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Abstract 10 

Natural organic matter (NOM) components measured with ultra-high resolution mass spectrometry 11 

are often assessed by molecular formula-based indices, particularly related to their aromaticity, which 12 

are further used as proxies to explain biogeochemical reactivity. An aromaticity index was proposed 13 

to account for hereto-atom contribution to double bonds, but relies on assumptions particularly with 14 

respect to carboxylic acids, abundant functional groups in NOM components. Here, we propose a new 15 

constrained aromaticity index (AIcon) based on the measured distribution of carboxylic groups among 16 

individual components of NOM which was obtained by deuteromethylation and Fourier-transform ion 17 

cyclotron resonance mass-spectrometry (FTICR MS). Labelling of carboxyl groups in NOM 18 

compounds from diverse sources (coal, marine, peat, permafrost, blackwater river, and soil) revealed 19 

that the most probable number of carboxylic groups was two, which enabled to set a reference point 20 

n=2 for carboxyl-accounted AIcon calculation. The proposed index was evaluated against the measured 21 

number of carboxyl groups showing that it provided the smallest errors for aromaticity calculation for 22 

all NOM samples under study as well as for individual natural compounds obtained from the Coconut 23 
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database, which were significantly less oxidized as compared to NOM. Unlike proposed AIcon, 24 

conventional AI and AImod resulted in significant underestimation of compound aromaticity for both 25 

NOM and individual compounds from the database. In particular, AIcon performed better than AImod 26 

for all compound classes in which aromatic moieties are expected: aromatics, condensed aromatics 27 

and unsaturated compounds. Therefore, AIcon referenced with two carboxyl groups is preferred over 28 

conventional AI and AImod for biogeochemical studies where the aromaticity of compounds is 29 

important to understand the transformations and fate of NOM compounds. 30 

Keywords NOM, humic substances, FTICR MS, carboxylic groups, aromaticity index, 31 

deuteromethylation, isotopic labeling 32 

Synopsis  Enumeration of carboxylic groups enabled to refine aromaticity index, which is used in 33 

majority of environmental studies engaging mass spectrometry.  34 



INTRODUCTION 35 

 Natural organic matter (NOM) and humic substances (HS) are ubiquitous in various 36 

environments, for example, freshwater and marine systems, permafrost and agricultural soils with 37 

extensive biodegradation processes, as well as in caustobiolithes. This makes them an important part 38 

of the global carbon cycle and many studies are devoted to the mechanisms of NOM formation, 39 

transformation and storage.1,2 The rates and the extent of transformation of these forms of organic 40 

matter (OM) depend on environmental conditions (e.g. the availability of oxygen) and the source 41 

biomass composition.3,4 However, diagenesis ultimately leads to the accumulation of aromatic and\or 42 

oxygen-rich structures, which are resistant towards further biodegradation and the extent of 43 

degradation can be evaluated by the aromaticity of NOM samples.  This concept was developed from 44 

a vast number of studies utilizing the optical properties of NOM and HS (mainly absorbance and 45 

fluorescence). For example, UV/Vis absorbance is commonly used to characterize both the chemical 46 

characteristics (molecular weight or aromaticity) and the dynamics of OM.5  Several indices were 47 

proposed to characterize aromaticity and the degree of OM transformation: ratio of absorbance values 48 

at 465 and 665 nm (E4/E6 ratio), long-wavelength slope of absorption spectrum, fluorescence index6 49 

and fluorescence spectrum asymmetry.7 However, optical indices only reflect the mean or bulk 50 

character of OM based on empirical relationships. To reveal molecular-level transformation during 51 

biogeochemical processing and diagenesis, methods are required which directly assess the aromatic 52 

and aliphatic building blocks of NOM and HS.  53 

 In this regard, 1H, 13C and 2D NMR spectroscopy is highly suited to provide quantitative and 54 

qualitative information about aromatic moieties in molecules. Depending on the experiment, it is 55 

possible to determine the contribution of aromatic carbon atoms, aromatic protons and specific 56 

functional groups and their chemical environment.8 However, in case of complex mixtures like NOM 57 

and HS this information cannot be broken down to the individual molecular level due to broad peaks 58 



from significant overlap of chemical shifts.9 Recently Bell with co-workers revealed possible aromatic 59 

moieties from lignin in peat humic substances via combining 13C isotopic labeling and specific 60 

spectrum-acquisition conditions (pseudo 4D-NMR).10  61 

Mass spectrometry (MS), in contrast to NMR, provides information on a single molecular 62 

composition by determination its exact molecular mass of ions and their structural fragments. For 63 

example, reduction of polar components from Suwannee River Fulvic Acid (SRFA, an OM reference 64 

standard) followed by 2D gas-chromatography (GC) coupled to time-of-flight mass spectrometry 65 

enabled to determine isomeric alicyclic hydrocarbons and terpenoids.11 However, GC-MS analysis is 66 

mostly limited to aliphatic compound and not easily applicable for aromatic and polar species. Hence, 67 

NOM and HS studies mostly utilize direct infusion (DI) of dissolved samples using soft ionization 68 

methods like electrospray ionization (ESI) coupled to ultra-high resolution mass spectrometry 69 

UHRMS (e.g. Fourier-transform ion cyclotron resonance (FTICR) and Orbitrap mass spectrometry), 70 

which routinely resolve thousands of exact molecular compositions in a single sample.9,12–14 Despite 71 

sufficient mass resolution provided of UHRMS, tandem mass-spectrometry analysis of NOM and HS 72 

mixtures is challenging and not routinely applied for such mixtures15,16. At the same time each 73 

molecular composition detected by UHRMS may correspond to a large number of structural isomers17 74 

and only limited formula-based structural information may be derived from these experiments. 75 

 One example is the formula-based estimation of component aromaticity, which is related to 76 

the unsaturation state of molecules. Aromaticity estimation is widely used and often connected with 77 

optical properties18 (e.g. correlation with optical density attributed to aromatic chromophores), 78 

chemical properties19 (e.g. photo-lability) and in biological experiments in which microorganisms 79 

transform components of NOM.20  For highly aromatic samples (e.g. coal, petroleum, etc.), 80 

aromaticity is correlated to double bond equivalent (DBE) and the DBE/C ratio where e.g. condensed 81 

aromatic structures require DBE/C ≥ 0.7.21 For organic aerosol the aromaticity equivalent (Xc) was 82 

proposed to attribute compounds to aromatic and condensed aromatic species by subtracting from 83 



DBE the number of mathematically possible CH2 fragments.22 For heteroatom-rich NOM, aromaticity 84 

index (AI) and modified aromaticity index (AImod) were introduced as proxies to account for DBE and 85 

hence aromaticity attributed to carbon skeleton.23,24 AI and AImod assume that all oxygen atoms and 86 

half of oxygen atoms form double bonds with sp2-hybridized carbon, respectively. Sulfur and 87 

nitrogen, in contrast, are always considered to form π-bonds with carbon, both in AI and AImod, 88 

introducing additional uncertainty. The advantage of AI indices over Xc is the normalized range from 89 

0 to 1. AI is considered as the most conservative aromatic system approximation for NOM/HS and 90 

despite some uncertainties of these indices, AI and AImod currently serve as major structural 91 

parameters in many geochemical studies of NOM/HS4,18,25. 92 

In our opinion, due to the fact that estimation of molecule aromaticity is often connected to 93 

presumed biological and chemical properties of NOM in biogeochemical studies, this approach 94 

resulted in appearance of important issues in the field. For example, AI thresholds are used as direct 95 

marker of the presence or absence of aromatic units in molecules and not as measure of “mean” 96 

aromaticity as it has been proposed in the original paper by Koch and Dittmar23,24. For example, 97 

phenols with saturated substituents might be excluded from the list of aromatic components assigned 98 

by AI or AImod values while from the chemical point of view they are aromatic and characterized by 99 

all chemical properties of aromatic compounds.  In addition, we have shown that molecules with the 100 

same low AImod value (e.g. 0.3) may correspond to isomers with and without aromatic rings depending 101 

on the geochemical origin.26 Hence, conclusions about aromatic character of molecules and its 102 

connection to reactivity in environment can easily be false. One of the reason for the false-assignment 103 

of structures using AI or AImod is the underestimation of phenolic and methoxy-groups, which are 104 

abundant in terrestrial NOM samples and supposedly rare in marine DOM and microbial-derived 105 

samples.27 Another problem is that originally NMR-based distribution of carbon-oxygen bonds in 106 

marine DOM was directly used to estimate number of COOH groups for  FTICR MS-based AImod.23 107 

However, such approximation ignores issues of using NMR versus DI ESI MS, since the latter ionizes 108 



only a part of the sample with possible distortion of relative intensities: e.g. charge suppression during 109 

ionization28 and selectivity of ESI29,30 have been reported. Hence, a refinement of formula-based 110 

aromaticity index is needed.   111 

The objective of this study was to explore the distribution of carboxyl groups among individual 112 

components of NOM and HS of different origin and to provide a better evidence-based aromaticity 113 

index calculated with the information on the COOH groups. Despite other functional groups are 114 

integrally presented in NOM31, the detailed labeling experiments confirmed that next to carbon-115 

backbone (C=C) carboxylic groups (C[=O]OH) contributed most to DBE. Hence, estimation of the 116 

number of carboxylic groups will enable to provide a better approximation for molecule aromaticity.  117 

MATERIALS AND METHODS 118 

Solvents and other reagents used in this study were commercially available. Methanol of 119 

HPLC grade (Lab-Scan) was used for elution and dissolution of sample. High-purity distilled water 120 

(18.2 MΩ) was prepared using a Millipore Simplicity 185 system. D-enrichment of deuterated 121 

methanol (CD3OD). Bond Elut PPL (Priority PolLutant, Agilent Technologies) cartridges (50 mg, 1 122 

mL) were used for isolation and purification of the parent and the labeled samples. PPL represents a 123 

modified styrene-divinylbenzene polymer designed for polar organic compounds extraction. Raw 124 

mass-spectrometric data for deuteromethylated samples of various origin were obtained from the 125 

previous studies.26,31,32 Additionally, top soil pore water from a riparian zone in a headwater catchment 126 

(Bavarian Forest National Park, Germany) and North Sea water (54.132670°N, 7.891330°E) were 127 

analyzed using deuteromethylation method. The list of all samples and their description is presented 128 

in Table S1. The number of assigned CHO–only and other formulae are presented in Tables S2. 129 

Labeling procedures 130 

Carboxylic groups in the parent samples were selectively deuteromethylated following the previously 131 

developed regioselective method.32 Briefly: SOCl2 (60 μL) was added dropwise to a solution of 0.5 132 



mg of OM in 1.5 mL CD3OD under continued stirring and ice-cooling. The reaction mixture was then 133 

refluxed for 4 h (6 h for the marine sample) and dried under vacuum. Solid residue was purified using 134 

solid-phase extraction (SPE) from aqueous solution using styrene-divinylbenzene sorbens (Agilent, 135 

Bond Elut PPL) according to the procedure described for DOM samples.33 136 

Determination of labeling series by FTICR mass spectrometry 137 

Detailed information on FTICR MS measurements can be found elsewhere.26,31,32 For COOH-138 

groups enumeration a Python-based script has been developed which enabled fully automatic 139 

assignment. Similar to previously developed workflow34 the algorithm includes a juxtaposition of raw 140 

FTICR mass spectra of labeled and parent samples and formulae lists of parent samples with 141 

subtraction of one proton to reproduce m/z value of negative ions. The algorithm facilitates extraction 142 

and enumeration of peak series with mass differences corresponding to the deuteromethylation (m/z 143 

difference of 17.03448) and filtration of the obtained results based in the following heuristic rules for 144 

the number of carboxylic groups (n): number of oxygen atoms  (O) inmolecular formula must be ≥ 145 

2n; in case of a high deuteromethylation yield and the absence of the parent peak, first peak in the 146 

labeling series must correspond to n < 3; labeling series must be continuous without gaps; peaks 147 

corresponding to the labeling series must absent in the parent mass spectra (important for peaks with 148 

low intensities); Mass error (between peaks of a labeling series) must be below 0.0003 m/z, which 149 

was optimized based on the FTICR MS instrument performance. The applied algorithm considers 150 

stepwise small moiety addition (i.e. H vs CD3) to the ions, enabling fast and robust detection of 151 

labeling series.  152 

Data treatment 153 

Visualization of data has been performed with Python library Matplotlib (https://matplotlib.org/). 154 

Statistical analysis has been performed with Python libraries numpy and pandas. Three aromaticity 155 

indices were calculated according to equations 1-3. Experimental aromaticity index - AIexp was 156 

calculated according to eq. 3 with experimentally determined n. 157 
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 𝐴𝐴𝐴𝐴 = 1+𝐶𝐶−𝑂𝑂−0.5𝐻𝐻
𝐶𝐶−𝑂𝑂

  (1) 158 

 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 = 1+𝐶𝐶−0.5𝑂𝑂−0.5𝐻𝐻
𝐶𝐶−0.5𝑂𝑂

 (2) 159 

 𝐴𝐴𝐴𝐴𝑐𝑐𝑚𝑚𝑐𝑐 = 1+𝐶𝐶−(𝐶𝐶𝑂𝑂𝑂𝑂𝐻𝐻)𝑛𝑛−0.5𝐻𝐻
𝐶𝐶−(𝐶𝐶𝑂𝑂𝑂𝑂𝐻𝐻)𝑛𝑛

 (3) 160 

Natural compounds database 161 

To assess the AI value for individual compounds, a local copy of Collection of Open Natural Products 162 

(Coconut) database35 was established. For each compound in the database the natural product likeness 163 

(NPL) score was calculated following Ertl et al.36 The local minimum (0.3) of the distribution of NPL 164 

vales was used to select compounds for further analysis (Fig. S1). For manipulation with structures 165 

from the database a Python library RDkit (https://www.rdkit.org/) was used. For each compound the 166 

number of COOH-groups was extracted using fully automated algorithm37 and AI, AImod and AIcon 167 

were calculated according to eq. 1-3. Only CHO compounds were considered for further evaluation 168 

to exclude structures, which can not be ionized by the negative ESI. 169 

In-silico molecular formulae dataset 170 

To further extend the analysis to all possibilities of COOH-functionality regardless of the actual 171 

molecular existence, all possible CHO-molecular compositions were generated in-silico as it has been 172 

described elsewhere.38 In brief: formulae were generated in the range of molecular weights from 200 173 

to 800 Da using integer atomic weights of elements (e.g. 12, 1, 16). Subsequently, formulae were 174 

filtered according to the typical NOM and HS compositional space - 0.27 ≤ H/C ≤ 2.2, 0 < O/C ≤ 139 175 

and Senior’s rules, which estimate the plausibility of chemical graph existence.40 This resulted in 176 

21,617 CHO formulae in the test dataset. Additionally, to each individual formula all possible numbers 177 

of carboxylic groups were assigned (Table S3). For example, molecule with five oxygen atoms in 178 

formula may contain zero, one and two COOH-groups in its structure and all three cases were added 179 

to the dataset. AI, AImod and AIcon were calculated according to eq. 1-3 for the whole dataset. 180 

https://www.rdkit.org/


RESULTS AND DISCUSSION 181 

Distribution of carboxylic groups in HS and NOM samples 182 

We collected data for eleven samples from different origins (coal, marine, peat, permafrost, black-183 

water river, and soil) cover a broad range of molecular composition and structural diversity (Table 184 

S1). The distributions of experimentally determined COOH-groups are shown in Fig. 1 for all samples. 185 

In all cases carboxylic groups were assigned to over one thousand molecular formulae based on CD3-186 

labeling and their distribution in the molecular H/C vs O/C space are shown in Fig. S2. For terrestrial 187 

samples isolated from peat and coal the majority of compounds possessed between zero and two 188 

carboxylic groups. A similar result was obtained for soil extracts but its fractions isolated at pH 2 and 189 

pH 3 included also higher number of formulae with three and four carboxylic groups. Surprisingly, 190 

synthetic BP-Cx sample obtained by oxidation of lignin hydrolysate was dominated by species with 191 

two to four COOH-groups, which indicates drastic oxidation of primary alcohols in lignin moieties 192 

during reaction.41 Top soil porewater (TSDOM) contained the largest number of polycarboxylic acids 193 

while marine (NSDOM) and riverine (SRFA) DOM also contained a wide range of molecules with 194 

up to six COOH-groups. It should be noted that peak series from deuteromethylation typically consist 195 

of multiple ions with different numbers of COOH.32 The contribution of isomers (with variable 196 

number of COOH groups) to the observed peak series cannot be elaborated without applying 197 

chromatography or other separation methods.42–44 Therefore, the experimental setup used in this study 198 

results in an upper estimation of carboxylic group functionality for each formula. 199 



 200 

Figure 1. Distribution of carboxylic (COOH) groups in formulae from various NOM and HS samples as 201 
determined by deuteromethylation and FTICR MS. For a description of the samples refer to Table S1. 202 

 203 

Despite clear differences in carboxylic functionality between samples the maximum of COOH 204 

distribution correspond to one and two carboxylic groups per molecule for all samples, even for the 205 

most acidic, which was obtain by acid-base fractionation of soil water extract (DP-pH2; Fig 1).26 206 

Consequently also the overall distribution of COOH in formulae and their contribution to the total 207 

intensity across all samples revealed overall maxima at one and two COOH-groups (Fig. S3). 208 

Comparing this to the distribution of oxygen for (all and COOH-assigned) formulae in each sample 209 

(Fig. S4) and taking into account that most of the NOM components may contains no more than two 210 

carbonyl groups,45,46 we conclude an overall high contribution of functional groups with sp3-211 

hybridized oxygen atoms: alcohols, phenols and ethers explaining the remainder of oxygen atoms 212 

(Fig. S5). This indicates that in most cases the actual COOH-abundance on OM is highly 213 

overestimated by AI and AImod (eq. 1-2) and the carbon skeleton aromaticity is likely significantly 214 

higher than it is deduced even from AImod.24 215 



In order to deeper examine the estimation of COOH-groups used for conventional AImod, 216 

formulae distribution with different amount of assigned COOH-groups in formulae was obtained for 217 

mass ranges between 200 to 800 Da (Fig. 2). The number of COOH-groups is mostly independent on 218 

the mass and the maximum number of formulae were assigned with two COOH-groups for a broad 219 

range of masses.  220 

 221 

Figure 2. Number of formulae with different number of carboxylic groups as determined by deuteromethylation 222 
and FTICR MS. Color corresponds to the proportion of the number of COOH-groups (0-7) in each mass range. 223 

 224 

Distribution of carboxylic groups in natural compounds 225 

In order to further investigate the importance of COOH-functionality determination on aromaticity 226 

estimation we evaluated compounds in the largest database of individual natural compounds, the 227 

Coconut database. Only compounds with NPL-score exceeding 0.3 were considered to exclude 228 

synthetic compounds. The filtered database contained 161 316 structures (only CHO molecules) 229 

corresponding to 14 485 unique molecular formulae. In fact, most natural compounds in the mass 230 

range between 100 and 2000 Da do not contain any COOH-group and only a fraction of compounds 231 

contains one or more COOH (Fig. 3A) although these compounds are overall rich in oxygen (Fig. 232 

3B).  233 



 234 

Figure 3. Distribution of natural compounds from Coconut database35 according to the number of (A) 235 
carboxylic groups (note log scale), (B) oxygen atoms.  236 

 237 

Natural products in the Coconut database are by definition non-degraded compounds often 238 

containing long-aliphatic substituents adjacent to the alicyclic or aromatic cores and non-oxidized 239 

functional groups – alcohols and even aldehydes. Such saturated compounds are not resistant to 240 

biodegradation in the environment and may only be found (intact or minor transformed) in permafrost 241 

NOM, as deduced from NMR spectroscopy studies47,48 while polyphenols without carboxylic groups 242 

present in the database are widely distributed in various eco-systems. Overall, NOM and HS were 243 

characterized by having the highest probability for n(COOH) = 2, while COOH-groups are mostly 244 

absent in individual structures isolated from nature.  For further analysis we considered zero and two 245 

COOH groups as reference points which can be inserted into eq. 3 as number of COOH.   246 

 247 

Carboxylic groups reference points for NOM and HS components aromaticity estimation 248 

For the set of samples for which the number of COOH-groups were experimentally determined, an 249 

experimental aromaticity index (AIexp) was derived. This index was further used as reference for 250 

statistical evaluation of different formula-based, calculated AI indices – AI, AImod and AIcon (eq. 1-3), 251 

the latter with two values (n = 0, 2) for COOH-groups according to the experimentally determined 252 

COOH-group distributions (Fig. S3). The calculated indices for HS and NOM components are plotted 253 



versus experimental aromaticity index AIexp (Fig. 4A-D). Expectedly, both AI and AImod mostly 254 

underestimate the compound aromaticity. Actually, original AI is calculated assuming that all oxygen 255 

atoms are bound to sp2-hybridized carbon (i.e. C=O), which strongly reduces the available DBE to 256 

account for aromatic moieties in oxygen-rich NOM formulae. Expectedly for AImod, with the 257 

approximation of COOH groups covering all oxygen atoms (eq. 2), aromaticity can be estimated more 258 

accurately than AI, but in most cases experimentally derived aromaticity it is still significantly 259 

underestimated by AImod. Interestingly the NSDOM possessed a distinct shift toward lower number 260 

of non-carboxylic oxygen atoms when considering CHO-only formulae (Fig. S5B), corroborating 261 

NMR-based estimates of COOH functionalities for calculate AImod for marine DOM. For some 262 

samples there is indeed a connection between COOH-content and oxygen number (e.g. BP-Cx-1 and 263 

TSDOM) and the maximum of the number of formulae for each number of COOH approaches O/2 264 

(Fig. S6), but most of the formulae are still below this upper threshold. The overall best (i.e. most 265 

accurate) approximation of AIexp was obtained with the constant number of COOH groups (n(COOH) 266 

= 2) in eq. 3, which was chosen as reference point (Fig. 3E,F).  267 

Calculation of AIcon using n(COOH) = 2 may result in underestimation of aromaticity, e.g. for 268 

polyphenols with a lack of carboxylic groups. Using n(COOH) = 0 in eq. 3 results in the 269 

transformation of AIcon to trivial DBE/C (in case of CHO), which ignores all oxygenated functional 270 

group with double bonds. Consequently, aromaticity of NOM and HS in that case is strongly 271 

overestimated (Fig. 3С). Despite simplification if using constant value of n(COOH) AIcon provides 272 

significantly better results as compared to AImod also for individual, biogeochemically diverse samples 273 

(Fig. S7). Only for the synthetic BP-Cx-1 sample, error distribution of AImod was comparable to the 274 

AIcon with n=2 whereas even for the marine sample, AIcon with n=2 resulted in a more accurate 275 

estimate as compared to AImod.  276 



 277 

Figure 4. A-D) Experimental AI index vs estimated aromaticity obtained by eqs. 1-3 with n(COOH) fixed to 0 278 
and 2 for eq. 3 for all samples under study. E,F) Error distribution for calculated aromaticity indices for all 279 
NOM and HS samples combined against experimentally obtained AI. G,H) Error distribution for aromaticity 280 
indices for all Coconut CHO compounds against structure-derived AI. 281 

 282 

 The statistical evaluation of aromaticity indices was also performed for the Coconut database, 283 

in which the number of COOH-groups was directly extracted from the structures. Exact structure-284 

derived aromaticity index vs estimated aromaticity plots are presented in Fig. S8 and the 285 

corresponding error distribution shown in Fig. 4(G,H). Obviously, AIcon with n(COOH) = 0 yielded 286 

best results since the prevailing number of structures in Coconut are devoid of carboxylic groups. 287 

However, taking into account that most of the database compounds are less oxidized as compared to 288 

NOM and HS it was of interest to examine conventional AI and AImod for natural compounds. Clearly, 289 

approximations of AI and AImod result in significant error in aromaticity estimations. The absolute 290 

error exceed 0.3 for AImod in many cases but the third quartile of the error distribution is less for the 291 

Coconut database compounds than for the NOM components. This is explained by the maximum of 292 

the oxygen distribution (4-5) for Coconut compounds, which corresponds to a small O/2 coefficient 293 

in eq. 2 for AImod. 294 



 In order to examine the applicability of the proposed carboxyl reference point (n(COOH) = 2) 295 

for the entire domain of possible CHO formulae and partially account for formulae present in NOM  296 

which were absent in the current study, the in-silico formulae dataset with all possible values of 297 

COOH-groups was used. Resulting COOH-distribution and statistical assessment are presented in Fig. 298 

S9. As expected, both AI and AImod underestimated C-C accounted unsaturation of this artificial 299 

dataset, while AIcon with n(COOH) = 2 in eq. 3 resulted in adequate skewness and low median value 300 

of errors. Overall, the results for NOM samples, Coconut database and in-silico dataset for all possible 301 

variants of carboxylic functionality for CHO species strongly suggest that aromaticity can be reliably 302 

estimated for a wide range of natural species from both fresh and degraded organic matter. Overall, 303 

using AIcon with n=2 (eq. 3) results significantly smaller errors in sample comparison or even 304 

aromaticity estimate for a single molecular component than conventional AImod. 305 

Estimation of aromaticity for different AI-based classes of NOM and HS 306 

In biogeochemical studies of NOM and HS the suite of molecular formulae of samples is often divided 307 

into different compound classes based on atomic ratios (H/C, O/C) and aromaticity index.49 This 308 

approach is widely applied, for example, to find correlations between molecular composition and 309 

optical properties of NOM.19,50,51 Since these compound classes often imply a specific biogeochemical 310 

reactivity, the resulting error of aromaticity estimation of proposed AIcon with fixed n(COOH) = 2 and 311 

AImod with O/2 coefficient for different molecular classes was assessed (Fig. 5). Analysis of three 312 

most abundant compound classes, which may contain aromatic moieties (“aromatics”, “condensed 313 

(aromatics)” and “unsaturated”)49 highlighted the advantages of the proposed metric (AIcon with 314 

n(COOH) = 2) over AImod. Using AIcon resulted in a more adequate attribution of formulae to 315 

compound classes even in case of unsaturated compounds, which are often referred as carboxyl-rich 316 

alicyclic molecules (CRAM).52 For example, Coconut database includes a number of compounds with 317 

terpenoid scaffolds, which are unsaturated but do not contain aromatic rings. At the same time 318 

aromatic compounds with long-chain aliphatic substituents are also abundant. Without structural 319 



elucidation it is impossible to distinguish between them, however, experimentally (by enumeration of 320 

COOH groups) or by calculation of the proposed AIcon with set n = 2 for COOH groups, it is possible 321 

at least to suggest aromatic moieties while AImod does not reliably indicate aromatic structures in such 322 

cases. Recently, we demonstrated that DOM from permafrost soil contain CRAM type molecules 323 

while the same molecular formulae in soil DOM from a temperate region was assigned to as aromatic 324 

compounds.26  325 

 326 

Figure 5. Absolute error distribution of aromaticity estimation against AIexp for three classes49 of NOM and 327 
HS components, which may contain aromatic moieties, based on atomic ratios and (upper-row panels) AIcon 328 
with set COOH-group number n(COOH) = 2 or AImod (lower-row panels). 329 

 330 

 In order to evaluate the applicability of the proposed AIcon with n=2, several points should be 331 

taken into account. Firstly, in the present work only negative ESI has been considered and applicability 332 



of AIcon should be carefully used and tested in case of other ionization techniques. Secondly, setting 333 

of a fixed number for COOH-groups may still result in false conclusions when discussing the structure 334 

of compounds detected by FTICR MS. Here deuteromethylation labeling, MS/MS experiments or 335 

other techniques can be used to more precisely enumerate COOH groups. Additionally, the 336 

conservative attribution of all N,S-atoms to moieties with π-bonds remains disadvantageous and 337 

requires chemical justification. Finally, for different types of samples, the maximum of COOH-338 

distribution can vary. Therefore, it can be expected that AIcon with variable n(COOH)-values may 339 

better describe specific types of samples. For example, considering a range of n(COOH)-values for 340 

CHM and SRFA samples revealed that n=1 is more suitable for the coal sample, and n=2 for the 341 

blackwater river (Fig. S10). However, in the range between 0 and 3, AIcon always resulted in a smaller 342 

error as compared to AImod considering experimental derived number of COOH. In conclusion, AIcon 343 

with n(COOH)=2 is a robust and precise metric for the mean aromaticity estimation, especially for 344 

CHO-only compounds. AIcon, which can be easily calculated from molecular formulae, can substitute 345 

conventional AI and AImod as a working metric for biogeochemical researches including NOM and 346 

HS with different degree of microbial and oxidative transformations. 347 
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