This is the accepted manuscript version of the contribution published as:

Jeliazkov, A., Gavish, Y., Marsh, C.J., Geschke, J., Brummitt, N., Rocchini, D., Haase, P., Kunin, W.E., **Henle, K.** (2022):

Sampling and modelling rare species: conceptual guidelines for the neglected majority *Glob. Change Biol.* **28** (12), 3754 - 3777

The publisher's version is available at:

http://dx.doi.org/10.1111/gcb.16114

DR. ALIENOR JELIAZKOV (Orcid ID: 0000-0001-5765-3721)

DR. YONI GAVISH (Orcid ID: 0000-0002-6025-5668)

DR. JONAS GESCHKE (Orcid ID: 0000-0002-5654-9313)

PROF. DUCCIO ROCCHINI (Orcid ID: 0000-0003-0087-0594)

Article type : Opinion

Title page

Sampling and modelling rare species: conceptual guidelines for the neglected majority

Running title: Sampling and modelling rare species

Type of manuscript: Opinion

Abstract

Introduction

Where to sample

How to sample

How to model

Conclusion and future perspectives

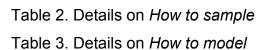
Figure 1. Synthesis figure

Box 1. Glossary

Table 1. Details on Where to sample

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> 10.1111/GCB.16114

This article is protected by copyright. All rights reserved



Authors

Alienor Jeliazkov*\$a,
Yoni Gavish\$b
Charles J. Marshc,I
Jonas Geschked
Neil Brummittf
Duccio Rocchinig,h
Peter Haasei,J
William E. Kunin#,k
Klaus Henle#,e

alienor.jeliazkov@gmail.com ORCID 0000-0001-5765-3721 gavishyoni@gmail.com ORCID 0000-0002-6025-5668 charliem2003@gmail.com ORCID 0000-0002-0281-3115 jonas.geschke@ips.unibe.ch ORCID 0000-0002-5654-9313 n.brummitt@nhm.ac.uk ORCID 0000-0001-7769-4395 duccio.rocchini@unibo.it ORCID 0000-0003-0087-0594 peter.haase@senckenberg.de ORCID0000-0002-9340-0438 w.e.kunin@leeds.ac.uk ORCID 0000-0002-9812-2326 klaus.henle@ufz.de ORCID 0000-0002-6647-5362

- Corresponding author
- Alienor Jeliazkov and Yoni Gavish should be considered as joint first author.
- * Klaus Henle and William E. Kunin should be considered as joint senior author.

Affiliations

- university of Paris-Saclay, INRAE, UR HYCAR, Antony, France
- b School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Department of Plant Sciences, University of Oxford, UK
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern,

Switzerland

- UFZ Helmholtz Centre for Environmental Research, Department of Conservation
 Biology & Social-Ecological Systems, Permoserstrasse 15, 04318 Leipzig, Germany
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK

- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences,
 Department of Spatial Sciences, Kamýcka 129, Praha Suchdol, 16500, Czech Republic
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- University of Leeds, Leeds, UK
- Department of Ecology and Evolution & Yale Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA

Contact information: alienor.jeliazkov@gmail.com; Phone: +331 40 96 60 69

Abstract

Biodiversity conservation faces a methodological conundrum: Biodiversity measurement often relies on species, most of which are rare at various scales, especially prone to extinction under global change, but also the most challenging to sample and model. Predicting the distribution change of rare species using conventional species distribution models is challenging because rare species are hardly captured by most survey systems. When enough data is available, predictions are usually spatially biased toward locations where the species is most likely to occur, violating the assumptions of many modelling frameworks. Workflows to predict and eventually map rare species distributions imply important trade-offs between data quantity, quality, representativeness, and model complexity that need to be considered prior to survey and analysis. Our opinion is that study designs need to carefully integrate the different steps, from species sampling to modelling, in accordance to the different types of rarity and available data in order to improve our capacity for sound assessment and prediction of rare species distribution. In this article, we summarize and comment on how different categories of species rarity lead to different types of occurrence and distribution data depending on choices made during the survey process,

Accepted

namely the spatial distribution of samples (where to sample) and the sampling protocol in each selected location (how to sample). We then clarify which species distribution models are suitable depending on the different types of distribution data (how to model). Among others, for most rarity forms, we highlight the insights from systematic species-targeted sampling coupled with hierarchical models that allow correcting for overdispersion and for spatial and sampling sources of bias. Our article provides scientists and practitioners with a much-needed guide through the ever-increasing diversity of methodological developments to improve prediction of rare species distribution depending on rarity type and available data.

Keywords

bias, detectability, distribution change, methods, occupancy, rare species, sampling, spatial data, species distribution modelling, survey

Box 1. Glossary (of the terms underlined in the main text)

- Hierarchical Models (HM): or multi-level models. Statistical models of parameters
 that vary at more than one level of data organization (e.g., nested data, such as
 abundances of a given species located in different habitat types themselves located
 in different ecoregions) and thus allow accounting for the potential interdependence
 between the data points (for further details, see e.g. (Gelman & Hill, 2007;
 Raudenbush & Bryk, 2002)).
- Mark-release-recapture (MRR): Mark-release-recapture, or capture-mark-recapture, is a sampling technique that consists in capturing, marking and releasing individuals of a species in a first capture session. In one or more follow-up capture sessions, the ratio of marked to unmarked specimens is taken to estimate population size (see e.g. (Southwood & Henderson, 2009; B. K. Williams et al., 2002)).
- Occupancy: Occupancy can refer to two different notions (MacKenzie et al., 2017);
 (1) the probability of a site to be occupied by a given species, i.e. the *a priori* expectation that a particular site will be occupied by the species as determined by

- some underlying process (or occurrence probability), (2) the proportion of area or sites occupied, which results from the realization of the former process.
- Patchiness: The way habitat patches (and populations) are distributed through space. Habitat patches can be clumped (i.e. spatially aggregated in patches concentrated in a few places, potentially most at risk under environmental stochasticity), patchy (i.e. spatially aggregated according to irregular patterns, e.g. one, two, or five patches per group of patches), random, and regular (i.e. uniformly distributed apart from each other).
- Spatially representative sample-set: Sample-set collected at a set of locations that
 are spatially distributed in a statistically unconstrained manner, e.g. by a stratified
 design, in which areas are stratified according to their environmental conditions and
 the number of samples in each stratum is proportional to the area of that stratum.
 Such sampling is spatially representative of the variability of these conditions over the
 whole study area and does not over-represent unusual but rare environmental
 conditions.
 - Species Distribution Model (SDM): Here used as a generic catch-all term to refer to any empirical model that allows spatially-explicit prediction of the current or future environmental suitability for a species (using presence-only, presence/absence and/or abundance data) based on predictors (such as climate, land-use, etc.) and, possibly, scenarios (e.g. IPCC's climate change scenarios) (Guisan & Thuiller, 2005). Depending on the objectives and underlying assumptions but mostly using the same types of data and algorithms, these models are also called ecological niche models (ENMs), habitat suitability models (HSMs), niche-based models (NBMs), potential habitat distribution models (PHDMs), and when used only with climate variables, climate-envelope models (CEMs) or climate matching models (CMMs) (Guisan et al. 2013). For instance, ENM can give more focus to species niche quantification or requirements while strict SDMs focus more on getting spatial predictions of species distribution(Saupe et al., 2012). In the context of rare species modelling, models aim to predict either the probability / likelihood of occurrence, or

the probability of environmental suitability for the species, with the caution that these predictions may differ from the realized distribution because a location may be suitable but not reachable by the species.

Introduction

Almost all international, national, and local conservation planning activities flag biodiversity as a crucial environmental property (e.g. Aichi Targets, Sustainable Development Goals) (Butchart et al., 2016; Griggs et al., 2013) to be protected from the deleterious effects of habitat loss, exploitation, pollution and climate change (IPBES, 2019; Maxwell et al., 2016; Rands et al., 2010). However, biodiversity measurement often relies on species, most of which are rare at various scales (Enquist et al., 2019; Fontaine et al., 2007; Hartley & Kunin, 2003; Henle et al., 2010; Rabinowitz, 1981; Steege et al., 2013). Several initiatives to halt biodiversity loss have questioned whether current measures of biodiversity do actually sufficiently account for rare species (e.g. Fontaine et al., 2007). For example, one third of plant species worldwide are too poorly known and have too few data for a Red List assessment (Brummitt et al., 2015; Enquist et al., 2019). At the same time, rare species are especially prone to extinction (Courchamp et al., 2006; Henle et al., 2004; Işik, 2011; Kunin & Gaston, 1993; McKinney, 1997). One way to assess extinction risk is to track the change in spatial distribution through time (Araújo et al., 2002; Benito et al., 2009; Gärdenfors et al., 2001; Thomas et al., 2004). Therefore, protecting species diversity directly implies protecting rare species, which requires understanding their distribution patterns.

Unfortunately, rarity causes considerable methodological difficulties in obtaining sufficient data from survey programmes or alternative sources (e.g. D. L. Roberts et al., 2016), which limits the ability of models to predict distribution patterns. For example, many studies using species distribution models (SDMs, *defined in Box 1*) need a minimum number of occurrences below which the models cannot be reliably trained and/or validated (e.g. van Proosdij et al., 2016). Thus, we are locked in the 'rare-species modelling paradox' (Lomba et

al., 2010): the majority of species that require the greatest protection also are the species we know least about and are most difficult to model.

However, rarity is an umbrella term used to describe various types of distribution patterns at various scales. Rabinowitz (1981) defined seven categories of rarity based on combinations of the range of a species, the distribution of populations within its range and the local density of the species when present (**Figure 1a**). Whatever measure used (e.g. range size, occupancy, abundance, relative cover, biomass), and ecosystem or scale of the study, a community is likely to include a handful of common species and a long tail of rare species (Fisher et al., 1943; Preston, 1948). The resulting pattern of species-abundance distributions, following a log-like curve in most natural systems (but also see (Magurran & Henderson, 2003)), is observed on local to global scales, with correspondingly fine abundance (McGill et al., 2007) to range size frequency (Gaston, 1998) data.

With the goal of mapping rare species' distribution ranges and changes for protection purposes, each of the seven types of rarity implies different problems in accumulating data for modelling. For example, two species A and B with similar prevalence are both found within an area: Species A has a narrow range with high local density (rarity category 2) and species B has a broad range with low local density (rarity category 4). Randomly distributed sampling in this area is likely to sample only a few sites where species A is present and many sites where species B is present; consequently, species B's distribution is likely to be better evaluated than species A's distribution. However, a priori knowledge on where species A is present may mean that species A is more often encountered than species B; consequently, the dataset contains more presences of species A than of species B. The type of rarity, the spatial distribution of samples and the protocol used to sample each location thus all affect the data generated, and the types of model used to project the species' distribution range. Finally, with the perpetual changes in taxonomy (taxonomic revisions), the identification, assessment, and conservation of rare species are constantly challenged (Ota, 2000; Schwartz & Simberloff, 2001; Standley, 1992) (but see also (Domínguez Lozano et al.,

2007; Simkins et al., 2020)) and the expected increase of species number for some taxonomic groups (Morrison III et al., 2009) foresees an endless need to coping with rarity issues.

We therefore face a conundrum in which, although rarity is ubiquitous, it is particularly challenging to account for, sample and model, at all scales. While some publications already provide comprehensive overview on specific aspects of the different steps from sampling to modelling rare species (Cunningham & Lindenmayer, 2005; Green & Young, 1993; Hermoso et al., 2015; Kenkel et al., 1990; Milner-Gulland & Rowcliffe, 2007; Robinson et al., 2018; W. Thompson, 2013), how to improve our prediction of rare species distribution changes remains a complete challenge to date (Aubry et al., 2017; Didham et al., 2020; Galante et al., 2018; Helmstetter et al., 2021). Our perspective is that all steps need to be integrated in study design. In particular, their sequence needs to be adapted to the different types of rarity to improve our capacity for sound assessments and predictions of the distribution of the majority of biodiversity. However, the trade-offs faced when modelling the distribution of rare species and the decision path linking the form of rarity with the sampling and modelling strategies have largely been neglected. Therefore, to help untangle the rarity conundrum and adapt modelling strategies to the rarity issues, we aim, for each of Rabinowitz's categories of rarity:

- (i) To identify the main trade-offs involved in selecting adequate, cost-effective sampling strategies and how these affect the properties of the data,
- (ii) To identify modelling frameworks that are potentially suitable for the type of data generated and to highlight gaps that require model development.

To address the first aim, we focus on the spatial distribution of samples ('where to sample') and on the protocols used to do the sampling ('how to sample'). For the second aim, we list and discuss the main modelling frameworks suitable for producing distribution maps for different types of rarity ('how to model'). We synthesize our findings, provide guidelines to optimize and integrate monitoring and modelling of rare species depending on their rarity

characteristics and briefly discuss remaining challenges with respect to sampling and modelling rare species.

Where to sample

When setting up a survey program there are multiple ways by which the spatial allocation of samples can be decided (**Table 1**; **Figure 1b**). Any choice made at this stage will affect the properties of the collected data. The main trade-off to consider is between sampling efficiency and spatial coverage.

Locally-focused sampling targeting a particular species allows its population to be studied efficiently, but at the expense of a spatially non-representative sample of the species distribution. This conflicts with the aim of covering the realised niche of a species, an assumption of most modelling frameworks. For species whose distribution range is relatively wide and distribution pattern is dispersed (common species and rarity category 4), a spatially representative sample-set of the entire extent is more likely to provide the required occurrence data. Spatially representative sampling has several positive properties. First, data are comparable among species, allowing cost-effective monitoring of multiple species. Second, even if the location of samples is not constant, data remain comparable between years, allowing the detection of temporal changes in distribution (if sampling intensity is kept constant). Third, data on the focal species fit easily into most modelling frameworks, if enough are collected. This is usually done with a systematic sampling scheme on a grid, stratifying the sampling according to habitat or land cover (while ensuring proportional sampling in each stratum), or by randomly selecting the sampling locations (**Table 1**; **Figure 1b**).

However, for species with narrow and/or clumped and patchy distribution patterns (rarity categories 1, 2, 3, 5, 6, 7), a random sample-set of the entire extent is unlikely to capture sufficient information. For example, in the 2007 UK plants countryside survey, 591 one-km²

locations were included in a stratified random design (Bunce et al., 2014; Carey et al., 2008): the survey recorded 880 species. As there are approximately 4000 plant species in the UK, the survey failed to detect 2400 rare species. In fact, the narrower and clumpier the distribution of a species, the larger the number of random sites needed to encounter the species in enough locations to make credible estimates of abundance or distributional status and changes. Thus, one may need to constrain the sampling towards the target species.

Various methods allow the distribution of samples to target locations more likely to contain a certain rare species (**Table 1**; **Figure 1b**). One such example is adaptive sampling (W. Thompson, 2013; Yoccoz et al., 2001). Many programs periodically monitoring rare species sample locations where the species is known to occur, but rarely look in new sites. Such adaptive sampling may be excellent in keeping track of known populations, but eventually leads to erroneous conclusions regarding distribution trends. Consider a species subject to metapopulation dynamics, experiencing local extinctions and colonization of patches: if sampling is in known locations only, one may identify all local extinctions (and a preceding gradual decrease in population size) but not identify the colonization of new patches. Thus, we might wrongly conclude that the species distribution is deteriorating while it may in fact be in an equilibrium state (Magurran et al., 2010) (but see (McRae et al., 2017)).

Another fruitful approach is to combine adaptive with SDM-guided sampling (Aizpurua et al., 2015; Chiffard et al., 2020; e.g. Lin et al., 2014) where one sampling session provides information to model and the following sessions allow adjusting the distribution of samples (S. K. Thompson, 2013; W. Thompson, 2013; Yoccoz et al., 2001). For example, a SDM with data sampled at a certain time can tag potentially unknown local populations for sampling the next year (e.g. Lin et al., 2014). Once the area is sampled and SDM parameters updated, the SDM is re-run and new locations targeted. Such a strategy may be very efficient at accumulating observations of rare species. However, it comes with the risk of estimating an over-optimistic occupancy trend, as the number of detected presences can increase over time while the distribution actually decreases (**Table 1**). Appropriately

parametrized stacked SDMs, including rarity weighting, can further allow improving the sampling of multiple rare species and help prioritize sampling areas (Rosner-Katz et al., 2020). Any form of adaptive sampling therefore needs considerable manipulation and/or reliable complementary information for further species distribution modelling (Dorazio, 2014; Hefley et al., 2014; Phillips et al., 2009; Raes & ter Steege, 2007).

The transition from spatially representative sampling to species-targeted sampling also reflects a gradient of *a priori* knowledge (**Table 1**). Random sampling does not require specific knowledge. Adaptive sampling and SDM-guided approaches instead need considerable knowledge of the species and its requirements before designing the sampling scheme. Stratified schemes require knowledge about sampling sites and their habitats or environmental conditions across the full range of the target species. Additionally, stratified schemes depend on the quality of the original information used to guide the stratification that has its own uncertainty, due to potential spatial errors and classification issues (Rocchini et al., 2011).

To summarize, different strategies for defining the spatial distribution of samples reflect the compromise between sampling efficiency and spatial representativeness (**Figure 1b**). Overall, three main types of data may be generated, each with implications for modelling: data can be spatially representative (of the species range, potentially for multiple species), spatially constrained independent of the species, or spatially constrained towards particular species.

How to sample

For assessing the distribution of species and changes therein, sampling should aim to collect the appropriate quantity of presence data, reduce the number of false absences, and account for detectability of the sampled species (**Table 2**; **Figure 1c**). Locally rare as well as elusive (e.g. cryptic or trap-shy) species (W. Thompson, 2013) both pose specific challenges. The probability of detecting a species depends on a range of factors, such as

habitat type, time of the day and year, population density and methods employed to survey the species. Repeated sampling with methods targeting rare and elusive species reduce the probability of false absences and the latter may generate presence/absence data accounting for detection probability (MacKenzie et al., 2017).

Multiple methods increase the detectability of species; some are just a function of sampling effort (e.g. longer transects), others are more directly related to the known ecology of the target species (**Table 2**; **Figure 1c**). These latter methods include, for example, baited traps (e.g. Steyer et al., 2013), camera traps (e.g. Schüttler et al., 2017), species-specific markers in environmental DNA (eDNA) sampling (e.g. Carraro et al., 2018), expert knowledge of the species' habitat preference and/or behaviour, or the use of detection dogs (Grimm-Seyfarth et al., 2019; Grimm-Seyfarth & Klenke, 2019; Hollerbach et al., 2018).

There are several points to consider. First, most of these methods increase the effort or costs required compared with simpler methods, especially when the sampling aims to detect several rare species simultaneously. Second, methods increase detection probability differently for different species, producing output less comparable between species unless methods are highly standardized. For example, a trap baited with pheromones of a specific species will attract more individuals of the focal species than baiting a trap with food utilized by many species (e.g. dung for dung beetles) (Marsh et al., 2013). However, recent advances in genetic monitoring, such as improved markers in eDNA detection of stream species (Carraro et al., 2021; e.g. Jerde et al., 2011; Leese et al., 2021), significantly increase the number of species detected, including many rare species, especially from rivers over several kilometres in length (Altermatt et al., 2020; e.g. Mächler et al., 2019) - but these methods still need further calibration works (Alsos et al., 2018; e.g. Beng & Corlett, 2020; Cristescu & Hebert, 2018). Third, highly standardized protocols are essential for comparisons among sites, although some variability in detectability between sites will remain; for example, bird songs are less audible in leaved deciduous forests than in mixed pine forests (Pacifici et al., 2008).

Some sampling methods generate presence/absence and even abundance data in sufficient quality and quantity to account for detection probability (with repeated sampling of selected sites during a specific period (Mackenzie & Royle, 2005). Among others, such methods include distance sampling (Buckland et al., 2015) and capture-mark-recapture (B. K. Williams et al., 2002). For the latter, capture by camera traps coupled with image analysis is particularly promising for rare species (Schüttler et al., 2017) (**Table 2**; **Figure 1c**). Although these data greatly increase the spectrum of models that can be applied, they require high effort and cost; hardly suitable for rare species except perhaps for those with high local density. However, combining such methods with occupancy surveys or opportunistic observations (e.g. atlas or citizen-science data) and the incorporation of environmental data as potential predictors of occupancy and/or abundance may allow the extrapolation of rare species distributions across large spatial scales (e.g. Bowler et al., 2019; Giraud et al., 2016).

How to model

As discussed above, choices on the spatial distribution of samples eventually lead to three types of datasets: spatially representative, spatially constrained independent of the species (e.g. due to unrepresentative sampling of environments (see e.g. Bystriakova et al., 2012; Varela et al., 2014)), or spatially constrained towards target species. From a modelling perspective, this results in a trade-off between the number of presences and the need to account for spatial auto-correlation in the data. Similarly, sampling protocols affect the type of data obtained for modelling, be it presence-only, presence/absence, or presence/absence with detectability or estimates of abundances, and thus condition the type and quality of inference. Depending on the type of rarity, the 'where to sample' and 'how to sample' decisions, successful modelling of rare species require modelling tools that fall into all combinations of the cases above (**Figure 1d**).

When only presences are available, some methods produce pseudo-absences based on external information (e.g. habitat suitability (Barbet-Massin et al., 2012)). For some models, such as Maxent and Poisson point-process models (PPPMs), pseudo-absences are better interpreted as background points, not implying absences but rather samples of the available environment, where presences are compared against unsampled background locations (Merow et al., 2013; Phillips et al., 2009). They do not produce probability of occurrence but relative occurrence rates (Guillera-Arroita et al., 2015) and can be appropriate for rare species modelling if proper bias correction is applied (**Table 3**; **Figure 1d**).

Where presence/absence data are available, developments in SDMs allow handling of data over-dispersion (e.g. negative-binomial and mixed effect models (Harrison, 2014; Molenberghs et al., 2007; O'Hara & Kotze, 2014)), spatial-autocorrelation (e.g. F. C. Dormann et al., 2007; Marcer et al., 2013), uncertainty in predictions (e.g. ensemble forecasting (Araújo & New, 2007; Guisan et al., 2017; Thuiller et al., 2019)), and biases due to sampling scales (Keil et al., 2013; Keil & Chase, 2019). Hierarchical models (HM) are especially useful due to their flexibility: they describe, on the one hand, the true state of nature that is not or only partly observable (e.g. variation in occurrence probability potentially due to variation in available resources), and on the other hand, the measurement error (e.g. variation in detection probability potentially due to variable observer skills) (Kéry & Royle, 2015). Multi-scale hierarchical SDMs account for the fact that increasing the sampling extent increases the probability of detecting rare species (Rocchini et al., 2017). HMs thus allow imperfect detectability to be considered in the modelling procedure (**Table 3**). By integrating prior knowledge, Bayesian Belief Networks explicitly decompose causal pathways involved in the capture rate of species, including respective influences of detection and occupancy in small or incomplete datasets (Uusitalo, 2007): capture can be considered dependent on detectability, influenced by date and trapping effort, and by occupancy, influenced by suitability of local habitat conditions (Marcot et al., 2006). Such methods have already proved useful for modelling species distributions (Van Echelpoel et al., 2015) and responses of rare and endangered species (Hamilton et al., 2015; Smith et al., 2007) (Table 3).

When abundance data from standardized survey or monitoring protocols are available, these can be used to fit rare species distribution models and track distribution changes (Howard et al., 2014). However, because such protocols usually do not detect most of the rare species, especially clumped and low local-density species (see 'how to sample' section), abundance-based SDMs are rarely possible for rare species.

If recapture data are available, distribution modelling can be done using classical siteoccupancy models and different methods developed as mark-release-recapture analyses (MacKenzie et al., 2017; K. H. Pollock et al., 1990) (**Table 3**).

For occurrence data from spatio-temporally replicated measurements of presences/absences, under the assumption of population closure (i.e. if the populations did not exchange propagules between the time steps under study), the Royle-Nichols model (Kéry & Royle, 2015; Royle & Nichols, 2003) allows occurrence probability to be estimated and detection heterogeneity accommodated (**Table 3**; **Figure 1d**). When 'unmarked' abundance data are available, N-mixture models can estimate both detectability and abundances used in large-scale species distribution modelling (Guélat & Kéry, 2018; Jakob et al., 2014; Kéry, 2018) (**Table 3**; **Figure 1d**). When potential sources of measurement bias are known (e.g. type of observer, weather, vegetation density), these can be integrated as covariates in the latent state submodel (e.g. Cunningham & Lindenmayer, 2005).

When data are zero-inflated, as typical for rare species data, variants of Royle-Nichols or N-mixture models can be applied that allow extra parameters and account for data overdispersion. Variants of N-mixture models have further been developed that address spatial bias and scale-dependence, such as variation of sampling grain size (Keil et al., 2018) or scales of environmental influence (R. Chandler & Hepinstall-Cymerman, 2016). However, the underlying assumptions are quite restrictive for species distribution modelling and further simulation studies are needed to assess their performance with rare species when assumptions are not met. This approach is also not necessarily the most cost-effective

strategy when it comes to tracking species distribution changes over time compared with presence/absence data (Joseph et al., 2006).

When multiple types of data are available (presences, presence/absence, abundance), their combination within single modelling frameworks provides valuable insights into predicting species distributions, occupancy, even abundance (**Table 3**). Even if available over a restricted spatial extent, multiple sources of abundance data can be used together with more extensive data, such as occupancy surveys or opportunistic observations. HMs can include different submodels for the different sources of data, and potential detection biases, and incorporate environmental data as potential predictors of occupancy and/or abundance. Such methods allow extrapolation and even comparison of rare species' distributions across large spatial scales (e.g. Bowler et al., 2019; Giraud et al., 2016) and potentially for all categories of rarity if data sources are available and models well built (**Figure 1d**).

To summarize, model choice will mainly depend on the nature of the data and biases involved. From presence only, to presence/absence, to abundance, in **Figure 1d**, there is a change in the temporal comparability of SDMs, and thus their ability to track distributional changes. In the top row, the output is relative likelihood, which is not comparable even for a given species over multiple time steps. Naïve presence/absence SDMs provide an estimate that does not separate probability of occurrence from detectability, but if we assume detectability to be constant across time and space (including no drastic change in abundances), the resulting probability map is comparable for a given species over time. Finally, population size information allows the separate estimation of detectability and probability of occurrence, which is comparable over time, species and space. Comparability is important as it enables conservationists to assess changes in the environmental suitability, and ideally (see Dallas & Hastings, 2018; Jiménez-Valverde et al., 2021; Weber et al., 2017), in the distribution of rare species that could require revision of a species' status and protection needs.

More generally, whatever the type of rarity, several methodological aspects are to be considered to ensure SDM quality, including predictor selection (e.g. Le Rest et al., 2014; Saupe et al., 2012; K. J. Williams et al., 2012), model averaging (e.g. Burnham & Anderson, 2004; C. F. Dormann et al., 2018), spatial-explicit cross-validation (e.g. D. R. Roberts et al., 2017), optimisation of model performance (e.g. Anderson & Gonzalez, 2011; Norberg et al., 2019; Radosavljevic & Anderson, 2014), and testing or improvement of the extrapolation abilities of the fitted models (e.g. Mesgaran et al., 2014; Owens et al., 2013; Qiao et al., 2019; Stohlgren et al., 2011; Zurell et al., 2012).

Conclusion and future perspectives

Protecting species diversity implies protecting rare species. However, surveying and modelling rare species involves considerable methodological challenges. In this paper, we have identified how the main decisions on sampling strategy condition properties of the data, and how these in turn condition the range of appropriate modelling methods. With this perspective, we provide guidelines to optimize monitoring and modelling of rare species depending on their rarity characteristics and to ensure consistency between sampling methods, and modelling approaches (**Figure 1**).

Significant data on the occurrence of species is collected by citizen scientists (Amano et al., 2016; M. Chandler et al., 2017). It is highly valuable for monitoring biodiversity at different scales, but often biased and limited to specific areas. While there are ways to correct biases in such data (Bird et al., 2014; Robinson et al., 2018), for monitoring "rarest" species (i.e. narrow distributional range, clumped population, low local density), a systematic speciestargeted sampling design may be preferred. Significant advances are expected from advanced remote sensing techniques, genetic tools and using detection dogs, all with the potential to significantly increase the detection rate of rare species at comparatively low cost and with more or less bias towards the species. Above all, future research is still needed to integrate the type of rarity more explicitly into decisions on how and where to sample with the selection of appropriate models. Another challenge with respect to species conservation

is that, although the rarity status is defined with respect to endemicity over a given period, it may be dynamic in the longer term, requiring constant adaptation of assessment strategies.

Considering most forms of rarity, our synthesis highlights the particular potential of HMs as a flexible tool to improve rarity modelling while accounting for spatial, observer, and species-specific biases. Advances in zero-inflation modelling in particular have to be better integrated into rare species distribution modelling as both the conceptual and technical foundations of these approaches impact on the rarity sampling and modelling issues. Considering the rarest forms of rarity, our synthesis suggests that recent HM developments to combine multiple sources of data are extremely promising (**Figure 1**).

Other promising perspectives have recently emerged, such as functional rarity modelling (Carmona et al., 2017; Violle et al., 2017) and the use of co-occurring species information (or the "neighbourly advice" (McInerny & Purves, 2011)) and of positive associations among rare species (Calatayud et al., 2019; Hines & Keil, 2020) as potentially valuable information to model rarity distribution. Other model developments include harnessing information from other sources that either directly inform a species' distribution at larger scales, such as incorporating expert-drawn range maps (Merow et al., 2017) or elevation ranges (Ellis-Soto et al., 2021) as model offsets. Joint species distribution models (JSDMs), which model multiple species simultaneously to infer the species' environmental response based on species co-occurrences (Ovaskainen & Soininen, 2011; L. J. Pollock et al., 2014), often incorporate ancillary information such as trait (L. J. Pollock et al., 2012) or phylogenetic similarity (Ovaskainen et al., 2017) and are promising further developments for rare species modelling (Tobler et al., 2019). Finally, machine-learning based methods, including nonparametric methods, and methods tolerant of unstructured data, have shown promise for modelling and mapping rarity with strong predictive ability (Pouteau et al., 2012; Robinson et al., 2018). Further research and sensitivity analyses are needed to assess the appropriateness of these methods in the workflow of rarity sampling and modelling, depending on the rarity type of the species.

References

- Aizpurua, O., Paquet, J.-Y., Brotons, L., & Titeux, N. (2015). Optimising long-term monitoring projects for species distribution modelling: How atlas data may help. *Ecography*, *38*(1), 29–40. https://doi.org/10.1111/ecog.00749
- Alsos, I. G., Lammers, Y., Yoccoz, N. G., Jørgensen, T., Sjögren, P., Gielly, L., & Edwards, M. E. (2018). Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. *PLOS ONE*, *13*(4), e0195403. https://doi.org/10.1371/journal.pone.0195403
- Altermatt, F., Little, C. J., Mächler, E., Wang, S., Zhang, X., & Blackman, R. C. (2020). Uncovering the complete biodiversity structure in spatial networks: The example of riverine systems.

 Oikos, 129(5), 607–618. https://doi.org/10.1111/oik.06806
- Amano, T., Lamming, J. D. L., & Sutherland, W. J. (2016). Spatial Gaps in Global Biodiversity Information and the Role of Citizen Science. *BioScience*, *66*(5), 393–400. https://doi.org/10.1093/biosci/biw022
- Anderson, R. P., & Gonzalez, I. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. *Ecological Modelling*, 222(15), 2796–2811. https://doi.org/10.1016/j.ecolmodel.2011.04.011
- Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. *Trends in Ecology & Evolution*, 22(1), 42–47. https://doi.org/10.1016/j.tree.2006.09.010
- Araújo, M. B., Williams, P. H., & Fuller, R. J. (2002). Dynamics of extinction and the selection of nature reserves. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 269(1504), 1971–1980. https://doi.org/10.1098/rspb.2002.2121
- Aubry, K. B., Raley, C. M., & McKelvey, K. S. (2017). The importance of data quality for generating reliable distribution models for rare, elusive, and cryptic species. *PLOS ONE*, *12*(6), e0179152. https://doi.org/10.1371/journal.pone.0179152
- Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? *Methods in Ecology and Evolution*. https://doi.org/10.1111/j.2041-210X.2011.00172.x
- Beng, K. C., & Corlett, R. T. (2020). Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. *Biodiversity and Conservation*, 29(7), 2089–2121. https://doi.org/10.1007/s10531-020-01980-0

- Benito, B. M., Martínez-Ortega, M. M., Muñoz, L. M., Lorite, J., & Peñas, J. (2009). Assessing extinction-risk of endangered plants using species distribution models: A case study of habitat depletion caused by the spread of greenhouses. *Biodiversity and Conservation*, 18(9), 2509–2520. https://doi.org/10.1007/s10531-009-9604-8
- Bird, T. J., Bates, A. E., Lefcheck, J. S., Hill, N. A., Thomson, R. J., Edgar, G. J., Stuart-Smith, R. D., Wotherspoon, S., Krkosek, M., Stuart-Smith, J. F., Pecl, G. T., Barrett, N., & Frusher, S. (2014). Statistical solutions for error and bias in global citizen science datasets. *Biological Conservation*, 173, 144–154. https://doi.org/10.1016/j.biocon.2013.07.037
- Bowler, D. E., Nilsen, E. B., Bischof, R., O'Hara, R. B., Yu, T. T., Oo, T., Aung, M., & Linnell, J. D. C. (2019). Integrating data from different survey types for population monitoring of an endangered species: The case of the Eld's deer. *Scientific Reports*, *9*(1), 7766. https://doi.org/10.1038/s41598-019-44075-9
- Brummitt, N. A., Bachman, S. P., Griffiths-Lee, J., Lutz, M., Moat, J. F., Farjon, A., Donaldson, J. S., Hilton-Taylor, C., Meagher, T. R., Albuquerque, S., Aletrari, E., Andrews, A. K., Atchison, G., Baloch, E., Barlozzini, B., Brunazzi, A., Carretero, J., Celesti, M., Chadburn, H., ... Lughadha, E. M. N. (2015). Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants. *PLOS ONE*, *10*(8), e0135152. https://doi.org/10.1371/journal.pone.0135152
- Buckland, S. T., Rexstad, E. A., Marques, T. A., & Oedekoven, C. S. (2015). *Distance Sampling: Methods and Applications*. Springer.
- Bunce, R., Carey, P., Maskell, L., Norton, L., Scott, R., Smart, S., & Wood, C. (2014). *Countryside Survey 2007 vegetation plot data*.
- Burnham, K. P., & Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. *Sociological Methods & Research*, *33*(2), 261–304. https://doi.org/10.1177/0049124104268644
- Butchart, S. H. M., Marco, M. D., & Watson, J. E. M. (2016). Formulating Smart Commitments on Biodiversity: Lessons from the Aichi Targets. *Conservation Letters*, *9*(6), 457–468. https://doi.org/10.1111/conl.12278
- Bystriakova, N., Peregrym, M., Erkens, R. H. J., Bezsmertna, O., & Schneider, H. (2012). Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. *Systematics and Biodiversity*, *10*(3), 305–315. https://doi.org/10.1080/14772000.2012.705357

Calatayud, J., Andivia, E., Escudero, A., Melián, C. J., Bernardo-Madrid, R., Stoffel, M., Aponte, C., Medina, N. G., Molina-Venegas, R., Arnan, X., Rosvall, M., Neuman, M., Noriega, J. A., Alves-Martins, F., Draper, I., Luzuriaga, A., Ballesteros-Cánovas, J. A., Morales-Molino, C., Ferrandis, P., ... Madrigal-González, J. (2019). Positive associations among rare species and their persistence in ecological assemblages. *Nature Ecology & Evolution*, *4*(1), 40–45. https://doi.org/10.1038/s41559-019-1053-5

- Carey, P. D., Wallis, S., Emmett, B., Maskell, L., Murphy, J., Norton, L., Simpson, I., & Smart, S. (2008). *Countryside Survey: UK headline messages from 2007*.
- Carmona, C. P., Bello, F. de, Sasaki, T., Uchida, K., & Pärtel, M. (2017). Towards a Common Toolbox for Rarity: A Response to Violle et al. *Trends in Ecology & Evolution*, 32(12), 889–891. https://doi.org/10.1016/j.tree.2017.09.010
- Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E., & Rinaldo, A. (2018). Estimating species distribution and abundance in river networks using environmental DNA. *Proceedings of the National Academy of Sciences*, *115*(46), 11724–11729. https://doi.org/10.1073/pnas.1813843115
- Carraro, L., Stauffer, J. B., & Altermatt, F. (2021). How to design optimal eDNA sampling strategies for biomonitoring in river networks. *Environmental DNA*, 3(1), 157–172. https://doi.org/10.1002/edn3.137
- Chandler, M., See, L., Copas, K., Bonde, A. M. Z., López, B. C., Danielsen, F., Legind, J. K., Masinde, S., Miller-Rushing, A. J., Newman, G., Rosemartin, A., & Turak, E. (2017).
 Contribution of citizen science towards international biodiversity monitoring. *Biological Conservation*, 213, 280–294. https://doi.org/10.1016/j.biocon.2016.09.004
- Chandler, R., & Hepinstall-Cymerman, J. (2016). Estimating the spatial scales of landscape effects on abundance. *Landscape Ecology*, *31*(6), 1383–1394. https://doi.org/10.1007/s10980-016-0380-z
- Chiffard, J., Marciau, C., Yoccoz, N. G., Mouillot, F., Duchateau, S., Nadeau, I., Fontanilles, P., & Besnard, A. (2020). Adaptive niche-based sampling to improve ability to find rare and elusive species: Simulations and field tests. *Methods in Ecology and Evolution*, *n*/a(n/a). https://doi.org/10.1111/2041-210X.13399
- Courchamp, F., Angulo, E., Rivalan, P., Hall, R. J., Signoret, L., Bull, L., & Meinard, Y. (2006). Rarity Value and Species Extinction: The Anthropogenic Allee Effect. *PLoS Biology*, *4*(12), e415. https://doi.org/10.1371/journal.pbio.0040415

Cristescu, M. E., & Hebert, P. D. N. (2018). Uses and Misuses of Environmental DNA in Biodiversity Science and Conservation. *Annual Review of Ecology, Evolution, and Systematics*, 49(1), 209–230. https://doi.org/10.1146/annurev-ecolsys-110617-062306

- Cunningham, R. B., & Lindenmayer, D. B. (2005). Modeling count data of rare species: Some statistical issues. *Ecology*, *86*(5), 1135–1142.
- Dallas, T. A., & Hastings, A. (2018). Habitat suitability estimated by niche models is largely unrelated to species abundance. *Global Ecology and Biogeography*, 27(12), 1448–1456. https://doi.org/10.1111/geb.12820
- Didham, R. K., Basset, Y., Collins, C. M., Leather, S. R., Littlewood, N. A., Menz, M. H. M., Müller, J., Packer, L., Saunders, M. E., Schönrogge, K., Stewart, A. J. A., Yanoviak, S. P., & Hassall, C. (2020). Interpreting insect declines: Seven challenges and a way forward. *Insect Conservation and Diversity*, *13*(2), 103–114. https://doi.org/10.1111/icad.12408
- Domínguez Lozano, F., Moreno Saiz, J. C., Sainz Ollero, H., & Schwartz, M. W. (2007). Effects of dynamic taxonomy on rare species and conservation listing: Insights from the Iberian vascular flora. *Biodiversity and Conservation*, *16*(14), 4039–4050. https://doi.org/10.1007/s10531-007-9206-2
- Dorazio, R. M. (2014). Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. *Global Ecology and Biogeography*, 23(12), 1472–1484. https://doi.org/10.1111/geb.12216
- Dormann, C. F., Calabrese, J. M., Guillera-Arroita, G., Matechou, E., Bahn, V., Bartoń, K., Beale, C. M., Ciuti, S., Elith, J., Gerstner, K., Guelat, J., Keil, P., Lahoz-Monfort, J. J., Pollock, L. J., Reineking, B., Roberts, D. R., Schröder, B., Thuiller, W., Warton, D. I., ... Hartig, F. (2018).
 Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference. *Ecological Monographs*, 88(4), 485–504. https://doi.org/10.1002/ecm.1309
- Dormann, F. C., M. McPherson, J., B. Araújo, M., Bivand, R., Bolliger, J., Carl, G., G. Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., R. Peres-Neto, P., Reineking, B., Schröder, B., M. Schurr, F., & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. *Ecography*, 30(5), 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x

Ellis-Soto, D., Merow, C., Amatulli, G., Parra, J. L., & Jetz, W. (2021). Continental-scale 1 km hummingbird diversity derived from fusing point records with lateral and elevational expert information. *Ecography*, *44*(4), 640–652. https://doi.org/10.1111/ecog.05119

- Enquist, B. J., Feng, X., Boyle, B., Maitner, B., Newman, E. A., Jørgensen, P. M., Roehrdanz, P. R., Thiers, B. M., Burger, J. R., Corlett, R. T., Couvreur, T. L. P., Dauby, G., Donoghue, J. C., Foden, W., Lovett, J. C., Marquet, P. A., Merow, C., Midgley, G., Morueta-Holme, N., ... McGill, B. J. (2019). The commonness of rarity: Global and future distribution of rarity across land plants. *Science Advances*, *5*(11), eaaz0414. https://doi.org/10.1126/sciadv.aaz0414
- Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943). The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population. *Journal of Animal Ecology*, *12*(1), 42–58. JSTOR. https://doi.org/10.2307/1411
- Fontaine, B., Bouchet, P., Van Achterberg, K., Alonso-Zarazaga, M. A., Araujo, R., Asche, M., Aspöck, U., Audisio, P., Aukema, B., Bailly, N., Balsamo, M., Bank, R. A., Barnard, P., Belfiore, C., Bogdanowicz, W., Bongers, T., Boxshall, G., Burckhardt, D., Camicas, J.-L., ... Willmann, R. (2007). The European union's 2010 target: Putting rare species in focus. *Biological Conservation*, 139(1), 167–185. https://doi.org/10.1016/j.biocon.2007.06.012
- Galante, P. J., Alade, B., Muscarella, R., Jansa, S. A., Goodman, S. M., & Anderson, R. P. (2018). The challenge of modeling niches and distributions for data-poor species: A comprehensive approach to model complexity. *Ecography*, *41*(5), 726–736. https://doi.org/10.1111/ecog.02909
- Gärdenfors, U., Hilton-Taylor, C., Mace, G. M., & Rodríguez, J. P. (2001). The Application of IUCN Red List Criteria at Regional Levels. *Conservation Biology*, *15*(5), 1206–1212. https://doi.org/10.1111/j.1523-1739.2001.00112.x
- Gaston, K. J. (1998). Species-range size distributions: Products of speciation, extinction and transformation. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, *353*(1366), 219–230. https://doi.org/10.1098/rstb.1998.0204
- Gelman, A., & Hill, J. (2007). *Data Analysis Using Regression and Multilevel/Hierarchical Models*.

 Cambridge University Press.
- Giraud, C., Calenge, C., Coron, C., & Julliard, R. (2016). Capitalizing on opportunistic data for monitoring relative abundances of species. *Biometrics*, 72(2), 649–658. https://doi.org/10.1111/biom.12431

- Green, R. H., & Young, R. C. (1993). Sampling to Detect Rare Species. *Ecological Applications*, *3*(2), 351–356. https://doi.org/10.2307/1941837
- Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., Steffen, W., Glaser, G., Kanie, N., & Noble, I. (2013). Sustainable development goals for people and planet. *Nature*, *495*(7441), 305–307. https://doi.org/10.1038/495305a
- Grimm-Seyfarth, A., & Klenke, R. (2019). Wie findet man schwer zu erfassende Arten? Vorteile und Limitierungen von Artenspürhunden. In C. Schüler & P. Kaul (Eds.), *Faszinosum Spürhunde—Dem Geruch auf der Spur. Tagungsergebnisse des 4. Symposiums für Odorologie im Diensthundewesen an der Hochschule Bonn-Rhein-Sieg.: Vol. Band 2* (Schriften der Arbeitsgemeinschaft Odorologie e.V., pp. 40–47).
- Grimm-Seyfarth, A., Zarzycka, A., Nitz, T., Heynig, L., Weissheimer, N., Lampa, S., & Klenke, R. (2019). Performance of detection dogs and visual searches for scat detection and discrimination amongst related species with identical diets. *Nature Conservation*, *37*, 81.
- Guélat, J., & Kéry, M. (2018). Effects of spatial autocorrelation and imperfect detection on species distribution models. *Methods in Ecology and Evolution*, 9(6), 1614–1625. https://doi.org/10.1111/2041-210X.12983
- Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A., Kujala, H., Lentini, P. E., McCarthy, M. A., Tingley, R., & Wintle, B. A. (2015). Is my species distribution model fit for purpose?

 Matching data and models to applications. *Global Ecology and Biogeography*, *24*(3), 276–292. https://doi.org/10.1111/geb.12268
- Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. *Ecology Letters*, 8(9), 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
- Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). *Habitat Suitability and Distribution Models:*With Applications in R. Cambridge University Press.
- Hamilton, S. H., Pollino, C. A., & Jakeman, A. J. (2015). Habitat suitability modelling of rare species using Bayesian networks: Model evaluation under limited data. *Ecological Modelling*, 299, 64–78. https://doi.org/10.1016/j.ecolmodel.2014.12.004
- Harrison, X. A. (2014). Using observation-level random effects to model overdispersion in count data in ecology and evolution. *PeerJ*, 2, e616. https://doi.org/10.7717/peerj.616
- Harte, J., & Kinzig, A. P. (1997). On the Implications of Species-Area Relationships for Endemism, Spatial Turnover, and Food Web Patterns. *Oikos*, 80(3), 417–427. JSTOR. https://doi.org/10.2307/3546614

- Hartley, S., & Kunin, W. E. (2003). Scale dependency of rarity, extinction risk, and conservation priority. *Conservation Biology*, *17*(6), 1559–1570. https://doi.org/10.1111/j.1523-1739.2003.00015.x
- Hefley, T. J., Baasch, D. M., Tyre, A. J., & Blankenship, E. E. (2014). Correction of location errors for presence-only species distribution models. *Methods in Ecology and Evolution*, *5*(3), 207–214. https://doi.org/10.1111/2041-210X.12144
- Helmstetter, N. A., Conway, C. J., Stevens, B. S., & Goldberg, A. R. (2021). Balancing transferability and complexity of species distribution models for rare species conservation. *Diversity and Distributions*, *27*(1), 95–108. https://doi.org/10.1111/ddi.13174
- Henle, K., Davies, K. F., Kleyer, M., Margules, C., & Settele, J. (2004). Predictors of Species Sensitivity to Fragmentation. *Biodiversity & Conservation*, *13*(1), 207–251. https://doi.org/10.1023/B:BIOC.0000004319.91643.9e
- Henle, K., Kunin, W., Schweiger, O., Schmeller, D. S., Grobelnik, V., Matsinos, Y., Pantis, J., Penev, L., Potts, S. G., Ring, I., Similä, J., Tzanopoulos, J., van den Hove, S., Baguette, M., Clobert, J., Excoffier, L., Framstad, E., Grodzińska-Jurczak, M., Lengyel, S., ... Settele, J. (2010). Securing the Conservation of Biodiversity across Administrative Levels and Spatial, Temporal, and Ecological Scales Research Needs and Approaches of the SCALES Project. *GAIA Ecological Perspectives for Science and Society*, 19(3), 187–193. https://doi.org/10.14512/gaia.19.3.8
- Hermoso, V., Kennard, M. J., & Linke, S. (2015). Evaluating the costs and benefits of systematic data acquisition for conservation assessments. *Ecography*, *38*(3), 283–292. https://doi.org/10.1111/ecog.00792
- Hines, J., & Keil, P. (2020). Common competitors and rare friends. *Nature Ecology & Evolution*, *4*(1), 8–9. https://doi.org/10.1038/s41559-019-1071-3
- Hollerbach, L., Heurich, M., Reiners, T. E., & Nowak, C. (2018). Detection dogs allow for systematic non-invasive collection of DNA samples from Eurasian lynx. *Mammalian Biology*, *90*, 42–46. https://doi.org/10.1016/j.mambio.2018.02.003
- Howard, C., Stephens, P. A., Pearce-Higgins, J. W., Gregory, R. D., & Willis, S. G. (2014). Improving species distribution models: The value of data on abundance. *Methods in Ecology and Evolution*, 5(6), 506–513. https://doi.org/10.1111/2041-210X.12184

- IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. *Bonn, Germany*.
- Işik, K. (2011). Rare and endemic species: Why are they prone to extinction? *TURKISH JOURNAL OF BOTANY*, 35(4), 411–417.
- Jakob, C., Ponce-Boutin, F., & Besnard, A. (2014). Coping with heterogeneity to detect species on a large scale: N-mixture modeling applied to red-legged partridge abundance. *The Journal of Wildlife Management*, 78(3), 540–549. https://doi.org/10.1002/jwmg.686
- Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). "Sight-unseen" detection of rare aquatic species using environmental DNA. *Conservation Letters*, *4*(2), 150–157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
- Jiménez-Valverde, A., Aragón, P., & Lobo, J. M. (2021). Deconstructing the abundance–suitability relationship in species distribution modelling. *Global Ecology and Biogeography*, *30*(1), 327–338. https://doi.org/10.1111/geb.13204
- Joseph, L. N., Field, S. A., Wilcox, C., & Possingham, H. P. (2006). Presence–Absence versus Abundance Data for Monitoring Threatened Species. *Conservation Biology*, *20*(6), 1679–1687. https://doi.org/10.1111/j.1523-1739.2006.00529.x
- Keil, P., Belmaker, J., Wilson, A. M., Unitt, P., & Jetz, W. (2013). Downscaling of species distribution models: A hierarchical approach. *Methods in Ecology and Evolution*, *4*(1), 82–94. https://doi.org/10.1111/j.2041-210x.2012.00264.x
- Keil, P., & Chase, J. M. (2019). Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. *Nature Ecology & Evolution*, 3(3), 390–399. https://doi.org/10.1038/s41559-019-0799-0
- Keil, P., Pereira, H. M., Cabral, J. S., Chase, J. M., May, F., Martins, I. S., & Winter, M. (2018). Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge. *Global Ecology and Biogeography*, *27*(1), 2–13. https://doi.org/10.1111/geb.12669
- Kenkel, N. C., Juhász-Nagy, P., & Podani, J. (1990). On sampling procedures in population and community ecology. In G. Grabherr, L. Mucina, M. B. Dale, & C. J. F. T. Braak (Eds.), Progress in theoretical vegetation science (pp. 195–207). Springer Netherlands. https://doi.org/10.1007/978-94-009-1934-1_17

- Kéry, M. (2018). Identifiability in N-mixture models: A large-scale screening test with bird data. *Ecology*, 99(2), 281–288. https://doi.org/10.1002/ecy.2093
- Kéry, M., & Royle, J. A. (2015). Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS: Volume 1:Prelude and Static Models.

 Academic Press.
- Kunin, W. E. (1998). Extrapolating Species Abundance Across Spatial Scales. *Science*, 281(5382), 1513–1515. https://doi.org/10.1126/science.281.5382.1513
- Kunin, W. E., & Gaston, K. J. (1993). The biology of rarity: Patterns, causes and consequences.

 *Trends in Ecology & Evolution, 8(8), 298–301. https://doi.org/10.1016/0169-5347(93)90259-R
- Le Rest, K., Pinaud, D., Monestiez, P., Chadoeuf, J., & Bretagnolle, V. (2014). Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation. *Global Ecology and Biogeography*, 23(7), 811–820. https://doi.org/10.1111/geb.12161
- Leese, F., Sander, M., Buchner, D., Elbrecht, V., Haase, P., & Zizka, V. M. A. (2021). Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. *Environmental DNA*, 3(1), 261–276. https://doi.org/10.1002/edn3.177
- Lin, Y.-P., Lin, W.-C., Wang, Y.-C., Lien, W.-Y., Ding, T.-S., Lee, P.-F., Wu, T.-Y., Klenke, A., Schmeller, D. S., & Henle, K. (2014). An optimal spatial sampling approach for modelling the distribution of species. In K. Henle, S. Potts, W. Kunin, Y. Matsinos, J. Simila, J. Pantis, V. Grobelnik, L. Penev, & J. Settele, *Scaling in Ecology and Biodiversity Conservation* (Pensoft Publishers). Pensoft.
- Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J., & Guisan, A. (2010).

 Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. *Biological Conservation*, *143*(11), 2647–2657.

 https://doi.org/10.1016/j.biocon.2010.07.007
- Mächler, E., Little, C. J., Wüthrich, R., Alther, R., Fronhofer, E. A., Gounand, I., Harvey, E., Hürlemann, S., Walser, J.-C., & Altermatt, F. (2019). Assessing different components of diversity across a river network using eDNA. *Environmental DNA*, 1(3), 290–301. https://doi.org/10.1002/edn3.33
- MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., & Hines, J. E. (2017).

 Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species

 Occurrence. Elsevier.

Mackenzie, D. I., & Royle, J. A. (2005). Designing occupancy studies: General advice and allocating survey effort. *Journal of Applied Ecology*, *42*(6), 1105–1114. https://doi.org/10.1111/j.1365-2664.2005.01098.x

- Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. McP., Elston, D. A., Scott, E. M., Smith, R. I., Somerfield, P. J., & Watt, A. D. (2010). Long-term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time. *Trends in Ecology & Evolution*, 25(10), 574–582. https://doi.org/10.1016/j.tree.2010.06.016
- Magurran, A. E., & Henderson, P. A. (2003). Explaining the excess of rare species in natural species abundance distributions. *Nature*, *422*(6933), 714–716. https://doi.org/10.1038/nature01547
- Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X., & Pino, J. (2013). Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. *Biological Conservation*, *166*, 221–230. https://doi.org/10.1016/j.biocon.2013.07.001
- Marcot, B. G., Steventon, J. D., Sutherland, G. D., & McCann, R. K. (2006). Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation. *Canadian Journal of Forest Research*. https://doi.org/10.1139/x06-135
- Marsh, C. J., Louzada, J., Beiroz, W., & Ewers, R. M. (2013). Optimising Bait for Pitfall Trapping of Amazonian Dung Beetles (Coleoptera: Scarabaeinae). *PLOS ONE*, *8*(8), e73147. https://doi.org/10.1371/journal.pone.0073147
- Maxwell, S. L., Fuller, R. A., Brooks, T. M., & Watson, J. E. M. (2016). Biodiversity: The ravages of guns, nets and bulldozers. *Nature News*, *536*(7615), 143. https://doi.org/10.1038/536143a
- McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J., Green, J. L., He, F., Hurlbert, A. H., Magurran, A. E., Marquet, P. A., Maurer, B. A., Ostling, A., Soykan, C. U., Ugland, K. I., & White, E. P. (2007). Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. *Ecology Letters*, *10*(10), 995–1015. https://doi.org/10.1111/j.1461-0248.2007.01094.x
- McInerny, G. J., & Purves, D. W. (2011). Fine-scale environmental variation in species distribution modelling: Regression dilution, latent variables and neighbourly advice. *Methods in Ecology and Evolution*, 2(3), 248–257. https://doi.org/10.1111/j.2041-210X.2010.00077.x
- McKinney, M. L. (1997). How do rare species avoid extinction? A paleontological view. In W. E. Kunin & K. J. Gaston (Eds.), *The Biology of Rarity: Causes and consequences of rare*—

Common differences (pp. 110–129). Springer Netherlands. https://doi.org/10.1007/978-94-011-5874-9_7

- McRae, L., Deinet, S., & Freeman, R. (2017). The Diversity-Weighted Living Planet Index:

 Controlling for Taxonomic Bias in a Global Biodiversity Indicator. *PLoS ONE*, *12*(1), 1–20. https://doi.org/10.1371/journal.pone.0169156
- Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. *Ecography*, *36*(10), 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
- Merow, C., Wilson, A. M., & Jetz, W. (2017). Integrating occurrence data and expert maps for improved species range predictions. *Global Ecology and Biogeography*, *26*(2), 243–258. https://doi.org/10.1111/geb.12539
- Mesgaran, M. B., Cousens, R. D., & Webber, B. L. (2014). Here be dragons: A tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. *Diversity and Distributions*, *20*(10), 1147–1159. https://doi.org/10.1111/ddi.12209
- Milner-Gulland, E. J., & Rowcliffe, J. M. (2007). *Conservation and Sustainable Use: A Handbook of Techniques*. Oxford University Press.
- Molenberghs, G., Verbeke, G., & Demétrio, C. G. B. (2007). An extended random-effects approach to modeling repeated, overdispersed count data. *Lifetime Data Analysis*, *13*(4), 513–531. https://doi.org/10.1007/s10985-007-9064-y
- Morrison III, W. R., Lohr, J. L., Duchen, P., Wilches, R., Trujillo, D., Mair, M., & Renner, S. S. (2009).
 The impact of taxonomic change on conservation: Does it kill, can it save, or is it just irrelevant? *Biological Conservation*, 142(12), 3201–3206.
 https://doi.org/10.1016/j.biocon.2009.07.019
- Norberg, A., Abrego, N., Blanchet, F. G., Adler, F. R., Anderson, B. J., Anttila, J., Araújo, M. B., Dallas, T., Dunson, D., Elith, J., Foster, S. D., Fox, R., Franklin, J., Godsoe, W., Guisan, A., O'Hara, B., Hill, N. A., Holt, R. D., Hui, F. K. C., ... Ovaskainen, O. (2019). A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. *Ecological Monographs*, 89(3), e01370. https://doi.org/10.1002/ecm.1370
- O'Hara, R. B., & Kotze, D. J. (2014). Do not log-transform count data. *Methods in Ecology and Evolution*, 118–122. https://doi.org/10.1111/j.2041-
 - 210X.2010.00021.x@10.1111/(ISSN)2041-210X.TOPMETHODS

- Ota, H. (2000). Current status of the threatened amphibians and reptiles of Japan. *Population Ecology*, 42(1), 5–9. https://doi.org/10.1007/s101440050003
- Ovaskainen, O., & Soininen, J. (2011). Making more out of sparse data: Hierarchical modeling of species communities. *Ecology*, *92*(2), 289–295. https://doi.org/10.1890/10-1251.1
- Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., Dunson, D., Roslin, T., & Abrego, N. (2017). How to make more out of community data? A conceptual framework and its implementation as models and software. *Ecology Letters*, 20(5), 561–576. https://doi.org/10.1111/ele.12757
- Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J., Ingenloff, K., Lira-Noriega, A., Hensz, C. M., Myers, C. E., & Peterson, A. T. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. *Ecological Modelling*, *263*, 10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011
- Pacifici, K., Simons, T. R., & Pollock, K. H. (2008). Effects of Vegetation and Background Noise on the Detection Process in Auditory Avian Point-Count Surveys. *The Auk*, *125*(3), 600–607. https://doi.org/10.1525/auk.2008.07078
- Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. *Ecological Applications*, *19*(1), 181–197. https://doi.org/10.1890/07-2153.1
- Pollock, K. H., Nichols, J. D., Brownie, C., & Hines, J. E. (1990). Statistical Inference for Capture-Recapture Experiments. *Wildlife Monographs*, *107*, 3–97.
- Pollock, L. J., Morris, W. K., & Vesk, P. A. (2012). The role of functional traits in species distributions revealed through a hierarchical model. *Ecography*, *35*(8), 716–725. https://doi.org/10.1111/j.1600-0587.2011.07085.x
- Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O'Hara, R. B., Parris, K. M., Vesk, P. A., & McCarthy, M. A. (2014). Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). *Methods in Ecology and Evolution*, *5*(5), 397–406. https://doi.org/10.1111/2041-210X.12180
- Pouteau, R., Meyer, J.-Y., Taputuarai, R., & Stoll, B. (2012). Support vector machines to map rare and endangered native plants in Pacific islands forests. *Ecological Informatics*, 9, 37–46. https://doi.org/10.1016/j.ecoinf.2012.03.003

- Preston, F. W. (1948). The Commonness, And Rarity, of Species. *Ecology*, *29*(3), 254–283. https://doi.org/10.2307/1930989
- Qiao, H., Feng, X., Escobar, L. E., Peterson, A. T., Soberón, J., Zhu, G., & Papeş, M. (2019). An evaluation of transferability of ecological niche models. *Ecography*, *42*(3), 521–534. https://doi.org/10.1111/ecog.03986
- Rabinowitz, D. (1981). Seven forms of rarity. In H. Synge (Ed.), *The Biological Aspects of Rare Plant Conservation* (pp. 205–217). Riley.
- Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions: Complexity, overfitting and evaluation. *Journal of Biogeography*, *41*(4), 629–643. https://doi.org/10.1111/jbi.12227
- Raes, N., & ter Steege, H. (2007). A null-model for significance testing of presence-only species distribution models. *Ecography*, *30*(5), 727–736. https://doi.org/10.1111/j.2007.0906-7590.05041.x
- Rands, M. R. W., Adams, W. M., Bennun, L., Butchart, S. H. M., Clements, A., Coomes, D., Entwistle, A., Hodge, I., Kapos, V., Scharlemann, J. P. W., Sutherland, W. J., & Vira, B. (2010). Biodiversity Conservation: Challenges Beyond 2010. *Science*, 329(5997), 1298–1303. https://doi.org/10.1126/science.1189138
- Raudenbush, S. W., & Bryk, A. S. (2002). *Hierarchical Linear Models: Applications and Data Analysis Methods*. SAGE.
- Roberts, D. L., Taylor, L., & Joppa, L. N. (2016). Threatened or Data Deficient: Assessing the conservation status of poorly known species. *Diversity and Distributions*, 22(5), 558–565. https://doi.org/10.1111/ddi.12418
- Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., & Dormann, C. F. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. *Ecography*, *40*(8), 913–929. https://doi.org/10.1111/ecog.02881
- Robinson, O. J., Ruiz-Gutierrez, V., & Fink, D. (2018). Correcting for bias in distribution modelling for rare species using citizen science data. *Diversity and Distributions*, *24*(4), 460–472. https://doi.org/10.1111/ddi.12698
- Rocchini, D., Garzon-Lopez, C. X., Marcantonio, M., Amici, V., Bacaro, G., Bastin, L., Brummitt, N., Chiarucci, A., Foody, G. M., Hauffe, H. C., He, K. S., Ricotta, C., Rizzoli, A., & Rosà, R.

(2017). Anticipating species distributions: Handling sampling effort bias under a Bayesian framework. *Science of The Total Environment*, *584*–*585*, 282–290. https://doi.org/10.1016/j.scitotenv.2016.12.038

- Rocchini, D., Hortal, J., Lengyel, S., Lobo, J. M., Jiménez-Valverde, A., Ricotta, C., Bacaro, G., & Chiarucci, A. (2011). Accounting for uncertainty when mapping species distributions: The need for maps of ignorance. *Progress in Physical Geography: Earth and Environment*, *35*(2), 211–226. https://doi.org/10.1177/0309133311399491
- Rosner-Katz, H., McCune, J. L., & Bennett, J. R. (2020). Using stacked SDMs with accuracy and rarity weighting to optimize surveys for rare plant species. *Biodiversity and Conservation*, 29(11), 3209–3225. https://doi.org/10.1007/s10531-020-02018-1
- Royle, J. A., & Nichols, J. D. (2003). Estimating abundance from repeated presence-absence data or point counts. *Ecology*, *84*(3), 777–790.
- Saupe, E. E., Barve, V., Myers, C. E., Soberón, J., Barve, N., Hensz, C. M., Peterson, A. T., Owens, H. L., & Lira-Noriega, A. (2012). Variation in niche and distribution model performance: The need for a priori assessment of key causal factors. *Ecological Modelling*, 237–238, 11–22. https://doi.org/10.1016/j.ecolmodel.2012.04.001
- Schüttler, E., Klenke, R., Galuppo, S., Castro, R. A., Bonacic, C., Laker, J., & Henle, K. (2017). Habitat use and sensitivity to fragmentation in America's smallest wildcat. *Mammalian Biology*, 86(1), 1–8. https://doi.org/10.1016/j.mambio.2016.11.013
- Schwartz, M. W. & Simberloff. (2001). Taxon size predicts rates of rarity in vascular plants. *Ecology Letters*, *4*(5), 464–469. https://doi.org/10.1046/j.1461-0248.2001.00241.x
- Simkins, A. T., Buchanan, G. M., Davies, R. G., & Donald, P. F. (2020). The implications for conservation of a major taxonomic revision of the world's birds. *Animal Conservation*, *23*(4), 345–352. https://doi.org/10.1111/acv.12545
- Smith, C. S., Howes, A. L., Price, B., & McAlpine, C. A. (2007). Using a Bayesian belief network to predict suitable habitat of an endangered mammal The Julia Creek dunnart (Sminthopsis douglasi). *Biological Conservation*, *139*(3), 333–347. https://doi.org/10.1016/j.biocon.2007.06.025
- Southwood, T. R. E., & Henderson, P. A. (2009). *Ecological Methods*. John Wiley & Sons.
- Standley, L. A. (1992). Taxonomic issues in rare species protection. *Rhodora*, 94(879), 218–242.
- Steege, H. ter, Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., Phillips, O. L., Castilho, C. V., Magnusson, W. E., Molino, J.-F., Monteagudo, A., Vargas, P. N.,

Montero, J. C., Feldpausch, T. R., Coronado, E. N. H., Killeen, T. J., Mostacedo, B., Vasquez, R., Assis, R. L., ... Silman, M. R. (2013). Hyperdominance in the Amazonian Tree Flora. *Science*, *342*(6156). https://doi.org/10.1126/science.1243092

- Steyer, K., Simon, O., Kraus, R. H. S., Haase, P., & Nowak, C. (2013). Hair trapping with valerian-treated lure sticks as a tool for genetic wildcat monitoring in low-density habitats. *European Journal of Wildlife Research*, *59*(1), 39–46. https://doi.org/10.1007/s10344-012-0644-0
- Stohlgren, T. J., Jarnevich, C. S., Esaias, W. E., & Morisette, J. T. (2011). Bounding species distribution models. *Current Zoology*, *57*(5), 642–647. https://doi.org/10.1093/czoolo/57.5.642
- Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Siqueira, M. F. de, Grainger, A., Hannah, L., Hughes, L., Huntley, B., Jaarsveld, A. S. van, Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. *Nature*, 427(6970), 145–148. https://doi.org/10.1038/nature02121
- Thompson, S. K. (2013). Adaptive web sampling in ecology. *Statistical Methods & Applications*, 22(1), 33–43. https://doi.org/10.1007/s10260-012-0222-3
- Thompson, W. (2013). Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters. Island Press.
- Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., & Zimmermann, N. E. (2019). Uncertainty in ensembles of global biodiversity scenarios. *Nature Communications*, *10*(1), 1–9. https://doi.org/10.1038/s41467-019-09519-w
- Tobler, M. W., Kéry, M., Hui, F. K. C., Guillera-Arroita, G., Knaus, P., & Sattler, T. (2019). Joint species distribution models with species correlations and imperfect detection. *Ecology*, 100(8), e02754. https://doi.org/10.1002/ecy.2754
- Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. *Ecological Modelling*, 203(3), 312–318. https://doi.org/10.1016/j.ecolmodel.2006.11.033
- Van Echelpoel, W., Boets, P., Landuyt, D., Gobeyn, S., Everaert, G., Bennetsen, E., Mouton, A., & Goethals, P. L. M. (2015). Chapter 6—Species distribution models for sustainable ecosystem management. In Y.-S. Park, S. Lek, C. Baehr, & S. E. Jørgensen (Eds.), *Developments in Environmental Modelling* (Vol. 27, pp. 115–134). Elsevier. https://doi.org/10.1016/B978-0-444-63536-5.00008-9

- van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J., & Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. *Ecography*, 39(6), 542–552. https://doi.org/10.1111/ecog.01509
- Varela, S., Anderson, R. P., García-Valdés, R., & Fernández-González, F. (2014). Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. *Ecography*, *37*(11), 1084–1091. https://doi.org/10.1111/j.1600-0587.2013.00441.x
- Violle, C., Thuiller, W., Mouquet, N., Munoz, F., Kraft, N. J. B., Cadotte, M. W., Livingstone, S. W., & Mouillot, D. (2017). Functional Rarity: The Ecology of Outliers. *Trends in Ecology & Evolution*, 32(5), 356–367. https://doi.org/10.1016/j.tree.2017.02.002
- Weber, M. M., Stevens, R. D., Diniz-Filho, J. A. F., & Grelle, C. E. V. (2017). Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. *Ecography*, 40(7), 817–828. https://doi.org/10.1111/ecog.02125
- Williams, B. K., Nichols, J. D., & Conroy, M. J. (2002). *Analysis and Management of Animal Populations*. Elsevier Science. https://books.google.fr/books?id=8emGAwAAQBAJ
- Williams, K. J., Belbin, L., Austin, M. P., Stein, J. L., & Ferrier, S. (2012). Which environmental variables should I use in my biodiversity model? *International Journal of Geographical Information Science*, 26(11), 2009–2047. https://doi.org/10.1080/13658816.2012.698015
- Yoccoz, N. G., Nichols, J. D., & Boulinier, T. (2001). Monitoring of biological diversity in space and time. *Trends in Ecology & Evolution*, *16*(8), 446–453.
- Zurell, D., Elith, J., & Schröder, B. (2012). Predicting to new environments: Tools for visualizing model behaviour and impacts on mapped distributions. *Diversity and Distributions*, *18*(6), 628–634. https://doi.org/10.1111/j.1472-4642.2012.00887.x

Acknowledgements

We thank the EU BON project funded by the European Commission (EC) under the 7th Framework Programme (contract no. 308454) (Hoffmann et al. 2014) for making this study happen and for funding a part of the working group at an early stage. We thank an Anonymous Reviewer and Nigel G. Yoccoz for very constructive and useful comments on our manuscript and Anne-Christine Monnet for her help with SDM terminology.

Author contribution

YG and AJ have equally contributed to ideas, first drafting of the paper, production of tables and figures, and coordination of the writing process. WK and KH, at the origin of the project, have jointly supervised the work as project leaders (EU BON) and have equally contributed with the central ideas, orientation and deep revisions of the manuscript. All authors have contributed with ideas and revisions on all versions of the manuscript.

List of items and captions

1 Box + 1 Figure + 3 Tables

Figure 1

Synthesis infographic of (a) the Rabinowitz's seven categories of rarity, (b) examples of approaches to assess where to sample depending on the rarity category, (c) examples of approaches to assess how to sample depending on the rarity category and species local density, and (d) examples of modelling approaches to predict and map species distribution depending on the type of data generated in previous steps (a) and (b). Note that most of the methods can be used in more than one situation, but for the simplicity of the figure, we did not systematically repeat them and rather highlighted the methods we considered as the most useful or relevant. The references (numbers in brackets) are listed below the figure.

References: [1] Breiner et al. 2015, [2] Lomba 2010, [3] Chen & Pollino 2012, [4] Fithian 2014, [5] Marcer et al. 2013, [6] Keil et al. 2013, [7] Rocchini et al. 2017, [8] El-Gabbas & Dormann 2018, [9] Radosavljevic & Anderson 2014, [10] Boria et al. 2014, [11] McKenzie et al. 2017, [12] Royle & Nichols 2003, [13] Kéry & Royle 2015, [14] Willson et al. 2011, [15] Nichols et al. 2008, [16] Giraud et al. 2016, [17] Bowler et al. 2019, [18] Joseph et al. 2009, [19] Cunningham & Lindenmayer 2005, [20] Chandler et al. 2011.

Tables 1, 2, 3

Non-exhaustive list of methods to assess (1) where to sample, (2) how to sample, and (3) how to model rare species data with their brief description, advantages and limits, the type of rarity for which they appear as most appropriate, and examples of references related. Inputs/outputs of modelling methods can be P (presences only), lik (presence likelihood), PA (Presences/Absences), ab (abundance), det (detectability information), pocc (probability of occurrence). Underlined words refer to the Glossary (**Box 1**). The references are listed below the Table 3.

Figure 1

Synthesis infographic of (a) the Rabinowitz's seven categories of rarity, (b) examples of approaches to assess where to sample depending on the rarity category, (c) examples of approaches to assess how to sample depending on the rarity category and species local density, and (d) examples of modelling approaches to predict and map species distribution depending on the type of data generated in previous steps (a) and (b). Note that most of the methods can be used in more than one situation, but for the simplicity of the figure, we did not systematically repeat them and rather highlighted the methods we considered as the most useful or relevant. The references (numbers in brackets) are listed below the figure.

References: [1] Breiner et al. 2015, [2] Lomba 2010, [3] Chen & Pollino 2012, [4] Fithian 2014, [5] Marcer et al. 2013, [6] Keil et al. 2013, [7] Rocchini et al. 2017, [8] El-Gabbas & Dormann 2018, [9] Radosavljevic & Anderson 2014, [10] Boria et al. 2014, [11] McKenzie et al. 2017, [12] Royle & Nichols 2003, [13] Kéry & Royle 2015, [14] Willson et al. 2011, [15] Nichols et al. 2008, [16] Giraud et al. 2016, [17] Bowler et al. 2019, [18] Joseph et al. 2009, [19] Cunningham & Lindenmayer 2005, [20] Chandler et al. 2011.

Literature cited in Figure 1

- 1. Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. *Methods in Ecology and Evolution* **6**, 1210–1218 (2015).
- 2. Lomba, A. *et al.* Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. *Biological Conservation* **143**, 2647–2657 (2010).
- 3. Chen, S. H. & Pollino, C. A. Good practice in Bayesian network modelling. *Environmental Modelling & Software* **37**, 134–145 (2012).
- 4. Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: pooling survey and collection data for multiple species. *Methods Ecol Evol* **6**, 424–438 (2015).
- Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. & Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. *Biological Conservation* 166, 221–230 (2013).
- 6. Keil, P., Belmaker, J., Wilson, A. M., Unitt, P. & Jetz, W. Downscaling of species distribution models: a hierarchical approach. *Methods in Ecology and Evolution* **4**, 82–94 (2013).

7. Rocchini, D. *et al.* Anticipating species distributions: Handling sampling effort bias under a Bayesian framework. *Science of The Total Environment* **584–585**, 282–290 (2017).

- 8. El-Gabbas, A. & Dormann, C. F. Improved species-occurrence predictions in data-poor regions: using large-scale data and bias correction with down-weighted Poisson regression and Maxent. *Ecography* **41**, 1161–1172 (2018).
- 9. Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. *Journal of Biogeography* **41**, 629–643 (2014).
- 10. Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. *Ecological Modelling* **275**, 73–77 (2014).
- 11. MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. (Elsevier, 2017).
- 12. Royle, J. A. & Nichols, J. D. Estimating abundance from repeated presence-absence data or point counts. *Ecology* **84**, 777–790 (2003).
- 13. Kéry, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS: Volume 1:Prelude and Static Models. (Academic Press, 2015).
- 14. Willson, J. D., Winne, C. T. & Todd, B. D. Ecological and methodological factors affecting detectability and population estimation in elusive species. *The Journal of Wildlife Management* **75**, 36–45 (2011).
- 15. Nichols, J. D. *et al.* Multi-scale occupancy estimation and modelling using multiple detection methods. *Journal of Applied Ecology* **45**, 1321–1329 (2008).
- 16. Giraud, C., Calenge, C., Coron, C. & Julliard, R. Capitalizing on opportunistic data for monitoring relative abundances of species. *Biom* **72**, 649–658 (2016).
- 17. Bowler, D. E. *et al.* Integrating data from different survey types for population monitoring of an endangered species: the case of the Eld's deer. *Scientific Reports* **9**, 7766 (2019).
- 18. Joseph, L. N., Elkin, C., Martin, T. G. & Possingham, H. P. Modeling abundance using N-mixture models: the importance of considering ecological mechanisms. *Ecological Applications* **19**, (2009).
- 19. Cunningham, R. B. & Lindenmayer, D. B. Modeling count data of rare species: some statistical issues. *Ecology* **86**, 1135–1142 (2005).
- 20. Chandler, R. B., Royle, J. A. & King, D. I. Inference about density and temporary emigration in unmarked populations. *Ecology* **92**, 1429–1435 (2011).

This article is protected by copyright. All rights reserved

Tables 1, 2 & 3

Non-exhaustive list of methods to assess (Table 1) where to sample, (Table 2) how to sample, and (Table 3) how to model rare species data with their brief description, advantages and limits, the type of rarity for which they appear as most appropriate, and examples of references related. In Table 3: inputs/outputs can be P (presences only), lik (presence likelihood), PA (Presences/Absences), ab (abundance), det (detectability information), pocc (probability of occurrence). Underlined words refer to the Glossary (**Box 1**). The references are listed below the Table 3.

Table 1. Where to sample?

Method	Brief description	Pros	Cons	Suitable for	References
				which rarity	
				categories?	
Accumulated	Sampling locations	- depending on the species	- sample not representative of	All	¹Chandler et al.
opportunistic	are not chosen but	attractivity and ease of	the entire extent		2017 (iNaturalist);
observations	emerge from external	detection/identification, a	- species-targeted		² Sullivan et al. 2017
	contribution of	large number of observations	- absences usually not reported,		(eBird);
	various sources, e.g.	can be accumulated over time,	presence-only data		³ Deguines et al.
	data from citizen	with minimal investment of	- sampling effort varies through		2012 (spipoll)
	science programs free	time and funds	time		
	from any observation	- can detect new populations	- mainly done for charismatic		

Method	Brief description	Pros	Cons	Suitable for	References
				which rarity	
				categories?	
	protocol	and species	taxa		
		- may be used to create atlas	- risk of misidentification in the		
		data	case of non-expert observations		
		- rare species receive	(particularly critical as even a		
		particular attention	small fraction of misidentified		
			common species may swamp		
			the true records of a rare		
			species)		
Simple random	Random selection of	- spatially unbiased sample	- ignores environmental/habitat	Cat4	⁴ Greig-Smith 1964;
sampling	the locations, i.e. all	- objective and well-defined	variability		⁵Diekmann et al.
	the locations of the	- sample representative of the	- rare species are unlikely to be		2007;
	study area have the	study extent	detected in sufficient numbers,		⁶ Hedgren &
	same probability to	- temporally comparable	even in huge samples		Weslien 2008
	be sampled	samples			
		- no target species, multi-			
		species sample			

a fixed spatial need of external information interval(s) that nor a priori species-specific depends on the knowledge - detection strongly depends on predefined total - more cost-efficient than number of locations simple random sampling as it to be sampled in the guarantees even distribution strudy area, e.g. plots arranged along a the study area regular grid or - temporally comparable (equidistant) samples as the clumping interval, the transects that cover the space evenly (hyper dispersed distribution of total number of sites to be cat 5 if sefortine to total number of sites to be sampled habitats are ordered fixed habitats are organised ranged habitats are organised randomly) or fixed sampling and on the starting point of the sampling and on the starting point of the sampling, e.g. in species with clumped is the same order of magnitude as the clumping interval the sample will not be representative of the species distribution (will either underdistribution of or over-detect the species	ethod	Brief description	Pros	Cons	Suitable for	References
Systematic Sampling according to -simple to implement, no - needs prior information on Cat4 (and 7Madow a fixed spatial need of external information total number of sites to be Cat5 if 8Fortin et interval(s) that nor a priori species-specific sampled habitats are depends on the knowledge - detection strongly depends on predefined total - more cost-efficient than to be sampled in the guarantees even distribution study area, e.g. plots arranged along a the study area populations; if sampling interval regular grid or - temporally comparable (equidistant) samples as the clumping interval, the transects that cover - no target species, multi-sample will not be (hyper dispersed distribution of or over-detect the species					which rarity	
a fixed spatial need of external information interval(s) that nor a priori species-specific sampled habitats are depends on the knowledge - detection strongly depends on predefined total - more cost-efficient than number of locations simple random sampling as it to be sampled in the guarantees even distribution strudy area, e.g. plots arranged along a the study area populations; if sampling interval regular grid or - temporally comparable (equidistant) samples as the clumping interval, the transects that cover the space evenly species sample representative of the species (hyper dispersed distribution of or over-detect the species)					categories?	
interval(s) that nor a priori species-specific depends on the knowledge - detection strongly depends on organised predefined total - more cost-efficient than the choice of the spatial interval randomly) number of locations simple random sampling as it to be sampled in the guarantees even distribution starting point of the sampling, study area, e.g. plots arranged along a the study area populations; if sampling interval regular grid or - temporally comparable is the same order of magnitude (equidistant) samples as the clumping interval, the transects that cover - no target species, multi-sample will not be representative of the species (hyper dispersed distribution of or over-detect the species	stematic	Sampling according to	- simple to implement, no	- needs prior information on	Cat4 (and	⁷ Madow 1953;
depends on the knowledge - detection strongly depends on organised predefined total - more cost-efficient than the choice of the spatial interval randomly) number of locations simple random sampling as it to be sampled in the guarantees even distribution starting point of the sampling, study area, e.g. plots of sites and good coverage of arranged along a the study area populations; if sampling interval regular grid or - temporally comparable is the same order of magnitude (equidistant) samples as the clumping interval, the transects that cover - no target species, multi-sample will not be representative of the species (hyper dispersed distribution of or over-detect the species	mpling	a fixed spatial	need of external information	total number of sites to be	Cat5 if	8Fortin et al. 1989
predefined total - more cost-efficient than the choice of the spatial interval randomly) simple random sampling as it to be sampled in the guarantees even distribution study area, e.g. plots of sites and good coverage of arranged along a the study area populations; if sampling interval regular grid or (equidistant) samples as the clumping interval, the transects that cover the space evenly species sample representative of the spacies distribution (will either under- or over-detect the species		interval(s) that	nor a priori species-specific	sampled	habitats are	
number of locations simple random sampling as it to be sampled in the guarantees even distribution starting point of the sampling, study area, e.g. plots of sites and good coverage of arranged along a the study area populations; if sampling interval regular grid or - temporally comparable is the same order of magnitude (equidistant) samples as the clumping interval, the transects that cover - no target species, multi-sample will not be representative of the species (hyper dispersed distribution of or over-detect the species		depends on the	knowledge	- detection strongly depends on	organised	
to be sampled in the guarantees even distribution starting point of the sampling, study area, e.g. plots of sites and good coverage of arranged along a the study area populations; if sampling interval regular grid or - temporally comparable is the same order of magnitude (equidistant) samples as the clumping interval, the transects that cover - no target species, multi-sample will not be the space evenly species sample representative of the species (hyper dispersed distribution of or over-detect the species		predefined total	- more cost-efficient than	the choice of the spatial interval	randomly)	
study area, e.g. plots of sites and good coverage of arranged along a the study area populations; if sampling interval is the same order of magnitude (equidistant) samples as the clumping interval, the transects that cover - no target species, multi-sample will not be the space evenly species sample representative of the species (hyper dispersed distribution of or over-detect the species		number of locations	simple random sampling as it	of the sampling and on the		
arranged along a the study area populations; if sampling interval regular grid or - temporally comparable is the same order of magnitude (equidistant) samples as the clumping interval, the transects that cover - no target species, multi-sample will not be the space evenly species sample representative of the species (hyper dispersed distribution of or over-detect the species		to be sampled in the	guarantees even distribution	starting point of the sampling,		
regular grid or - temporally comparable is the same order of magnitude (equidistant) samples as the clumping interval, the transects that cover - no target species, multi- sample will not be the space evenly species sample representative of the species (hyper dispersed distribution (will either underdistribution of or over-detect the species		study area, e.g. plots	of sites and good coverage of	e.g. in species with clumped		
(equidistant) samples as the clumping interval, the transects that cover - no target species, multi-sample will not be the space evenly species sample representative of the species (hyper dispersed distribution (will either underdistribution of or over-detect the species		arranged along a	the study area	populations; if sampling interval		
transects that cover - no target species, multi- the space evenly species sample representative of the species (hyper dispersed distribution (will either under- distribution of or over-detect the species		regular grid or	- temporally comparable	is the same order of magnitude		
the space evenly species sample representative of the species (hyper dispersed distribution (will either under- distribution of or over-detect the species		(equidistant)	samples	as the clumping interval, the		
(hyper dispersed distribution (will either under-distribution of or over-detect the species		transects that cover	- no target species, multi-	sample will not be		
distribution of or over-detect the species		the space evenly	species sample	representative of the species		
·		(hyper dispersed		distribution (will either under-		
samples) depending on the starting		distribution of		or over-detect the species		
		samples)		depending on the starting		
point)				point)		

Method	Brief description	Pros	Cons	Suitable for	References
				which rarity	
				categories?	
Stratified	Sampling organised	- sample representative of the	- depends on subjective a priori,	Cat1, Cat3,	⁹ Thompson W.L.
sampling	with respect to a	study extent with respect to	or a priori ecological knowledge	Cat5, Cat7 (if	2013
	categorisation	the stratification factor		we consider	
	deemed to be			that for non-	
	important for the			specialist	
	community or species			species,	
	of interest, e.g.			habitat-	
	habitat type			stratified	
				sampling	
				would work	
				worse)	

Method	Brief description	Pros	Cons	Suitable for	References
				which rarity	
				categories?	
Adaptive	Sampling design	- accurate estimations of	- not widely used in ecological	Cat2, Cat3	¹⁰ Krebs et al. 1989;
(cluster)	where site selection	species abundances	studies		¹¹ Yoccoz et al.
sampling / prior-	depends on previous	- appropriate for rare,	- efficiency depends on the		2001;
informed	sampling raw	clustered and unevenly	spatial distribution of the		^{12,13} Thompson S.K.
sampling	outcomes, either a)	distributed species	species		1990; 2013;
	from the overall		- difficult to know the final		¹⁴ Thompson W.L.
	survey, e.g. adaptive		sample size needed prior to the		2002
	cluster sampling		survey		
	which consists in		- data collection process is		
	searching for a		complicated		
	species in a given		- not fully adapted yet to		
	location and if the		mobile species, sensitive		
	species is found,		species and habitats (side-		
	searches continue		effects of intensive sampling)		
	nearby		- resulting data biased towards		
	(neighbourhood		the species of interest		
	shape can vary		- sampling effort varies through		
	according to the		time		

Method	Brief description	Pros	Cons	Suitable for	References
				which rarity	
				categories?	
	study needs), or b)				
	from other surveys,				
	i.e. site selection				
	depends on external				
	source of information				
	and/or belief on the				
	species potential				
	presence, e.g. atlas				
	data				
"SDM"-guided	Sampling locations	- sampling coverage	- time-consuming process	Cat1, Cat3	⁸⁴ Austin et al. 1984;
sampling	are drawn from a	optimisation	- requires predictor layers (with	(potentially	¹⁵ Le Lay et al. 2010;
	probability surface	- allows a systematic and	good spatial and thematic	Cat5, Cat 7 if	¹⁶ Lin et al. 2014;
1	generated by	exhaustive pre-selection of	resolution for narrow range	clumping is	¹⁷ Aizpurua et al.
	modelling the know	suitable locations	species)	not due to	2015;
	P/A of a species		- subject to model error and	dispersal	¹⁸ Chiffard et al.
	against		uncertainty	limitations)	2020

Brief description	Pros	Cons	Suitable for	References
			which rarity	
			categories?	
environmental		- may work better for specialist		
predictors and		species that are not too much		
extrapolating the		dispersal limited (niche-based		
model in space and		modelling)		
time, e.g. adaptive				
niche-based sampling,				
Direct Gradient				
Analyses				

Table 2. How to sample?

Method	Brief description	Pros	Cons	Suitable for	References
				which rarity	
				categories?	
Standardized sampling	Sampling with	- detection of a large	- rare species less likely to	Cat1, Cat2, Cat3	¹⁹ Enquist et al.
	commonly use	number of species	be detected when		2016;
	methods following a	- data comparable across	populations have low		²⁰ Bruelheide et al.
	standardized	locations	local density		2019;
	protocol (e.g.	- unbiased with respect to			²¹ Risely et al.
	quadrats, transects,	sampling effort			2010;
	traps, etc.) without				²² Jiguet et al. 2012
	any adaptation to				
	increase the				
	probability of				
	detecting rare				
	species, e.g.				
	biodiversity				
	observatories				

Method	Brief description	Pros	Cons	Suitable for which rarity categories?	References
Occupancy sampling	Sampling that	- multi-species; allows	- effort required is high	All	²³ MacKenzie &
	consists of repeated	estimating detection	unless detection		Royle 2005;
	sampling following a	probability that can be	probability is high		²⁴ MacKenzie et al.
	standardized	used to obtain unbiased	- may require survey		2017
	protocol within a	presence/absence data	methods targeted to		
	period during which		particular rare species,		
	the targeted species		such as lures		
	remain available for				
	detection				
Distance sampling	Sampling that	- multi-species	- requires expert	Common species,	²⁵ Rosenstock et al.
	consists in recording		knowledge (able to	Cat2	2002;
	the distance from the		identify species at		²⁶ Buckland et al.
	observer to the		different distances within		2015
	organism when		a given radius)		
	detected. This		- locally rare species will		
	information can then		not provide sufficient		
	be used to adjust the		observations for reliable		
	sampling strategy		estimates of abundance		

Method	Brief description	Pros	Cons	Suitable for	References
				which rarity	
				categories?	
	and to correct for				
	detection probability				
	in prediction models				
Species-targeted	Sampling specifically	- highly efficient in	- intensive field work	All	²⁷ Grimm & Klenke
sampling	designed for given	detecting rare species of	- cannot cover large		2019;
(or species-specific	locally rare species,	interest	spatial extent (but see		²⁸ Grimm et al.
sampling)	based on fine	- fine resolution data	promising methods such		2019
	information on the		as detection dogs)		
	species' habits, to		- species-targeted		
	increase the				
	encounter rate, e.g.				
	traps with specific				
	food items or				
	pheromone baits				

Method	Brief description	Pros	Cons	Suitable for	References
				which rarity	
				categories?	
Mark-Release-Recapture	Sampling that	- under particular	- highly time-consuming	Cat1, Cat2, Cat3	²⁹ Williams et al.
sampling	consists in capturing,	assumptions, allows	and field-work intensive		2002
	marking and	estimating population	- cannot cover large		
	releasing individuals	parameters, such as	spatial extents		
	of given species in	population size, fecundity,	- species-targeted		
	order to keep track of	etc.			
	their identity and be	- fine resolution data			
	able to estimate				
	capture rate and				
	population				
	parameters				
Passive sampling	Sampling based on	- allows large-scale	- non-specific, detects any	Cat3, Cat7 (+	³⁰ Schüttler et al.
	the setting up of	surveys	species as well as noise	Cat2, Cat6 if	2016 (camera
	devices that	- multi-species	- costly in terms of	devices can be set	trapping)
	automatically record		resources (to buy devices,	anywhere)	³¹ Jeliazkov et al.
	species passing		process data, etc.)		2016 (acoustic
	within a certain				sampling)
	radius, e.g. camera				

Method	Brief description	Pros	Cons	Suitable for	References
(which rarity	
,				categories?	
	trapping, acoustic				
	sampling				
eDNA	Sampling based on	- rapid survey at large	- detectability depends on	Cat1, Cat2, Cat3	³² Bohmann et al.
	DNA extraction from	scales, cost-effective	several parameters	(+Cat5, Cat7 if we	2014;
1	the environment (e.g.	- species-targeted as well	whose effects can be	consider that at	³³ Rees et al. 2014;
	water, soil,	as multi-species	confounded with actual	low population	³⁴ Jerde et al. 2011;
	sediments, snow)	assessments	ecological responses, e.g.	density, habitat	³⁵ Wilcox et al.
	coming from cells of	- high detection power	environmental conditions,	specificity may	2013;
	organisms that are	- non-invasive method	such as UV light,	ensure higher	³⁶ Beng & Corlett
	and/or were present	- no licence constraints for	temperature, and water	eDNA	2020
	at some point in the	protected species	flow, but also the activity	concentrations	
	environment. Specific	- in some cases, can	and density of animals,	than habitat	
	or unspecific primers	provide semi-quantitative	their residence time, etc.	unspecificity)	
	can be used to	estimation of abundances	- the importance of		
	amplify eDNA		primer specificity		
	samples, depending				
	on whether the				

Method	Brief description	Pros	Cons	Suitable for	References
				which rarity	
				categories?	
	survey targets				
	specific species or				

specific species or the whole community,

respectively

Table 3. How to model?

Method	Brief description	Pros	Cons	Suitable	Examples /	Input data
				for which	references	-> Output
				rarity		calculated/
				categorie		estimate*
				ς?		

	Method		Brief description	Pros	Cons	Suitable for which rarity categorie s?	Examples / references	Input data -> Output calculated/ estimate*
	Data	Data processing	Different processing	- data-saving,	- often requires to	All	³⁷ Fithian et al.	PA -> PA
	processing		strategies can be applied on	allows using the	take arbitrary		2015;	ab -> ab
			data prior to actual modelling	maximum of	decisions to select		³⁸ Phillips 2009	
1			which allows making data	information	thresholds,		(correct	
1			more appropriate, more	available	correcting factors,		biases in	
			powerful, or more in line with		etc.		presence-only	
			the assumptions of				data);	
			subsequent modelling; e.g.				³⁹ Nekola et al.	
			combine opportunistic				2008 (data	
			observations with atlas data,				transformatio	
			correct biases in presence-				ns)	
			only data, data					
			transformations (e.g.					
			abundances into rank					
			abundance curves)					

4	
2	
	3
2	
J	
	5
J)
2	
2	
	1

Method		Brief description	Pros	Cons	Suitable for which rarity categorie s?	Examples / references	Input data -> Output calculated/ estimate*
Modelling	Regular SDMs	SDMs with no particular	- simple	- requires absence	Common	⁴⁰ Guisan &	PA ->
methods	with absence data	correction effect nor		data	species	Zimmermann	relative
commonly		sophistication when enough		- often too		2000	росс
grouped		data are available and meet		simplistic,			
under		all modelling assumptions		resulting in			
"SDMs"		(rarely the case), e.g. GLM		strongly biased			
				results			
				- can suffer			
				overfitting if the			
				number of			
				predictors is too			
				high compared to			
				too few species			
				occurrences			
				- assumes that			
				habitat suitability			
				is the most			
				limiting driver of			
				species			
		yright. All rights reserved		distribution			
This article i	s protected by copy			- doesn't control			
				for sampling			

Method		Brief description	Pros	Cons	Suitable for which rarity categorie s?	Examples / references	Input data -> Output calculated/ estimate*
	SDMs + pseudo-	SDMs where no absence data	- simple	- requires data	Common	⁴¹ Barbet-	Р
	absences	is unavailable. Models either	- only requires	and prior	species	Massin et al.	(+backgrou
		attempt to generate absences	readily-available	knowledge on		2012	nd data) ->
		where they believe the	presence data	habitat suitability			relative lik
		species to be absent (pseudo-		- assumes that			
		absences) or sample		habitat suitability			
		environmental conditions		is the most			
		available to the species		limiting driver of			
		(background points)		species			
	_			distribution			

1	
0	
T	
1	
0	
0	
4	

Method		Brief description	Pros	Cons	Suitable for which rarity categorie s?	Examples / references	Input data -> Output calculated/ estimate*
	Bias-corrected	(Hierarchical) SDMs	- accurate	- interpretation	All	⁴² Dormann et	P -> relative
	SDMs	accounting for different,	- particularly	sometimes		al. 2007,	lik
		potential sources of biases	appropriate and	difficult		⁴³ Marcer 2013	PA ->
		due to spatial location,	flexible for rare	- hypothesis-		(models	relative
		autocorrelation, observation	species	driven		accounting for	pocc ab+det ->
		effects, etc. Examples of	modelling	- requires		spatial auto-	relative ab
		models are mixed effect	- hypothesis-	information on		correlation);	Telative ab
		models with an observer	driven	observational		³⁷ Fithian et al.	
		random effect, models		conditions		2015 (mixed	
		accounting for spatial auto-				effect models	
		correlation, SDMs with				with an	
		model-based bias correction,				observer	
		zero-inflated models that				random	
		allow modelling true and false				effect);	
		absences separately				44El-Gabbas &	
						Dormann	
						2018 (SDMs	
						with model-	
						based bias	
						correction);	
This article is	s protected by copy	right. All rights reserved				⁴⁵ Zuur et al.	
						2009 (zero-	

	Method	Brief description	Pros	Cons	Suitable	Examples /	Input data
					for which	references	-> Output
					rarity		calculated/
					categorie		estimate*
					s?		
	Multi-scale SDMs	Models incorporating	- processes that	- complicated	Common	⁴⁶ Keil et al.	PA ->
		distribution information at	operate at	fitting frameworks	species	2013	relative
ì		multiple grain sizes	multiple spatial			(hierarchical	росс
		- information from	scales, and ones			models	P -> relative
1		distribution data at multiple	unrelated to			incorporating	lik
		grain sizes constrain fine-	environmental			distribution	
5		grain predictions	relationships,			information at	
		- information on	can be			multiple grain	
		environmental conditions at	incorporated in			sizes);	
		multiple grain sizes used as	to model			⁴⁷ Rocchini et	
		inputs	predictions			al. 2017	

	Method		Brief description	Pros	Cons	Suitable	Examples /	Input data
ĺ						for which	references	-> Output
						rarity		calculated/
						categorie		estimate*
						s?		
		Geographically-	SDM procedure that:	- can use most	- assumes that	Common	⁴⁸ Radosavljevi	PA ->
		structured SDMs	1) splits evaluation data	traditional SDM	habitat suitability	species	c & Anderson	relative
ì			based on spatial clustering of	algorithms (only	is the most		2014;	росс
			the data;	affects input	limiting driver of		³⁸ Phillips et al.	P -> relative
			2) using modelling data (e.g.	data)	species		2009	lik
			creation of pseudo-absence/	- reduces the risk	distribution			
			background data),	of overfitting	- can cause nearly			
			incorporates spatial bias of	data to spatial	all data to be			
			presence data or taxonomic	biases in	assigned to 1-2			
			group	sampling data	folds, and other			
					folds being			
					constructed with			
					v. few occurrence			
					points			
		-						

	Method	Brief description	Pros	Cons	Suitable for which rarity categorie s?	Examples / references	Input data -> Output calculated/ estimate*
	Spatial-thinning	SDM procedure that consists	- can use most	- assumes that	Common	⁴⁹ Boria et al.	PA ->
	SDMs	in removing spatially	traditional SDM	habitat suitability	species	2014	relative
		clustered occurrence points	algorithms (only	is the most			pocc
1		to reduce the spatial	affects input	limiting driver of			P -> relative lik
1		autocorrelation in input data	data)	species			IIK
			- reduces the	distribution			
5			spatial	- reduces quantity			
			autocorrelation	of modelling data			
			in input data				
			- reduces the risk				
			of overfitting				
			data to spatial				
			biases in				
			sampling data				

Method	Brief description	Pros	Cons	Suitable for which rarity categorie s?	Examples / references	Input data -> Output calculated/ estimate*
Ensemble of Ensemble SDMs	from several algorithms of SDMs, weights these outputs based on respective model performances (using e.g. AIC) and generates single 'consensus' predictions by model averaging methods	- does not rely on single best model - ensemble predictions perform better compared to single modelling techniques - can use variance between models as estimate of uncertainty	- all the cons of SDM approaches above - model averaging also has limitations (e.g. sensitivity to performance score and thresholds used) - predictive performance still questioned	Common species	⁵⁰ Araújo & New 2007; ⁸⁵ Hao et al. 2019; ⁸⁶ 2020	PA -> relative pocc P -> relative lik

Method		Brief description	Pros	Cons	Suitable for which rarity	Examples / references	Input data -> Output calculated/ estimate*
					categorie s?		
	Ensemble of Small	Strategy that consists in	- circumvents	- requires to	Cat4,	⁵¹ Lomba	P -> relative
	Models (ESM)	modelling the distribution of	the risk of	choose thresholds	Cat4,	2010;	lik
	Wiodels (LSWI)	rare species	overfitting when	of performance	density	52Breiner et	
		based on fitting a larger	applying an SDM	scores to decide	but	al. 2015	
		number of small (bivariate,	on too few	which models are	spatially	ai. 2013	
		trivariate, etc.) models,	occurrences data	included in the	dispersed		
		that is models with only two	- excellent	ensemble	1		
		predictors at a time (although	performance on	- remains unclear	,		
		only one or three could also	species data	how this method			
		be used), and averaging them	with low number	performs for the			
		in an	of occurrences	different forms of			
		ensemble prediction using	- allows	rarity, especially			
		weights based on model	structuring the	the spatially-			
		performances (e.g. based on	modelling	biased ones, as it			
		AUC score).	framework	is mainly based on			
			according to	the number of			
			different scales	occurrences and			
			of drivers of	related IUCN			
			species	status			
			distribution (e.g.	- ESM			
This article	is protected by copy	right. All rights reserved	local vs. climatic	performance			
			predictors)	(compared to			
			,				

Method		Brief description	Pros	Cons	Suitable for which	Examples / references	Input data -> Output
					rarity		calculated/ estimate*
					categorie		estimate
					s?		
Bayesian	Bayesian Belief	(a.k.a. Bayesian networks,	- all the pros	- requires to	Potentiall	^{53,54} Marcot et	P -> relative
Belief	Network SDMs	causal probability networks,	related to	discretize input	y all	al. 2006a,b;	lik
Network		acyclic directed graphs)	Bayesian	predictors with	(provided	55Smith et al.	PA ->
SDMs		Statistical tool derived from	statistical	choices of	that	2007;	relative
		graph theory and Bayesian	frameworks:	thresholds which	enough	⁵⁶ Aguilera et	pocc ab ->
		inference that predicts the	flexibility,	can lead to class	prior	al. 2010;	relative ab
		probability of ecological	accounting and	edge effects (but	knowledg	⁵⁷ Chen &	relative as
		responses to varying input	quantification of	see Aguilera et al.	e and	Pollino 2012;	
		assumptions such as habitat	uncertainties,	2010)	validation	⁵⁸ MacCracken	
		and population demography	integration of	- more	data are	et al. 2012;	
		conditions and to	prior knowledge	appropriate for	available)	⁵⁹ Hamilton et	
		hypothesized causal	information on	risk or		al. 2015;	
		relationships.	the rare species	conservation		⁶⁰ Van	
			of interest, easily	category		Echelpoel et	
			updatable with	assessment than		al. 2015	
			new data /	for predicting or			
			information, etc.	mapping species			
			- integration,	distribution			
			assessment and	- assumptions and			
			visualization of	reasoning behind			
This article	is protected by cop	yright. All rights reserved	causal pathways	the hypothesized			
			to explain	influence diagram			

4		
2		
	4	
	=	
-		
J		
5		
9		
	7	

Method		Brief description	Pros	Cons	Suitable	Examples /	Input data
					for which	references	-> Output
					rarity		calculated/
					categorie		estimate*
					s?		
Occupancy	Occupancy	Models that describe the	- by aggregating	- needs some atlas	Cat1,	⁶¹ Azaele et al.	PA (atlas
downscalin	downscaling	OAR* are fitted at large grain	data at large	data	Cat2,	2012;	data) ->
g modelling	modelling	sizes to atlas data and then	scales,	- only determines	Cat4,	⁶² Barwell et	occupancy
		extrapolated to predict	overcomes	occupancy in	Cat5,	al. 2014;	(as the
		occupancy at fine grain sizes.	sampling gaps	terms of	Cat6	⁶³ Marsh et al.	proportion
			(false absences	proportion of sites		2019	of sites or area
		*Occupancy-Area	in atlas data) and	or area occupied,			occupied)
		Relationship (OAR) (or scale-	effects of	i.e. not spatial-			,
		area curve or range-area	sampling biases	explicit			
		relationship) (Harte & Kinzig,	- no need for	- may be subject			
		1997; Kunin, 1998) is the	covariates	to some			
4		relationship between the area		errors/uncertainty			
		occupied by a species and the		from the models			
		sampling grain size. This		- requires to think			
		relationship is positive and its		carefully about			
		shape is characteristic of the		how to fit the			
		species distribution pattern		upscaling			
		(extent, patchiness,		functions			
		prevalence).		- may not be			
				possible to fit			
This article	is protected by copy	yright. All rights reserved		models for some			
				species - e.g. very			

Method		Brief description	Pros	Cons	Suitable for which rarity categorie	Examples / references	Input data -> Output calculated/ estimate*
					s?		
Modelling	Mark-release-	HM* using mark-recapture	- provides	- hypothesis-	All,	⁶⁴ Pollock et al.	PA+det ->
methods	recapture*	histories to estimate	accurate	driven	especially	1990;	росс
commonly	modelling (robust	population parameters	estimations of	- computationally	for Cat4,	⁶⁵ MacKenzie	
grouped	design)	(colonization, extinction,	population	intensive	Cat5,	et al. 2002;	
under "site-		etc.), occurrence probability,	parameters (e.g.		Cat6,	⁶⁶ MacKenzie	
occupancy*		and detectability. Requires to	population size,		Cat7 (low	2006;	
models"		fulfil the population closure	survivorship,		local	⁶⁷ Willson et	
		assumption between the	fecundity)		density)	al. 2011	
		temporal replicates and to	- provides		but for		
		have relatively good temporal	accurate		low local		
		replication (robust design).	estimations of		density, it		
		Can use covariates to	detectability		may be		
		estimate detectability and	(e.g. trap		challengin		
		other potential biases.	happiness/shyne		g to get		
			ss effects, time-		enough		
			varying capture,		data for		
			sex-dependent		reliable		
			detectability)		estimates		
			- thanks to the		-		
			robust design				
This article	is protected by copy	right. All rights reserved	principle, if one				
			has multiple				
			nas munipie				

Method		Brief description	Pros	Cons	Suitable	Examples /	Input data
					for which	references	-> Output
					rarity		calculated
					categorie		estimate*
					s?		
	Multi-scale	HM* site-occupancy model	- accounts for	- hypothesis-	All,	⁶⁸ Nichols et al.	PA+det ->
	occupancy models	that allows estimation of	the scale-	driven	providing	2008;	росс
		occupancy at different spatial	dependence of	- requires good	that	⁶⁹ Mordecai et	
		scales to account for different	occupancy	data with	sufficient	al. 2011.	
		scales of habitat,	estimation	sufficient spatial-	spatial-	⁷⁰ Pavlacky et	
		environmental, ecological or		temporal	temporal	al. 2012;	
		sampling influences; e.g. local		replicates and	replicates	⁷¹ Hagen et al.	
		habitat vs. landscape-scale		detections	are	2016;	
		effects. The approach			available		
		accounts for the lack of					
		independence of detections					
		within a sampling occasion					
		and use this dependence to					
		infer scale-specific occupancy,					
		namely the study area scale					
		and the site scale. This					
		method is a variation of the					
		classical site-occupancy					
		model robust design, except					
		that it does not model					
		seasonal colonization					

and extinction, but simply

Method		Brief description	Pros	Cons	Suitable for which	Examples / references	Input data
					rarity	references	calculated/
					categorie		estimate*
					s?		
N-mixture	Royle-Nichols	HM* that estimate species	- provides two	- requires a	All,	⁷² Royle &	PA+det ->
models	models (RN) or	occurrence probability using	useful estimates	sufficient amount	especially	Nichols 2003;	росс
	Bernoulli-Poisson	different submodels (and	: one for the	of spatio-	for Cat4,	⁷³ Kéry & Royle	
	N-mixture models	potentially different sets of	detection	temporal	Cat5,	2015	
	(for occurrences)	predictors) for the	probability and	replications in the	Cat6,		
		"detection" and the	one for the	data	Cat7 (low		
		"occurrence" processes. RN	occurrence	- requires good	local		
		model provides the	probability	sets of predictors	density)		
		conceptual links between the		for both the			
		N-mixture models for		detection and the			
		abundances and the classical		occurrence parts			
		site-occupancy* models. RN		of the model			
		can estimate abundances					
		from spatio-temporally					
		replicated measurements of					
		presences/absences, can					
		accommodate detection					
		heterogeneity when focusing					
		on occupancy and can link					
		occupancy and abundance					
		data in an integrated model.					
		Some people consider RN as					

Method	Brief description	Pros	Cons	Suitable for which rarity categorie s?	Examples / references	Input data -> Output calculated/ estimate*
N-mixture models	HM that estimate species	- provides two	- most of these	All,	⁷⁴ Welsh et al.	ab+det ->
for abundances	abundances using different	useful estimates	models require	especially	2000,	relative ab
	submodels (and potentially	: one for the	good quality and	for Cat4,	⁷⁵ Martin et al.	
	different sets of predictors)	detectability and	large amount of	Cat5,	2005,	
	for the "detection" and the	one for the	abundance data	Cat6,	⁷⁶ Joseph et al.	
	"abundance" processes. For	relative	with both spatial	Cat7 (low	2009 (zero-	
	instance, in "The N-mix"	abundances	and temporal	local	inflated N-	
	model, the detection	- provides fine	replications	density)	mixture	
	probability can be estimated	estimation of	(except zero-		models);	
	based on a binomial function	species relative	inflated and		⁷⁷ Royle 2004,	
	of some predictors assumed	abundances	hurdle models)		⁷⁸ Dénes et al.	
	as relevant to the detection	- with a	- computationally		2015 ("The N-	
	process (e.g. vegetation	sufficient	intensive		mix" model);	
	density). This estimation is	amount of data	- requires good		⁷³ Kéry & Royle	
	then incorporated in a	and in some	sets of predictors		2015	
	(mixed) Poisson model that	circumstances,	for both the		(Poisson-	
	estimates species abundances	some of these	detection and the		binomial/Pois	
	(based on predictors relevant	models can be	abundance parts		son-	
	to the species ecology) while	used relaxing the	of the model		Poisson/multi	
	weighting by the imperfect	population			nomial/densit	
	detection (weighted	closure			y models);	
	likelihood). Examples of N-	assumption			⁷⁹ Cunningham	

Method		Brief description	Pros	Cons	Suitable for which rarity	Examples / references	Input data -> Output calculated/
					categorie		estimate*
					s?		
Occupancy	Occupancy or	HM that permits	- can be used	- if the species of	All,	⁶⁸ Nichols et al.	PA+det ->
or	abundance	simultaneous use of data	with data that	interest is locally	especially	2008;	росс
abundance	modelling with	from multiple detection	are produced by	rare or solitary,	for Cat4,	⁸² Giraud et al.	ab+det ->
modelling	multiple detection	methods for inference about	different	and one of the	Cat5,	2016;	relative ab
with	methods	method-specific detection	sampling	detection devices	Cat6,	⁸³ Bowler et al.	
multiple		probabilities. The approach	methods and	is a method that	Cat7 (low	2019	
detection		accounts for the lack of	devices	retains (a trap) or	local		
methods		independence of detections	(provides device-	repels (a camera's	density)		
		within a sampling campaign	specific	flash) an			
		and use this dependence to	detection	individual upon			
		infer method-specific	probability	detection, then			
		occupancy and detectability.	estimates for use	the model needs			
			in survey design)	to be extended to			
				include different			
				device-specific			
				detection			
				probabilities that			
				differ based on			
				whether or not			
				the species was			
This article	is protected by copy	right. All rights reserved		detected by one			
		of the other					

Method	Brief description	Pros	Cons	Suitable	Examples /	Input data
				for which	references	-> Output
				rarity		calculated/
				categorie		estimate*
				s?		

^{*}P=presence only, PA=presence/absence, ab=abundance, pocc=probability of occurrence, det=detection probability, lik=likelihood

Literature cited in Tables 1, 2 & 3

- 1. Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biological Conservation 213, 280–294 (2017).
- 2. Sullivan, B. L. *et al.* Using open access observational data for conservation action: A case study for birds. *Biological Conservation* **208**, 5–14 (2017).
- 3. Deguines, N., Julliard, R., de Flores, M. & Fontaine, C. The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. *PLoS ONE* **7**, e45822 (2012).
- 4. Greig-Smith, P. Quantitative plant ecology. *Quantitative plant ecology.* (1964).
- 5. Diekmann, M., Kühne, A. & Isermann, M. Randomvs non-random sampling: Effects on patterns of species abundance, species richness and vegetation-environment relationships. *Folia Geobot* **42**, 179 (2007).
- 6. Hedgren, O. & Weslien, J. Detecting Rare Species with Random or Subjective Sampling: a Case Study of Red-Listed Saproxylic Beetles in Boreal Sweden: *Random or Subjective Sampling. Conservation Biology* **22**, 212–215 (2008).

- 7. Madow, W. G. On the Theory of Systematic Sampling, III. Comparison of Centered and Random Start Systematic Sampling. *The Annals of Mathematical Statistics* **24**, 101–106 (1953).
- 8. Fortin, M.-J., Drapeau, P. & Legendre, P. Spatial Autocorrelation and Sampling Design in Plant Ecology. Vegetatio 83, 209–222 (1989).
- 9. Thompson, W. Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters. (Island Press, 2013).
- 10. Krebs, C. J. & others. *Ecological methodology*. (Harper & Row New York, 1989).
- 11. Yoccoz, N. G., Nichols, J. D. & Boulinier, T. Monitoring of biological diversity in space and time. *Trends in Ecology & Evolution* **16**, 446–453 (2001).
- 12. Thompson, S. K. Adaptive Cluster Sampling. *Journal of the American Statistical Association* **85**, 1050–1059 (1990).
- 13. Thompson, S. K. Adaptive web sampling in ecology. Stat Methods Appl 22, 33–43 (2013).
- 14. Thompson, W. L. Towards reliable bird surveys: accounting for individuals present but not detected. *The Auk* **119**, 18–25 (2002).
- 15. Le Lay, G., Engler, R., Franc, E. & Guisan, A. Prospective sampling based on model ensembles improves the detection of rare species. *Ecography* **33**, 1015–1027 (2010).
- 16. Lin, Y.-P. *et al.* An optimal spatial sampling approach for modelling the distribution of species. in *Scaling in Ecology and Biodiversity Conservation* (Pensoft, 2014).
- 17. Aizpurua, O., Paquet, J.-Y., Brotons, L. & Titeux, N. Optimising long-term monitoring projects for species distribution modelling: how atlas data may help. *Ecography* **38**, 29–40 (2015).

- 18. Chiffard, J. *et al.* Adaptive niche-based sampling to improve ability to find rare and elusive species: simulations and field tests. *Methods in Ecology and Evolution* **n/a**, (2020).
- 19. Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M. & Thiers, B. M. *Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity*. https://peerj.com/preprints/2615v2 (2016) doi:10.7287/peerj.preprints.2615v2.
- 20. Bruelheide, H. et al. sPlot A new tool for global vegetation analyses. Journal of Vegetation Science 30, 161–186 (2019).
- 21. Risely, K. et al. Breeding Bird Survey 2009. 559 (2010).
- 22. Jiguet, F., Devictor, V., Julliard, R. & Couvet, D. French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. *Acta Oecologica* **44**, 58–66 (2012).
- 23. Mackenzie, D. I. & Royle, J. A. Designing occupancy studies: general advice and allocating survey effort. *Journal of Applied Ecology* **42**, 1105–1114 (2005).
- 24. MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. (Elsevier, 2017).
- 25. Rosenstock, S. S. et al. Landbird counting techniques: current practices and an alternative. The Auk 119, 46–53 (2002).
- 26. Buckland, S. T., Rexstad, E. A., Marques, T. A. & Oedekoven, C. S. *Distance Sampling: Methods and Applications*. (Springer, 2015).
- 27. Grimm-Seyfarth, A. & Klenke, R. Wie findet man schwer zu erfassende Arten? Vorteile und Limitierungen von Artenspürhunden. in Faszinosum Spürhunde Dem Geruch auf der Spur. Tagungsergebnisse des 4. Symposiums für Odorologie im Diensthundewesen an der Hochschule Bonn-Rhein-Sieg. (eds. Schüler, C. & Kaul, P.) vol. Band 2 40–47 (2019).

- 28. Grimm-Seyfarth, A. *et al.* Performance of detection dogs and visual searches for scat detection and discrimination amongst related species with identical diets. *Nature Conservation* **37**, 81 (2019).
- 29. Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations. (Elsevier Science, 2002).
- 30. Schüttler, E. et al. Habitat use and sensitivity to fragmentation in America's smallest wildcat. Mamm Biol 86, 1–8 (2017).
- 31. Jeliazkov, A. *et al.* Large-scale semi-automated acoustic monitoring allows to detect temporal decline of bush-crickets. *Global Ecology and Conservation* **6**, 208–218 (2016).
- 32. Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution 29, 358–367 (2014).
- 33. Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. & Gough, K. C. REVIEW: The detection of aquatic animal species using environmental DNA a review of eDNA as a survey tool in ecology. *J Appl Ecol* **51**, 1450–1459 (2014).
- 34. Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. "Sight-unseen" detection of rare aquatic species using environmental DNA. *Conservation Letters* **4**, 150–157 (2011).
- 35. Wilcox, T. M. *et al.* Robust Detection of Rare Species Using Environmental DNA: The Importance of Primer Specificity. *PLOS ONE* **8**, e59520 (2013).
- 36. Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. *Biodivers Conserv* **29**, 2089–2121 (2020).
- 37. Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: pooling survey and collection data for multiple species. *Methods Ecol Evol* **6**, 424–438 (2015).

- 38. Phillips, S. J. *et al.* Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. *Ecological Applications* **19**, 181–197 (2009).
- 39. Nekola, J. C., Šizling, A. L., Boyer, A. G. & Storch, D. Artifactions in the Log-Transformation of Species Abundance Distributions. *Folia Geobot* **43**, 259–268 (2008).
- 40. Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. *Ecological Modelling* **135**, 147–186 (2000).
- 41. Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? *Methods in Ecology and Evolution* (2012) doi:10.1111/j.2041-210X.2011.00172.x.
- 42. Dormann, F. C. *et al.* Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. *Ecography* **30**, 609–628 (2007).
- 43. Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. & Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. *Biological Conservation* **166**, 221–230 (2013).
- 44. El-Gabbas, A. & Dormann, C. F. Improved species-occurrence predictions in data-poor regions: using large-scale data and bias correction with down-weighted Poisson regression and Maxent. *Ecography* **41**, 1161–1172 (2018).
- 25. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Zero-truncated and zero-inflated models for count data. *Mixed effects models and extensions in ecology with R* 261–293 (2009).
- 46. Keil, P., Belmaker, J., Wilson, A. M., Unitt, P. & Jetz, W. Downscaling of species distribution models: a hierarchical approach. *Methods in Ecology and Evolution* **4**, 82–94 (2013).

- 47. Rocchini, D. *et al.* Anticipating species distributions: Handling sampling effort bias under a Bayesian framework. *Science of The Total Environment* **584–585**, 282–290 (2017).
- 48. Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. *Journal of Biogeography* **41**, 629–643 (2014).
- 49. Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. *Ecological Modelling* **275**, 73–77 (2014).
- 50. Araújo, M. B. & New, M. Ensemble forecasting of species distributions. *Trends in Ecology & Evolution* 22, 42–47 (2007).
- 51. Lomba, A. *et al.* Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. *Biological Conservation* **143**, 2647–2657 (2010).
- 52. Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. *Methods in Ecology and Evolution* **6**, 1210–1218 (2015).
- 53. Marcot, B. G., Steventon, J. D., Sutherland, G. D. & McCann, R. K. Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation. *Canadian Journal of Forest Research* (2006) doi:10.1139/x06-135.
- Marcot, B. G. *et al.* Characterizing Species at Risk II: Using Bayesian Belief Networks as Decision Support Tools to Determine Species Conservation Categories Under the Northwest Forest Plan. *Ecology and Society* **11**, (2006).
- 55. Smith, C. S., Howes, A. L., Price, B. & McAlpine, C. A. Using a Bayesian belief network to predict suitable habitat of an endangered mammal The Julia Creek dunnart (Sminthopsis douglasi). *Biological Conservation* **139**, 333–347 (2007).

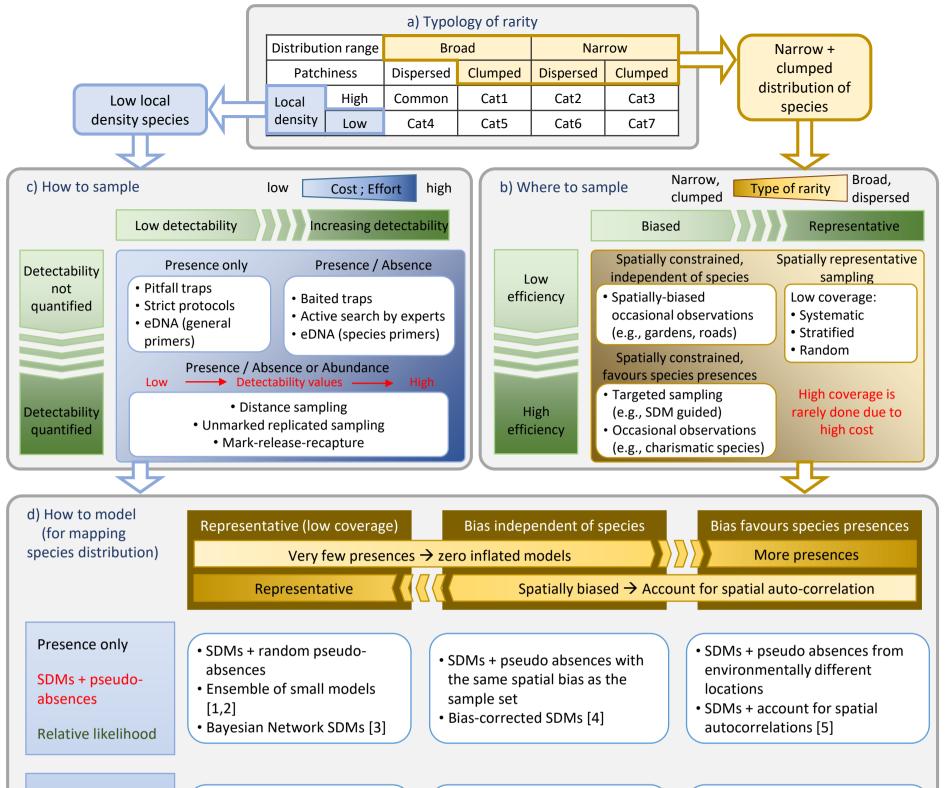
rtic

- 56. Aguilera, P. A., Fernández, A., Reche, F. & Rumí, R. Hybrid Bayesian network classifiers: Application to species distribution models. *Environmental Modelling & Software* **25**, 1630–1639 (2010).
- 57. Chen, S. H. & Pollino, C. A. Good practice in Bayesian network modelling. *Environmental Modelling & Software* **37**, 134–145 (2012).
- 58. MacCracken, J. G., Garlich-Miller, J., Snyder, J. & Meehan, R. Bayesian belief network models for species assessments: An example with the Pacific walrus. *Wildlife Society Bulletin* **37**, 226–235 (2012).
- 59. Hamilton, S. H., Pollino, C. A. & Jakeman, A. J. Habitat suitability modelling of rare species using Bayesian networks: Model evaluation under limited data. *Ecological Modelling* **299**, 64–78 (2015).
- 60. Van Echelpoel, W. *et al.* Chapter 6 Species distribution models for sustainable ecosystem management. in *Developments in Environmental Modelling* (eds. Park, Y.-S., Lek, S., Baehr, C. & Jørgensen, S. E.) vol. 27 115–134 (Elsevier, 2015).
- Azaele, S., Cornell, S. J. & Kunin, W. E. Downscaling species occupancy from coarse spatial scales. *Ecological Applications* **22**, 1004–1014 (2012).
- Barwell, L. J., Azaele, S., Kunin, W. E. & Isaac, N. J. B. Can coarse-grain patterns in insect atlas data predict local occupancy? *Diversity and Distributions* **20**, 895–907 (2014).
- 63. Marsh, C. J., Gavish, Y., Kunin, W. E. & Brummitt, N. A. Mind the gap: Can downscaling Area of Occupancy overcome sampling gaps when assessing IUCN Red List status? *Diversity and Distributions* **25**, 1832–1845 (2019).
- 64. Pollock, K. H., Nichols, J. D., Brownie, C. & Hines, J. E. Statistical Inference for Capture-Recapture Experiments. *Wildlife Monographs* 3–97 (1990).
- 65. MacKenzie, D. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).

- 66. MacKenzie, D. I. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. (Elsevier, 2006).
- 67. Willson, J. D., Winne, C. T. & Todd, B. D. Ecological and methodological factors affecting detectability and population estimation in elusive species. *The Journal of Wildlife Management* **75**, 36–45 (2011).
- 68. Nichols, J. D. *et al.* Multi-scale occupancy estimation and modelling using multiple detection methods. *Journal of Applied Ecology* **45**, 1321–1329 (2008).
- 69. Mordecai, R. S., Mattsson, B. J., Tzilkowski, C. J. & Cooper, R. J. Addressing challenges when studying mobile or episodic species: hierarchical Bayes estimation of occupancy and use. *Journal of Applied Ecology* **48**, 56–66 (2011).
- 70. Pavlacky, D. C., Blakesley, J. A., White, G. C., Hanni, D. J. & Lukacs, P. M. Hierarchical multi-scale occupancy estimation for monitoring wildlife populations. *The Journal of Wildlife Management* **76**, 154–162 (2012).
- 71. Hagen, C. A. *et al.* Multiscale occupancy modeling provides insights into range-wide conservation needs of Lesser Prairie-Chicken (Tympanuchus pallidicinctus). *cond* **118**, 597–612 (2016).
- 72. Royle, J. A. & Nichols, J. D. Estimating abundance from repeated presence-absence data or point counts. *Ecology* **84**, 777–790 (2003).
- 73. Kéry, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS: Volume 1:Prelude and Static Models. (Academic Press, 2015).
- 74. Welsh, A. H., Cunningham, R. B. & Chambers, R. L. Methodology for estimating the abundance of rare animals: seabird nesting on North East Herald Cay. *Biometrics* **56**, 22–30 (2000).
- 75. Martin, T. G. *et al.* Zero tolerance ecology: improving ecological inference by modelling the source of zero observations: Modelling excess zeros in ecology. *Ecology Letters* **8**, 1235–1246 (2005).

- 76. Joseph, L. N., Elkin, C., Martin, T. G. & Possingham, H. P. Modeling abundance using N-mixture models: the importance of considering ecological mechanisms. *Ecological Applications* **19**, (2009).
- 77. Royle, J. A. N-Mixture Models for Estimating Population Size from Spatially Replicated Counts. *Biometrics* **60**, 108–115 (2004).
- 78. Dénes, F. V., Silveira, L. F. & Beissinger, S. R. Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. *Methods Ecol Evol* **6**, 543–556 (2015).
- 79. Cunningham, R. B. & Lindenmayer, D. B. Modeling count data of rare species: some statistical issues. *Ecology* **86**, 1135–1142 (2005).
- 80. Fletcher, D., MacKenzie, D. & Villouta, E. Modelling skewed data with many zeros: a simple approach combining ordinary and logistic regression. *Environmental and ecological statistics* **12**, 45–54 (2005).
- 81. Chandler, R. & Hepinstall-Cymerman, J. Estimating the spatial scales of landscape effects on abundance. *Landscape Ecol* **31**, 1383–1394 (2016).
- 658 (2016). Giraud, C., Calenge, C., Coron, C. & Julliard, R. Capitalizing on opportunistic data for monitoring relative abundances of species. *Biom* **72**, 649–658 (2016).
- 83. Bowler, D. E. *et al.* Integrating data from different survey types for population monitoring of an endangered species: the case of the Eld's deer. *Scientific Reports* **9**, 7766 (2019).
- 84. Austin, M. P., Cunningham, R. B., & Fleming, P. M.. New Approaches to Direct Gradient Analysis Using Environmental Scalars and Statistical Curve-Fitting Procedures. *Vegetatio*, *55*(1), 11–27 (1984).
- 85. Hao, T., Elith, J., Guillera-Arroita, G., & Lahoz-Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. *Diversity and Distributions*, *25*(5), 839–852. (2019). https://doi.org/10.1111/ddi.12892

86. Hao, T., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. *Ecography*, *43*(4), 549–558 (2020). https://doi.org/10.1111/ecog.04890



Presence/absence

SDMs

Relative probability of occurrence

- Regular SDMs (if enough data)
- Ensemble of small models [1,2]
- Bayesian Network SDMs [3]
- Spatially explicit SDMs
- Multi-scale SDMs [6,7]
- SDMs with model-based bias correction [8]
- Geographically-structured SDM [9]
- SDMs using spatial-thinning [10]
- SDMs with model-based bias correction [8]

Presence/absence + detectability

Occupancy models

Probability of occurrence

- Occupancy models (closure, with good temporal replications, Robust Design)
 [11]
- Royle-Nichols (RN) models (possibly estimate abundance) [12]
- Advanced occupancy models (with covariates in detectability)
- Spatial-explicit RN models (with random effects/covariates) [13]
- Advanced mark-recapture models [14]
- RN models (with random effects/covariates)
- Multi-scale occupancy models [15]

Abundance + detectability

N-Mixture models

Relative abundance

- Bias-corrected SDMs with multi-source data [16,17]
- Zero-inflated N-mixture models [18]
- Poisson-binomial N-mixture models (with random effects/covariates)
- Multinomial N-mixture models (MRR, possible open pop)
- Spatially explicit density models[13]
- Poisson-Binomial N-mixture models (with random effects/covariates)
- Poisson-Poisson N-mixture model (incl. false positive prob.) [13]
- Hurdle models (zero-truncated)
 [19]
- Multi-scale N-mixture models [20]

Input → Model → Output