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Abstract: 29 

Rising air temperatures are a leading risk to global crop production. Recent research has 30 
emphasized the critical role of moisture availability in regulating crop responses to heat 31 
and the importance of temperature-moisture couplings in driving concurrent heat and 32 
drought. Here, we demonstrate that the heat sensitivity of key global crops depends on 33 
the local strength of couplings between temperature and moisture in the climate system. 34 
Over 1970-2013, maize and soy yields dropped more during hotter growing seasons in 35 
places where decreased precipitation and evapotranspiration more strongly 36 
accompanied higher temperatures, suggestive of compound heat-drought impacts on 37 
crops. Based on this historical pattern and a suite of climate model projections, we show 38 
that changes in temperature-moisture couplings in response to warming could enhance 39 
the heat sensitivity of these crops as temperatures rise, worsening the impact of 40 
warming by -5% (-17 to 11% across climate models) on global average. However, these 41 
changes will benefit crops where couplings weaken, including much of Asia, and 42 
projected impacts are highly uncertain in some regions. Our results demonstrate that 43 
climate change will impact crops not only through warming, but also through changing 44 
drivers of compound heat-moisture stresses, which may alter the sensitivity of crop 45 
yields to heat as warming proceeds. Robust adaptation of cropping systems will need to 46 
consider this underappreciated risk to food production from climate change. 47 

 48 

 49 



Main: 50 

Introduction 51 

Several studies have identified negative relationships between air temperature and crop yields 52 
in observations, signaling the potential for global warming to reduce agricultural output1–3. 53 
Extreme heat can steeply reduce crop yields both directly through heat stress and indirectly by 54 
raising atmospheric vapour demand and contributing to moisture stress2,4–8. Because of this 55 
dual effect, the impacts of extreme heat are typically amplified by drought, and can be 56 
minimized with sufficient soil moisture from either precipitation or irrigation7,9–16. Jointly hot and 57 
dry conditions thus pose a particular climate risk to global crops, especially under global 58 
warming17.  59 

In many regions, such jointly hot and dry conditions during cropping seasons tend to occur due 60 
to physical couplings between temperature and moisture in the climate system18–20. These 61 
couplings can be conceptualized in two ways: first as a connection between temperature (T) 62 
and precipitation (P), and second as a connection between T and evapotranspiration (ET). We 63 
refer to the former connection as the atmospheric circulation coupling, and the latter as the land-64 
atmosphere interaction coupling. While the separability and relative importance of these two 65 
couplings is debated18,21,22 (see Methods), they generally reflect two critical sets of processes 66 
that both vary in magnitude over global croplands and strongly influence the local risk of joint 67 
heat and drought. 68 

Where the atmospheric circulation coupling is strong, clear skies tend to accompany dry 69 
cropping seasons, boosting temperatures at the surface due to increased penetration of solar 70 
radiation and delivery of warm compressed air by descending winds18,20,21,23. The strength of this 71 
coupling is reflected by the magnitude of the negative correlation between temperature and 72 
precipitation across years (rT,P < 0). Where the land-atmosphere coupling is strong, ET tends to 73 
decline during a warmer cropping season, reflected by a negative correlation between T and ET 74 
(rT,ET < 0). The resulting enhanced sensible heating can further raise air temperatures and 75 
atmospheric vapour demand, generating a positive feedback19,22,24,25. By contrast, enhanced ET 76 
from warmth (rT,ET > 0) limits the feedback between warming and drying. Thus, the couplings 77 
characterized by negative correlations of T with ET and P drive concurrent and mutually-78 
reinforcing hot and dry conditions during the cropping season in many regions. 79 

Despite the importance of these couplings in controlling the concurrent heat and moisture 80 
stresses that so strongly damage crop yields, their effect on global crop responses to current 81 
and future temperatures remains a gap in understanding present and future climate impacts on 82 
crops. Here, we demonstrate the global influence of temperature-moisture couplings on crop 83 
yield sensitivity to temperature over 1970-2013 and project future impacts on crops from 84 
changing couplings. We combine historical global yield observations26,27 with observed and 85 
modeled meteorological data to show that during warmer growing seasons, maize and soybean 86 
yields drop more steeply where precipitation and ET tend to also decrease. Using simulations 87 
from a suite of climate models, we then identify how these couplings are likely to change by the 88 
late 21st century. Combining these projections with the historical results, we demonstrate that 89 
the modified couplings will likely worsen the impacts of warming on some of the world’s most 90 
important crops. 91 

 92 



Results and Discussion 93 

Historical influence of temperature-moisture couplings on crop heat sensitivity 94 

Over the historical period, we find significant correlations between crop yields and mean 95 
seasonal temperature over 20-32% of global maize, soybean, rice and wheat croplands (p < 96 
0.1, Fig. 1). While maize and soybean yields generally decline with increasing temperature (by 97 
0.3-0.4 standard deviations (σ) per σ temperature), they benefit from heat over around a quarter 98 
of croplands with significant temperature impacts, primarily at higher latitudes and elevations as 99 
well as in pockets of the tropics (Fig. 1a-b). Yield benefits from warmer seasons in some 100 
locations likely reflect crop limitations by cold and short growing seasons. By contrast, wheat 101 
yields are almost universally reduced by higher temperatures in North America and Eurasia 102 
(Fig. 1c), likely reflecting the lower physiological heat tolerance of wheat compared to maize28,29. 103 
While seasonal heat benefits rice yields in parts of Europe and damages them slightly in India, 104 
rice yields show a generally weaker connection to temperature (Fig. 1d), as reported 105 
elsewhere1,30. This may relate to the prevalence of irrigation in rice cropping, which may partially 106 
decouple yields from temperature. We also note weak maize yield dependence on temperature 107 
where it is mainly irrigated such as northern India, central France, and the western United 108 
States (Fig. 1a). 109 

Large portions of the global croplands also experience significant temperature-moisture 110 
coupling during the local growing season. Seasonal total precipitation is significantly correlated 111 
with mean temperature over 62-89% of cropland (p < 0.1, Fig. 1e, Supplementary Fig. 1), with 112 
exceptions mainly concentrated in the tropics. These significant interannual correlations are 113 
almost entirely negative (>98%), with mean magnitude of -0.5. ET further correlates with 114 
temperature over 36-65% of global croplands (p < 0.1, Fig. 1f, Supplementary Fig. 1). 115 
Correlations are predominantly negative over global croplands but are positive at higher 116 
latitudes as well as in southern China (Fig. 1f), a pattern corresponding broadly to moisture- 117 
versus energy-limited soil moisture regimes19, respectively. The majority of global cropland area 118 
thus experiences climate couplings whereby lower moisture conditions coincide with higher heat 119 
and moisture demand. 120 

We find a global tendency for increasingly negative impacts of temperature on maize and 121 
soybean yields with the increasing strength of these temperature-moisture couplings historically. 122 
Figure 2 situates the grid-cell yield sensitivity to temperature (presented as the colouring of the 123 
points) with respect to the local strength of the two temperature-moisture couplings (presented 124 
as the position in the plane of the points). The lower-left quadrant of each panel includes grid 125 
cells with both circulation and land-atmosphere couplings (rT,P and rT,ET < 0). For maize and soy 126 
(Fig. 2a-b), we note that this quadrant contains the bulk of grid cells where yields decline with 127 
temperature, with greatest negative yield sensitivities where couplings are strongest. 128 
Meanwhile, yields tend to benefit from warmer temperatures where the couplings are weakest 129 
(rT,P ~ 0 and rT,ET > 0). 130 

To quantify these relationships, we regress crop yield sensitivity to temperature on the two 131 
couplings and find meaningful global dependence for maize and soy (r2 = 0.26 for maize and 132 
0.43 for soybean, Fig. 2a-b). The regression also affords slope coefficient estimates, αT,P and 133 
αT,ET, that quantify the steepness of the dependence of yield sensitivity to temperature on the 134 
two couplings. On average, yields decline more steeply per σ temperature (slope αT,ET ± 135 
standard error = 0.45±0.02 for maize and 0.57±0.02 for soybean, p < 0.001) in areas with the 136 



most negative rT,ET. In other words, crops are around 40% more sensitive to temperature (34% 137 
for maize and 43% for soybean) in regions with strong land-atmosphere coupling, compared to 138 
where temperature and ET are uncorrelated. The influence of the land-atmosphere coupling on 139 
yield sensitivity to temperature is somewhat larger than the influence of circulation coupling on 140 
yield sensitivity to temperature (slope αT,P  ± standard error = 0.37±0.03 for maize and 141 
0.25±0.04 for soybean, p < 0.001). We found no spatial correlation between recent 10-year 142 
mean yields (2004-2013) and the two couplings (r2 < 0.02), suggesting that the observed effects 143 
are independent of overall crop productivity. Overall, these patterns of higher crop heat 144 
sensitivity where couplings are strong is consistent with the compounding of heat impacts on 145 
crops by moisture effects where these couplings are strong, and alleviation where they are 146 
weak.  147 

By contrast, we find little such dependence on temperature-moisture couplings among the 148 
temperature sensitivities of wheat and rice (Fig. 2c-d, r2 ≤ 0.1). This may be due in part to the 149 
low thermal tolerance of wheat, whose optimal growth temperature is about 10°C cooler than for 150 
the other crops28,29. Due to its exponential dependence on temperature, atmospheric vapor 151 
demand and its impact on crops increase most strongly at relatively high temperatures. 152 
However, heat impacts on wheat may be severe at relatively low temperatures, for which 153 
atmospheric vapor demand remains relatively low, limiting the scope for compounding of heat 154 
impacts by moisture. 31. For rice, lower heat sensitivity and widespread irrigation may effectively 155 
decouple the crop from temperature and moisture (Fig. 1d), similarly precluding compounding 156 
impacts30.  157 

These results suggest that local crop responses to temperature depend not only on crop 158 
physiology and temperature stressors, but also on climatological couplings between 159 
temperature and moisture. These couplings tend to align heat and moisture stress in time, 160 
exposing crops to heat and high atmospheric moisture demand while precipitation and soil 161 
moisture are low (Fig. 3). Where the couplings are strong, yields are likely more sensitive to 162 
temperature due to antagonistic feedbacks between physiological heat and drought acclimation 163 
and stress mechanisms8,32, notably the impact of stomatal closure on canopy temperature and 164 
photosynthesis8,16,33–37 (Fig. 3). By contrast, where the couplings are weak, heat and high 165 
atmospheric moisture demand are more likely to coincide with periods of normal or abundant 166 
precipitation and soil moisture, mitigating the impact of heat on crops. 167 

Importantly, these results indicate that the ultimate impact of global warming on some crops will 168 
depend not only on the mounting heat hazard itself, but also on the impact of warming on the 169 
physical coupling between temperature and moisture. Specifically, they raise the possibility that 170 
climate change will affect the sensitivity of crop yields to heat by altering temperature-moisture 171 
couplings throughout the world. This potential impact is currently omitted from climate risk 172 
projections using  statistical models3,4,6, which assume constant temperature sensitivity into the 173 
future, and mechanistic crop models, whose climate projection inputs are typically adjusted to 174 
match the historical correlation structure between temperature and moisture3,38, excluding the 175 
potential influence of changes in temperature-moisture couplings. 176 

 177 

Impact of projected change in couplings on global crop yields 178 

To examine the implications of these effects for maize and soy under future climate change, we 179 
combine the historical dependence of yield sensitivity to temperature on the two couplings (Fig. 180 



2) with simulated future changes in couplings from a suite of 12 CMIP6 global climate models39. 181 
By 2051-2100 under moderate greenhouse gas emissions (SSP2-4.5), we project substantial 182 
changes in rT,ET and to a smaller extent in rT,P (Fig. 4a-b), over much of global croplands in the 183 
ensemble median. These changes indicate amplified couplings between temperature and 184 
moisture in response to climate warming over croplands in the US, Europe, and southeastern 185 
Africa, but reduced couplings across southern to eastern Asia. Based on historical relationships 186 
in Fig. 2a-b, these changes in couplings will likely exacerbate yield sensitivity to temperature 187 
over a preponderance of croplands, but alleviate it in much of Asia (Fig. 4c). 188 

We project that such heightened crop heat sensitivities due to changing temperature-moisture 189 
couplings will worsen the impacts of warming on maize and soy yields across most of the globe 190 
(Fig. 5a, Supplementary Fig. 2). In the multi-model median, these additional yield impacts (∆∆ܻ) 191 
amount to regional maize (soy) losses of 7% (9%) in the US, 7% (16%) in western Europe, 12% 192 
(24%) in eastern Europe, 9% (5%) in southeastern Africa, and 3% (6%) in southeastern South 193 
America, with more modest yield gains of 1% (3%) in eastern Asia (Fig. 5a and d, 194 
Supplementary Fig. 2). We note important model uncertainty in these regional figures, which we 195 
discuss further below and in Figure 6d. More severe localized yield impacts at sub-regional 196 
scales reach ~20% in the United States and ~40% in eastern Europe and southeastern Africa. 197 

These projected additional yield impacts due to changing temperature-moisture couplings (∆∆ܻ) 198 
would add to projected yield losses from warming alone (Fig. 5b), worsening them in some 199 
regions (e.g. in central US) but slightly ameliorating them in others (e.g. in eastern Asia, Fig. 200 
5c). In some cool climates such as in the northern US, Canada, and Ukraine, changing 201 
couplings may also curtail projected yield gains from warming. Globally, we project that 202 
changing couplings will aggravate the impact of warming on maize and soy yields by ~5% 203 
relative to recent yields (Fig. 5d, Supplementary Fig. 2), evincing an important but 204 
underappreciated risk to agriculture under climate change. 205 

Considerable inter-model variation underlies these multi-model median projections20. Over 206 
much of global maize croplands, fewer than two-thirds of models agree on the sign of additional 207 
yield changes due to coupling responses to warming (∆∆ܻ, Fig. 6a), especially in the tropics and 208 
sub-tropics. Even in areas with high model agreement on sign (mainly in Europe, the US, and 209 
eastern Asia), the magnitude of change can vary substantially across models (Fig. 6d, 210 
Supplementary Fig. 3). This inter-model variability introduces uncertainty in the projected global 211 
mean impacts for the moderate emissions scenario, with model-specific yield impacts ranging 212 
from -17 to 11% (Fig. 6b, blue bars).  213 

Alternate emissions scenarios add a further dimension of uncertainty to the projected yield 214 
impacts of changing temperature-moisture couplings. Under a high emissions scenario (SSP5-215 
8.5), maize yield losses in the Americas and southeastern Africa are reduced and gains in Asia 216 
are increased compared to the moderate emissions scenario (Fig. 6c-d). Surprisingly, these 217 
regional responses amount to a global mean additional yield gain (∆∆ܻ) of 1.6% in the 218 
ensemble median (‘additional’ in that they only slightly offset large yield loss from warming 219 
itself). The counterintuitive non-monotonicity of the global mean response to emissions is 220 
ultimately driven by regional coupling changes that alleviate yield sensitivity to temperature, 221 
most notably the widespread relative decoupling between T and P under higher emissions 222 
(Supplementary Fig. 4). However, we also note large model disagreement in the high emissions 223 
scenario, with global mean impacts ranging from -18 to 32% (Fig. 6b, red bars). 224 



The uncertainties in these projections highlight unresolved challenges in simulating 225 
temperature-moisture couplings using climate models and their importance to predicting the 226 
impact of climate change on global crop production. Specifically, the response of ET (largely 227 
mediated by soil and vegetation dynamics and land-atmosphere interaction) and precipitation 228 
(largely mediated by regional circulation) to interannual variability in temperature in future 229 
climates are both active areas of research33,40–42. While some regions with model consensus 230 
may reflect predictions with strong physical foundations, such as the enhanced land-231 
atmosphere coupling in Europe with warming22,43, they may also arise from stronger 232 
observational constraints and model validation effort across the northern midlatitudes20,44. Some 233 
regions lacking model consensus include important breadbaskets in southeast South America 234 
and chronically food-insecure and drought-vulnerable southeastern Africa, where weather 235 
observations are comparatively sparse and couplings are not well-constrained by observations20 236 
(Fig. 6, Supplementary Fig. 3). These regions also tend to have the largest differences in 237 
estimated historic couplings between CMIP6 and observation-based data (Supplementary 238 
Figure 5). Our result show how these uncertainties and potential model inaccuracies presently 239 
impede a complete understanding of the risks of climate change to crop production. 240 

Several limitations of our study reflect important challenges and open questions. First, while we 241 
assess seasonal-scale yield responses and temperature-moisture couplings, future studies may 242 
consider sub-seasonal time scales, particularly the role of the couplings in short-duration heat 243 
extremes and flash droughts43,45, and the differential vulnerability of crop growth stages. 244 
Second, we treat crops as passively affected by these couplings, but in some densely-cropped 245 
regions they actively influence climate by modifying regional ET46,47. While this occurrence is 246 
limited to certain high-yielding regions at present, it may become increasingly common with 247 
continued crop intensification and thus merits further attention. Third, while we treat circulation 248 
and land-atmosphere couplings as distinct, the influence of their overlap and interaction on past 249 
and future crop yield sensitivity to temperature should be investigated18,41. Fourth, future work 250 
should consider the uncertain impact of increased atmospheric CO2 on future crop responses to 251 
combined heat and moisture stresses48,49, which may weaken or amplify the relationships in Fig. 252 
2 by increasing the water use efficiency of crops (yield per unit water transpired). Finally, further 253 
attention to the role of natural vegetation, aerosols, and climate modes such as the El Niño-254 
Southern Oscillation in temperature-moisture couplings is also merited33,34. 255 

Conclusions 256 

Limitations and uncertainties in the climate models notwithstanding, we draw the following main 257 
conclusions from our results. Local heat sensitivity of crop yields depends on the strength of 258 
coupling between temperature and moisture for maize and soy, but not for rice and wheat. We 259 
propose that this dependence, and its absence for rice and wheat, is consistent with the 260 
compounding of heat impacts by moisture stress where couplings are strong, and mitigation 261 
where they are weak. By 2051-2100, enhanced couplings over a majority of global cropland will 262 
most likely make crops more vulnerable to warming temperatures, with notable exceptions 263 
across Asia, where couplings weaken. These climate impacts on crops are widely omitted from 264 
climate risk assessments.  265 

Our projections of a mounting threat to crop yields from changing temperature-moisture 266 
couplings in a warming climate underscore the need to adapt global crop management and 267 
genetics to concurrent heat and moisture stresses. Cropping adaptations, such as breeding for 268 
drought and heat tolerance, should thus avoid antagonisms between stress mechanism where 269 



couplings strengthen in the future8,50, but may leverage them where couplings weaken. For 270 
instance, irrigation may disrupt the antagonistic feedbacks that lead to compounding heat and 271 
moisture stresses, so its effectiveness as a crop adaptation to heat may be enhanced where 272 
couplings get stronger in the future. However, the reliability of irrigation may simultaneously 273 
decline with strengthening couplings, as drought increasingly limits the availability of water for 274 
irrigation during extreme heat (i.e., when it is needed most). As another example, breeding 275 
crops for drought tolerance based on stomatal regulation35,37 or sowing density51 may 276 
exacerbate heat impacts by reducing canopy evaporative cooling or raising crop water demand 277 
respectively, a risk that would be less important where couplings weaken (as in much of Asia). 278 
Finally, our results may help further calibrate joint temperature-moisture impacts in crop models 279 
to assure their usefulness in developing climate-adaptive cropping strategies14,52. 280 

Efforts to adapt cropping to climates with increasingly strong temperature-moisture couplings 281 
may prioritize subsistence cropping areas that are already prone to drought and heat, and 282 
where we project enhanced couplings to worsen crop vulnerability in the future. Even with 283 
robust adaptations, changes in crop sensitivity to heat under climate change will likely 284 
necessitate greater international cooperation in equitable food trade and emergency relief as 285 
climate shocks increase. 286 

 287 

Methods:  288 

Data and processing 289 

For the historical climate analyses, we combine monthly 0.5° gridded mean temperature and 290 
total precipitation observations from the Hadley Center Climate Research Unit (CRU TS4.02)53 291 
with 0.25° modeled mean temperature and ET data from Global Land Data Assimilation System 292 
(GLDAS) Noah land surface model L4, version 2.054. We coarsen the ET data from 0.25° to 293 
0.5°, to match the resolution of the temperature and precipitation data. To represent growing 294 
seasonal mean conditions, we average temperature and ET and sum precipitation during the 295 
average crop-specific growing periods based on a global crop calendar55. For wheat, we define 296 
the growing season as three months prior to harvest to exclude the vernalization period for 297 
winter wheat. Because ET is the input data with the greatest observational limitations, we 298 
verified the robustness of key parameters estimated via the regression model in Equation 2 to 299 
three alternative historical ET datasets: 1) GLDAS V2.0 Catchment Land System Model (CLSM) 300 
L4 over 1961-201054, 2) GLDAS V2.0 Variable Infiltration Capacity (VIC) L4 over 1961-201054, 301 
and 3) ERA5 Reanalysis over 1980-201056. 302 

The crop yield data are based on statistics from ~20,000 subnational political units over 1970-303 
2013, harmonized for consistency with UN Food and Agriculture Organization (FAO) national 304 
statistics and gridded to 0.5° resolution26. While harmonizing the subnational statistics with 305 
national FAO data ensures comparability between nations, it may introduce discontinuities in the 306 
data along certain national boundaries, notably Ukraine. We focus on maize, wheat, rice, and 307 
soy as crops that are globally dominant in calorie consumption and distributed across the world. 308 
For both the climate and crop data, we isolate interannual variability from longer-term trends 309 
using singular spectrum analysis (SSA), a non-parametric method that avoids assumptions 310 
about the functional form of the climate and yield trends5,57. 311 

 312 



Historical temperature-moisture couplings 313 

To characterize the couplings between temperature and moisture, we compute grid-cell 314 
interannual Pearson’s correlation coefficients between the detrended temperature and ET from 315 
GLDAS for the land-atmosphere coupling (rT,ET), and temperature and precipitation from CRU 316 
for the circulation coupling (rT,P). This approach leverages the strengths of observation-based 317 
data for rT,P, but employs model-based data for ET, which is comparatively is sparsely observed 318 
over global croplands20,44. To improve the robustness of interannual correlations with respect to 319 
important modes of climate variability like the El Nino-Southern Oscillation, we use a somewhat 320 
longer 50-year time period of 1961-2010 than the study period constrained by the yield data. We 321 
define statistical significance of the couplings for each grid-cell using a two-tailed t-test with a 322 
threshold of P < 0.1.  323 

For clarity, our nomenclature contrasts these two couplings based on the dominant locus of their 324 
occurrence either in atmosphere dynamics or land-atmosphere interactions18,19,21. However, the 325 
two couplings interact physically in some regions and should not be considered strictly 326 
distinct18,21,22.  For instance, global correlations between grid cell rT,ET and rT,P (r2 = 0.21 for 327 
maize and 0.29 for soybean) may reflect links among P, ET, and T in the coupled surface-328 
atmosphere system that are not easily disentangled. Despite this, the magnitude of these 329 
correlations and the broadly divergent spatial pattern in their historic and projected future 330 
magnitude both suggest a prevailing differentiation of the two couplings. For brevity, we present 331 
the couplings only for maize in Figure 1 and for the other crops in Supplementary Figure 1, 332 
because their spatial pattern does not differ substantially across the different crops.  333 

Historical crop yield sensitivity to heat 334 

We estimate the historical yield sensitivity to temperature as the slope coefficient (்ߚ) in a 335 
simple linear regression model relating detrended yields to temperature for each grid cell: 336 ݕ = ߚ + ்ܶߚ +  337 (1) ߝ

where y denotes estimated yields, ߚ the intercept, ܶ the mean seasonal temperature, and ε the 338 
residual errors. Repeating this analysis for the four crops generates four maps of yield 339 
sensitivity to temperature for each crop. We standardize yield and temperature data such that 340 ்ߚ has units of standard deviations of yield per standard deviation of temperature (i.e., is 341 
dimensionless). This standardization eases the comparison of yield sensitivity across crop 342 
regions with different means and variances of yield and temperature.  343 

The simplicity of this linear model for temperature impacts on yields eases interpretability of the 344 
spatial pattern of impacts and the results of subsequent analyses, at the cost of reduced 345 
specificity between the impacts of beneficial and detrimental sub-seasonal temperatures that 346 
comprise the seasonal mean temperature. Despite this limitation, the spatial pattern and 347 
magnitude of estimated yield sensitivity largely agrees with past studies using more complex 348 
models. For instance, we compare our unstandardized yield sensitivities aggregated to the 349 
national scale with those in the multi-model comparison of Zhao et al. (2018, ref. 4) in 350 
Supplementary Figure 8, and find broadly consistent signs and magnitudes for top producing 351 
countries for the four crops.  352 

We define statistical significance of the yield sensitivities for each grid cell using a two-tailed t-353 
test with a threshold of p < 0.1.  Importantly, we do not interpret this yield sensitivity to reflect 354 



the response to heat stress alone, but also response of crops to temperature via its impact on 355 
vapour pressure deficit, a key variable in moisture stress2,7,13. We conduct this analysis for all 356 
grid-cells with non-zero crop area to leverage the largest possible diversity of climates and crop 357 
systems, regardless their areal intensiveness. 358 

Historical impact of temperature-moisture couplings on yield 359 

Next, we assess the dependence of standardized yield sensitivity to temperature on the two 360 
historical coupling measures using a multiple linear regression model of the form: 361 ்ߚ = ߙ	 + ݎா்்,்ߙ ,ா் ݎ்,்ߙ	+ , +  362 (2) ߝ

where ்ߙ,ா் and ்ߙ, coefficients reflect the response of yield sensitivity to each coupling (rT,ET 363 
and rT,P), ߙ is the intercept, and ε the residual errors. This method aggregates local yield 364 
sensitivities and coupling strengths into a dataset for each crop, and the regression results in 365 
two global estimates of the yield sensitivity response to each coupling (்ߙ,ா் and ்ߙ,) for each 366 
crop. Because they represent change in a standardized coefficient per unit change in 367 
correlation, ்ߙ,ா் and ்ߙ, are dimensionless. We include all grid cells with non-zero crop area 368 
and significant yield sensitivities to temperature (p < 0.1) in this analysis, and note that the 369 
regression results are highly robust to a stricter significance threshold of p < 0.05 370 
(Supplementary Fig. 9). Based on a minimum threshold for the coefficient of determination (r2) 371 
of 0.2, we judge whether the couplings are substantially predictive of yield sensitivities for each 372 
crop, and proceed with future projections only for crops that met this criterion. Variance inflation 373 
factors for the models in Equation 2 were 1.2-1.3, indicating low susceptibility of the coefficient 374 
estimates to the moderate collinearity between ்ݎ ,ா் and ்ݎ , (r2 ~0.2-0.3). Estimated model 375 
parameters were broadly robust to alternative historical ET datasets, including VIC and CLSM 376 
land models from GLDAS and the ERA5 reanalysis (Supplementary Figure 6).  377 

Projecting future change in couplings  378 

To assess future changes in the couplings, we employ projected monthly mean temperature 379 
and ET and monthly total precipitation from a suite of Coupled Model Intercomparison Project 6 380 
(CMIP6) general circulation models, run under the SSP2-4.5 moderate emissions scenario39. 381 
We use all 12 models for which ET data is complete and available. The projected climate data 382 
are aggregated to the local growing season. We detrend the seasonal time series using SSA to 383 
remove the large influence of long-term forced trends in the climate variables, and regrid the 384 
data to a common 0.5° resolution. Despite the lower native resolution of many climate models, 385 
we proceed with this higher resolution to conserve the spatial detail of historical mean yields 386 
and yield sensitivities to temperature, which are based on higher-resolution data. However, we 387 
avoid introducing non-physical results to our downscaled climate projections by using nearest-388 
neighbour approximation rather than interpolating. This method essentially conserves the 389 
original model resolution in the climate component of our projections, without sacrificing the 390 
higher resolution of observed variables. 391 

To project future changes in the temperature-moisture couplings, we compute rT,ET and rT,P in 392 
the climate model data for both the historical period 1961-2010 and a future period of 2051-393 
2100. We select the latter period to be distant enough in the future for climate signals to clearly 394 
emerge, but close enough to be useful for adaptation planning. We then compute a multi-model 395 
ensemble of correlation change factors by differencing the correlations between the historical 396 
and future periods. This differencing approach eliminates extraneous influence of historical 397 



mean model biases compared to observations (Supplementary Fig. 5), isolating the relative 398 
change in couplings projected by each model relative to its own historical period. Despite this, 399 
we note that historical biases likely reflect incomplete model simulation of the processes 400 
relevant to change in the couplings. To represent the central tendency of the projection 401 
ensemble, we use the multi-model medians of projected change factors in couplings (∆rT,ET and 402 
∆rT,P). 403 

Projecting crop yield impacts of changing couplings 404 

We use the historical estimated coefficients relating yield sensitivity to temperature with each 405 
coupling (்ߙ,ா் and ்ߙ, in equation 2) to project future changes in yield sensitivity to 406 
temperature (∆்ߚ) resulting from changes in the couplings, following: 407 ∆்ߚ = 		 ݎ்∆ா்,்ߙ ,ா் + ݎ்∆,்ߙ ,  (3) 408 

This equation employs the regression relation estimated in equation 2, but allows the coupling 409 
strength at each grid cell to change based on the climate model projections. The central 410 
assumption in this approach is that the future yield sensitivity of each grid cell responds to future 411 
changes in the couplings at the global rate dictated by ்ߙ,ா் and ்ߙ,. We note that successful 412 
crop adaptation may challenge this assumption (see Conclusions). 413 

To ease the physical interpretation of the projected yield impacts, we convert the projected 414 
change in yield sensitivity to dimensional terms using:  415 ∆்ܤ = ்ߚ∆ ఙೊఙ (4) 416 

where ∆்ܤ coefficients have units of tons ha-1 ℃-1. We then project additional yield impacts of 417 
warming for each grid cell due to changes in coupling (∆∆ܻ) by multiplying this coefficient by the 418 
multi-model median of the mean seasonal warming by 2051-2100 (∆ܶ, computed by 419 
differencing modeled mean seasonal temperatures between the future and historical periods): 420 ∆∆ܻ =  421 (5) 	ܶ∆்ܤ∆

We present this additional yield impact as a percent of recent local yields averaged over 2004-422 
2013, the 10 most recent years in our dataset, to contextualize the changes relative to local 423 
baseline yields. Finally, we average the percent yield changes across all grid cells with 424 
significant historical yield sensitivities to estimate net global additional yield impacts due to 425 
future changes in temperature-moisture couplings. Note that we map ∆rT,ET, and ∆rT,P over the 426 
full global cropland, regardless of the significance of historical yield sensitivities, to enable 427 
interpretation of wider global patterns of change. However, we map ∆∆ܻ and ∆்ߚ only where 428 
historical yield sensitivity to temperature (்ߚ) is significant (P < 0.1). We also show projected 429 
yield change from warming alone to contextualize ∆∆ܻ, however we do not consider these 430 
projections themselves to be a methodological improvement on past statistical yield projections 431 
using more complex models. 432 

To assess uncertainty across the ensemble of climate models, we recompute equations 3-5 433 
using model-specific changes in the couplings, rather than the ensemble median. We use a 434 
consistent multi-model median warming to compute additional yield impact so that the 435 
uncertainty analysis isolates differences between model-specific projected changes in 436 
couplings, rather than model differences in mean warming. This approach assumes that, at the 437 



seasonal scale, the influence of coupling changes on mean warming in each model is small 438 
relative to the radiative effect of greenhouse gases and dominant climate feedbacks (e.g. ocean 439 
and cloud responses to warming)43.   440 

We then assess model agreement on the sign of yield change for each grid cell. To do so, we 441 
classify whether at least 8 models (2/3 of the ensemble) project either positive change (>10% 442 
yield gain), negative change (>10% yield loss), or little change (<10% yield gain or loss). Grid 443 
cells where fewer than 8 models agree on the direction of change are classified as areas with 444 
substantial model disagreement. We also present histograms of model-specific projected net 445 
mean global yield change to reflect the distribution of plausible future global impacts. To 446 
account for uncertainty over future emissions, we include in this histogram equivalent results for 447 
a high-emissions scenario, SSP5-8.539. We also present ∆∆ܻ for this scenario to understand the 448 
spatial pattern of changes. Finally, we present ∆∆ܻ for the two emissions scenarios averaged 449 
over several regions with noteworthy vulnerability or global importance. The data and methods 450 
used in this study are summarized visually in Supplementary Figure 7. Base maps in Figures 1 451 
and 4-6 are developed by Generic Mapping Tools and used under a creative commons license. 452 

Code availability: The processing and analysis codes are available from: 453 
https://github.com/clesk/couplings-heat-crops 454 

Data availability: Datasets supporting the results of this paper are freely available from the 455 
references and links listed in Supplementary Table 1. Crop yield data are available from D. R. 456 
upon request. The intermediate datasets are available at: https://github.com/clesk/couplings-457 
heat-crops 458 
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Figure Captions: 614 

Figure 1: Crop yield sensitivity to temperature and temperature-moisture couplings 615 
across global croplands. Standardized yield sensitivity to mean growing season maximum air 616 
temperature estimated as the linear slope coefficient, with units of standard deviations (σ) of 617 
yield per σ temperature, for a) maize, b) soybean, c) wheat, and d) rice. Yield and temperature 618 
observational data are detrended to remove long-term warming and yield trends. Stippling 619 
denotes significant slope coefficients (two-tailed p < 0.1, t-test). Land area without crops is 620 
shown in gray. e) Circulation coupling strength, measured as the interannual correlation 621 
between detrended observed growing season mean temperature and total precipitation (rT,P). f) 622 
Land-atmosphere coupling, measured as the interannual correlation between detrended 623 
modeled growing season mean temperature and evapotranspiration (rT,ET). Couplings in e-f are 624 
shown for the maize growing season and over the full global cropland where data is available to 625 
ease interpretation of global patterns. Couplings for other growing seasons are shown in 626 
Supplementary Fig. 1. 627 

 628 

Figure 2: Global dependence of yield sensitivity to temperature on two temperature-629 
moisture couplings. Estimated standardized yield sensitivity to mean growing season 630 
maximum air temperature (colouring of points) plotted in relation to correlations of temperature 631 
with ET (land-atmosphere coupling, vertical axes) and precipitation (circulation coupling, 632 
horizontal axes), for a) maize (n = 4,771 grid cells), b) soybean (n = 2,663), c) wheat (n = 633 
5,062), and d) rice (n = 2,800). Each data point represents one grid cell. Data are shown for 634 
areas with significant yield response to temperature (two-tailed p < 0.1). Slope coefficients 635 
relating yield sensitivity to each coupling (αT,P and αT,ET) are annotated on their respective axes. 636 
Reported multiple r2 values are for the multiple regression model relating yield sensitivity to the 637 
two couplings.  638 

 639 

Figure 3: Schematic of potential mechanism for compound heat and moisture impacts on 640 
crops in regions with strong temperature-moisture couplings. Where temperature-moisture 641 
couplings are strong, hot growing seasons are more likely to be also dry, depicted by the sun at 642 
upper left. Ensuing effects of consequence to crops that are linked to strong circulation coupling 643 
(rT,P < 0) are shown in the blue square at left, while effects linked to strong land-atmosphere 644 
coupling (rT,ET < 0) are shown in the yellow square at right. Red arrows show antagonistic 645 
feedbacks by which correlations of temperature with P and ET can induce compounding heat 646 
and moisture stresses on crops. 647 

 648 

Figure 4: Projected future changes in temperature moisture couplings and yield 649 
sensitivity to temperature in response to warming. a) Projected change in circulation 650 
coupling (detrended interannual rT,P) over 2051-2100 under a moderate emissions scenario 651 
(SSP2-4.5), compared to historical couplings over 1961-2010. The median of an ensemble of 12 652 
CMIP6 climate model projections is shown for each grid cell. b) Same as a), but for land-653 
atmosphere coupling (rT,ET). c) Projected change in standardized maize yield sensitivity to 654 
temperature in response to changes in the two couplings, based on global slope coefficients 655 
from in Fig. 2a. For a-b) projections are shown over the full global maize croplands to facilitate 656 



interpretation of broader patterns, while for c) projections are shown only for areas with 657 
significant historical maize yield sensitivity to temperature (p < 0.1); gray shading shows 658 
croplands with insignificant yield dependence on temperature. 659 

 660 

Figure 5: Projected additional impact of future warming on maize yields due to changing 661 
temperature-moisture couplings. a) Ensemble median additional impact of warming on maize 662 
yields from projected changes in rT,ET and rT,P over 2051-2100 under a moderate emissions 663 
scenario (SSP2-4.5), as a percent of local mean of recent yields (2004-2013). b) Maize yield 664 
changes (as a percent of recent yield) from ensemble median warming only, projected using 665 
historical yield sensitivity to temperature from Fig. 1a. c) Projected total yield impacts, estimated 666 
as the sum of impacts from changing couplings and warming only (note that the scale differs 667 
from a-b). Projections in a-c) are shown only for areas with significant historical maize yield 668 
sensitivity to temperature (p < 0.1); gray shading shows croplands with insignificant yield 669 
dependence on temperature. d) Yield impacts averaged across selected key regions and 670 
globally. Model uncertainties associated with these ensemble median results are shown in 671 
Figure 6 672 

 673 

Figure 6: Uncertainty in projected additional maize yield impact due to changing 674 
temperature-moisture couplings. a) Model agreement on local sign of projected additional 675 
yield impact due to changing temperature-moisture couplings (∆∆ܻ) under a moderate 676 
emissions scenario by 2051-2100. Colouring denotes areas where at least two-thirds (8 out of 677 
12) of the models in the ensemble agree on either positive (blue), negative (brown), or no 678 
substantial change (within +/-10%, beige). Grey denotes areas with less than two-thirds model 679 
agreement on direction of change. b) Distribution of model-specific global mean additional yield 680 
impact due to changing couplings (∆∆ܻ) for the moderate emissions (SSP2-4.5, blue) and high 681 
emissions (SSP5-8.5, red) scenarios. Vertical red and blue lines denote multi-model median 682 
global mean impacts. Additional yield impacts are expressed as a percentage of 2004-2013 683 
mean yields, averaged over areas with significant temperature effects on yield (Fig. 1a). c) 684 
Ensemble median additional impact of warming on maize yields due to changes in couplings 685 
over 2051-2100 under the high emissions scenario (SSP5-8.5), as a percent of local mean of 686 
recent yields (2004-2013). Projections are shown only for areas with significant historical maize 687 
yield sensitivity to temperature (P < 0.1); gray shading shows croplands with insignificant yield 688 
dependence on temperature. d) Same as b), but with additional yield impacts averaged over 689 
selected regions. Boxplot centerline denotes multi-model median; whiskers, tail projections 690 
within 1.5 interquartile range; and points, outlier projections. 691 
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