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Summary

The strain-based implementation method for the extended peridynamic model
(XPDM) resolves the limitation of standardmodels where only a fixed Poisson’s ratio
can be achieved. In this contribution, the XPDM formulation is extended to include
bond breakage and/or plasticity mechanisms. The elasto-plastic and bond breakage
algorithms are elaborated. To capture the fracture process, a shear mechanism is now
incorporated to the bond breakage response, in addition to the standard stretching
failuremode. It is shown that the shearmechanism is required to accurately reproduce
mixed mode fracture behavior observed experimentally. To demonstrate the predic-
tive behavior of the strain-based XPDM, a wide range of quasi-static and dynamic
loading conditions, for both brittle and elasto-plastic materials, is considered against
experimental results or practical engineering scenarios.
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1 INTRODUCTION

Crack induced failure of geomaterials has long been the research focus in engineering science, where computational modeling
has become an indispensable tool for understanding the mechanical behavior of solids before and after failure. As one of the
most promising methods, peridynamic model has drawnmuch attention for its non-local formulation and meshless discretization
framework1,2,3. The governing equations are reformulated through the integration of bond force density, such that difficulties
with displacement discontinuity are circumvented4,5,6,7,8,9,10. It is thus commonly adopted for the modelling of fracture pro-
cesses11,12,13,14,15,16. Recently,17 proposed a peridynamic differential operator to construct nonlocal solutions of differential
equations, extending the application of peridynamics to more areas18,19,20,21. The original bond-based peridynamic formulation
by4, however, can only describe a fixed Poisson’s ratio. Moreover, the force density grows linearly with bond stretch until a
threshold value, where the connection between two material points vanishes. Such a framework cannot adequately capture non-
linear failure responses, nor in situations with significant shear deformation. In this paper, we focus on the strain based extended
peridynamic model (XPDM) developed in22,23, which remedies the Poisson’s ratio limitation, and extend it to incorporate shear
breakage and elasto-plastic mechanisms, such that a wide range of complex fracture behavior can be accurately captured.
In the literature, several developments have been proposed to extend the range of applications with peridynamic models. To

circumvent the fixed Poisson’s ratio limitation, modified formulations include the ordinary state-based peridynamic model24,
the conjugated bond-based peridynamic model25,26, as well as other related approaches27,28,29,30,31,32,33,34,35. Other researchers
focus on the bond constitutive relations to capture the fracture response more adequately36,37,38,39,40,41, though most work are
restricted to brittle behavior. Such modifications may thus be inadequate in situations involving significant plastic deformation,
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e.g. cohesive-frictional materials in compression dominated loading conditions. For the latter, an ordinary state-based peri-
dynamic plasticity model was proposed in42 where the yield function is constructed through the relationship between strain
energy density and equivalent stress, as well as related model extensions by43,44,45,46. This allows the incorporation of the von
mises yield criterion into the ordinary state based framework. In general, however, the incorporation of more complicated plas-
ticity mechanisms into the peridynamic model, e.g. as functions of maximum shear stress / hydrostatic pressure / lode angle
etc, can be challenging. One way to address this is to adopt the non-ordinary state-based peridynamic model24, to incorporate
local constitutive equations more easily. However, the numerical implementation may suffer from stability issues due to poten-
tial material penetration47 and zero-energy mode oscillations48,49. Some researchers have proposed methods to deal with these
deficiencies50,51, though the resulting implementation becomes more complicated.
The extended peridynamic model by22 remedied the Poisson’s ratio limitation, by incorporating the bond rotational effect into

the formulation. However, it was found that the proposed enrichment suffered from rigid body rotational effect, which was later
addressed in23 via a local strain-based implementation technique. Here, the enriched model is termed the XPDM, in which the
bond rotational effect is captured via the bond shear strain. In XPDM, the macroscopic strain energy of peridynamic system is
reformulated by introducing local shear deformation. It can be viewed as an extension to the classical bond-based central force
peridynamic theory by incorporating bond shearing effect with an additional degree of freedom in the tangential direction. Thus
the microscopic shearing mechanisms can be better considered in the XPDM framework.
While the XPDM has successfully resolved the Poisson’s ratio limitation, prior work was limited to the linear regime or

simple tensile fracture responses. This forms the motivation of the paper, which focuses on the extension of XPDM in static
or dynamic loading conditions, for both brittle and elastoplastic fracture processes. Since the bond deformation can be derived
from the local strain, a direct relationship between the nodal internal force and the local strain can be obtained through XPD
bonds. Conceptually, this is similar to the relationship between the nodal forces and Gaussian strains in a finite element model:
the product of the elastic bond deformation and the initial bond stiffness is analogous to the product of the elastic strain and the
stiffness matrix of the latter. Therefore, in the XPDM framework, the nodal internal force can be directly obtained from the local
elastic strain, which facilitates the direct use of classical elastoplastic models.
For modeling crack propagation, the critical stretch fracture criterion is the most commonly used criterion for brittle fracture

in the bond-based model or even the state-based model52,53, but the lack of shear mechanism consideration makes it inadequate
for predicting crack propagations under compression. A peridynamic formulation of J-integral for the study of surface opening
cracks was proposed in54, though its predictive accuracy is influenced by the horizon size relative to the crack size. For the
XPDM, a shear failure mechanism is introduced in the bond breakage relation in addition to the classical tensile failure criterion,
to help capture the shear cracks observed in experiments. For elastoplastic fracture problems, a generalized stored energy function
at the XPD bond level is proposed, with an emphasis on the determination of critical energy that induces fracture.
The paper is organized as follows: Section 2 describes the main constitutive equations of the XPDM. Section 3 incorporates

the elastoplastic theory into the force density - strain constitutive relations. Section 4 presents two new bond failure criteria in
XPDM. Section 5 provides the computational algorithm for both brittle and elastoplastic fracture analyses. In Sections 6, we
illustrate the accuracy and effectiveness of the proposed method by benchmarking against nonlinear finite element results and
experimental data.

2 SUMMARY OF THE EXTENDED PERIDYNAMIC FORMULATIONS

For completeness, a summary on XPDM is provided. Detailed discussions can be found in22,23. In peridynamic theory, the
local equilibrium condition is described via an integral term to describe the force density f (x) acting at that point. Following
Newton’s second law, the equation of motion at material point x, instant t, can be written as4:

�ü (x, t) = ∫
x

f (x, t) dVx′ + b (x, t) , x ∈ Ω (1)

where the integral term defines the resultant force density at point x; � denotes density, ü is the acceleration vector, and b is the
body force density. The ℎorizon associated with material point x is denoted asx with the parameter � describing the material
horizon, as shown in Figure 1.
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2.1 Local constitutive equations

δx

x

FIGURE 1 Distribution of material points and the integral domain of point X

In the bond-based peridynamic modelling framework4, a solid occupying the domain Ω is discretized by a finite number of
material points. A pair of points located within the same horizon are connected to each other via a bond. The resultant force
density ∫x

f (x, t) dVx′ acting at a material point x is computed as the net force density arising from the connections of all
neighboring points within its horizon x.
Consider two material points in the same horizon and initially with the respective locations x and x′, to give a relative position

vector as
� = x′ − x. (2)

Assume that at instant t, these two points have been displaced by u (x, t) and u
(

x′, t
)

, respectively. A relative displacement
vector can thus be defined as

� = u
(

x′, t
)

− u (x, t) . (3)
In the linearly elastic phase, the local force related function can be formulated as

f (�, �, t) = C ⋅ � (4)

where C denotes the second-order bond stiffness tensor. Referring to22, a local shear deformation mechanism is incorporated
in addition to the standard stretching mode, to give

C = 1
�
[cn⊗ n + � (I − n⊗ n)] , (5)

where n = �∕� is the unit vector in bond direction, with � = ‖�‖. The tensor product operator is denoted as ⊗, and I denotes
the second order identity tensor.
The bond stiffness moduli in the stretch and shear directions are denoted respectively as c and � (see Figure 2). For an isotropic

linear elastic material, these moduli are related to the Young’s modulus E and Poisson’s ratio � of the solid body22. Specifically,
in 3D,

c = 6E
��4(1 − 2�)

, � =
6E(1 − 4�)

��4(1 + �)(1 − 2�)
(6)

In 2D, the moduli are obtained as
c = 6E

��3(1 − �)
, � =

6E(1 − 3�)
��3(1 − �2)

(7)

for plane stress condition, and
c = 6E

��3(1 + �)(1 − 2�)
, � =

6E(1 − 4�)
��3(1 + �)(1 − 2�)

(8)

for plane strain condition.
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c

FIGURE 2 Schematic diagram of axial and tangential stiffness

To ensure the numerical calculation accuracy of the peridynamic model, an improved algorithm is adopted to correct the
calculation of integral areas. The family of x is extended to include all points with a nonzero overlapping area with the horizon
of x and is defined as

X (x) = {x ∈ R ∶ x ∩x ≠ ∅} (9)
where x denotes the volume one particle cell occupies. That is to say, if any corner of the particle cell belongs to the horizon of
particle xi, there exist the interaction forces between the two particles. As shown in Figure 1, the integral area of each particle
can be regarded as the overlapping area between the central particle’s horizon and the other particle’s cell. The correction factor
of the integral area can be approximated by

P j
i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dx ⋅ dy, if xj ⊂ xi
1
2
Δx + � − �

Δx
, if xj ⊄ xi and xj ∩xi ≠ ∅

0, if xj ∩xi = ∅.

(10)

where Δx denotes the mesh size.

2.2 Strain based decomposition of local deformation
The relative displacement vector � can be decomposed into normal and tangential components, respectively given as

l = 1
�
� ⋅ n, (11)

and

 = 1

�
(� − (� ⋅ n)n). (12)

According to23,55, the relative displacement vector � is also linearly related to the local strain tensor " and rotation tensor !:

� = " ⋅ � − ! ⋅ �. (13)

Since the rigid body rotation does not contribute to the internal force, the rotation term needs to be eliminated from the
displacements vector23. Thus we obtain

� = " ⋅ �. (14)
Here, the relative displacement � can be physically interpreted as a local deformation vector. Accordingly, the normal and

tangential components l and 
 can also be written in terms of the local strain tensor as

l = n ⋅ " ⋅ n, (15)


 = n ⋅ " ⋅ (I − n⊗ n) . (16)
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2.3 Approximation of strain field
According to23, the bond strain can be approximated using the displacements of material points surrounding the bond, as illus-
trated in Figure 3. This bond strain will later be used for introducing plasticity behavior into the force density - strain constitutive
relations, as well as incorporation into the bond breakage criteria.
From the discrete displacements of material points, the displacement field in a small volume (named voxel) can be

approximated as a multivariate linear function û (x)

û = m ⋅ x + c, ûi = mijxj + ci, i, j = 1, 2, 3 (17)

where the Einstein summation convention is applied for simplicity, m representing a combination coefficient matrix. The term
c denotes the translation of solid body.

ix

jx

(a) Initial state

ix

jx

(b) After a neighboing bond breaks

FIGURE 3 Approximate area of a bond connecting two material points

To achieve sufficient accuracy of the approximation, while retaining computational efficiency, the voxel should include a
suitable number of material points. The approximation of displacement field û will be based on material points with position
vector x that satisfy the following

x (x) = {x ∈ R ∶ ‖
‖

x − xi‖‖ ≤ rΔx ∪ ‖

‖

‖

x − xj
‖

‖

‖

≤ rΔx} (18)

where Δx is the spacing in a uniform grid and r denoting the size of approximation domain. For small deformation problems
considered in this paper, it is found that the size of approximation domain r in (18) does not influence the results significantly.
An example will be provided later in Section 7.1.1.
As illustrated in Figure 3, the material points used to fit the bond displacement function are chosen from the neighboring

points of the two connecting points. Note that when the bond connecting the two neighboring material points is broken, these
two points will no longer be part of each other’s active neighborhood.
Focusing on infinitesimal deformation in this paper, the strain in the voxel can be obtained as:

"ij =
1
2

(

)ûi
)xj

+
)ûj
)xi

)

(19)

Combining Equation (17) and Equation (19) establishes the connection between local strain " and the coefficient matrix m:

"ij =
1
2
(mij + mji) (20)

For ease of implementation, the coefficient matrix m and the translation term c can be combined into a new matrix:

M =

⎡

⎢

⎢

⎢

⎢

⎣

m11 m21 m31
m12 m22 m32
m13 m23 m33
c1 c2 c3

⎤

⎥

⎥

⎥

⎥

⎦

(21)
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In addition, we define a matrix U comprising the displacement components of all n material points within x:

U =

⎡

⎢

⎢

⎢

⎢

⎣

u(1)1 u(1)2 u(1)3
u(2)1 u(2)2 u(2)3
⋮ ⋮ ⋮
u(n)1 u(n)2 u(n)3

⎤

⎥

⎥

⎥

⎥

⎦

(22)

A location matrix X collates the location information of all material points in x:

X =

⎡

⎢

⎢

⎢

⎢

⎣

x(1)1 x(1)2 x(1)3 1
x(2)1 x(2)2 x(2)3 1
⋮ ⋮ ⋮ ⋮
x(n)1 x(n)2 x(n)3 1

⎤

⎥

⎥

⎥

⎥

⎦

(23)

By applying the least square method and minimizing the sum of residuals in terms of each displacement component23, we obtain
the following relationship

M = TU (24)
where

T = (XTX)−1XT (25)

2.4 Bond moduli across interface
For rock or concrete materials that usually contain a variety of soft and hard inclusions, the micro moduli of bonds across
material interface (as illustrated in Figure 4) can be estimated according to a homogenization method. Assume that the bond

Matrix

Inclusion

( )m

( )mx

( )ix

( )kx

( )i

( )m

FIGURE 4 Illustration of bonds across an interface which separates two different materials

stretch and shear moduli for the matrix phase are denoted by c(m) and �(m), and the respective variables for inclusions are c(i) and
�(i). In addition, for each bond cross an interface, the length-related fractions in the matrix and inclusion are denoted by �(m)
and �(i). The effective stiffness moduli are then estimated as

ceff = c(m)c(i)
�(m) + �(i)

c(i)�(m) + c(m)�(i)
, �eff = �(m)�(i)

�(m) + �(i)
�(i)�(m) + �(m)�(i)

(26)

In benchmark study 7.1.2, a bi-material plate with a crack is considered to study the crack-inclusion interactions.

3 BOND BREAKAGE CONSIDERING SHEAR DEFORMATION

For describing bond failure, a characteristic function �(u, �) is introduced into the force–relative displacement relation.

f (u, �) = �(u, �)(cln + �
) (27)
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According to1, the local damage variable d (x) at point x is defined in the form

d (x) = 1 −
∫
Hx

�(�, �)dVx′

∫
Hx

dVx′
(28)

with
�(u, �) =

{

1, if l < lc and ‖
‖ < 
c
0, if l ≥ lc or ‖
‖ > 
c

(29)

where lc and 
c are the critical values of the bond stretch and bond rotation, respectively. In the XPD framework, the tangential
stiffness is introduced in addition to the normal stiffness in classical BB-PD, as illustrated in Figure 2. Conceptually, the pair of
material points can be understood as being connected by two bonds, to respectively govern the normal deformation and shear
deformation between the points. Thus the stored energy of the normal bond and tangential bond can be obtained as:

Gc =

�

∫
0

�

∫
z

2�

∫
0

cos−1(z∕�)

∫
0

(1
2
cl2�)�2 sin �d�d�d�dz (30)

Gs =

�

∫
0

�

∫
z

2�

∫
0

cos−1(z∕�)

∫
0

(1
2
�
2�)�2 sin �d�d�d�dz (31)

Solving the integral equation yields the critical value of bond stretch and bond shear deformation:

lc =
√

10Gc
��5c

, 
c =
√

10Gs
��5�

(32)

Substituting the material micromodulus in (6), we obtain

lc =

√

5Gc(1 − 2�)
3E�

, 
c =

√

5Gs(1 + �)(1 − 2�)
3E�(1 − 4�)

(33)

For two-dimensional cases,

Gc = 2ℎ

�

∫
0

�

∫
z

cos−1(z∕�)

∫
0

(1
2
cl2�)�d�d�dz (34)

Gs = 2ℎ

�

∫
0

�

∫
z

cos−1(z∕�)

∫
0

(1
2
�
2�)�d�d�dz (35)

The critical bond stretch and bond shear deformation becomes:

lc =
√

4Gc
ℎ�4c

, 
c =
√

4Gs
ℎ�4�

(36)

The specific value depends on the type of plane problem.
In this paper, 
 is determined from the bond strain instead of the relative rotation angle, in order to eliminate the effect of

rigid body rotation as discussed in Section 2.2.
In some tests, it is not enough to only consider the tensile fracture of a bond, as done in a standard peridynamic model. The

introduction of critical shear deformation helps to capture the shear crack observed in experimental tests. This will be shown
later in benchmark study 7.1.3.

4 ELASTOPLASTIC FORMULATION OF THE CONSTITUTIVE MODEL

We now proceed to extend the above peridynamic formulation by taking into account plastic deformation, following the standard
strain decomposition below

" = "e + "p (37)
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In view of Equation (13), the local deformation vector can also be decomposed into elastic �e = "e ⋅� and plastic components
�p = "p ⋅ �,

� = ("e + "p) ⋅ � = �e + �p (38)
The local force density function can thus be reformulated as

f = C ⋅ (� − �p) (39)

or equivalently
f = c(l − lp)n + �(
 − 
p) (40)

with lp = n ⋅ "p ⋅ n and 
p = n ⋅ "p ⋅ (I − n⊗ n).
The total bond stretch l and the local strain " can bewritten in terms of the displacement field u that was determined earlier.We

thus replace the expression f (�, �, t) by f (u, �, t). For numerical implementation, the force density - strain relation is rewritten
as

f (u, �, t) = c(l − n ⋅ "p ⋅ n)n + �n ⋅ (" − "p) ⋅ (I − n⊗ n) (41)
The key step is thus to determine the plastic component "p, which can be obtained following the standard solution strategy

for classical plasticity models. For better clarity in this paper, two commonly used constitutive models are considered.
A Drucker-Prager yield function with isotropic hardening is provided:

� =
√

J2 + �I1 − k(
p) (42)

where J2 =
1
2
SijSij is the second invariant of deviator stress, which is in turn defined as Sij = �ij −

1
3
�kk�ij . I = �kk is the first

invariant of the stress tensor, � = ℂ ∶ (" − "p)with ℂ being the initial elastic stiffness tensor and " the total strain approximated
locally. � is a material constant and k(
p) is the hardening function. In this study, we take the following form

k(
p) = k0 + �c(1 − exp(−w
p)), (43)

where k0 is the initial threshold, while �c denotes the maximum expansion to yield surface due to plastic hardening; w is the

parameter controlling the hardening rate. Here defines epij = "
p
ij − �ij

"pkk
3

,


p = ∫

√

2
3
depijde

p
ij (44)

The parameter � and k0 can be related to the material cohesion c0 and friction angle ' such that

� =
sin'
√

3
, k0 =

2c0 cos'
√

3
(45)

The structural complexity plays an important role in determine the mechanical property of geomaterials. To replicate plastic
deformation and crack growth of materials with anisotropy, we also introduce an oriented yield function

� = ||�|| + ��n − k0 (46)

where �n denotes the stress corresponding to the preferential direction ny, � determine the degree of anisotropy, and ||�|| denotes
the stress perpendicular to ny; k0 is a material constant which defines the elastic domain.
For simplicity in this paper, we adopt an associated flow rule for plastic evolution.

5 ELASTOPLASTIC FRACTURE

For the solution of the elastoplastic fracture problems, the following bond constitutive relation is adopted:

f (u, �) = �(u, �)(c(l − lp)n + �(
 − 
p)) (47)

where lp and 
p are the plastic parts of stretch and shear deformation, respectively.
Following similar concept in56,57,58 where the fracture is driven by the elastic strain energy and the stored plastic energy, we

adopted an energy-based criterion for the elasto-plasticity-fracture coupling. The tensile and shear components of the elastic
local strain energy contributing to bond breakage are:

we
n(�) =

1
2
re(�)c(le)2� (48)
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we
s(�) =

1
2
�
e ⋅ 
e� (49)

where re is used to distinguish between the anisotropic effect of bond stretch and compression on fracture:

re =
{

1, if le > 0
0, if le ⩽ 0 (50)

The plastic component of stored energy is obtained as the sum of increment value over the entire loading history:

ẇp
n(�) = (1 − �)fnl̇

p� (51)

ẇp
s(�) = (1 − �)f s ⋅ 
̇

p� (52)
where fn = cle and f s = �
e, Parameter � denotes the fraction of plastic work dissipated through heating56,57. Because
calibrating this parameter is difficult and necessitates specific tests, most approaches just assume a constant value59,58. Here, we
assume that the energy stored from compressive flow does not contribute to the fracture process, via a plasticity coefficient rp:

rp =
{

1, if lp > 0
0, if lp ⩽ 0 (53)

Hence, the plastic energy in normal direction driving the bond breakage can be expressed as

wp
n(�) = rp(�)w

p
n(�) (54)

Finally, the energy required to break all bonds per unit fracture area can be determined as:

Gc =

�

∫
0

�

∫
z

2�

∫
0

cos−1(z∕�)

∫
0

(we
n(�) +w

p
n(�))�

2 sin �d�d�d�dz (55)

Gs =

�

∫
0

�

∫
z

2�

∫
0

cos−1(z∕�)

∫
0

(we
s(�) +w

p
s(�))�

2 sin �d�d�d�dz (56)

We define two scalar functions calculated from the bond strain loading history:

Y1(�) = (we
n(�) +w

p
n(�))∕�, Y2(�) = (we

s(�) +w
p
s(�))∕� (57)

Solving the integral equation yields the critical value of Y (�):

Yc =
5Gc
��5

, Ys =
5Gs
��5

(58)

Similarly, for two-dimensional models,

Gc = 2ℎ

�

∫
0

�

∫
z

cos−1(z∕�)

∫
0

(wp
n(�) +w

p
n(�))�d�d�dz (59)

Gs = 2ℎ

�

∫
0

�

∫
z

cos−1(z∕�)

∫
0

(wp
s(�) +w

p
s(�))�d�d�dz (60)

Solving for the integral gives
Yc =

2Gc
ℎ�4

, Ys =
2Gs
ℎ�4

(61)

For any loading step, a bond is taken to be broken if Y1(�) > Yc or Y2(�) > Ys and removed from the structure.
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6 NUMERICAL IMPLEMENTATION

6.1 Quasi-static problems
The integration form of the static equilibrium equation is given as:

∫
x

f (u, �)dVx′ + b(x) = 0 (62)

In the discretized form for peridynamic, this becomes
N(k)
∑

l=1
f (k)(l)V(l) + b(k) = 0 (63)

where subscript (k) denote the material point at x(k), the subscripts of f indicating the two connected points, N(k)
represents

the number of material points in the horizon connected to point x(k), and V(l) represents the volume occupied by point x(l).
The resulting force balance equation is thus,

N(k)
∑

l=1
f (k)(l)V(l)V(k) + b(k)V(k) = 0 (64)

For quasi-static problems, the solution strategy for elastic fracture models is summarized in Algorithm 1. For the maximum

Algorithm 1 The elastic solution of XPDM fracture
Input: Given loading step n = 0, U 0
Solve: U = −K ⧵ [F int(U n) − F ext]
Output: output result
1: if any PD bond is broken then
2: Update K
3: Return to Solve
4: else
5: n = n + 1
6: U n = U n−1 + Δun
7: end if

number of bonds allowed to break at each equilibrium step, we refer to60 for a detailed analysis of static fracture problems. A
similar analysis is carried out for the examples in Subsections 7.1 and 7.3. When the number of broken bonds allowed per step is
less than or equal to 4, the difference is marginal in terms of fracture propagation direction and macroscopic material strength.
In general, the more fracture bonds allowed per step, the more efficient the corresponding computation will be. For the static
problems in this manuscript, the number of broken bonds allowed per step is set at 4.

6.2 Dynamic problems
An explicit time integration approach below is adopted for dynamic problems,

u̇n+
1
2 = u̇n + Δt

2
ün, (65)

un+1 = un + Δtu̇n+
1
2 (66)

where u̇ is the velocity vector and ü is the acceleration vector. To ensure numerical stability, the time step Δt is limited by

Δt ≤
Δmin
ck

, (67)

ck =
√

K∕� (68)
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where Δmin is the minimum nodal distance in the discretized domain, K is the bulk modulus and � is the mass density. With the
force-displacement relations of the system

F = Ku, (69)

ü = F
m

(70)

m represents the material point mass which is the same for each material point under uniform grids.
The dynamic solutions can be obtained correspondingly. From the material point displacements obtained from the previous

time step, new broken bonds may develop. The lists of neighboring points are then updated, as well as the corresponding stiffness
matrix K .

6.3 Elastoplastic response
In a uniform distributed material point system, the representative volume of each point is denoted by Vp. According to Equation
(41), the force in each bond can be computed as

fbond = VkVl[(cln − n ⋅ "p ⋅ n)n + �n ⋅ (" − "p) ⋅ (I − n⊗ n)] (71)

The internal force caused by the extended peridynamic bond can be re-written as:

fbond = f − fpla, (72)

where f = VkV 2
l [cln + �n ⋅ " ⋅ (I − n⊗ n)] and fpla = VkVl(C ⋅ "p ⋅ �),

The global internal force vector F int can be obtained from the assembly bond force vectors fbond ,

F int = F − F pla (73)

Referring to23, the assembly of F can be done via a matrix operation:

F = KU (74)

where K is the global stiffness matrix of the peridynamic region and U is the global displacement vector.
From Equations (17) and (20) in subsection 2.3, the bond strain can be determined from the displacements of local area. The

global strain - displacement relations can be thus written as:

E = Ku→"U (75)

where Ku→" represents the strain - displacement transformation matrix, and E is a global strain vector containing all bond
strains. Once the bond strain is determined, the corresponding plastic strain Ep at each increment can be calculated through the
elastoplastic constitutive relationship.
According to Equations (4) and (14), the bond force of each bond can be directly obtained from the bond strain. The relation

between the global strain column vector and the global nodal force vector can be expressed as

F = K"→fE (76)

where K"→f represents the force - strain transformation matrix.
In view of f pla = VkVl(C ⋅ "p ⋅ �), the global force vector F pla in Equation (73) can be written as

F pla = K"→fEp (77)

Given an increasing external force, new broken bonds developed constantly. The corresponding list of active neighboring
material points is required to be updated, and the contribution of a new broken bond has to be removed. The structure is modified
accordingly with reduced stiffness, until the failure of the next bond.
Similar to the incremental nonlinear finite element scheme61, the Newton-Raphson scheme for the solution of the incremen-

tal nonlinear equations can be implemented in the elastoplastic XPDM framework. The pseudo-code format of the nonlinear
framework is summarised in Algorithm 5.
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FIGURE 5 The elastoplastic XPDM iterative scheme

6.4 FEM/XPDM coupling implementation
The solution of a typical nonlinear mechanical problem usually involves the Newton-Raphson iterative scheme, which can be
computationally expensive, especially for peridynamic models due to their nonlocality. Here, we refer to the solution strategy in
multiscale methods, where the modelling resolution is only increased locally at the regions of interest62,63,64,65,66,67,68,69,60,70,71.
Particularly, we refer to the PD/FEM coupling method proposed by62, such that the PD method can be practically adopted for
large-scale calculations. By restricting the PD models to the interior regions of interest, the difficulty of imposing boundary
conditions at the physical boundaries is also circumvented.
An illustration for the XPDM-FEM coupling is provided in Figure 6, where the square meshes represent finite elements, and

the discrete green nodes represent peridynamic points. When calculating the forces acting on green nodes, the yellow nodes are
taken as XPDM nodes to approximate bond strain and bond stretch23; when calculating the forces at yellow nodes, the green
nodes are taken as finite element nodes. By following this coupling procedure, boundary conditions and external loads can be
imposed easily on the finite element nodes. Computational time is also reduced by limiting the high resolution PD model to the
region of interest.
The numerical implementation in the finite element region follows standard procedure61, with the global internal force vector

assembled from the element internal force vectors to give

F ele
int = ∫

Ωele

BT�dV , � = ℂ0 ∶ (" − "p) (78)

where B is the strain-displacement matrix.
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FIGURE 6 The schematic diagram of the FEM/PD coupling method

For theXPDM/FEMcoupling scheme adopted, the global internal force of the system inAlgorithm 5 is replaced by assembling
the internal force of both the finite element and peridynamic regions.

7 BENCHMARK STUDIES FOR CRACK PROPAGATION

In this section, several benchmark examples are carried out to verify the effectiveness of XPDM in predicting different crack
propagations. In the following examples, the structural models are divided into two domains: the region of interest discretized
with XPD points (within the dotted line), and the remaining regions discretized using FE mesh. All problems considered assume
the plane stress condition unless specifically mentioned.
This section is divided into 3 parts: part 1 in Section 7.1 concerns with quasi-static brittle fracture, part 2 in Section 7.2

addresses dynamic fractures, and part 3 in Section 7.3 discusses on elastoplastic problems. In Section 7.1, the fracture in subsec-
tions 7.1.1 is mainly caused by the critical bond stretch. In subsection 7.1.3, we consider fracture processes with significant shear
mechanisms, to demonstrate the necessity of the proposed critical shear criteria in capturing the experimental observations.

7.1 Quai-static brittle fracture
7.1.1 Koyna dam
This examples presents a practical engineering scenario for the implementation of XPDM. Koyna dam is one of the largest
gravity dam located in India, which is analyzed for static solution of crack propagation due to the overflow. The geometry and
boundary conditions are shown in Figure 7, where the initial crack is located at the changing slope on the downstream face. The
applied loads comprised the self weight, the full reservoir hydrostatic load plus the overflow load with an increasing height. To
our knowledge, this is the first attempt in the literature using peridynamics to solve the problem. This problem has been modeled
using the XFEM72 and the improved phase-field model73,74. The material properties of the dam are taken from72: E = 25 GPa,
� = 0.2, � = 2450 kg/m3, �w = 1000 kg/m3, g = 9.8m/s2. For XPD parameters: the horizon is � = 0.375m, with a grid spacing
that is one-third of it. The critical energy release rate is 60 N/m.
As shown in Figure 8, with the increasing overflow height, a single crack firstly propagates from the predefined notch to the

downstream face with a slightly increased inclination. As the crack propagates, the self-weight induced increasing compressive
stress along the crack tip, which slows down the fracture speed. A crack branch subsequently occurs and propagates upwards.
The crack patterns match well with the prediction in74. Additionally, the overflow height versus the horizontal crest displacement
is also recorded in Figure 9. Overall, a good agreement is found between our computed responses and the results obtained in
literature73. Note also that Figure 9 depicts consistent numerical results for two different approximation domain sizes in (18).
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(a) The geometry, boundary and loading conditions (b) FEM/XPDM discretization

FIGURE 7 Koyna dam

(a) Hoverflow = 8.6m, Ucrest = 38.8mm (b) Hoverflow = 10m, Ucrest = 60.1mm

FIGURE 8 Koyna dam: crack patterns predicted by XPDM

7.1.2 Crack deflection due to inclusion
The second example considers a model with inclusions in which the bonds across the interface are determined using homoge-
nization concept, to demonstrate the capability of the proposed model in capturing the effect of soft and hard inclusions on the
crack propagation tendency. The geometry and boundary conditions are taken from75,76. As shown in Fig. 10, the configura-
tion consists of a rectangular plate with an off-center circular inclusion. The material parameters of the matrix are E = 6 GPa,
� = 0.2. Two different ratios of elastic modulus (Einclusion∕Emattrix) are 10 and 0.1. The PD horizon � = 0.08 mm, grid spacing
Δx = 0.025 mm and critical energy release rate Gc = 1000 N/m.

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



15

0 10 20 30 40 50 60 70

0

2

4

6

8

10

12

FIGURE 9 Graphs of overflow height versus crest displacement for the Koyna dam

As shown in Fig. 10, the crack growth direction is highly dependent on the type of inclusion. In the case of a rigid inclusion,
the crack deflects away from it. Conversely, for a soft inclusion, the crack is attracted towards it. These predictions are consistent
with the published results in77,75,76.

8

4

4

2

2

Ø 1

0.5

u

(a) The geometry and boundary conditions (b) Rigid inclusion (c) Soft inclusion

FIGURE 10 Crack deflection due to inclusion

7.1.3 Compression of a rock specimen with two inclined parallel notches
To demonstrate the capability of XPDM in predicting crack propagation involving fracture coalescence, a specimen containing
two parallel pre-cracks subjected to compressive loading is considered here. This problem has been extensively investigated
experimentally and numerically employing pre-fractured specimens of gypsum78,79,80,81,82,83. The elastic constants of the solid
material areE = 5.96GPa, � = 0.2, with critical energy release rateGc = 20N/m and critical shear energy release rateGs = 100
N/m. The PD horizon is � = 2 m and the grid spacing of PD region is �∕4. This example assumes the plane strain condition.
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Fig. 11 (a) presents the distribution of two prefabricated cracks in Case 1. The crack patterns observed experimentally, and
the numerical results predicted by XPDM considering only critical stretch, are depicted in Figs. 11 (b) and (c) respectively. It
is clearly shown that the predicted crack pattern without considering critical shear deformation differs considerably from that
observed in the experimental tests. The same problem is also reported in81 using the phase field methods, when an inadequate
shear failure mechanism leads to wrong fracture profiles.

152.4 mm

76
.2

 m
m

u

XPD

FE

(a) The geometry and boundary conditions

(b) Experimental results (c) Numerical modeling considering only critical
stretch

FIGURE 11 Case 1

With the incorporation of critical shear deformation 
c in Case 1, the numerical results in Fig. 12 give a crack pattern similar
to the experimental observation. Four wing cracks initiate at both the internal and external tips of the pre-existing flaws, before
coalescence occurs to connect the inner tip of the lower notch and one wing crack. Finally, two shear cracks appear at the outer
tip of two notches.
Fig. 13 (a) shows another specimen with a different distribution of prefabricated cracks (Case 2). The crack patterns observed

experimentally, as well as the numerical prediction considering only critical stretch, are shown in Figs. 13 (b) and (c). The
same limitation is observed, where without the consideration of shear deformation, the XPDM results can not reproduce the
experimental observation.
With the consideration of critical shear deformation, the salient features of mixed-mode cracks in rocks under compression

are captured. Four wing cracks first initiate from the tip of the notches. Further loading leads to the formation of a strong shear
zone located between the two notches, which results in a crack coalescence process between the two pre-cracks. Finally, two
shear cracks appear at the outer tip of two notches.

7.2 Dynamic brittle fracture
7.2.1 Kalthoff-Whinkler experiment
In this section, a plate with two transverse pre-cracks is considered to illustrate the dynamic performance of XPDM. As shown in
Fig. 15 (a), the border nodes between two notches are subjected to a constant velocity of u̇ = 16.54m/s. The material parameters
are E = 190 GPa, � = 0.3, � = 8000 kg/m3. The PD horizon is � = 1.5 mm, the grid spacing of PD region Δx = 0.5 mm,
the critical energy release rate Gc = 22.2 N/mm. As observed from Fig. 15, for two different fitting regions, the average crack
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FIGURE 12 Case 1 using XPDM with shear mechanism: F=30.48 kN, F=32.46 kN, F=29.87 kN

152.4 mm
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XPD
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(a) The geometry and boundary conditions

(b) Experimental results (c) Numerical modeling considering only critical
stretch

FIGURE 13 Case 2

extension angles with respect to the horizontal direction are obtained as 69◦, comparing well with experiment results84 (70◦),
again demonstrating that the size of the fitted domain has negligible effect on the results in this dynamic case.

7.3 Elastoplastic fracture problems
In this section, three examples are considered to demonstrate the capability of XPDM to accurately reproduce elasto-plastic
behavior.
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FIGURE 14 Case 2 using XPDM with shear mechanism: F=31.3 kN, F=32.2 kN, F=27.7 kN
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(a) The geometry and boundary conditions

69.0°
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(c) XPDM (r=3Δx)

FIGURE 15 Kalthoff

7.3.1 A square specimen subject to compression
In this subsection, we conduct a compression test on a square plate with a side length of 100m under different confining pressures.
The central region of the plate is discretized by peridynamic nodes (� = 3 m, m = 3), and the boundary region by a finite
element mesh.

TABLE 1Material parameters for the plate concerning Drucker-Prager yield criterions

E (GPa) � k0 (MPa) c0 (MPa) ' �c (MPa) w

10 0.21 / 30 �
6

12 150
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The Drucker-Prager model with hardening is adopted, and the structure is compressed under different confining pressures. The
material parameters used for modeling are provided in Table 1. The macro stress-strain curves obtained for different confining
pressures are depicted in Figure 16. A close match between the extended peridynamic predictions and finite element results is
obtained and the effect of confining pressure on the hardening strength of geomaterials is well demonstrated.

-0.04-0.035-0.03-0.025-0.02-0.015-0.01-0.0050

-250

-200

-150

-100

-50

0

FIGURE 16 Stress-strain curves under different confining pressures, the circle-form symbols are results obtained by FEM and
solid lines indicate those computed by XPDM

7.3.2 Failure prediction in compression tests
Here, a more complicated boundary value problem is considered, where a specimen with tunnel-like holes is subjected to
compression. The geometry and loading conditions are presented in Figure 17. The Young’s modulus and Poisson’s ratio are set
as E = 20 GPa and � = 0.11, respectively. The horizon � = 1.5 m and mesh size equals �∕3. The critical energy release rate is
Gc = 200N/m, Gs = 571N/m, � = 0.8. The Drucker-Prager type plasticity model is implemented with cohesion c0 = 24MPa
and ' = �

6
. The value of the plastic hardening parameters are calibrated as �c = 24MPa and w = 500.

The contour maps of the strain field before crack initiation, as predicted by the elastoplastic XPDM and nonlinear FEM are
provided in Figures 18 . Figure 19 depicts the displacement of bottom edge of the right tunnel in x2 direction at u = 1m, with a
fixed horizon and the decreasing mesh size. It is observed from these comparisons that the XPDM predictions match the FEM
solutions closely.
Here, we also demonstrate the formation of a localized shear band in a rock specimen under compressive loadings. The

numerical model of rock specimen with a random distribution of initial defects is shown in Fig. 20. The Young’s modulus and
Poisson’s ratio are set as E = 20 GPa and � = 0.2, respectively. The horizon � = 1.5 mm and mesh size is �∕3. Gc = 1.5N/m,
Gs = 4.29N/m. The Drucker-Prager type plasticity model is implemented with cohesion c0 = 25 MPa. A plastic hardening
effect is effected via parameters �c = 10 MPa and w = 500. The confining pressure pc = 15 MPa. In Fig. 21, the simulation
results of the crack pattern are provided. The shear band is formed due to the randomly scattered defects, and the macro-cracks
will develop progressively along the shear band.

7.3.3 Anisotropic plasticity fracture
Geomaterials typically experienced involving mechanical, thermal and chemical actions over a period of time. This geological
history may influence a directional bias on the development of microstructural properties, as well as micro defects, to induce an
anisotropic effect on the overall mechanical behavior. This sets the backdrop of this subsection, on the development of a simple
anisotropic material model. This is similar to existing work on the constitutive modelling of anisotropic behavior, e.g.85,86, to
demonstrate the capability of the model, before venturing into a more mechanism based determination of parameters. We now
consider the fracture response of a specimen with an anisotropic plasticity constitutive model 46. As shown in Fig. 22, the
specimen with a central hole is subjected to uniaxial tension. This example is adopted to investigate the influence of oriented
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FIGURE 17 The geometry and boundary conditions of the structure

(a) strain field (b) strain field (c) damage field

FIGURE 18 Results obtained by elasto-plastic FEM and XPDM

plastic deformation on the crack propagation direction. The parameters are E = 30 GPa and � = 0.2. The PD horizon 1.5m and
the mesh size is set to 0.5m, with Gc = 0.35N/m, Gs = 1N/m, � = 0.5. The parameters in the anisotropic plasticity constitutive
model are: yield stress k0 = 10MPa, coefficient � = 10. In the following, two preferential directions ny are adopted.
As illustrated in Figs. 23, the strain field is greatly influenced by the orientation defined in the yield function. In Figs. 25 and

26, the crack propagation angle is perpendicular to the direction of plastic flow determined mainly by the unit direction vector
ny. In practical applications, the direction vector in the yield function is specified by the user, to reflect the anisotropy of material
arising from its underlying micro- and/or meso-structure.
In Fig. 24, the load-displacement curves predicted by elasto-plastic XPD model of different n are provided. As the direction

vector changes from horizontal to vertical, the structure will undergo a longer hardening stage and lower strength.
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FIGURE 19 Comparison between elasto-plastic XPDM and FEM in x2-displacement at u = 1m, along (a) the horizontal
centerline and (b) the dotted line.
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(a) The geometry and boundary conditions (b) Random distribution of initial defects

FIGURE 20 Description of the model

8 CONCLUSION

In this paper, the predictive ability of XPDM in fracture behavior is investigated for both brittle and elastoplastic material models.
With XPDM, different modes of fracture for both static and dynamic problems can be well reproduced. It is found that the
bond rotation angle obtained by the strain-based implementation plays a significant role in capturing the complex compressive
shear cracks, due to its correct description of shear deformation without the rigid rotation effect. Moreover, the strain-based
implementation strategy enables the incorporation of plasticity models into the XPDM framework. The predictive capability
of the proposed XPDM method is demonstrated for a wide range of fracture problems in quasi-static and dynamic loading
conditions, considering brittle and elastoplastic materials. Despite its excellent problem-solving abilities, more efforts are needed
to reduce the relatively high computational consumption caused by its non-local characteristics, such as the application of
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(a) Equivalent plastic strain (b) XPDM damage field (c) Experimental results

FIGURE 21 Comparisons of crack patterns between numerical and experimental results subjected to compression (Confining
pressure pc = 15MPa)
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FIGURE 22 The geometry and boundary conditions of the structure

multiscale methods62,66 to reduce global computational costs, as well as the adoption of parallel programming technique87 to
accelerate the computations.

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



23

(a) Initial state (b) ny = (0, 1)

(c) ny = (
√

0.1716,
√

0.8284) (d) ny = (
√

2
2
,
√

2
2
)

FIGURE 23 Oriented constitutive model, the contour maps of "22 distribution: (a) initial elastic state; (b) (c) (d) the state after
extensive plastic deformation right before the crack initiation.
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FIGURE 24 Load-displacement curves predicted by elasto-plastic XPDM for different n in yield function (� = 2 mm).
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FIGURE 25 Oriented constitutive model, ny = (
√

0.1716,
√

0.8284): the crack pattern.

FIGURE 26 Oriented constitutive model, ny = (
√

2
2
,
√

2
2
): the crack pattern.
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APPENDIX

A DISCUSSION ON COMPUTATIONAL COST

Here we briefly discuss the computational cost of the extended bond-based peridynamic method and the ordinary state based
peridynamics (OS-PD). For a uniform grid in 2D peridynamic numerical model, the number of points associated with each
material point is 12 when Δx = 1

2
�, 28 when Δx = 1

3
�, 48 when Δx = 1

4
�. As the horizon � becomes larger, the bandwidth

of the global matrix becomes wider, and the resulting computational cost increases accordingly. With the oridinary state based
peridynamic model, the "state" is calculated by integrating the bond stretch within the complete horizon. For the XPDM, the
determination of local strain requires onlymatrix operations on the displacement of the neighboringmaterial points. Accordingly,
the XPDM is computationally more efficient than the ordinary state-based model. A quick comparison of computational cost
with XPDM and the ordinary state based peridynamics is illustrated in Table A1, where a simple uniaxial tensile example is
adopted (the grid and damage pattern are shown in Figure A1). Both methods are numerically implemented in Matlab, using
CPU i7-9750H with 6 cores and 12 threads.
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TABLEA1Average computational time (s) required to solve a uniaxial tensile fracture problem inMatlab, using CPU i7-9750H

Number of grid
points XPDM (Δx = 1

2
�) XPDM (Δx = 1

3
�) OS-PD (Δx = 1

3
�)

5184 10.1 32.6 37.3
10201 59.5 139 155
40401 746 1272 1436

FIGURE A1 The grid and damage pattern.
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