hyperspectral”) and then convolved to the spectral bands of two different sensors: DESIS and Sentinel-2. 283 

DESIS is a visible and near-infrared hyperspectral imager onboard the International Space Station (Kerr et 284 

al. 2016). Sentinel-2 is one of the Copernicus missions managed by the European Space Agency (ESA). It 285 

carries the Multi-Spectral Instrument (MSI), a visible, near, and short-wave infrared multispectral imager 286 

that maps Earth’s surface properties with ten wavebands (Drusch et al. 2012). 287 

Since our simulation did not describe the spatial distribution of the species within each community, 288 

we defined the spatial resolution as the sensor’s capability to discriminate between individual species and 289 

their spectral signatures. Initially, the simulations represented highly resolved imagery, providing an 290 

accurate characterization of each species and their abundances in the community (Sres,100). Then we ran two 291 

additional simulations where the sensor could only discriminate half (Sres,50) or none of the community 292 

species (Sres,0). In these cases, new species were perceived as a linear combination of the reflectance factors 293 

and the abundances of the species that could not be distinguished (Appendix C). In addition, we applied the 294 

same transformation to the field plant traits (TRTM) to compare field and RS data at the same spatial 295 

resolution (section 2.3.5). 296 
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 297 

2.3.3 Simulations 298 

In total, we produced 27 simulations (all the column combinations in Table 1), each consisting of 299 

1,000 species pools and 81 communities (thus 81,000 communities), integrating a total of 16,153 species 300 

(Fig. 2d). For comparison, we initialized all the simulations with the same noiseless and full spectral and 301 

spatial resolution abundances, reflectance factors, and field plant traits (Table 1, first row). Then, these were 302 

modified by combinations of the different levels of the RS features to assess their effect on the relationships 303 

between field and remote sensing FDMs. Fig. 4a-c exemplifies the simulation of a synthetic community 304 

(similar and dissimilar specie’s abundances, spectra, and traits, respectively) and the role of the RS features 305 

(Fig. d-i). The degradation of the spatial resolution modifies the sensor’s perception of the abundances (Fig. 306 

4a,d,g) and spectral properties (Fig. 4b,e,h). When pixels become larger, they can include new species from 307 

outside the area occupied by the community (or a reference field plot (Gholizadeh et al. 2018)). From a 308 

remote sensing perspective, these communities could just be moving windows where pixels are selected to 309 

compute FDMs (e.g., Rocchini et al. (2021)). Moreover, the mixture of spectral signals can hide the 310 

signature of the rarest species, reduce the representativeness of locally dominant species, and, overall, 311 

reduce spectral diversity in the region. At the same time, the convolution to spectral bands of different 312 

sensors reduces the detail and extent of the spectral data. In contrast, noise increases variability (Fig. 4e,h 313 

vs. Fig. 4f,i). 314 
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Figure 4. Example of the simulation of a synthetic community and effect of different remote sensing features on the 

perception of specie’s reflectance factors and abundances. The first row presents the original abundances (A) (a), 

species reflectance factors (R) (b), and field plant traits (TRTM) scaled within the bounds set for the simulation (c). In 

the abundance subplots (first column), the black-pointed line separates similar (on the left) from dissimilar species 

(on the right). The color assigned to each species’ number (nsp) identifies the corresponding reflectance factors and 

traits in the remaining subplots. Solid lines represent pure species, whereas dashed lines represent spectral mixtures 
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due to spatial resolution degradation. The second row degrades spatial resolution so that only 50 % of the species in 

the pool can be discriminated, leading to new estimates of species abundances (d); the color bars represent the 

contribution of each species to the new species abundance, as observed by the remote sensor. Sensed reflectance 

factors, full-hyperspectral and noiseless (e), or convolved to DESIS spectral bands with a 5% random noise (f). The 

third row degrades spatial resolution so that none of the species can be identified, leading to new estimates of 

species abundances (g); the color bars represent the contribution of each species to the new species abundance, as 

observed by the remote sensor. Sensed reflectance factors, full-hyperspectral and noiseless (e), or convolved to 

Sentinel-2 MSI spectral bands with a 10% random noise (i).  

 315 

2.3.4 Retrieval of optical traits 316 

We estimated optical traits from the species’ reflectance factors via inversion of the emulated RTM 317 

(Toptical) for each of the 27 simulations (Fig. 2c). This way, we accounted for the effect of the different remote 318 

sensing features on the retrieval. Additionally, using a second emulator for the inversion, we accounted for 319 

model error (models’ inaccuracy or limitation to represent the observation) since both emulators predict 320 

slightly different reflectance factors for the same input. This approach does not aim to analyze or quantify 321 

the effect of different model structures and vegetation features in the inversion of RTMs, but to include a 322 

plausible source of uncertainty inherent to RTM inversion. We estimated the optical traits using a numerical 323 

optimization approach (Jacquemoud et al. 2009) in two steps. First, we calculated an initial solution using 324 

a look-up table approach. Then, the most relevant vegetation parameters were further optimized using the 325 

L-BFGS-B algorithm (Zhu et al. 1997) (Supplementary SM2 provides a complete description). 326 

 327 

2.3.5 Functional diversity metrics computation and comparison 328 

For each simulation (27), we computed the FDMs from field plant traits (TRTM, as if measured in 329 

the field) and remote sensing data (reflectance factors or optical traits estimated via model inversion). FDMs 330 

were independently computed for the 81 communities of each region as described in section 2.1 (Fig. 2e). 331 
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We analyzed the relationships between field-based (TRTM) and RS-based (R or Toptical) metrics to understand 332 

their ability to capture vegetation functional diversity from space. Linear models were evaluated using the 333 

coefficient of determination (R2) and the normalized root mean squared error (NRMSE, normalized by the 334 

95 % confidence interval of the dependent variable to reduce the effect of outliers).  335 

Also, we evaluated FDM relationships at global and local scales to understand their consistency 336 

and applicability in both contexts. First, we compared at once all the species pools of each simulation 337 

(global, 81 communities by 1,000 species pools) to assess their capability to provide information 338 

comparable between different ecosystems, regions, or RS images (Fig. 2f). Then we compared the FDMs 339 

of the communities of each species pool separately (local, 1,000 species pools) and extracted the median 340 

and the 95 % confidence interval of the statistics (Fig. 2e). This second comparison studied the capability 341 

of each FDM to infer functional diversity within a single ecosystem, region, or image.  342 

In addition, we evaluated the effect of the resolution at which field traits are sampled and compared 343 

with RS metrics (Fig. 2e,f). On the one hand, we compared field FDMs at maximum spatial resolution (hi-344 

res) to simulate the mismatch between imagery and field surveys characterizing individual species (this 345 

means field Sres,100 vs. remote sensing Sres,50 or Sres,0). This analysis simulates the case where ecology studies 346 

characterizing individual species are combined with remote sensing data, as in section 2.4. On the other 347 

hand, we compared vegetation FDMs at the spatial resolution of the sensor (RS-res, comparing Sres,50 vs. 348 

Sres,50 or Sres,0 vs. Sres,0, respectively). Here, we simulated field surveys characterizing vegetation within plots 349 

specifically designed to match satellite pixels (e.g., Hauser et al. (2021a; 2021b)) but not identifying 350 

individual species. This second analysis represents the case of typical remote-sensing oriented surveys 351 

where field datasets are integrated, mimicking the remote sensor’s spatial resolution.  352 

For all these cases, we compared the FDMs’ performance of the 27 simulations to understand the 353 

effect of the remote sensing features and signal noises under evaluation. 354 

 355 
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2.4 Estimation of functional diversity with DESIS and Sentinel-2 at FunDivEUROPE sites 356 

2.4.1 Study sites and field-based biodiversity metrics 357 

We combined field and RS data collected in plots of the FunDivEUROPE network 358 

(http://www.fundiveurope.eu) (Baeten et al. 2013; Benavides et al. 2019a; Benavides et al. 2019b). The 30 359 

x 30 m plots covered matured forests in Spain (Mediterranean oak and pine woodland) and Romania 360 

(mountainous mixed conifer and beech). The other network regions were discarded from the analysis since 361 

they were not covered by DESIS (i.e., Finland) or because foliar traits had not been measured (Ma et al. 362 

2019). In each country, the plots were located to cover the local diversity gradients of the pool of (up to 363 

four) dominant tree species, covering 5 x 5 km and 50 x 50 km regions in Romania and Spain, respectively. 364 

FunDivEUROPE design ensured the inclusion of different levels of taxonomic richness, each 365 

comprehending different mixtures of species and sufficient representativeness of each species featuring 366 

similar frequencies (Baeten et al. 2013). Plant traits were measured in the dominant tree species, and field-367 

based FDMs were computed in plots where dominant species covered more than 95 % of the abundance 368 

(Ma et al. 2019).  369 

In each plot, ten trees per species with a diameter at breast height (DBH, m) larger than 7.5 cm were 370 

selected to measure DBH, hc (tree height), and crown cross-sectional area (CCSA, cm2). LAI was determined 371 

for the whole plot with an LAI-2000 Plant Canopy Analyzer (LI-COR, Lincoln, NE, USA), as described in 372 

Grossiord et al. (2014), and therefore it was not used to compute field FDMs. Moreover, a top south-facing 373 

branch was cut per tree, and around ten leaves per branch were sampled. Half of them were used to 374 

determine leaf nitrogen concentration (Nmass, %) and leaf carbon concentration (Cmass, %). The other half 375 

was used to determine leaf area (la, mm2), specific leaf area (SLA, mm2 mg-1), and leaf dry matter 376 

concentration (LDMC, mg g-1) (Benavides et al. 2019a; Benavides et al. 2019b). In total, 1763 trees were 377 

sampled. The field campaigns took place in July in Romania 2013 and June 2013 in Spain. 378 

http://www.fundiveurope.eu/
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We did not compute the FDMs in the dbFD package on these field-measured traits since FRic and 379 

FDiv require more species than traits, and the maximum plot richness is four. Instead, we applied 380 

standardization, PCA, and computed parametric Rao’s Q. As before, we kept the components explaining 381 

98 % of the variance. We also calculated two taxonomic diversity metrics: the Shannon index (H) and 382 

species richness (S). Where S equals the number of species in the plot (up to 4), and H predicts the 383 

uncertainty of guessing the species of individuals randomly sampled from the community (Shannon 1948). 384 

H (Eq. 2) increases as the community’s richness and evenness do. 385 

 386 

 𝐻 = − ∑ 𝐴𝑖 log(𝐴𝑖)
𝑆

𝑖=1
 

(2) 

 387 

2.4.2 Imagery and reflectance-based biodiversity metrics 388 

We analyzed DESIS and Sentinel-2 imagery acquired over the FunDivEUROPE plots described in 389 

section 2.4.1. Following Ma et al. (2019), we used for all the analyses Sentinel-2 imagery acquired in the 390 

summer of 2015 since it was the closest to field sampling. However, DESIS imagery corresponds to the 391 

summer of 2020. Therefore, to improve DESIS and field data comparability, we also processed Sentinel-2 392 

imagery acquired in the summer of 2020 and used these images to discard field plots that substantially 393 

changed after 2015 (Supplementary SM3) and assess the effect of the temporal gap on the evaluation of 394 

DESIS in FunDivEUROPE. Table 2 summarizes the imagery used and the number of plots selected 395 

according to their temporal stability, absence of clouds, and field data availability. 396 

 397 

Table 2. DESIS and Sentinel-2 imagery selected over FunDivEUROPE plots. Mean atmospheric optical thickness 398 

(AOT), sun zenith (θsun), view zenith (θsun), and azimuth phase (Δϕ) angles of the plots selected are also presented. 399 

Country Date Plots Mean θsun Mean θview Mean Δϕ Mean AOT 
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selected 

DESIS 

Spain 2020-Jun-29 10:11 14 30.8 23.9 6.6 0.264 

Romania 2020-Jun-29 07:02 8 45.9 2.1 3.7 0.283 

Sentinel-2 

Spain 2015-Jul-29 11:00 25 2.6 26.1 121.0 0.015 

Romania 2015-Jul-29 09:20 19 5.8 30.7 121.5 0.014 

Spain 2020-Jun-22 10:56 23 2.7 21.5 127.5 0.082 

Romania 2020-Jul-09 09:06 11 9.2 28.1 51.6 0.081 

 400 

We downloaded DESIS L2A products from the EOWEB® GeoPortal (https://eoweb.dlr.de/egp/); 401 

standard radiometric, atmospheric, and terrain corrections were automatically applied by DLR (Alonso et 402 

al. 2019). During download, we applied nearest-neighbor resampling and a default ozone column value of 403 

330 Dobson units. Metadata files provided the average atmospheric optical thickness (AOT) sensor height 404 

and sun and view angles at the scene’s center, from which we calculated the corresponding angles on each 405 

plot. Sentinel-2 images were processed using the ESA’s Sen2Cor processor (v2.2.0, 406 

https://step.esa.int/main/third-party-plugins-2/sen2cor/) to produce L2A bottom of the atmosphere 407 

reflectance factors. Then we pan-sharpened the 20-m bands (B05-B07, B8A, B11, and B12) to 10 m spatial 408 

resolution using the unmixing method developed by Brodu (2017) and implemented in the ESA’s Sen2Res 409 

toolbox (http://step.esa.int/main/snap-supported-plugins/sen2res/). Further details of Sentinel-2 imagery 410 

processing can be found in Ma et al. (2019). Next, we obtained the corresponding AOT from the products 411 

of the atmospheric correction and estimated all the sun and view angles using the python package 412 

sentinel2_angle_bands (https://github.com/brazil-data-cube/sentinel2_angle_bands). Then, we resampled 413 

https://eoweb.dlr.de/egp/
https://step.esa.int/main/third-party-plugins-2/sen2cor/
http://step.esa.int/main/snap-supported-plugins/sen2res/
https://github.com/brazil-data-cube/sentinel2_angle_bands
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Sentinel-2 to DESIS spatial resolution to understand to what extent the differences between the functional 414 

diversity estimates of each mission could be related to their spatial or spectral features. 415 

We extracted the 3 x 3 pixels windows centered on each FunDivEUROPE plot with spatial 416 

resolutions of 10 (S210) and 30 m (S230 and DESIS). We gathered these data to get single standardization 417 

and PCA models for each sensor, keeping the components that explained 98 % of the variance to reduce 418 

signal noise. Then we computed the FDMs described in section 2.1; in this case, each pixel of the 3 x 3 419 

window was considered a unique species whose abundance was the inverse of the number of pixels in the 420 

window, as described in Rocchini et al. (2021). Fig. 5 shows an example of the spectral data available in 421 

one of the FunDivEUROPE sites in Spain for S210 (Fig. 5a,d), S230 (Fig. 5b,e), and DESIS (Fig. 5c,f). S210’s 422 

high spatial resolution allows sampling the internal variability of the field plot with a 3 x 3 window; DESIS 423 

resolution equals the plot size (30 m) and instead samples the variability of the surroundings of the plot. 424 

Also, DESIS more finely captures the visible and near-infrared region’s variability, whereas Sentinel-2 425 

captures a larger spectral diversity in the short-wave infrared. These differences can be observed both in 426 

the imagery and the spectra.  427 

 428 
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Figure 5. Example of the remote sensing data used in one of the FunDivEUROPE sites in Spain (SPA01). Spectra of 

the 3 x 3 pixels window used to compute the functional diversity metrics (first column) and red-green-blue 

composition of the clips around the site (second column) together with the plot (red dashed line) and the 3 x 3 pixels 

window (pale blue) used to compute functional diversity metrics. Sentinel-2 MSI @ 10 m pixel in 2015 (S210, first 

row), Sentinel-2 MSI @ 30 m pixel in 2015 (S230, second row) and DESIS @ 30 m pixel in 2020 (third row). 

Spectra and imagery pixel colors are matched. 

 429 
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2.4.3 Optical traits retrieval and biodiversity metrics 430 

FDMs were also computed from optical traits (Toptical) estimated from DESIS, S210, and S230 431 

reflectance factors for all the pixels within the 3 x 3 window surrounding each plot. We used an approach 432 

similar to the one described in section 2.3.4; however, in this case, we inverted the model (not the emulator) 433 

in the second step to account for the off-nadir view angles and regularized the cost function (Supplementary 434 

SM4). Next, we assessed the retrieval quality by comparing LAI, chlorophyll concentration (µg g-1) 435 

(computed from Cab, and dry matter content (Cdm) estimates), and Cdm with field LAI, leaf Nmass, and Cdm, 436 

respectively. After the inversion, we computed the FDMs described in section 2.1 on the estimated optical 437 

traits. As with the imagery, we gathered all the optical traits to provide a common standardization and PCA 438 

models for dimensionality reduction and kept the components explaining at least 98% of the variance.  439 

3. RESULTS 440 

3.1 Links between functional diversity metrics 441 

The comparison of FDMs computed from field plant traits (TRTM) and reflectance factors (R) under 442 

ideal conditions (noiseless, full-hyperspectral, and maximum spatial resolution) at the global scale (all data 443 

simultaneously) showed that RaoQα=1 (Fig. 6g) presents the highest R2, followed by FDis (Fig. 6d) and 444 

RaoQα=2 (Fig. 6h), and then RaoQ (Fig. 6e), FRic (Fig. 6a) and RaoQα=∞ (Fig. 6i). The strength of the 445 

relationships of the parametric RaoQ (Rocchini et al. 2021) decreased with the value of α (not shown). For 446 

α = 0, extreme values strongly reduced the coherence of the relationship. FDiv (Fig. 6c) and especially 447 

FEve (Fig. 6b) showed weak relationships. Results at the global scale were coherent with those found at 448 

the local scale (1000 comparisons, one per species’ pool); median values of R2 (and NRMSE) were always 449 

larger than those found at the global scale (e.g., 0.75 vs. 0.89 R2 for RaoQα=1). However, the performance 450 

at the local scale featured large variability. The 2.5 % percentile of the R2 distribution was below 0.35 in 451 

most of the metrics, except for RaoQα=1 and FRic. Most FDMs reached very high R2 (~ 0.98) locally, except 452 
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FDiv and FEve, whose maximum (97.5 % percentile) values are 0.64 and 0.62, respectively. Still, median 453 

values were low for these FDMs, suggesting that vegetation evenness and divergence could not be reliably 454 

inferred from imagery using these metrics at local scales.  455 

 

Figure 6. Relationship between the functional diversity metrics computed from the reflectance (subscript “R”) 

factors and field plant traits (subscript “TRTM”) using the dbFD package (a-e) or the parametric Rao’s Q formulation 

with different values of the parameter α (f-i). Regression lines summarize the comparison at the global scale; the 
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shaded areas around the regression lines represent the 95 % confidence interval of the line. Each subplot includes the 

statistics of the relationship at the global scale (on top, subscript “G”) and the median and 95 % confidence interval 

of the statistics at the local scale (below, subscript “L”). 

 456 

The comparison of FDMs computed from field plant traits (TRTM) and estimated optical traits 457 

(Toptical) under ideal conditions (Fig. 7) led to results similar to those obtained with the reflectance factors 458 

(Fig. 6). However, this time FDMs’ performance was higher in almost all the cases, both at the global and 459 

the local scales (median values). Higher correlations occurred despite the uncertainties in the retrieval (Fig. 460 

S1) and the fact that FDMs were computed from a subset of the optical traits controlling R (Supplementary 461 

SM2). Toptical were retrieved with different degrees of success. Evaluated against the field plant traits, the 462 

estimates of LAI and LIDFa (Fig. S1j,h, respectively) showed biases but high R2 values. Cab, Cdm, and Cw 463 

(Fig. S1b,f,g, respectively) were acceptably retrieved with frequent overestimation for low values. The leaf 464 

parameter N (Fig. S1a) was often underestimated, LIDFb (Fig. S1i) was weakly constrained, whereas Cs 465 

and Cant (Fig. S1d,e) were consistently underestimated. The retrieval performance was slightly better when 466 

evaluated at local scales (median of the statistics); however, there was a large dispersion of R2, whose lowest 467 

values were close to 0.0 in all the cases. The retrievals worsened as the remote sensing resolutions decreased 468 

and the noise increased (Table S3). Results were slightly better when the model error was minimized using 469 

the same emulator for simulation and inversion, both in the retrieval (Fig. S2) and the relationships between 470 

FDMs (Fig. S3). This analysis proved that model error (Table S2) influences the estimation of plant 471 

functional diversity with the optical trait estimation approach. 472 

 473 
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Figure 7. Relationship between the functional diversity metrics computed from optical traits estimated via radiative 

transfer model inversion (subscript “Toptical”) and field plant traits (subscript “TRTM”) using the dbFD package (a-e), 

or the parametric Rao’s Q formulation with different values of the parameter α (f-i). Two different emulators 

simulated the reflectance factors and estimated the optical traits to induce model error. Regression lines summarize 

the comparison at the global scale; the shaded areas around the regression lines represent the 95 % confidence 

interval of the line. Each subplot includes the statistics of the relationship at the global scale (on top, subscript “G”) 

and the median and 95 % confidence interval of the statistics at the local scale (below, subscript “L”).  
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 474 

The relationships between field (TRTM) and remote sensing-based (R or Toptical) FDMs depended on 475 

the remote sensing features (spatial, spectral, and signal noise) and the way the metrics were compared 476 

(scale and spatial mismatch). The joint analysis of all these factors (Fig. 8) confirmed that 1) RaoQ, FDis, 477 

and to a lesser extent FRic, allow the estimation of plant functional diversity from remote sensing. 2) Local-478 

scale relationships (Fig. 8e-h) were stronger on average than global relationships (Fig. 8a-d) (�̃�L
2 > RG

2). 479 

The analysis also led to three additional discoveries: 1) Spatial resolution loss is the most relevant factor 480 

reducing the correlation between remote sensing metrics and field metrics in all the cases (differences in 481 

marker colors); whereas the effect of spectral configuration and noise depends on the approach used to 482 

compute FDMs (reflectance or optical traits). Noise and spectral configuration had little effect when field 483 

FDMs at maximum spatial resolution were compared with R-based metrics at sensor resolution (hi-res, Fig. 484 

8a,e, and Table S4). However, these became more important when the metrics were computed from optical 485 

traits (hi-res, Fig. 8c,g and Table S5). Then, in the absence of noise (brightest tones, smallest markers), R2 486 

was larger than for the reflectance-based approach (Fig. 8a,e), and differences between sensors (marker 487 

shape) were small at all the spatial resolutions. However, except for the Full-hyperspectral configuration, 488 

R2 decreased as noise increased (larger and darker markers), making the correlations weaker than for the 489 

reflectance-based FDMs. Still, when no species could be discriminated (Sres,0) noise and spectral features 490 

lost most influence, and R2 was low in all cases. 2) When remote sensing estimates were compared with 491 

field data integrated at the sensor spatial resolution (RS-res, mimicking the image pixels), the relationships 492 

were more robust to the spatial resolution loss. Moreover, metrics computed from reflectance factors (Fig. 493 

8b,f and Table S6) were more robust than those computed from retrieved optical traits (RS-res, Fig. 8d,h, 494 

and Table S7 vs. Fig. 8c,g). 3) For both approaches (reflectance or optical trait-based metrics), matching 495 

field and remote sensing resolutions (RS-res, Fig. 8b,d,f,h) led to spurious R2 increases for FRic, FEve, and 496 

FDiv; induced by noise or spatial resolution loss. 497 



30 

 

 

Figure 8. Evaluation of remote sensing features on the relationships between functional diversity metrics. Metrics 

computed from field plant traits (TRTM) are compared with remote sensing metrics computed either from reflectance 

factors (R) or estimated optical traits (Toptical). The left column presents R2 of the relationships between metrics 
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compared at the global scale (RG
2), the right column shows the median R2 of the evaluation at the local scale (�̃�L

2). 

Functional diversity metrics computed from reflectance factors at sensor resolution are compared with field metrics 

at maximum spatial resolution (hi-res), representing the mismatch between remote sensors and field surveys (a, e) 

and remote sensing resolution (RS-res) mimicking remote sensing-oriented field surveys (b, f). Functional diversity 

metrics computed from estimated optical traits at senor resolution are compared with field metrics at maximum 

spatial resolution (hi-res) (c, g) and remote sensing resolution (RS-res) (d, h). Markers show different spectral 

configurations; color ranges indicate spatial resolution, whereas marker size and tone represent noise level. 

 498 

3.2 DESIS and Sentinel-2 imagery over FunDivEUROPE sites 499 

As in the simulations, optical traits retrieval from RS was not exempt from uncertainty. Still, the 500 

evaluation against field traits (Fig. S4, subscript “F”) suggests that, at least for key traits, such as LAI, Cab, 501 

and Cdm, the retrieval results were reasonable and within the expected performances (Table S3), or at least 502 

similar for all the RS datasets. NRMSE ranged between 21 and 37 % for the three variables, whereas R2 503 

showed larger variability (from 0.00 to 0.93). The retrieval of LAI (Fig. S4a,d,g) was most problematic in 504 

Romania, still taking both countries together (All), R2 was high (R2 ≥ 0.92 for Sentinel-2, R2 = 0.65 for 505 

DESIS). Chlorophyll concentration (per unit mass) showed positive relationships with field Nmass (Fig. 506 

S4b,e,h). Coherently with the simulations (Table S3), the retrievals’ performance generally increased with 507 

spatial resolution. In the case of DESIS, the lower R2 might relate to larger uncertainties in LAI and Cdm 508 

retrieval. Cdm was overestimated, especially for DESIS in Spain (Fig. S4c,f,i), but the correlations were 509 

moderately strong for the whole dataset (R2 between 0.47 and 0.54). The fact that DESIS does not cover 510 

the short wave infrared might explain this bias, which agrees with the performances found in the simulations 511 

(Table S3). Retrieval performances were similar or even higher for Sentinel-2 in 2020 (Fig. S5). 512 

The comparison of FDMs computed from satellite imagery and field plant traits sampled in the 513 

FunDivEUROPE plots led to metric and sensor-dependent results (Fig. 9). These were evaluated with the 514 

Pearson correlation coefficient (rPearson) to identify negative correlations. FEve and FDiv were never 515 
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significantly correlated, and FRic only weakly once. S210 showed significant positive correlations between 516 

field taxonomic and functional diversity metrics for most of the remaining FDMs. R-based metrics (Fig. 517 

9a,d) were more significantly and more often correlated than those calculated from optical traits (Fig. 9g,j) 518 

except with the taxonomical field metrics (species richness S and Shannon index H). DESIS only achieved 519 

a significant correlation between FDis computed from reflectance factors and field species richness (Fig. 520 

9c). Also, weak significant correlations were found between field and optical trait metrics with field 521 

RaoQα=0 when Sentinel-2 was resampled to DESIS spatial resolution (S230) (Fig. 9k). Nonetheless, 522 

simulations showed that RaoQα=0 was prone to extreme values that might inflate correlations in small 523 

datasets. The fact that only RaoQα=0 correlates and no others such as RaoQα=1 or FDis suggest these results 524 

could be spurious. Despite the significance, the relationships found for S210 were relatively weak. The 525 

maximum R2 found in significant correlations for each group of FDMs evaluated were 0.27 (Fig. 9a), 0.30 526 

(Fig. 9d), 0.18 (Fig. 9g), and 0.18 (Fig. 9j). For DESIS and S230, the maximum significant R2 were 0.20 527 

(Fig. 9c) and 0.09 (Fig. 9k), respectively. Overall results were similar but weaker for Sentinel-2 imagery in 528 

2020 (Fig. S6). FDMs computed from optical traits did not achieve significant correlations in this case. 529 

 530 
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Figure 9. Pearson correlation coefficient between taxonomical and functional diversity metrics computed from field 

plant traits (subscript “field”, x-axis) and functional diversity metrics computed from remote sensing information (y-

axis): the reflectance factors (subscript “R”, first two rows) or the optical traits (subscript “optical”, last two rows). 
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In each case, the dbFD package metrics are presented first, and the parametric Rao’s Q afterward. The statistics 

correspond to Sentinel-2 MSI @ 10 m spatial resolution (S210, first column), Sentinel-2 MSI @ 30 m spatial 

resolution (S230, second column), and DESIS at 30 m spatial resolution (DESIS, third column). Sentinel-2 imagery 

was acquired in 2015. Asterisks indicate the significance of the correlation (two-tailed) according to its p-value (p): 

*** → p < 0.001, ** → 0.001 ≤ p < 0.01, and ** → 0.01 ≤ p < 0.05. 

 531 

4. DISCUSSION 532 

4.1 Can we infer functional diversity from space? 533 

Our simulations demonstrate that the SVH is valid for some aspects of functional diversity, but not 534 

all of them. Metrics based on the dispersion (Rao’s Q formulations, FDis) and, to a lesser extent, range 535 

(FRic) can provide robust insight into plant functional diversity from RS data. However, the metrics related 536 

to evenness and divergence failed to connect spectral and plant functional diversities. To our knowledge, 537 

this is the first study that evaluates these links mechanistically and in a generalizable way. Previous studies 538 

also addressed specific questions supporting modeling with local data only, covering a limited range of 539 

traits, combinations of species, and sensors (Fassnacht et al. 2022; Hauser et al. 2021b; Heumann et al. 540 

2015; Laliberté et al. 2020; Wang et al. 2018b). Our simulations also demonstrate that plant functional 541 

diversity can be inferred from optical traits with even higher precision despite the inherent uncertainties of 542 

the retrieval. This fact might be explained by the RTM removing the non-linearity between field plant traits 543 

and canopy reflectance and the contribution of other elements such as soil. 544 

The potential of Rao’s Q and FDis metrics to connect plant functional and spectral diversity might 545 

rely on the fact that they account both for relative abundances and the ranges of the traits in the 546 

multidimensional space. We hypothesize that these metrics would be little affected by equifinal estimates 547 

of optical traits as long as these exchange their variability while keeping the diversity information in the 548 

overall set of traits evaluated. Hauser et al. (2021a) also found good correlations with field FDMs using this 549 
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approach. FRic showed lower performance and robustness than the dispersion metrics, likely since it does 550 

not account for the relative abundance of species. Moreover, since FRic is the trait’s convex hull volume, 551 

it is potentially sensitive to extreme values. FRic presents a strong sensitivity to the degradation of spatial 552 

resolution (Fig. 8a,c,e,g) but shows much stronger correlations (even spuriously increased) when field data 553 

are compared at the spatial resolution of the sensor at local scales (Fig. 8f,h). These results are consistent 554 

with the convex-hull-based metric’s better performance than Rao’s Q reported by Hauser et al. (2021b). In 555 

all cases, dimensionality reduction might contribute to the robustness against noise and other uncertainties. 556 

However, noise might as well compensate for the loss of variability induced by degraded spatial resolution 557 

(Fig. 4b,e,h), spuriously increasing the strength of the relationships between some of the FDMs (Fig. 8). 558 

The large scattering observed in the relationships between the indices of evenness and divergence 559 

computed from remote sensing and field plant variables might be related to the fact that these metrics look 560 

at the dispersion of species within the convex-hull formed by their traits but ignore its volume (Laliberté 561 

and Legendre 2010). Combined with the non-linear nature of the relationships between reflectance and field 562 

plant traits, this fact might allow for situations where intermediate values of field FEve or FDiv lead to 563 

extreme values of the RS-based metrics and vice versa. FEve is the metric the least correlated with FDis 564 

and Rao’s Q (Laliberté and Legendre 2010), and when compared, RS and field values are widely scattered 565 

(Fig 5b and 6b). FDiv is more related by construction to FDis but presents numerous cases where one of 566 

the metrics (from RS or field) takes an extreme value (close to 0 or 1), independently of the other (Fig. 6c 567 

and 7c). Ignoring the convex-hull volume might make these metrics less robust to uncertainty and 568 

equifinality of the optical traits, leading to spurious correlation increases when metrics are compared at 569 

sensor resolution (Fig. 8b,d,f,h).  570 

 571 

4.2 Are plant diversity indices comparable beyond a single image or ecosystem? 572 
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Especially for Rao’s Q, FDis, and FRic, the relationships between RS and vegetation functional 573 

diversity are robust at global (e.g., between ecosystems or images) and local (a smaller region or a single 574 

image) scales. However, even if median R2 is larger at the local scale, the large variability of performances 575 

registered (Table S4-S7) recommends caution when interpreting RS estimates locally or within a limited 576 

number of ecosystems. This performance’s variability implies that moderate correlations might be found 577 

for FEve and FDiv in local studies allowing for plausible interpretation of their patterns with the known 578 

ecological features of the study site (e.g., Schneider et al. (2017)). However, our results suggest that these 579 

metrics should not be trusted since R2 is prone to be inflated by noise and spatial resolution degradation 580 

(Fig. 8). More research is needed to understand the control of specific plant traits on the relationships 581 

between functional and spectral diversity and the situations where the metrics are most prone to fail or 582 

succeed. For example, Rocchini et al. (2021) suggested that the mixture of crops and urban areas spuriously 583 

inflated spectral variability. In our simulations, 11.89 % of the species featured LAI < 1.0, which might have 584 

produced similar effects. When possible, misleading information should be removed from the spectral 585 

datasets to ensure that the spectral variability is only driven by plant diversity. For example, Gholizadeh et 586 

al. (2018) and Laliberté et al. (2020) proposed to classify and mask non-vegetated pixels (soil and shades, 587 

respectively) before remote characterization of taxonomic and functional plant diversity. In this regard, the 588 

inversion of RTMs might contribute to separating background effects from vegetation properties since both 589 

are represented.  590 

Interestingly, Rao’s Q, FDis, and FRic are comparable between different ecosystems/images 591 

despite not sharing a common standardization (and dimensionality reduction). Botta-Dukát (2005) indicated 592 

that the same standardization should be applied to the whole dataset when comparing different 593 

communities. However, this approach is unsuitable for operational remote sensing since RS products cannot 594 

be reprocessed every time a new image is added to the dataset. Botta-Dukát (2005) proposed scaling within 595 

plausible trait ranges as an alternative to this standardization. However, his study did not consider a 596 

posterior dimensionality reduction, where standardization could be advantageous (van den Berg et al. 2006). 597 
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Whether or not global RS products of plant functional diversity require a common 598 

standardization/dimensionality reduction model needs to be solved before these can be implemented. We 599 

tried to apply a common standardization and PCA model to all the data simulations to explore the possibility 600 

of using default models to all RS imagery of a mission. These models were not produced from the 601 

simulation used to compute FDMs but from an independent simulation of 10,000 species. The approach 602 

failed to improve the performance of the parametric Rao’s Q metrics, with the R2 falling below 0.25 at the 603 

global scale (not shown). Our simulations show that applying image-based standardization and PCA still 604 

allows the comparison of FDMs between different regions or images. Therefore, this approach should also 605 

be suitable for analyzing time series and the development of global RS products. Nonetheless, the 606 

correlations are weaker than at the local scale (in average). Therefore, alternative methods improving the 607 

precision and spatio-temporal consistency of future global plant diversity maps should be explored. 608 

 609 

4.3 What are the limitations and ways forward? 610 

Our simulations reveal that spatial resolution, defined as the capability to resolve or identify the 611 

spectral properties of individual species, plays the most relevant role in the ability of RS to infer plant 612 

functional diversity. In an RS validation framework, the decrease of spatial resolution produces specie’s 613 

spectra and abundances that do not correspond with those measured in the field and, therefore, a discrepancy 614 

between the FDMs compared. Moreover, as the pixel size increases, it includes new species and trait values 615 

not present in the field plots used as a reference for RS (e.g., results in section 3.2). New species could also 616 

be introduced by the spatial mismatch between RS pixels and field plots. We compared field FDMs with 617 

the RS estimates simulating this mismatch and found that the degradation of spatial resolution strongly 618 

reduced the performance of RS to infer functional diversity (Fig. 8a,c,e,g). We also compared both data at 619 

the RS scale, trying to reproduce what is observed by the sensor from field data. Spatial matching reduced 620 

performance loss, but it was still considerable when none of the species could be identified (Fig. 8b,f,d,h). 621 
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In addition, we proved that model error influences optical traits retrieval (Fig. S1 vs. Fig. S2) and the 622 

subsequent estimation of functional diversity (Fig. 7 vs. Fig. S3). Therefore, a careful selection of the RTM 623 

to best represent the canopy monitored could benefit this approach.  624 

Surprisingly, sensor spectral configuration plays a minor role when FDMs are directly computed 625 

from R. Likely, dimensionality reduction lessens the differences between the information present in datasets 626 

of different spectral features. However, this can also be understood as a need for metrics capable of 627 

optimally extracting functional diversity information from hyperspectral data. Still, notice that 628 

standardization and removal of variables covariance is necessary; simulations avoiding these steps led to 629 

weak correlations between FDMs (not shown). Nonetheless, sensor spectral features were more influential 630 

when FDMs were computed from optical traits; which suggests that hyperspectral missions (e.g., 631 

Environmental Mapping and Analysis Program (EnMAP), DESIS, PRecursore IperSpettrale della Missione 632 

Applicativa (PRISMA), Copernicus Hyperspectral Imaging Mission (CHIME), Surface Biology and 633 

Geology (SBG)) should be preferred for this approach. Furthermore, simulations show that reducing sensor 634 

spectral range or resolution makes this approach more sensitive to noise and spatial resolution decrease 635 

(Fig. 8c,d,g,h). 636 

Analyzing the impact of different remote sensing features clarified the limits and possibilities of 637 

different mission concepts to infer plant functional diversity from space. When the spatial resolution is 638 

prioritized, FDMs based on R directly are most likely to succeed. When the spectral resolution is higher 639 

(e.g., hyperspectral imagers), the approaches based on optical traits would be advantageous under two 640 

conditions: low noise and accepting that trait variability is assessed between small communities of 641 

vegetation (pixels), not individual species. In all the cases, both approaches might be used together to 642 

evaluate the robustness/reliability of the estimates. Ideally, a biodiversity monitoring system would benefit 643 

from combining mid-spatial-resolution hyperspectral imagers (e.g., EnMAP, DESIS, PRISMA, CHIME, 644 

SBG, etc.) with high-spatial-resolution multispectral sensors (e.g., Sentinel-2); potentially also sharpening 645 
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or down-scaling the hyperspectral data. This combination could provide redundant (and thus more robust) 646 

estimates of plant functional diversity, exploiting each mission concept’s best features.  647 

Our results are robust to simulation design. For example, simulations not constraining the 648 

plausibility of the relationships between leaf traits led to similar results and the same conclusions (not 649 

shown). Additional challenges not addressed in this work could increase the uncertainty of the relationships 650 

explored. Still, they could be analyzed in the future using a modeling framework like the one described 651 

here. For example, our simulations ignored intra-specific functional variability. It could complicate species 652 

classification from remote sensing and lead to divergences between taxonomic and functional diversities. 653 

However, from a remote sensing perspective, two pixels can be considered different species, being the 654 

degree of functional diversity determined by their dissimilarity and not their taxonomic classification. We 655 

hypothesize that intra-specific variability might be the least problematic when RS and field data are 656 

compared at the same spatial resolution. An additional challenge would be assessing nearby species 657 

functionally different with similar spectral properties. Also, using a unidimensional RTM might not be 658 

representative of canopies with a strong geometrical scattering component. The effects of canopy geometry 659 

could be further analyzed with three-dimensional RTMs. We did not consider either the vertical overlap of 660 

species, which reduces the contribution of the shortest plants to the RS signal. However, these plants might 661 

be sampled in field surveys, leading to mismatches between ground and remote estimates of plant functional 662 

diversity. In this regard, active RS using radar or lidar could offer additional information on the vertical 663 

distribution of vegetation and the variability of plants in the understory and characterize vegetation 664 

(structural) properties (Asner et al. 2017; Bae et al. 2019; Ma et al. 2020; Simonson et al. 2014; Valbuena 665 

et al. 2020). However, active RS would also be the subject of the issues related to spatial resolution and 666 

noise. Spaceborne radar missions such as Sentinel-1 (Torres et al. 2012) can today provide global coverage 667 

with pixel sizes close to the size of tree crowns. However, the complexity of the SAR backscatter, the 668 

enlarged footprint from oblique observation, and signal noise might limit the discrimination of individual 669 

trees (Bae et al. 2019). Still, radar information could be valuable, providing information regarding the 670 
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understory and soil water content, which could relate to the distribution of species governing the top of the 671 

canopy (Fauvel et al. 2020). Spaceborne lidar does not yet offer comparable coverage and resolutions. Still, 672 

with a footprint of 25 m, Global Ecosystem Dynamics Investigation (GEDI) mission (Coyle et al. 2015) 673 

could provide valuable information on the vertical distribution of vegetation that could be enhanced when 674 

combined with optical or radar data (Valbuena et al. 2020). Beyond global coverage products, our 675 

simulations suggest that the airborne and drone-borne platforms would offer the best possibilities to infer 676 

functional diversity remotely. Especially the airborne systems allow the combination of active and passive 677 

sensors featuring high spatial resolutions (Adhikari et al. 2020; Almeida et al. 2021; Asner et al. 2017; 678 

Schneider et al. 2017; Zhao et al. 2018), and including visible and near-infrared (Gholizadeh et al. 2019; 679 

Melville et al. 2019) and short-wave infrared hyperspectral configurations (Asner et al. 2015; Jetz et al. 680 

2016). Furthermore, they can carry sensors to map other signals intimately linked to plant function, such as 681 

chlorophyll sun-induced fluorescence (Tagliabue et al. 2020). Nowadays, these sensors are the most suitable 682 

for detailed surveillance of valuable and endangered areas or the generation of high-quality datasets that 683 

enable the development or evaluation of methods to be later applied to satellite imagery. 684 

 685 

4.4 Applied optical remote sensing of plant functional diversity: a case study on the forests of the 686 

FunDivEUROPE Network 687 

The comparison between field estimates of functional diversity in forests and RS imagery from 688 

Sentinel-2 and DESIS sensors was consistent with the conclusions drawn from the simulations. The best-689 

performing metrics in the simulations Rao’s Q and FDis provided significant correlations in the study case 690 

most of the time. However, Sentinel-2 and DESIS performances were very different. Only S210 provided 691 

several significant correlations with field FDMs (weak, R2 ≤ 0.30, but coherent with simulations, e.g., Fig. 692 

8). This analysis does not seek to assess the missions’ potential to estimate plant functional diversity since 693 

none of them can, for example, identify the species of the field plots and are therefore suboptimal for such 694 
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evaluation. The value of this exercise is the coherence found between our simulation framework and 695 

observations. A potential reason for DESIS lower performance might be the larger mismatch between the 696 

acquisition of DESIS and field data (7 years). We minimized the effect of this temporal gap by limiting the 697 

analysis of DESIS to plots stable between 2015 and 2020. Sentinel-2 imagery acquired in 2015 and 2020 698 

provided similar results. Still, the strength of the correlations decreased in 2020, and these were not 699 

significant for the metrics computed from the optical traits (Fig. S9 vs. S6) despite some being closer to 700 

field data in 2020 (Fig. S4 vs. S5). Thus, the temporal gap might account for part of the differences between 701 

DESIS and Sentinel-2. However, the lack of significant correlations of Sentinel-2 resampled at 30 m 702 

suggests that the coarser spatial resolution of DESIS (equal to field plot size) and not the temporal mismatch 703 

was the main limitation for comparing field and RS estimates of plant diversity. Still, unlike in the 704 

simulations, we could not disentangle the contribution of the different sources of uncertainty and 705 

mismatches when comparing this imagery. 706 

Our results agree with the fact that 10 m spatial resolution is enough to characterize the internal 707 

variability of the plots. However, it was insufficient to discriminate the individual species and thus 708 

suboptimal for estimating functional diversity. The correlations between FDMs were stronger for 709 

reflectance (Fig. 9a,d) than for optical trait-based metrics (Fig. 9g,j), which agrees with the stronger 710 

sensitivity of this method to noise and spectral configuration found in the simulations (Fig. 8c,d). The spatial 711 

mismatch between plots and RS pixels might have added additional uncertainty. However, the 10 m buffer 712 

of similar forest type, structure, and composition kept around the plots to minimize border effects should 713 

minimize this uncertainty for S210. Looking at the taxonomical metrics, S210 found significant correlations 714 

with species richness S and more strongly with the Shannon index H. DESIS found a weak but significant 715 

relationship between FDis and S; whereas S230 still found weak significant correlations for RaoQα=0, which 716 

simulations suggest might be spurious. Within the field metrics, H positively correlated with S (R2 = 0.47), 717 

and RaoQα=1 with H (R2 = 0.96) and S (R2 = 0.64). The correlation between functional and taxonomic 718 

diversity seems to be also captured by S210 but not by S230. In the case of DESIS, FDis correlation with 719 
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field S might result from the richer spectral resolution capturing distinctive features of individual species, 720 

even if these could be individually recognized. Nonetheless, as shown in the simulations, these results are 721 

in part dependent on the spatial mismatch between field and RS data; in the case of DESIS and S230, stronger 722 

correlations could be found if evaluated at their spatial resolution. The development of RS of biodiversity 723 

products will benefit from establishing dedicated field plots, such as those proposed by Hauser et al. 724 

(2021a), where vegetation is characterized in gridded plots that can be matched with pixels of RS imagers.  725 

An additional challenge for RS of plant functional diversity is the conceptual gap between ecology 726 

and RS regarding traits (Ustin and Gamon 2010). While the ecologists are interested in traits with 727 

ecological, functional, and adaptative meaning, RS science is more interested or limited to properties that 728 

significantly control light-vegetation interaction. This conceptual difference is not trivial. Hauser et al. 729 

(2021a; 2021b) showed that accounting for the variability of structural traits such as LAI, which are not 730 

considered functional traits, is necessary to explain spectral diversity. In our case, from the 731 

FunDivEUROPE traits used to compute FDMs, only SLA (inversely related to leaf dry matter content, Cdm), 732 

canopy height, and leaf area (related to leaf width) could be considered inputs of the most common 733 

vegetation RTMs. This fact does not entirely prevent connecting RS signals with vegetation functional 734 

diversity since some traits are shared or correlated (Kattenborn and Schmidtlein 2019). For example, Cdm 735 

can relate inversely with SLA, Cab with nitrogen and maximum carboxylation rate (Evans and Clarke 2019), 736 

or LAI and canopy height with DBH in some cases (Fischer et al. 2019; Turner et al. 2000). However, 737 

although global relationships between plant traits have been reported (Reich 2014; Wright et al. 2004), these 738 

relationships can vary between species (Evans and Clarke 2019; Zhao et al. 2021). This variability in the 739 

indirect connections between traits governing spectral diversity and the traits used by ecologists to quantify 740 

functional diversity on the ground might obscure or prevent evaluating RS estimates of plant functional 741 

diversity using ecological field data. This challenge was present when assessing RS estimates of functional 742 

diversity in FunDivEUROPE since the field sampling was not designed for RS validation. We are aware 743 

that part of the uncertainty found in the relationships evaluated might arise from this discrepancy, even 744 
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though we expect most field traits to correlate with RTM inputs. The remote sensing and ecology 745 

communities should work together to design diversity experiments stretching gradients of traits that can be 746 

remotely sensed, enabling the study of their relationship with function and development of remote sensing 747 

maps of plant functional diversity. 748 

5. CONCLUSIONS 749 

In this work, we have systematically evaluated the links between spectral and functional diversity 750 

and characterized the capability of remote sensing to provide accurate estimates of plant functional 751 

diversity. Our modeling framework circumvented a lack of comprehensive data, allowing us to 1) identify 752 

three functional diversity metrics (dispersion, richness, and Rao’s Q) able to infer functional diversity 753 

robustly from spectral diversity, 2) validate the use of both reflectance factors and optical traits estimated 754 

via radiative transfer model inversion for these metrics, 3) determine that these metrics can deliver 755 

summaries in different ecosystems and times and are therefore suitable for the generation of global remote 756 

sensing products from the analysis of individual images, and 4) understand the effect of different remote 757 

sensing features on the methods and metrics analyzed, learning that high spatial resolution imagers can rely 758 

on reflectance factors despite the limited spectral information they provide, whereas hyperspectral imagers 759 

with lower spatial resolution should infer plant diversity from optical traits. The case study results using 760 

DESIS and Sentinel-2 imagery over FunDivEUROPE forest plots are coherent with the simulations. 761 

Our approach clarifies some key issues, but further efforts are needed to generate field datasets 762 

suitable for validating remote sensing estimates of plant functional diversity. Also, the gap between the 763 

variables measured by biodiversity ecologists and those that can be remotely estimated (and therefore, 764 

controlling the spectroradiometric signals) should be reduced to promote the development, evaluation, and 765 

exploitation of such remote sensing products. The combination of new satellite missions overlapping 766 

complementary resolutions and spectral information (e.g., hyperspectral, radar, lidar, high spatial resolution 767 

imagery, etc.) could overcome some of the challenges found or not yet explored in this work. 768 
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APPENDIX A. VEGETATION TRAITS SIMULATION 789 

We avoided unplausible combinations of field plant traits (i.e., TRTM) and other inputs of the SCOPE 790 

emulator during the definition of synthetic species combining three different approaches. First, we limited 791 
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the random sampling of these traits within realistic ranges (Table S1) commonly reported in the literature 792 

(Bayat et al. 2018; Celesti et al. 2018; Feret et al. 2008; Houborg and Anderson 2009). Second, we avoided 793 

unrealistic combinations of the leaf traits constraining N, Cab, Cca, Cdm, and Cw covariance with a Gaussian 794 

Mixture Model (GMM). The GMM model was fit to the LOPEX (Hosgood et al. 1994) and ANGERS (Feret 795 

et al. 2008) datasets using the expectation-maximization (EM) algorithm (Dempster et al. 1977) 796 

implemented in the Python package scikit-learn (Pedregosa et al. 2011). We selected these databases since 797 

they were produced to calibrate the coefficients of leaf RTMs and therefore present most of the traits needed, 798 

including N. Notice that values of N are exclusively available in spectral libraries since this is a non-799 

measurable model parameter that can only be inferred via inversion of the leaf radiative transfer model. 800 

Since N relates to the cellular arrangement inside the leaf, it can correlate with dry matter content, and it 801 

has been shown to correlate with the specific leaf area (Jacquemoud and Baret 1990; Pacheco-Labrador et 802 

al. 2021; Peters and Noble 2020). Third, we prevented the unrealistic co-existence of high chlorophyll (Cab) 803 

with anthocyanins (Cant) (Hughes et al. 2007) or senescent pigments (Cs) contents (Mattila et al. 2018) by 804 

scaling the randomly sampled Cant and Cs values by a factor (fC,max) exponentially decreasing as a function 805 

of Cab as described in Eq. A.1:  806 

 807 

𝑓𝐶,max = e
𝑧∙(

100− 𝐶ab
100

−1)
 

(A.1) 

 808 

fC,max ranges between 0 and 1, and z controls its decrease with Cab. High Cs was strongly limited to 809 

leaves featuring low Cab (z = 40) since senescent pigments result from the degradation of chlorophylls and 810 

other leaf constituents (Mattila et al. 2018; Pourcel et al. 2007). Anthocyanins were less strongly limited (z 811 

= 7) since their functional role makes possible a positive correlation with Cab in some cases (Gould 2004; 812 

Hughes et al. 2007; Manetas 2006).  813 
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APPENDIX B. SIMULATION OF SPECIES COMMUNITIES 814 

We produced 81 synthetic communities from each regional pool by sampling the species with 815 

varying relative abundances (A). Each pool contained a randomized number of species (nT ϵ [5, 30]), of 816 

which ns were similar and nds were dissimilar (nT = ns + nds). We labeled the species with an integer (nsp) 817 

ranging from 1 to nT; first the similar species (nsp ϵ [1, ns]) and then the dissimilar ones (nsp ϵ [ns + 1, nT]) 818 

(Fig. B.1a). Then we produced relative species abundances for each community with a Gaussian distribution 819 

function whose mean (μsp) and standard deviation (σsp) were relative to species index space nsp (Fig. B.1c). 820 

For each pool, we produced 81 communities from μsp and σsp gradients crossed in a 9 x 9 grid (Fig. B.1b). 821 

σsp ranged between 0.4 and 5.0 species, whereas μsp ranged between 0.2 and nμ, where nμ = ns + fds · nds and 822 

fds was a random value within the range [0.2, 1.0]. fds reduced the dominance of some of the dissimilar 823 

species in the regional communities, increasing their exoticism. Finally, the abundances of each community 824 

were normalized to add up to one. These synthetic communities presented different degrees of richness, 825 

evenness, and divergence (Villéger et al. 2008) and dominant species. 826 

 

Figure B.1. Generation of several (81) synthetic communities from the same species pool. (a) Pool of ns similar and 

nds dissimilar species adding up to nT; each species is labeled with an integer nsp and characterized by a specific set 

of field plant traits (TRTM) and the corresponding reflectance factor (R). (b) Communities matrix presenting the 81 

combinations of the median (μsp) and the standard deviation (σsp) of the Gaussian distribution used to define the 

relative species abundance (A) of each community. i and j are row and column indices of the matrix; only a fraction 
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of the dissimilar species is allowed to dominate communities so that μsp ranges up to nμ ≤ nT. (c) Relative species 

abundance distribution of one of the communities. 

APPENDIX C. DEGRADATION OF SPATIAL RESOLUTION 827 

We simulated remote sensor spatial resolution degradation by mixing a fraction of the species 828 

within the community with each other (50 % or 100 % of the species). These mixtures represented the 829 

species observed by the remote sensor with a sub-optimal resolution, therefore, as a mixture. To do so, we 830 

generated a squared matrix (M) mapping the contribution of the original species (j columns) and to the 831 

species to be spatially degraded (i rows). The coefficients of the linear combination (ci,j) were 832 

(∑ c𝑖,𝑗 = 1, ∀𝑖𝑗 ). For the species that were not mixed, c𝑖,𝑗 = 0 ∀𝑖 ≠ 𝑗; c𝑖,𝑗 = 1 ∀𝑖 = 𝑗. Fig. C.1 shows an 833 

example of this matrix for a community of 4 species where only species 1 and 2 are mixed. 834 

 835 

 

Figure C.1. Example of species mixture during spatial resolution degradation. Four species at high spatial resolution 

are observed from a sensor only able to distinguish two (solid lines); the rest are observed as a mixture (dashed 

lines). The table shows the coefficients of the mixture matrix M where columns represent the contribution of the 

original species to the degraded ones (rows). The procedure described is used to degrade the spatial resolution of 

reflectance factors, vegetation parameters, and relative abundances of the species of a regional pool.  

 836 
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Then, the reflectance factors, vegetation parameters, and abundances were mixed linearly, 837 

combining the respective variables with the row coefficients of the matrix M: 838 

 839 

𝑋low−Sres,𝑖 = ∑(𝑐𝑖,𝑗𝑋hi−Sres,𝑗)

𝑗

 (C.1) 

 840 

where X represents any of the abovementioned variables, the subscripts “hi-Sres” and “low-Sres” stand for 841 

high and low spatial resolution. The example of Fig. C.1 (first row) shows that what the remote sensor 842 

would identify species 1 (Sp1,deg) would be, in fact, a mixture 75% and 25% of the species 1 (Sp1,ori) and 2 843 

(Sp2,ori), respectively. Relative abundances still had to be normalized after the combination to provide an 844 

accumulated probability of 1 in each community. The mixture enabled the apparition of new species within 845 

a community, which might happen when larger pixels sample a larger area outside the field plot used as a 846 

reference (e.g., for field measurements or from a remote sensor with higher spatial resolution).  847 
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SUPPLEMENTARY MATERIAL 1 

SUPPLEMENTARY METHODS 2 

SM1. Training and evaluation of SCOPE emulators 3 

We trained two shallow neural networks (one layer) to enable fast computation of large datasets 4 

of reflectance factors with SCOPE. To do so, we built look-up tables (LUT) of 6,000 samples for training 5 

and 1,000 samples for validation of the models. These LUTs included plant traits (TRTM) and other 6 

parameters of the model (illumination and soil) and the corresponding reflectance factors simulated with 7 

SCOPE (Table S1). Both neural networks predicted reflectance factors from these inputs. The neural 8 

networks featuring one hidden layer were fitted to the training dataset using the Python package scikit-9 

learn (Pedregosa et al. 2011). Following Rivera et al. (2015), we added random noise of standard 10 

deviation equivalent to 0.5 % of the dataset’s range of variability in each band and zero mean and then 11 

applied dimensionality reduction with principal component analysis (PCA). We trained two models from 12 

two different sets of LUTs: the first for simulation (section 2.3.3 of the manuscript) and the second to 13 

retrieve optical traits via radiative transfer model inversion (section 2.3.6 of the manuscript).Using two 14 

models that provided slightly different reflectance factor predictions for the same set of inputs allowed us 15 

to force a model error in the retrieval. Table S2 presents the emulators’ training and comparison statistics. 16 

SM2. Details of the inversion of the SCOPE emulator on simulated spectra 17 

We estimated the optical traits in two steps. In the first step, we calculated an initial solution (ξ0) 18 

from a look-up table of 10,000 samples generated with the emulator; assuming constant diffuse-to-global 19 

radiation ratio and sun zenith angle (δDG = 0.20, θsun = 30˚, respectively), and nadiral observation. ξ0 was 20 

the averaged value of the 10 samples (ξi) with the lowest sum of squares (χ2) between the predicted (Rpred) 21 

and the “observed” (simulated) reflectance factors (Robs) (Eq. SM2.1), weighted by χ2 (Eq. SM2.2). In the 22 

case of DESIS and Sentinel-2 simulations, we convolved Rpred with the corresponding spectral response 23 

functions. 24 

 25 

 𝜒2 = ∑(𝑅𝜆,pred − 𝑅𝜆,obs)
2

𝜆

 
(SM2.1) 

 26 

where λ stands for each spectral band 27 

 28 

 ξ0 =

∑
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sorted

𝜒𝑖
2

10
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210
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(SM2.2) 

 29 

In the second step, we averaged soil parameters for all the species (pixels) of each community and 30 

canopy height (hc) and leaf width (lw), two traits with low influence on canopy reflectance and thus the 31 

most prone to equifinality. Then, we retrieved only the optical traits with the strongest effect on R (N, Cab, 32 

Cca, Cant, Cs, Cdm, Cw, LIDFa, LIDFb, and LAI) by minimizing Eq. SM2.1 with the L-BFGS-B algorithm 33 
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(Zhu et al. 1997). In this step, we bound the optimization using the limits applied to the look-up tables to 34 

train the emulators (Table S1). 35 

SM3. Evaluation of the temporal stability and filtering of FunDivEUROPE plots 36 

The closest-to-DESIS (summer 2020) and cloud-free Sentinel-2 imagery was downloaded and 37 

processed as described in Ma et al. (2019) and section 2.4.2 of the manuscript. However, visual inspection 38 

made clear that the geometric correction presented some biases leading to the inclusion of nearby roads in 39 

the FunDivEUROPE plots. Sentinel-2 2020 imagery was further corrected by optimizing affine 40 

transformation parameters that maximized Pearson correlation between the average of all the spectral 41 

bands of the images of 2015 and 2020. Pixels classified as clouds or shadows in the L2A scene 42 

classification layer were excluded from the optimization. Notice that the full images, not the 43 

FunDivEUROPE plots, were used for the correction. Pearson correlation coefficient increased from 44 

0.8485 to 0.8858 in Spain and 0.7622 to 0.8095 in Romania. The correction produced average shifts of 45 

1.23 and 1.42 pixels in Spain and Romania, respectively. Pixels were resampled using the nearest 46 

neighbor approach.  47 

Once corrected, we compared the normalized difference vegetation index (NDVI) of 2015 and 48 

2020 imagery in the FunDivEUROPE plots. A linear model was fit using weighted least squares, resulting 49 

NDVI2020 = 0.821 · NDVI2015 + 0.164. We considered that any plot whose NDVI-distance to the model was 50 

larger than 0.1 had significantly changed and was not comparable between 2015 and 2020. This way, we 51 

excluded ten sites in Romania and two in Spain for the analyses with DESIS and Sentinel-2 in 2020. 52 

SM4. Estimation of optical traits in FunDivEUROPE plots 53 

We retrieved optical traits in the FunDivEUROPE plots from DESIS and Sentinel-2 imagery. 54 

First, we estimated δDG (the fraction of diffuse radiation) per wavelength from the atmospheric optical 55 

thickness (AOT) and solar zenith angle using the model implemented in FLIGHT (North 1996) as 56 

described in Melendo-Vega et al. (2018). Then δDG was averaged within the optical domain and used as 57 

input of the emulator.  58 

Then we produced an initial estimate of the unknown soil parameters and vegetation optical traits 59 

(Table S1) with a look-up table (LUT)  inversion approach. We generated a LUT of 10,000 samples for 60 

each scene with the SCOPE RTM emulator. Averaged sun-view geometry and δDG were used for all the 61 

pixels, assuming little variability within the reduced area. Also, we forced a nadiral view zenith angle. 62 

The initial solution was the weighted average (Eq. SM2.2) of the 50 LUT samples providing the lowest χ2 63 

(Eq. SM2.2).  64 

Since the emulator was trained for nadiral observations only, the SCOPE model (not the 65 

emulator) was inverted in a second step, accounting for the actual observation angles of each plot. As in 66 

the supplementary SM2, we retrieved only the optical traits with the strongest effect on R (N, Cab, Cca, 67 

Cant, Cs, Cdm, Cw, LIDFa, LIDFb, and LAI). In this case, we set these optical traits at 25 % or 75 % of their 68 

bounded range whenever the initial solution was at the lower or the upper bound, respectively. The rest of 69 

the optical traits and soil parameters were averaged per plot. In the second step, we minimized a 70 

regularized cost function (Eq. SM4.1) using the trust-region-reflective algorithm (Coleman and Li 1996) 71 

implemented in the Matlab™ function lsqnonlin (MathWorks, Natick, MA, USA). The function penalized 72 

the carotenoids to chlorophyll ratio deviating from 0.20, a value close to the median calculated in the 73 

LOPEX and ANGERS databases, as well as the magnitude of anthocyanins content since high values 74 

were not expected. To improve the performance of the inversion, we also regularized LAI (LAIreg) with 75 
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prior information (Combal et al. 2003). For the plots in Spain, we added a penalty on the magnitude of 76 

LAI since it tended to take very high values (LAIreg = LAI); in Romania, we regularized deviations from 77 

6.0, a value close to field LAI (LAIreg = LAI – 6.0). 78 

 79 

 𝜒2 = ∑(𝑅𝜆,pred − 𝑅𝜆,obs)
2

+ (𝛾1 (
𝐶ca

𝐶ab
− 0.20))

2

+ (𝛾2𝐶ant)2 + (𝛾3𝐿𝐴𝐼reg)2

𝜆

 

(SM4.1) 

 80 

where γ1, γ2, and γ3 are the regularization factors. γ1 = 10-1, γ2 = 10-2 and γ3 equal 5·10-3 or 4·10-3 in 81 

Spain or Romania, respectively. 82 
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SUPPLEMENTARY TABLES AND FIGURES 83 

Table S1 84 

Table S1. SCOPE inputs, symbols, and bounds used in simulation and the inversion. In addition to plant traits 

described in the manuscript, SCOPE requires additional inputs. For example, the BSM module of SCOPE simulates 

soil reflectance factors as a function of soil brightness (B, unitless), spectral shape “latitude” and “longitude” color 

coordinates (Lat and Lon, degrees), soil moisture capacity (SMC, %) and content (SMp, %). Illumination conditions 

were described by sun zenith angle (θsun, degrees) and the diffuse-to-global radiation ratio (δDG, -). Simulations 

assumed nadiral observation (view zenith angle, θview = 0˚). 

Parameter Symbol Units Bounds 

Vegetation Parameters (PRTM) 

Leaf chlorophyll content Cab μg cm-2 [0, 100] 

Leaf carotenoids content Cca μg cm-2 [0, 25] 

Leaf anthocyanins content Cant μg cm-2 [0, 10] 

Leaf senescent pigments content Cs a.u. [0, 1] 

Leaf water content Cw g cm-2 [0.004, 0.045] 

Leaf dry matter content Cdm g cm-2 [0.00190, 0.01570] 

Leaf structural parameter N layers [1, 3] 

Leaf area index LAI m2 m-2 [0, 8] 

Leaf inclination distribution function  LIDFa - [-1, 1]; 

|LIDFa + LIDFb| ≤ 1 Bimodality of the leaf inclination LIDFb - 

Canopy height hc m [0.1, 10.0] 

Leaf width lqw m [0.01, 0.1] 

Soil Parameters (BMS model) 

Soil brightness B - [0.5, 1.0] 

Spectral shape “latitude” Lat deg [20, 40] 

Spectral shape “longitude” Lon deg [45, 65] 

Soil moisture capacity SMC % [5, 55] 

Soil moisture content SMp - [0, 1] 

Sun view and atmosphere 

Sun zenith angle θsun deg [0, 80] 

Diffuse-to-global radiation ratio δDG - [0, 1] 

  85 
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Table S2 86 

Table S2. Statistics summarizing SCOPE emulator’s training, validation, and the difference between their 

predictions. Training statistics are computed from datasets of 6,000 spectra; validation statistics and the comparison 

between the emulators are computed from 1,000 spectra. The table presents the mean values of the Root Mean 

Squared Error (RMSE, in reflectance factor units), the relative RMSE (RRMSE, %), and the normalized RMSE 

(NRMSE) of all the bands (400-2400 nm with 1 nm step). 

 

Evaluation RMSE (-) RRMSE (%) NRMSE (%) 

Emulator 1 (simulation) 

Training 0.0050 5.92 0.95 

Validation 0.0056 6.59 1.29 

Emulator 2 (model inversion) 

Training 0.0051 5.85 0.94 

Validation 0.0058 6.41 1.26 

Emulator 1 vs. Emulator 2  

Comparison 0.0143 9.26 3.55 

  87 
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Figure S1 88 

 89 

Figure S1. Evaluation of optical traits retrieval. Simulated field traits (subscript “RTM”) vs. optical traits estimated 

via inversion of the emulated radiative transfer model (subscript “optical”). Two different emulators simulated the 

reflectance factors and estimated the optical traits to induce model error. Regression lines summarize the comparison 

at the global scale; the shaded areas around the regression lines represent the 95 % confidence interval of the line. 

Each subplot includes the statistics of the relationship at the global scale (on top, subscript “G”) and the median and 

95 % confidence interval of the statistics at the local scale (below, subscript “L”). 
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Figure S2 91 

 

Figure S2. Evaluation of optical traits retrieval. Simulated field traits (subscript “RTM”) vs. optical traits estimated 

via inversion of the emulated radiative transfer model (subscript “optical”). In this case, the same emulator was used 

to simulate the reflectance factors and estimate the optical traits, preventing model error. Regression lines 

summarize the comparison at the global scale; the shaded areas around the regression lines represent the 95 % 

confidence interval of the line. Each subplot includes the statistics of the relationship at the global scale (on top, 

subscript “G”) and the median and 95 % confidence interval of the statistics at the local scale (below, subscript “L”). 
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Figure S3 93 

 

Figure S3. Relationship between the functional diversity metrics computed from optical traits estimated via 

radiative transfer model inversion (subscript “Toptical”) and the simulated field plant traits (subscript “TRTM”) using 

the dbFD package (a-e), or the parametric Rao’s Q formulation with different values of the parameter α (f-i). In this 

case, the same emulator was used to simulate the reflectance factors and estimate the optical traits, preventing model 

error. Regression lines summarize the comparison at the global scale; the shaded areas around the regression lines 

represent the 95 % confidence interval of the line. Each subplot includes the statistics of the relationship at the 

global scale (on top, subscript “G”) and the median and 95 % confidence interval of the statistics at the local scale 

(below, subscript “L”). 
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Table S3 95 

Table S3. Median of the coefficient of determination (�̃�L
2) of the relationships between field plant traits and optical 

traits estimated via radiative transfer model inversion compared both at the local scale for the different (27) 

simulation runs. Two different emulators were used to simulate the reflectance factors and estimate the optical traits, 

accounting for model error. 

Spatial resolution  Sres,0 Sres,50 Sres,100 

Sensor Hyper. DESIS S2 Hyper. DESIS S2 Hyper. DESIS S2 

Trait Noise (%)          

N 

0 0.08 0.08 0.07 0.09 0.09 0.09 0.10 0.10 0.10 

5 0.07 0.05 0.05 0.08 0.06 0.06 0.09 0.06 0.05 

10 0.06 0.05 0.04 0.08 0.05 0.05 0.08 0.05 0.05 

Cab 

0 0.26 0.26 0.21 0.34 0.33 0.33 0.38 0.33 0.37 

5 0.22 0.12 0.10 0.31 0.18 0.17 0.36 0.21 0.20 

10 0.16 0.09 0.07 0.27 0.12 0.12 0.33 0.15 0.15 

Cca 

0 0.05 0.07 0.07 0.06 0.08 0.09 0.05 0.08 0.09 

5 0.06 0.05 0.04 0.05 0.06 0.06 0.05 0.06 0.06 

10 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.05 0.05 

Cant 

0 0.09 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 

5 0.08 0.05 0.04 0.06 0.05 0.04 0.06 0.05 0.04 

10 0.06 0.04 0.03 0.06 0.04 0.04 0.06 0.04 0.04 

Cs 

0 0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.04 

5 0.06 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 

10 0.05 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 

Cw 

0 0.31 0.10 0.20 0.49 0.13 0.38 0.51 0.17 0.46 

5 0.26 0.04 0.10 0.46 0.05 0.22 0.48 0.07 0.28 

10 0.19 0.04 0.07 0.39 0.04 0.12 0.45 0.05 0.15 

Cdm 

0 0.27 0.06 0.08 0.33 0.06 0.13 0.36 0.06 0.17 

5 0.24 0.04 0.04 0.32 0.04 0.06 0.36 0.04 0.07 

10 0.19 0.04 0.03 0.30 0.04 0.04 0.35 0.04 0.05 

LIDFa 

0 0.28 0.14 0.16 0.43 0.34 0.41 0.49 0.41 0.50 

5 0.23 0.09 0.06 0.40 0.21 0.18 0.48 0.31 0.26 

10 0.19 0.07 0.05 0.36 0.17 0.11 0.44 0.24 0.15 

LIDFb 

0 0.09 0.06 0.07 0.08 0.07 0.06 0.08 0.07 0.07 

5 0.07 0.05 0.04 0.07 0.05 0.04 0.07 0.05 0.04 

10 0.05 0.04 0.04 0.06 0.04 0.04 0.06 0.05 0.04 

LAI 

0 0.40 0.12 0.18 0.67 0.27 0.37 0.79 0.37 0.51 

5 0.35 0.06 0.07 0.62 0.13 0.16 0.75 0.19 0.21 

10 0.27 0.05 0.05 0.57 0.09 0.11 0.69 0.13 0.14 
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Table S4 96 

Table S4. Coefficient of determination (R2) of the relationships between functional diversity metrics computed from spectral reflectance and field plant traits, 

compared respectively at remote sensing and field spatial resolutions. Data are also presented in Fig. 8a,e. Each cell presents the R2 of the relationship at the 

global scale, followed by the median and the 95 % confidence interval of R2 at the local scale.  

FDM Noise  Hy DESIS Sentinel-2 
  

100% 50% 0% 100% 50% 0% 100% 50% 0% 

FRic 0% 0.61; 0.85 

[0.36, 0.99] 

0.03; 0.71 

[0.10, 0.98] 

0.00; 0.25 

[0.01, 0.84] 

0.58; 0.85 

[0.36, 0.99] 

0.19; 0.72 

[0.09, 0.98] 

0.00; 0.25 

[0.00, 0.84] 

0.62; 0.85 

[0.37, 1.00] 

0.18; 0.72 

[0.10, 0.98] 

0.00; 0.25 

[0.01, 0.84]  
5% 0.59; 0.85 

[0.37, 0.99] 

0.00; 0.72 

[0.09, 0.98] 

0.00; 0.25 

[0.01, 0.86] 

0.57; 0.85 

[0.37, 0.99] 

0.12; 0.72 

[0.10, 0.97] 

0.01; 0.24 

[0.01, 0.83] 

0.60; 0.84 

[0.33, 0.99] 

0.26; 0.72 

[0.06, 0.98] 

0.01; 0.24 

[0.01, 0.87]  
10% 0.57; 0.84 

[0.35, 0.99] 

0.01; 0.71 

[0.09, 0.98] 

0.00; 0.25 

[0.01, 0.85] 

0.56; 0.84 

[0.34, 0.99] 

0.09; 0.72 

[0.08, 0.97] 

0.01; 0.25 

[0.01, 0.83] 

0.58; 0.82 

[0.33, 0.99] 

0.27; 0.70 

[0.05, 0.97] 

0.01; 0.25 

[0.01, 0.86] 

FEve 0% 0.19; 0.21 

[0.00, 0.64] 

0.08; 0.10 

[0.00, 0.50] 

0.05; 0.09 

[0.00, 0.54] 

0.17; 0.19 

[0.00, 0.62] 

0.06; 0.09 

[0.00, 0.52] 

0.05; 0.09 

[0.00, 0.52] 

0.20; 0.23 

[0.00, 0.64] 

0.07; 0.10 

[0.00, 0.55] 

0.06; 0.09 

[0.00, 0.58]  
5% 0.20; 0.21 

[0.00, 0.69] 

0.09; 0.11 

[0.00, 0.53] 

0.10; 0.13 

[0.00, 0.61] 

0.17; 0.20 

[0.00, 0.63] 

0.08; 0.11 

[0.00, 0.55] 

0.10; 0.13 

[0.00, 0.60] 

0.18; 0.19 

[0.00, 0.63] 

0.09; 0.11 

[0.00, 0.55] 

0.09; 0.12 

[0.00, 0.60]  
10% 0.18; 0.19 

[0.00, 0.64] 

0.10; 0.11 

[0.00, 0.57] 

0.12; 0.15 

[0.00, 0.63] 

0.17; 0.18 

[0.00, 0.66] 

0.10; 0.11 

[0.00, 0.62] 

0.12; 0.16 

[0.00, 0.63] 

0.16; 0.17 

[0.00, 0.62] 

0.10; 0.11 

[0.00, 0.59] 

0.12; 0.15 

[0.00, 0.60] 

FDiv 0% 0.03; 0.07 

[0.00, 0.62] 

0.01; 0.05 

[0.00, 0.57] 

0.00; 0.05 

[0.00, 0.56] 

0.03; 0.06 

[0.00, 0.59] 

0.01; 0.05 

[0.00, 0.54] 

0.01; 0.05 

[0.00, 0.51] 

0.03; 0.06 

[0.00, 0.62] 

0.01; 0.05 

[0.00, 0.56] 

0.00; 0.05 

[0.00, 0.54]  
5% 0.03; 0.06 

[0.00, 0.66] 

0.01; 0.05 

[0.00, 0.56] 

0.00; 0.05 

[0.00, 0.56] 

0.03; 0.06 

[0.00, 0.60] 

0.01; 0.05 

[0.00, 0.60] 

0.00; 0.05 

[0.00, 0.55] 

0.03; 0.06 

[0.00, 0.59] 

0.01; 0.05 

[0.00, 0.55] 

0.00; 0.05 

[0.00, 0.52]  
10% 0.03; 0.07 

[0.00, 0.58] 

0.01; 0.05 

[0.00, 0.55] 

0.00; 0.05 

[0.00, 0.53] 

0.02; 0.06 

[0.00, 0.57] 

0.01; 0.05 

[0.00, 0.55] 

0.00; 0.05 

[0.00, 0.50] 

0.02; 0.05 

[0.00, 0.55] 

0.01; 0.05 

[0.00, 0.53] 

0.00; 0.05 

[0.00, 0.54] 

FDis 0% 0.70; 0.85 

[0.31, 0.98] 

0.50; 0.71 

[0.04, 0.95] 

0.13; 0.29 

[0.00, 0.83] 

0.70; 0.86 

[0.29, 0.98] 

0.52; 0.73 

[0.06, 0.95] 

0.15; 0.31 

[0.00, 0.85] 

0.73; 0.88 

[0.32, 0.98] 

0.54; 0.74 

[0.07, 0.96] 

0.15; 0.32 

[0.00, 0.85]  
5% 0.68; 0.85 

[0.29, 0.98] 

0.49; 0.70 

[0.06, 0.95] 

0.11; 0.32 

[0.00, 0.85] 

0.69; 0.87 

[0.27, 0.98] 

0.50; 0.71 

[0.08, 0.95] 

0.12; 0.38 

[0.00, 0.88] 

0.71; 0.87 

[0.29, 0.98] 

0.52; 0.73 

[0.07, 0.95] 

0.12; 0.34 

[0.00, 0.85]  
10% 0.67; 0.85 

[0.27, 0.98] 

0.47; 0.68 

[0.08, 0.94] 

0.11; 0.38 

[0.00, 0.86] 

0.68; 0.86 

[0.24, 0.98] 

0.48; 0.68 

[0.09, 0.94] 

0.12; 0.41 

[0.00, 0.88] 

0.67; 0.84 

[0.23, 0.98] 

0.48; 0.68 

[0.07, 0.94] 

0.11; 0.35 

[0.00, 0.85] 

RaoQ 0% 0.63; 0.84 

[0.15, 0.98] 

0.47; 0.73 

[0.01, 0.97] 

0.14; 0.31 

[0.00, 0.89] 

0.66; 0.86 

[0.15, 0.98] 

0.51; 0.75 

[0.02, 0.97] 

0.16; 0.35 

[0.00, 0.89] 

0.67; 0.86 

[0.19, 0.98] 

0.52; 0.77 

[0.02, 0.97] 

0.16; 0.35 

[0.00, 0.89]  
5% 0.61; 0.83 

[0.13, 0.98] 

0.45; 0.71 

[0.02, 0.97] 

0.12; 0.32 

[0.00, 0.88] 

0.63; 0.86 

[0.13, 0.98] 

0.48; 0.75 

[0.02, 0.97] 

0.13; 0.36 

[0.00, 0.90] 

0.64; 0.85 

[0.13, 0.98] 

0.48; 0.75 

[0.02, 0.97] 

0.13; 0.34 

[0.00, 0.88] 
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10% 0.58; 0.82 

[0.13, 0.98] 

0.42; 0.70 

[0.02, 0.96] 

0.11; 0.34 

[0.00, 0.88] 

0.60; 0.84 

[0.10, 0.98] 

0.44; 0.72 

[0.03, 0.96] 

0.11; 0.38 

[0.00, 0.90] 

0.60; 0.82 

[0.10, 0.98] 

0.44; 0.71 

[0.03, 0.96] 

0.11; 0.33 

[0.00, 0.88] 

RaoQα=0 0% 0.31; 0.67 

[0.03, 0.98] 

0.00; 0.04 

[0.00, 0.83] 

0.00; 0.09 

[0.00, 0.67] 

0.21; 0.89 

[0.26, 1.00] 

0.00; 0.05 

[0.00, 0.85] 

0.00; 0.06 

[0.00, 0.63] 

0.21; 0.92 

[0.14, 1.00] 

0.00; 0.08 

[0.00, 0.86] 

0.00; 0.07 

[0.00, 0.63]  
5% 0.34; 0.65 

[0.06, 0.98] 

0.00; 0.03 

[0.00, 0.83] 

0.00; 0.07 

[0.00, 0.68] 

0.22; 0.88 

[0.27, 1.00] 

0.00; 0.04 

[0.00, 0.87] 

0.00; 0.06 

[0.00, 0.59] 

0.25; 0.93 

[0.31, 1.00] 

0.00; 0.06 

[0.00, 0.87] 

0.00; 0.05 

[0.00, 0.63]  
10% 0.41; 0.64 

[0.11, 0.97] 

0.00; 0.03 

[0.00, 0.83] 

0.00; 0.07 

[0.00, 0.69] 

0.37; 0.86 

[0.32, 1.00] 

0.00; 0.03 

[0.00, 0.86] 

0.00; 0.05 

[0.00, 0.59] 

0.38; 0.93 

[0.39, 1.00] 

0.00; 0.04 

[0.00, 0.88] 

0.00; 0.05 

[0.00, 0.63] 

RaoQα=1 0% 0.75; 0.89 

[0.42, 0.99] 

0.57; 0.78 

[0.13, 0.96] 

0.20; 0.40 

[0.00, 0.88] 

0.75; 0.90 

[0.42, 0.98] 

0.58; 0.79 

[0.15, 0.96] 

0.21; 0.43 

[0.00, 0.89] 

0.77; 0.91 

[0.47, 0.99] 

0.60; 0.80 

[0.17, 0.97] 

0.21; 0.43 

[0.00, 0.90]  
5% 0.74; 0.90 

[0.42, 0.99] 

0.56; 0.78 

[0.16, 0.97] 

0.17; 0.45 

[0.00, 0.89] 

0.75; 0.91 

[0.39, 0.99] 

0.57; 0.78 

[0.19, 0.96] 

0.19; 0.50 

[0.01, 0.91] 

0.76; 0.91 

[0.43, 0.99] 

0.58; 0.79 

[0.16, 0.97] 

0.18; 0.47 

[0.00, 0.90]  
10% 0.73; 0.89 

[0.37, 0.99] 

0.55; 0.74 

[0.18, 0.96] 

0.18; 0.51 

[0.01, 0.89] 

0.75; 0.90 

[0.36, 0.99] 

0.56; 0.75 

[0.19, 0.96] 

0.20; 0.53 

[0.01, 0.92] 

0.74; 0.89 

[0.37, 0.99] 

0.56; 0.75 

[0.18, 0.97] 

0.18; 0.48 

[0.00, 0.90] 

RaoQα=2 0% 0.69; 0.85 

[0.23, 0.98] 

0.52; 0.73 

[0.03, 0.96] 

0.18; 0.32 

[0.00, 0.86] 

0.71; 0.87 

[0.22, 0.98] 

0.54; 0.75 

[0.04, 0.96] 

0.19; 0.35 

[0.00, 0.89] 

0.73; 0.88 

[0.27, 0.98] 

0.56; 0.76 

[0.05, 0.96] 

0.19; 0.36 

[0.00, 0.88]  
5% 0.68; 0.86 

[0.21, 0.98] 

0.51; 0.72 

[0.04, 0.96] 

0.16; 0.34 

[0.00, 0.87] 

0.69; 0.87 

[0.20, 0.98] 

0.52; 0.75 

[0.05, 0.96] 

0.18; 0.38 

[0.00, 0.89] 

0.70; 0.87 

[0.24, 0.98] 

0.53; 0.75 

[0.04, 0.96] 

0.17; 0.36 

[0.00, 0.88]  
10% 0.65; 0.84 

[0.20, 0.98] 

0.48; 0.70 

[0.04, 0.95] 

0.16; 0.37 

[0.00, 0.87] 

0.66; 0.86 

[0.17, 0.98] 

0.49; 0.71 

[0.05, 0.95] 

0.17; 0.40 

[0.00, 0.89] 

0.66; 0.84 

[0.18, 0.98] 

0.50; 0.70 

[0.04, 0.95] 

0.16; 0.36 

[0.00, 0.87] 

RaoQα=ꝏ 0% 0.59; 0.78 

[0.19, 0.98] 

0.37; 0.60 

[0.03, 0.95] 

0.03; 0.16 

[0.00, 0.84] 

0.62; 0.80 

[0.18, 0.98] 

0.38; 0.62 

[0.03, 0.96] 

0.02; 0.16 

[0.00, 0.83] 

0.63; 0.80 

[0.20, 0.98] 

0.39; 0.63 

[0.03, 0.96] 

0.02; 0.16 

[0.00, 0.83]  
5% 0.57; 0.77 

[0.18, 0.98] 

0.36; 0.59 

[0.02, 0.96] 

0.03; 0.15 

[0.00, 0.83] 

0.60; 0.80 

[0.17, 0.98] 

0.37; 0.62 

[0.04, 0.96] 

0.02; 0.16 

[0.00, 0.83] 

0.60; 0.79 

[0.20, 0.98] 

0.37; 0.63 

[0.03, 0.97] 

0.02; 0.16 

[0.00, 0.84]  
10% 0.53; 0.75 

[0.17, 0.97] 

0.33; 0.59 

[0.03, 0.96] 

0.03; 0.16 

[0.00, 0.82] 

0.55; 0.77 

[0.15, 0.97] 

0.33; 0.60 

[0.03, 0.96] 

0.02; 0.16 

[0.00, 0.84] 

0.55; 0.77 

[0.17, 0.97] 

0.33; 0.60 

[0.03, 0.96] 

0.02; 0.17 

[0.00, 0.83] 
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Table S5 98 

Table S5. Coefficient of determination (R2) of the relationships between functional diversity metrics computed from optical traits and field plant traits, compared 

respectively at remote sensing and field spatial resolutions. Data are also presented in Fig. 8c,g. Each cell presents the R2 of the relationship at the global scale, 

followed by the median and the 95 % confidence interval of R2 at the local scale.  

FDM Noise  Hy DESIS Sentinel-2 
  

100% 50% 0% 100% 50% 0% 100% 50% 0% 

FRic 0% 0.67; 0.85 

[0.33, 0.99] 

0.30; 0.71 

[0.09, 0.98] 

0.01; 0.23 

[0.01, 0.86] 

0.62; 0.82 

[0.25, 0.99] 

0.26; 0.70 

[0.08, 0.98] 

0.01; 0.24 

[0.01, 0.86] 

0.63; 0.83 

[0.29, 0.99] 

0.26; 0.70 

[0.09, 0.97] 

0.01; 0.25 

[0.01, 0.84]  
5% 0.65; 0.84 

[0.31, 0.99] 

0.28; 0.72 

[0.07, 0.98] 

0.01; 0.23 

[0.00, 0.87] 

0.49; 0.76 

[0.08, 0.97] 

0.14; 0.64 

[0.02, 0.97] 

0.01; 0.23 

[0.01, 0.81] 

0.46; 0.72 

[0.07, 0.98] 

0.14; 0.62 

[0.03, 0.96] 

0.01; 0.23 

[0.01, 0.84]  
10% 0.63; 0.83 

[0.29, 0.99] 

0.25; 0.71 

[0.05, 0.98] 

0.01; 0.23 

[0.00, 0.85] 

0.42; 0.71 

[0.05, 0.97] 

0.11; 0.60 

[0.02, 0.96] 

0.01; 0.23 

[0.01, 0.82] 

0.39; 0.68 

[0.02, 0.97] 

0.10; 0.59 

[0.02, 0.95] 

0.01; 0.24 

[0.01, 0.85] 

FEve 0% 0.22; 0.24 

[0.00, 0.71] 

0.10; 0.12 

[0.00, 0.53] 

0.07; 0.11 

[0.00, 0.60] 

0.19; 0.19 

[0.00, 0.63] 

0.10; 0.10 

[0.00, 0.61] 

0.05; 0.10 

[0.00, 0.53] 

0.20; 0.22 

[0.00, 0.63] 

0.10; 0.11 

[0.00, 0.59] 

0.07; 0.11 

[0.00, 0.60]  
5% 0.19; 0.21 

[0.00, 0.68] 

0.10; 0.12 

[0.00, 0.62] 

0.07; 0.11 

[0.00, 0.62] 

0.14; 0.14 

[0.00, 0.59] 

0.09; 0.09 

[0.00, 0.60] 

0.08; 0.13 

[0.00, 0.61] 

0.12; 0.13 

[0.00, 0.58] 

0.08; 0.08 

[0.00, 0.57] 

0.09; 0.13 

[0.00, 0.56]  
10% 0.18; 0.19 

[0.00, 0.62] 

0.10; 0.11 

[0.00, 0.58] 

0.07; 0.12 

[0.00, 0.60] 

0.13; 0.12 

[0.00, 0.58] 

0.09; 0.09 

[0.00, 0.56] 

0.09; 0.14 

[0.00, 0.61] 

0.11; 0.12 

[0.00, 0.58] 

0.09; 0.09 

[0.00, 0.58] 

0.10; 0.14 

[0.00, 0.59] 

FDiv 0% 0.03; 0.06 

[0.00, 0.62] 

0.01; 0.05 

[0.00, 0.58] 

0.01; 0.05 

[0.00, 0.60] 

0.02; 0.06 

[0.00, 0.57] 

0.01; 0.05 

[0.00, 0.53] 

0.00; 0.05 

[0.00, 0.57] 

0.02; 0.06 

[0.00, 0.58] 

0.01; 0.05 

[0.00, 0.61] 

0.01; 0.06 

[0.00, 0.57]  
5% 0.02; 0.06 

[0.00, 0.58] 

0.01; 0.05 

[0.00, 0.57] 

0.01; 0.06 

[0.00, 0.61] 

0.00; 0.05 

[0.00, 0.56] 

0.00; 0.04 

[0.00, 0.56] 

0.00; 0.05 

[0.00, 0.55] 

0.00; 0.05 

[0.00, 0.50] 

0.00; 0.05 

[0.00, 0.57] 

0.00; 0.05 

[0.00, 0.55]  
10% 0.02; 0.05 

[0.00, 0.61] 

0.01; 0.06 

[0.00, 0.57] 

0.00; 0.05 

[0.00, 0.61] 

0.00; 0.04 

[0.00, 0.43] 

0.00; 0.05 

[0.00, 0.53] 

0.00; 0.05 

[0.00, 0.62] 

0.00; 0.05 

[0.00, 0.46] 

0.00; 0.05 

[0.00, 0.47] 

0.00; 0.05 

[0.00, 0.53] 

FDis 0% 0.76; 0.88 

[0.40, 0.98] 

0.57; 0.72 

[0.16, 0.96] 

0.13; 0.28 

[0.00, 0.84] 

0.68; 0.84 

[0.18, 0.98] 

0.52; 0.65 

[0.12, 0.94] 

0.13; 0.32 

[0.00, 0.83] 

0.72; 0.85 

[0.28, 0.99] 

0.53; 0.67 

[0.12, 0.94] 

0.14; 0.32 

[0.00, 0.85]  
5% 0.75; 0.87 

[0.39, 0.98] 

0.55; 0.70 

[0.13, 0.95] 

0.13; 0.30 

[0.00, 0.86] 

0.53; 0.70 

[0.14, 0.97] 

0.36; 0.48 

[0.03, 0.92] 

0.08; 0.25 

[0.00, 0.83] 

0.52; 0.66 

[0.15, 0.97] 

0.36; 0.47 

[0.04, 0.92] 

0.07; 0.23 

[0.00, 0.85]  
10% 0.72; 0.85 

[0.35, 0.98] 

0.53; 0.68 

[0.11, 0.94] 

0.12; 0.27 

[0.00, 0.84] 

0.49; 0.62 

[0.14, 0.97] 

0.33; 0.45 

[0.02, 0.91] 

0.08; 0.22 

[0.00, 0.83] 

0.47; 0.62 

[0.09, 0.97] 

0.31; 0.42 

[0.03, 0.91] 

0.06; 0.20 

[0.00, 0.81] 

RaoQ 0% 0.73; 0.89 

[0.24, 0.99] 

0.56; 0.76 

[0.03, 0.97] 

0.12; 0.30 

[0.00, 0.88] 

0.64; 0.84 

[0.07, 0.98] 

0.52; 0.69 

[0.03, 0.97] 

0.12; 0.33 

[0.00, 0.87] 

0.68; 0.86 

[0.15, 0.99] 

0.52; 0.72 

[0.03, 0.96] 

0.13; 0.33 

[0.00, 0.89]  
5% 0.71; 0.87 

[0.21, 0.99] 

0.54; 0.74 

[0.04, 0.97] 

0.12; 0.32 

[0.00, 0.89] 

0.45; 0.67 

[0.03, 0.97] 

0.32; 0.51 

[0.00, 0.93] 

0.06; 0.23 

[0.00, 0.86] 

0.44; 0.64 

[0.04, 0.97] 

0.32; 0.47 

[0.01, 0.94] 

0.05; 0.23 

[0.00, 0.87] 
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10% 0.67; 0.85 

[0.21, 0.98] 

0.51; 0.71 

[0.04, 0.96] 

0.10; 0.29 

[0.00, 0.88] 

0.38; 0.57 

[0.01, 0.96] 

0.26; 0.45 

[0.01, 0.92] 

0.05; 0.21 

[0.00, 0.84] 

0.34; 0.55 

[0.01, 0.96] 

0.23; 0.41 

[0.00, 0.92] 

0.03; 0.18 

[0.00, 0.83] 

RaoQα=0 0% 0.29; 0.94 

[0.35, 1.00] 

0.00; 0.06 

[0.00, 0.91] 

0.00; 0.08 

[0.00, 0.69] 

0.42; 0.92 

[0.30, 1.00] 

0.00; 0.05 

[0.00, 0.87] 

0.00; 0.06 

[0.00, 0.64] 

0.23; 0.93 

[0.33, 1.00] 

0.00; 0.05 

[0.00, 0.92] 

0.00; 0.06 

[0.00, 0.64]  
5% 0.35; 0.94 

[0.32, 1.00] 

0.00; 0.05 

[0.00, 0.91] 

0.00; 0.06 

[0.00, 0.69] 

0.17; 0.85 

[0.21, 1.00] 

0.00; 0.03 

[0.00, 0.85] 

0.00; 0.04 

[0.00, 0.63] 

0.18; 0.83 

[0.22, 1.00] 

0.00; 0.03 

[0.00, 0.88] 

0.00; 0.05 

[0.00, 0.62]  
10% 0.29; 0.94 

[0.40, 1.00] 

0.00; 0.04 

[0.00, 0.89] 

0.00; 0.05 

[0.00, 0.68] 

0.16; 0.87 

[0.27, 1.00] 

0.00; 0.03 

[0.00, 0.89] 

0.00; 0.04 

[0.00, 0.64] 

0.15; 0.86 

[0.28, 1.00] 

0.00; 0.03 

[0.00, 0.88] 

0.00; 0.04 

[0.00, 0.61] 

RaoQα=1 0% 0.81; 0.92 

[0.51, 0.99] 

0.63; 0.77 

[0.28, 0.97] 

0.19; 0.42 

[0.00, 0.89] 

0.75; 0.89 

[0.31, 0.99] 

0.59; 0.72 

[0.22, 0.96] 

0.18; 0.45 

[0.00, 0.88] 

0.77; 0.89 

[0.41, 0.99] 

0.59; 0.73 

[0.20, 0.96] 

0.21; 0.45 

[0.00, 0.89]  
5% 0.80; 0.91 

[0.51, 0.99] 

0.62; 0.76 

[0.25, 0.97] 

0.19; 0.44 

[0.00, 0.91] 

0.62; 0.77 

[0.23, 0.98] 

0.44; 0.57 

[0.10, 0.95] 

0.14; 0.39 

[0.00, 0.88] 

0.60; 0.73 

[0.26, 0.98] 

0.44; 0.56 

[0.10, 0.95] 

0.13; 0.38 

[0.00, 0.90]  
10% 0.78; 0.89 

[0.48, 0.99] 

0.60; 0.74 

[0.25, 0.96] 

0.18; 0.42 

[0.00, 0.89] 

0.60; 0.72 

[0.25, 0.98] 

0.42; 0.55 

[0.08, 0.94] 

0.15; 0.38 

[0.00, 0.88] 

0.57; 0.71 

[0.19, 0.99] 

0.40; 0.52 

[0.08, 0.94] 

0.13; 0.35 

[0.00, 0.86] 

RaoQα=2 0% 0.75; 0.88 

[0.32, 0.98] 

0.57; 0.73 

[0.10, 0.96] 

0.15; 0.33 

[0.00, 0.88] 

0.67; 0.84 

[0.13, 0.98] 

0.52; 0.67 

[0.08, 0.95] 

0.16; 0.35 

[0.00, 0.85] 

0.70; 0.84 

[0.23, 0.99] 

0.53; 0.68 

[0.06, 0.95] 

0.17; 0.35 

[0.00, 0.87]  
5% 0.73; 0.86 

[0.30, 0.98] 

0.56; 0.71 

[0.09, 0.96] 

0.15; 0.35 

[0.00, 0.88] 

0.51; 0.67 

[0.06, 0.96] 

0.36; 0.50 

[0.02, 0.92] 

0.10; 0.25 

[0.00, 0.84] 

0.49; 0.64 

[0.09, 0.96] 

0.36; 0.47 

[0.02, 0.93] 

0.10; 0.25 

[0.00, 0.87]  
10% 0.70; 0.83 

[0.28, 0.98] 

0.53; 0.69 

[0.09, 0.95] 

0.13; 0.30 

[0.00, 0.86] 

0.45; 0.59 

[0.06, 0.96] 

0.31; 0.45 

[0.01, 0.91] 

0.10; 0.23 

[0.00, 0.82] 

0.42; 0.59 

[0.03, 0.96] 

0.29; 0.40 

[0.01, 0.92] 

0.08; 0.21 

[0.00, 0.83] 

RaoQα=ꝏ 0% 0.63; 0.81 

[0.19, 0.97] 

0.33; 0.58 

[0.03, 0.96] 

0.00; 0.15 

[0.00, 0.81] 

0.56; 0.76 

[0.09, 0.97] 

0.27; 0.50 

[0.02, 0.95] 

0.00; 0.13 

[0.00, 0.86] 

0.58; 0.78 

[0.14, 0.97] 

0.29; 0.54 

[0.02, 0.96] 

0.00; 0.14 

[0.00, 0.84]  
5% 0.59; 0.78 

[0.15, 0.97] 

0.30; 0.57 

[0.03, 0.95] 

0.00; 0.15 

[0.00, 0.82] 

0.40; 0.62 

[0.04, 0.94] 

0.15; 0.36 

[0.00, 0.93] 

0.00; 0.10 

[0.00, 0.78] 

0.39; 0.59 

[0.07, 0.93] 

0.17; 0.40 

[0.01, 0.92] 

0.00; 0.10 

[0.00, 0.81]  
10% 0.55; 0.75 

[0.15, 0.96] 

0.27; 0.53 

[0.03, 0.95] 

0.00; 0.14 

[0.00, 0.81] 

0.34; 0.53 

[0.03, 0.89] 

0.12; 0.35 

[0.01, 0.89] 

0.00; 0.10 

[0.00, 0.75] 

0.32; 0.53 

[0.03, 0.92] 

0.13; 0.31 

[0.00, 0.91] 

0.00; 0.10 

[0.00, 0.76] 
  99 
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Table S6. Coefficient of determination (R2) of the relationships between functional diversity metrics computed from spectral reflectance and field plant traits, 

compared both at remote sensing resolution. Data are also presented in Fig. 8b,f. Each cell presents the R2 of the relationship at the global scale, followed by the 

median and the 95 % confidence interval of R2 at the local scale.  

FDM Noise  Hy DESIS Sentinel-2 
  

100% 50% 0% 100% 50% 0% 100% 50% 0% 

FRic 0% 0.61; 0.85 

[0.36, 0.99] 

0.08; 0.90 

[0.36, 1.00] 

0.02; 0.99 

[0.89, 1.00] 

0.58; 0.85 

[0.36, 0.99] 

0.26; 0.91 

[0.38, 1.00] 

0.33; 0.99 

[0.88, 1.00] 

0.62; 0.85 

[0.37, 1.00] 

0.14; 0.90 

[0.37, 1.00] 

0.34; 0.99 

[0.87, 1.00]  
5% 0.59; 0.85 

[0.37, 0.99] 

0.00; 0.89 

[0.35, 1.00] 

0.00; 0.97 

[0.75, 1.00] 

0.57; 0.85 

[0.37, 0.99] 

0.28; 0.87 

[0.32, 0.99] 

0.02; 0.97 

[0.77, 1.00] 

0.60; 0.84 

[0.33, 0.99] 

0.35; 0.86 

[0.33, 0.99] 

0.65; 0.96 

[0.70, 1.00]  
10% 0.57; 0.84 

[0.35, 0.99] 

0.00; 0.87 

[0.32, 1.00] 

0.00; 0.95 

[0.61, 1.00] 

0.56; 0.84 

[0.34, 0.99] 

0.27; 0.85 

[0.32, 0.99] 

0.01; 0.97 

[0.71, 1.00] 

0.58; 0.82 

[0.33, 0.99] 

0.51; 0.84 

[0.26, 0.99] 

0.76; 0.95 

[0.67, 1.00] 

FEve 0% 0.19; 0.21 

[0.00, 0.64] 

0.27; 0.32 

[0.01, 0.76] 

0.38; 0.48 

[0.04, 0.89] 

0.17; 0.19 

[0.00, 0.62] 

0.25; 0.33 

[0.00, 0.77] 

0.35; 0.44 

[0.02, 0.89] 

0.20; 0.23 

[0.00, 0.64] 

0.28; 0.35 

[0.01, 0.79] 

0.40; 0.47 

[0.05, 0.90]  
5% 0.20; 0.21 

[0.00, 0.69] 

0.35; 0.40 

[0.02, 0.84] 

0.50; 0.60 

[0.16, 0.92] 

0.17; 0.20 

[0.00, 0.63] 

0.33; 0.39 

[0.01, 0.83] 

0.47; 0.59 

[0.13, 0.90] 

0.18; 0.19 

[0.00, 0.63] 

0.33; 0.38 

[0.01, 0.81] 

0.44; 0.55 

[0.14, 0.89]  
10% 0.18; 0.19 

[0.00, 0.64] 

0.41; 0.45 

[0.04, 0.86] 

0.55; 0.64 

[0.19, 0.92] 

0.17; 0.18 

[0.00, 0.66] 

0.38; 0.43 

[0.05, 0.86] 

0.52; 0.62 

[0.15, 0.92] 

0.16; 0.17 

[0.00, 0.62] 

0.36; 0.39 

[0.02, 0.82] 

0.48; 0.58 

[0.15, 0.90] 

FDiv 0% 0.03; 0.07 

[0.00, 0.62] 

0.13; 0.21 

[0.00, 0.82] 

0.34; 0.54 

[0.01, 0.93] 

0.03; 0.06 

[0.00, 0.59] 

0.13; 0.20 

[0.00, 0.81] 

0.31; 0.49 

[0.01, 0.94] 

0.03; 0.06 

[0.00, 0.62] 

0.15; 0.22 

[0.00, 0.82] 

0.34; 0.54 

[0.01, 0.95]  
5% 0.03; 0.06 

[0.00, 0.66] 

0.13; 0.22 

[0.00, 0.83] 

0.28; 0.48 

[0.01, 0.93] 

0.03; 0.06 

[0.00, 0.60] 

0.13; 0.20 

[0.00, 0.79] 

0.19; 0.41 

[0.00, 0.92] 

0.03; 0.06 

[0.00, 0.59] 

0.11; 0.19 

[0.00, 0.81] 

0.18; 0.36 

[0.00, 0.91]  
10% 0.03; 0.07 

[0.00, 0.58] 

0.11; 0.20 

[0.00, 0.83] 

0.21; 0.34 

[0.00, 0.90] 

0.02; 0.06 

[0.00, 0.57] 

0.12; 0.18 

[0.00, 0.77] 

0.16; 0.29 

[0.00, 0.90] 

0.02; 0.05 

[0.00, 0.55] 

0.08; 0.15 

[0.00, 0.77] 

0.09; 0.23 

[0.00, 0.87] 

FDis 0% 0.70; 0.85 

[0.31, 0.98] 

0.62; 0.80 

[0.18, 0.97] 

0.48; 0.60 

[0.01, 0.96] 

0.70; 0.86 

[0.29, 0.98] 

0.63; 0.80 

[0.22, 0.97] 

0.47; 0.59 

[0.01, 0.96] 

0.73; 0.88 

[0.32, 0.98] 

0.65; 0.83 

[0.24, 0.98] 

0.51; 0.63 

[0.01, 0.97]  
5% 0.68; 0.85 

[0.29, 0.98] 

0.61; 0.81 

[0.19, 0.97] 

0.43; 0.57 

[0.00, 0.96] 

0.69; 0.87 

[0.27, 0.98] 

0.62; 0.82 

[0.20, 0.98] 

0.42; 0.57 

[0.01, 0.97] 

0.71; 0.87 

[0.29, 0.98] 

0.63; 0.82 

[0.23, 0.98] 

0.41; 0.55 

[0.00, 0.95]  
10% 0.67; 0.85 

[0.27, 0.98] 

0.60; 0.81 

[0.20, 0.97] 

0.39; 0.53 

[0.00, 0.95] 

0.68; 0.86 

[0.24, 0.98] 

0.61; 0.81 

[0.20, 0.97] 

0.39; 0.50 

[0.00, 0.96] 

0.67; 0.84 

[0.23, 0.98] 

0.61; 0.79 

[0.21, 0.97] 

0.35; 0.45 

[0.00, 0.94] 

RaoQ 0% 0.63; 0.84 

[0.15, 0.98] 

0.57; 0.79 

[0.08, 0.98] 

0.49; 0.60 

[0.01, 0.97] 

0.66; 0.86 

[0.15, 0.98] 

0.60; 0.80 

[0.11, 0.98] 

0.49; 0.60 

[0.01, 0.97] 

0.67; 0.86 

[0.19, 0.98] 

0.62; 0.82 

[0.12, 0.98] 

0.52; 0.62 

[0.01, 0.97]  
5% 0.61; 0.83 

[0.13, 0.98] 

0.55; 0.77 

[0.07, 0.98] 

0.44; 0.58 

[0.00, 0.97] 

0.63; 0.86 

[0.13, 0.98] 

0.57; 0.80 

[0.08, 0.98] 

0.44; 0.58 

[0.00, 0.97] 

0.64; 0.85 

[0.13, 0.98] 

0.58; 0.80 

[0.09, 0.98] 

0.45; 0.56 

[0.00, 0.97] 
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10% 0.58; 0.82 

[0.13, 0.98] 

0.51; 0.77 

[0.06, 0.97] 

0.40; 0.55 

[0.00, 0.96] 

0.60; 0.84 

[0.10, 0.98] 

0.53; 0.79 

[0.06, 0.98] 

0.39; 0.52 

[0.00, 0.97] 

0.60; 0.82 

[0.10, 0.98] 

0.53; 0.77 

[0.07, 0.97] 

0.38; 0.48 

[0.00, 0.95] 

RaoQα=0 0% 0.31; 0.67 

[0.03, 0.98] 

0.34; 0.71 

[0.06, 0.99] 

0.22; 0.67 

[0.01, 1.00] 

0.21; 0.89 

[0.26, 1.00] 

0.06; 0.88 

[0.13, 1.00] 

0.31; 0.76 

[0.03, 1.00] 

0.21; 0.92 

[0.14, 1.00] 

0.29; 0.91 

[0.19, 1.00] 

0.33; 0.82 

[0.03, 1.00]  
5% 0.34; 0.65 

[0.06, 0.98] 

0.33; 0.66 

[0.04, 0.99] 

0.13; 0.48 

[0.00, 1.00] 

0.22; 0.88 

[0.27, 1.00] 

0.47; 0.86 

[0.10, 1.00] 

0.26; 0.61 

[0.00, 1.00] 

0.25; 0.93 

[0.31, 1.00] 

0.19; 0.92 

[0.14, 1.00] 

0.27; 0.67 

[0.01, 1.00]  
10% 0.41; 0.64 

[0.11, 0.97] 

0.40; 0.66 

[0.04, 0.99] 

0.18; 0.34 

[0.00, 1.00] 

0.37; 0.86 

[0.32, 1.00] 

0.54; 0.87 

[0.05, 1.00] 

0.34; 0.45 

[0.00, 1.00] 

0.38; 0.93 

[0.39, 1.00] 

0.39; 0.93 

[0.18, 1.00] 

0.28; 0.49 

[0.00, 1.00] 

RaoQα=1 0% 0.75; 0.89 

[0.42, 0.99] 

0.67; 0.85 

[0.31, 0.98] 

0.54; 0.68 

[0.04, 0.97] 

0.75; 0.90 

[0.42, 0.98] 

0.68; 0.85 

[0.35, 0.98] 

0.53; 0.68 

[0.02, 0.97] 

0.77; 0.91 

[0.47, 0.99] 

0.70; 0.87 

[0.37, 0.98] 

0.56; 0.71 

[0.04, 0.97]  
5% 0.74; 0.90 

[0.42, 0.99] 

0.67; 0.86 

[0.34, 0.98] 

0.51; 0.69 

[0.03, 0.97] 

0.75; 0.91 

[0.39, 0.99] 

0.68; 0.87 

[0.35, 0.98] 

0.50; 0.68 

[0.03, 0.98] 

0.76; 0.91 

[0.43, 0.99] 

0.69; 0.87 

[0.36, 0.98] 

0.50; 0.66 

[0.02, 0.97]  
10% 0.73; 0.89 

[0.37, 0.99] 

0.67; 0.86 

[0.33, 0.98] 

0.50; 0.68 

[0.03, 0.97] 

0.75; 0.90 

[0.36, 0.99] 

0.69; 0.87 

[0.34, 0.98] 

0.50; 0.65 

[0.02, 0.98] 

0.74; 0.89 

[0.37, 0.99] 

0.68; 0.86 

[0.33, 0.98] 

0.47; 0.60 

[0.01, 0.97] 

RaoQα=2 0% 0.69; 0.85 

[0.23, 0.98] 

0.62; 0.79 

[0.14, 0.97] 

0.51; 0.62 

[0.01, 0.97] 

0.71; 0.87 

[0.22, 0.98] 

0.63; 0.81 

[0.18, 0.98] 

0.51; 0.61 

[0.01, 0.97] 

0.73; 0.88 

[0.27, 0.98] 

0.65; 0.83 

[0.18, 0.98] 

0.54; 0.64 

[0.01, 0.97]  
5% 0.68; 0.86 

[0.21, 0.98] 

0.60; 0.79 

[0.13, 0.97] 

0.45; 0.60 

[0.01, 0.97] 

0.69; 0.87 

[0.20, 0.98] 

0.61; 0.81 

[0.14, 0.98] 

0.44; 0.59 

[0.01, 0.97] 

0.70; 0.87 

[0.24, 0.98] 

0.63; 0.82 

[0.17, 0.98] 

0.45; 0.57 

[0.01, 0.96]  
10% 0.65; 0.84 

[0.20, 0.98] 

0.57; 0.79 

[0.14, 0.97] 

0.39; 0.56 

[0.00, 0.96] 

0.66; 0.86 

[0.17, 0.98] 

0.59; 0.80 

[0.12, 0.97] 

0.38; 0.54 

[0.00, 0.97] 

0.66; 0.84 

[0.18, 0.98] 

0.59; 0.78 

[0.12, 0.97] 

0.37; 0.48 

[0.00, 0.95] 

RaoQα=ꝏ 0% 0.59; 0.78 

[0.19, 0.98] 

0.47; 0.68 

[0.09, 0.98] 

0.39; 0.55 

[0.00, 1.00] 

0.62; 0.80 

[0.18, 0.98] 

0.50; 0.71 

[0.12, 0.98] 

0.41; 0.60 

[0.00, 1.00] 

0.63; 0.80 

[0.20, 0.98] 

0.50; 0.72 

[0.11, 0.98] 

0.41; 0.59 

[0.00, 1.00]  
5% 0.57; 0.77 

[0.18, 0.98] 

0.43; 0.67 

[0.06, 0.98] 

0.27; 0.53 

[0.00, 1.00] 

0.60; 0.80 

[0.17, 0.98] 

0.45; 0.70 

[0.08, 0.98] 

0.27; 0.55 

[0.00, 1.00] 

0.60; 0.79 

[0.20, 0.98] 

0.46; 0.71 

[0.11, 0.98] 

0.28; 0.54 

[0.00, 1.00]  
10% 0.53; 0.75 

[0.17, 0.97] 

0.38; 0.64 

[0.07, 0.98] 

0.18; 0.51 

[0.00, 1.00] 

0.55; 0.77 

[0.15, 0.97] 

0.39; 0.68 

[0.08, 0.98] 

0.18; 0.47 

[0.00, 1.00] 

0.55; 0.77 

[0.17, 0.97] 

0.40; 0.68 

[0.07, 0.98] 

0.20; 0.44 

[0.00, 1.00] 
  101 
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Table S7. Coefficient of determination (R2) of the relationships between functional diversity metrics computed from optical traits and field plant traits, compared 

both at remote sensing resolution. Data are also presented in Fig. 8d,h. Each cell presents the R2 of the relationship at the global scale, followed by the median 

and the 95 % confidence interval of R2 at the local scale.  

FDM Noise  Hy DESIS Sentinel-2 
  

100% 50% 0% 100% 50% 0% 100% 50% 0% 

FRic 0% 0.67; 0.85 

[0.33, 0.99] 

0.67; 0.86 

[0.30, 1.00] 

0.66; 0.97 

[0.63, 1.00] 

0.62; 0.82 

[0.25, 0.99] 

0.60; 0.82 

[0.29, 0.99] 

0.76; 0.96 

[0.58, 1.00] 

0.63; 0.83 

[0.29, 0.99] 

0.62; 0.83 

[0.28, 0.99] 

0.77; 0.96 

[0.63, 1.00]  
5% 0.65; 0.84 

[0.31, 0.99] 

0.65; 0.85 

[0.29, 1.00] 

0.68; 0.97 

[0.66, 1.00] 

0.49; 0.76 

[0.08, 0.97] 

0.47; 0.73 

[0.14, 0.99] 

0.77; 0.94 

[0.58, 1.00] 

0.46; 0.72 

[0.07, 0.98] 

0.46; 0.72 

[0.13, 0.98] 

0.76; 0.94 

[0.58, 1.00]  
10% 0.63; 0.83 

[0.29, 0.99] 

0.63; 0.85 

[0.26, 1.00] 

0.64; 0.96 

[0.62, 1.00] 

0.42; 0.71 

[0.05, 0.97] 

0.45; 0.70 

[0.08, 0.98] 

0.81; 0.94 

[0.63, 1.00] 

0.39; 0.68 

[0.02, 0.97] 

0.42; 0.69 

[0.10, 0.98] 

0.75; 0.93 

[0.55, 1.00] 

FEve 0% 0.22; 0.24 

[0.00, 0.71] 

0.30; 0.36 

[0.01, 0.83] 

0.31; 0.48 

[0.04, 0.87] 

0.19; 0.19 

[0.00, 0.63] 

0.26; 0.31 

[0.01, 0.81] 

0.23; 0.41 

[0.02, 0.81] 

0.20; 0.22 

[0.00, 0.63] 

0.28; 0.32 

[0.00, 0.82] 

0.30; 0.44 

[0.02, 0.87]  
5% 0.19; 0.21 

[0.00, 0.68] 

0.30; 0.35 

[0.01, 0.84] 

0.31; 0.48 

[0.06, 0.88] 

0.14; 0.14 

[0.00, 0.59] 

0.25; 0.29 

[0.00, 0.81] 

0.30; 0.48 

[0.04, 0.87] 

0.12; 0.13 

[0.00, 0.58] 

0.25; 0.29 

[0.01, 0.78] 

0.34; 0.50 

[0.08, 0.88]  
10% 0.18; 0.19 

[0.00, 0.62] 

0.31; 0.38 

[0.01, 0.84] 

0.33; 0.51 

[0.08, 0.88] 

0.13; 0.12 

[0.00, 0.58] 

0.29; 0.34 

[0.02, 0.80] 

0.39; 0.53 

[0.09, 0.86] 

0.11; 0.12 

[0.00, 0.58] 

0.29; 0.33 

[0.01, 0.79] 

0.38; 0.52 

[0.09, 0.86] 

FDiv 0% 0.03; 0.06 

[0.00, 0.62] 

0.09; 0.17 

[0.00, 0.82] 

0.18; 0.40 

[0.00, 0.95] 
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Figure S4 103 

 

Figure S4. Evaluation of the optical traits retrieval via inversion of the radiative transfer model SCOPE in the 

FunDivEUROPE plots. The model was constrained with the reflectance factors of Sentinel-2 MSI at 10 m spatial 

resolution (first column), Sentinel-2 MSI at 30 m spatial resolution (second column), and DESIS at 30 m spatial 

resolution (third column). Sentinel-2 imagery was acquired in 2015. Median values of the 3 x 3 pixels window 

centered on the field plots are compared against the mean values of different traits measured on the ground. Leaf 

area index (first row) and dry matter content (third row) are directly compared with field measurements. In contrast, 

chlorophyll concentration computed from estimated chlorophyll and dry matter contents is compared with foliar 

Nitrogen concentration (mas per mass).  
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Figure S5 104 

 

Figure S5. Evaluation of the optical traits retrieval via inversion of the radiative transfer model SCOPE in the 

FunDivEUROPE plots. The model was constrained with the reflectance factors of Sentinel-2 MSI at 10 m spatial 

resolution (first column), Sentinel-2 MSI at 30 m spatial resolution (second column), and DESIS at 30 m spatial 

resolution (third column). Sentinel-2 imagery was acquired in 2020. Median values of the 3 x 3 pixels window 

centered on the field plots are compared against the mean values of different traits measured on the ground. Leaf 

area index (first row) and dry matter content (third row) are directly compared with field measurements. In contrast, 

chlorophyll concentration computed from estimated chlorophyll and dry matter contents is compared with foliar 

Nitrogen concentration (mas per mass).  



 

20 

 

Figure S6 105 

 

Figure S6. Pearson correlation coefficient between taxonomical and functional diversity metrics computed from 

field plant traits (subscript “field”, x-axis) and functional diversity metrics computed from remote sensing 

information (y-axis): the reflectance factors (subscript “R”, first two rows) or the optical traits (subscript “optical”, 

last two rows). In each case, the dbFD package metrics are presented first, and the parametric Rao’s Q afterward. 

The statistics correspond to Sentinel-2 MSI @ 10 m spatial resolution (S210, first column), Sentinel-2 MSI @ 30 m 

spatial resolution (S230, second column), and DESIS at 30 m spatial resolution (DESIS, third column). Sentinel-2 

imagery was acquired in 2020. Asterisks indicate the significance of the correlation (two-tailed) according to its p-

value (p): *** → p < 0.001, ** → 0.001 ≤ p < 0.01, and ** → 0.01 ≤ p < 0.05..  
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