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Summary

1. Matrix population models (MPMs) are an important tool for biologists seeking to 

understand the causes and consequences of variation in vital rates (e.g., survival, 

reproduction) across life cycles. Empirical MPMs describe the age- or stage-structured 

demography of organisms and usually represent the life history of a population during a 

particular time frame at a specific geographic location.

2. The COMPADRE Plant Matrix Database and COMADRE Animal Matrix Database are the 

most extensive resources for MPM data, collectively containing >12,000 individual 

projection matrices for >1,100 species globally. Although these databases represent an 

unparalleled resource for researchers, land managers, and educators, the current 

computational tools available to answer questions with MPMs impose significant barriers 

to potential COM(P)ADRE database users by requiring advanced knowledge to handle 

diverse data structures and program custom analysis functions.

3. To close this knowledge gap, we present two interrelated R packages designed to (i) 

facilitate the use of these databases by providing functions to acquire, quality control, and 

manage both the MPM data contained in COMPADRE and COMADRE, and a user’s own 

MPM data (Rcompadre), and (ii) present a range of functions to calculate life history 

traits from MPMs in support of ecological and evolutionary analyses (Rage). We provide 

examples to illustrate the use of both. 

4. Rcompadre and Rage will facilitate demographic analyses using MPM data and 

contribute to the improved replicability of studies using these data. We hope that this new 

functionality will allow researchers, land managers, and educators to unlock the potential 

behind the thousands of MPMs and ancillary metadata stored in the COMPADRE and 

COMADRE matrix databases, and in their own MPM data. 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Abstract (Resumen) (ES)

1. Los modelos matriciales de población (MMPs) son una herramienta importante para 

aquellos biólogos interesados en comprender las causas y consecuencias de la variación de 

las tasas vitales (p.ej. supervivencia, reproducción) durante el ciclo de vida de las especies. 

Los MMPs empíricos describen la demografía de los organismos según su estructura de 

edades y/o estadios y suelen representar la historia de vida de una población durante un 

período de tiempo y en una localidad geográfica específica.

2. Las bases de datos de MMPs de plantas COMPADRE y animales COMADRE son las que 

contienen una mayor cantidad de MMPs, las cuales, conjuntamente, contienen > 12,000 

MPMs para > 1,100 especies a nivel mundial. Aunque estas bases de datos representan un 

recurso sin precedentes para investigadores, gestores medioambientales y educadores, las 

herramientas computacionales disponibles para contestar preguntas utilizando MMPs 

imponen barreras significativas a los potenciales usuarios, dado que requieren un 

conocimiento avanzado del uso de distintas estructuras de datos y lenguajes de 

programación para los análisis.

3. Para cerrar esta brecha de conocimiento, presentamos dos paquetes de R interrelacionados 

diseñados para (i) facilitar el uso de estas bases de datos, proporcionando funciones para 

adquirir, controlar la calidad y manipular los datos de MMPs contenidas en COMPADRE 

y COMADRE, como los datos de MMPs propios de un usuario (Rcompadre) y (ii) 

presentar una serie de funciones para calcular atributos de la historia de vida de las 

especies a partir de dichos MMPs para análisis ecológicos y evolutivos (Rage). 

Proporcionamos viñetas para ilustrar el uso de ambos paquetes. 

4. Rcompadre y Rage facilitarán los análisis demográficos utilizando datos de MMPs y 

contribuirán a mejorar la replicabilidad de los estudios que utilizan estos datos. Esperamos 

que esta nueva funcionalidad permita a los investigadores, gestores y educadores explotar 

el potencial que hay detrás de los miles de MMPs y los metadatos de las bases de datos 

COMPADRE y COMADRE, y en sus propios datos de MPM.
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Introduction

Matrix population models (MPMs, hereafter) have become a commonplace tool for ecologists, 

evolutionary biologists, and conservation biologists seeking to understand how variation in vital 

rates (e.g., survival, development, reproduction, recruitment, etc.) in the life cycle varies 

geographically and across species. MPMs describe population dynamics based on stage- or age-

specific vital rates in the population of interest over their life cycle (Caswell, 2001). Outputs 

derived from MPMs include population growth rates (Caswell, 2001), key life-history traits 

(Caswell, 2001), and vital rate sensitivities (de Kroon, Plaisier, van Groenendael, & Caswell, 

1986; de Kroon, van Groenendael, & Ehrlén, 2000). These outputs each have a well-understood 

biological interpretation, which allows comparison of MPM-derived population and life history 

metrics, and thus demography across the diversity of life on Earth, from moss (e.g., Okland, 1995) 

to monkeys (e.g., Morris et al., 2011) to microbes (e.g., Jouvet, Rodríguez-Rojas, & Steiner, 

2018), and in myriad ecoregions.

Since the introduction of MPMs in the 1940s (Leslie, 1945, 1948), researchers have published 

thousands of MPMs for thousands of species. Our team has been digitising these MPMs into 

centralised databases for plants (the COMPADRE Plant Matrix Database: Salguero-Gómez et al., 

2015) and animals (the COMADRE Animal Matrix Database: Salguero-Gómez et al., 2016).  

These twin databases now contain more than 12,000 MPMs for more than 1,100 species 

(COMPADRE: 8,708 matrices for 757 species; COMADRE: 3,317 matrices for 415 species, as of 

September 2021) and are regularly augmented with newly-published and newly-digitised records. 

The databases, their history, and the rationale behind the data organisation are described in 

Salguero-Gómez et al. (2015) and Salguero-Gómez et al. (2016), respectively. 

COMPADRE and COMADRE store and provide MPMs and their associated metadata in a 

hierarchical structure that, while efficient for distribution, can be both a barrier to use and an entry 

point for user errors.  The primary component of MPMs are the two-dimensional, square 

projection matrices, and the size of these matrices can vary widely across species and studies. 

Moreover, most projection matrices (A) in the databases are partitioned into their three constituent 

process-based submatrices such that A = U + F + C.  Here, submatrix U describes transitions 

related to survival and growth/development, submatrix F describes sexual reproduction, and 

submatrix C describes clonal reproduction. Thus, in most cases, each MPM is represented by these 

four matrices (A, the main projection matrix and the submatrices U, F and C) alongside A
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information about the life cycle stages used in the MPM. In the majority of cases, the projection 

interval (time step) for the MPM is one year, but this can vary considerably depending on the life 

history of the organism concerned (for example, five year intervals are common in tree MPMs). 

Each MPM in the databases is also associated with over 40 metadata variables extracted from its 

parent original work(s) (e.g., stage definitions, projection time steps, citation, taxonomy, 

geography, etc., detailed in Salguero-Gómez et al., 2015 & 2016). This nested structure allows for 

higher digitisation fidelity and distribution efficiency, but also means that the dataset cannot be 

imported by ordinary spreadsheet software, such as Excel, which accommodate only rectangular 

(or “flat”) data structures. Both of the most common tools for working with MPMs, the R 

statistical programming language (R Core Team, 2021) and Matlab (Matlab, 2010), readily accept 

hierarchical data structures. However, users must have a familiarity with handling a range of 

nested object classes to organise the databases to suit their needs (e.g., “subset to only primates” or 

“subset to only species from tropical ecoregions”). The higher dimensionality can increase the risk 

of errors, such as using the wrong data dimension, even for experienced users.

The R package ecosystem provides a wide range of tools for analysing population dynamics from 

MPMs within individual populations. For example, popdemo (Stott, Hodgson, & Townley, 2012) 

focuses on the calculation of metrics related to transient population dynamics and transfer function 

analyses; popbio (Stubben, Milligan, & Others, 2007) provides functions to accomplish many 

(but not all) of the analyses found in the textbooks of Caswell (2001) and Morris & Doak (2002), 

such as the calculation of eigen properties (i.e., the asymptotic population growth rate, stable stage 

structure and reproductive values) or sensitivities and elasticities; Rramas (de la Cruz Rot, 2019) 

provides tools for making population projections and conducting population viability analyses 

from MPM data; and lefko3 (Shefferson, Kurokawa, & Ehrlén, 2021) provides tools that allow 

the inclusion of information on individual histories, which could influence population dynamics, 

into MPM analyses (see Ehrlén, 2000). However, the tools for life history analysis provided by 

these existing packages are more limited, with among the most notable absence being important 

life history metrics based on age-from-stage calculations.  Researchers that wanted to make such 

calculations (e.g., measures of senescence, longevity, or age at maturity) have needed to write 

their own code based on published equations in mathematics-heavy work, which has been a barrier 

to the broader adoption of these methods. Moreover, these life history metrics are often most 

meaningful in analyses across many populations or species. The existing packages provide little A
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support for the large hierarchical data structures needed to apply analyses to hundreds or 

thousands of MPMs that may underlie a single comparative or macroecological analysis.

Here, we introduce two R packages that enable users to construct robust MPM analysis workflows 

to answer questions from single populations to across the tree of life. The first package, 

Rcompadre, is designed to facilitate acquisition, quality control, and management of the rich, 

hierarchical MPM data in COMPADRE and COMADRE. For example, this package includes 

tools to filter (subset) the databases based on metadata archived in these resources (e.g., by 

ecoregion, by taxonomic group). In addition to “base” style R syntax for these tasks, Rcompadre 

integrates tidyverse (Wickham et al., 2019) functionality to improve usability. The second 

package, Rage, builds on the enhanced data accessibility provided by Rcompadre by providing 

analysis pipeline support for arbitrarily large numbers of MPMs and the calculation of life history 

traits needed to support comparative analyses on this scale. These life history traits include life 

tables, mean life expectancy, generation time, among several others. 

We showcase downloading, subsetting, and preparing MPM data for a broad comparative analysis 

using publicly-accessible data retrieved with Rcompadre (Box 1). We then illustrate an 

application of Rage to calculate ecologically and evolutionarily relevant metrics to test 

hypotheses related to life history theory at broad taxonomic scale. In doing so, we demonstrate the 

functional integration of Rcompadre and Rage and how investigators can use them in tandem 

to design workflows (Fig. 1) to answer their own questions in ecology, evolution and conservation 

biology.

Rcompadre

Rcompadre contains functions to facilitate downloading and using MPMs alongside their 

metadata from the COMPADRE and COMADRE databases (Fig. 1a). A central feature of this 

package is the definition of a new object class, CompadreDB, which allows R functions that are 

already familiar to users (e.g., head or tidyverse verbs) to be augmented with ‘methods’ that 

ensure that they appropriately handle the structure of MPM data from the COM(P)ADRE 

databases. In addition to improving user-friendliness, the class definition provides a pathway for 

extending the compatibility of COM(P)ADRE data to other existing or future R functions. Briefly, A
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the structure of CompadreDB objects uses the S4 systems1 with two slots: (1) the data slot, 

which contains a tibble-style data frame (Wickham & Grolemund, 2016) with a list-column of 

MPMs and vector columns of metadata, and (2) the version slot which contains database 

version information for reproducibility, including the version number, date created, and a link to 

the database user agreement. In addition, we have created the CompadreMat class, which 

formally defines how MPMs are represented in a CompadreDB object. Here too, the use of an 

explicit class definition has allowed us to define how the data contained in the object will respond 

to familiar R functions. For example, users can access and replace columns of data using the 

standard x$name and x$name <- value methods, respectively. In addition, we provide the 

functionality to access the matrix data directly, for example, using the functions matA or matU to 

access all A matrices or U submatrices in the database as a list. This functionality is particularly 

convenient if the user wishes to apply functions to a large set of MPMs, as one would do in 

comparative and macroecological analysis (for example, see recent studies by Coutts et al. (2016), 

Takada & Kawai (2020), James et al. (2020), Healy et al. (2019), Capdevila et al. (2020) and 

Jones et al. (2020)). In addition to ‘base’ R functions, many data analysis workflows make use of 

functions in the tidyverse family of packages (Wickham et al., 2019). Our package includes 

“tidy” methods for CompadreDB objects, allowing users to filter, arrange, mutate, 

select, summarise, rename and join COM(P)ADRE data to answer their study questions 

efficiently and at scale. The provision of these tidyverse methods also means that 

Rcompadre benefits from the piping (e.g., %>%) functionality of magrittr and more recently 

in base R (|>, in v.4.1.0 and later). Examples of how this functionality can streamline the human 

readability of workflows can be found in the vignettes at the package development pages.

In addition to a wide range of method-based support of existing R functions, Rcompadre 

provides functions for additional workflow tasks that follow the naming pattern of cdb_ 

(pronounced “compadre database”) followed by a meaningful verb. For example, cdb_fetch 

retrieves COM(P)ADRE data of the current or any previous database version from the web as a 

CompadreDB object, and cdb_compare reports the differences between any pair of 

1 R includes significant support for object-oriented programming, and the S4 system is one of R’s systems for defining 
object classes. It is a stricter, less flexible system than R’s base system (S3) but has the advantage of enhancing 
consistency in how objects are defined and handled, and in the ease with which data can be accessed from nested 
objects. The details are far beyond the scope of this article, but see Wickham (2019) for fuller coverage.A
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CompadreDB objects.  Table 1 summarises the most important Rcompadre functions, and full 

documentation of all functions is provided in the package manual. 

Data management and checking

The COM(P)ADRE databases include metadata associated with each MPM including taxonomic 

information, geolocation, and details of the source publication (see the User Guide at 

www.compadre-db.org or Salguero-Gomez et al. 2015, 2016 for full metadata documentation). 

When working with these data via Rcompadre, we can see the richness of the metadata with R’s 

names function and users can use any of these metadata columns to filter the database prior to 

analysis. The projection matrices themselves are contained in a list column called mat, where 

each element includes a list of the four matrices: A and the submatrices U, F and C (see above). 

The list also provides information on matrix stage definitions. All other columns of the 

COMADRE database object are ordinary vectors.

Not all COM(P)ADRE data will meet the inclusion criteria for a particular analysis. Rcompadre 

includes several general functions for checking the data that use the quality control flags generated 

when MPMs are digitised and checked before addition to the databases. These data checks are 

accessed through Rcompadre using the cdb_flag function. This function, which can be 

implemented as a stand-alone function or during data retrieval by cdb_fetch, adds logical 

metadata columns to the provided CompadreDB object which can be used for data filtering (see 

?cdb_flag for details of the available data property checks). For example, a minority of studies 

published only the main projection matrix, A, thereby preventing its decomposition into the U, F 

and C submatrices which may preclude certain demographic analyses. Matrices may also have 

missing (NA) values where a transition was not estimated. Other potential pitfalls flagged by this 

function include matrices that are singular (non-invertible), non-ergodic (where initial stage 

structure can influence asymptotic population growth rate), reducible (where the associated life 

cycle graph does not contain all necessary transition rates to enable pathways from all stages to all 

other stages) or non-primitive (Caswell, 2001; Stott, Townley, & Carslake, 2010).  Depending on 

the desired downstream analyses, researchers may need to filter the database based on one or 

more of these flag columns.  
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The quality checks performed by cdb_flag cannot anticipate all potential inclusion criteria, and 

we strongly encourage investigators to perform additional checks that may be necessary to 

determine the suitability of a MPM record for their analysis. The existing metadata columns 

associated with each MPM contains a wealth of useful information to this end. For example, the 

interpretation of many metrics derived from MPMs depends on the projection interval 

(ProjectionInterval). We advise users to filter on this column to a common projection 

interval prior to analysis or to correct analysis outputs to the same temporal units. An analysis may 

also require delineating MPM records that use post- vs. pre-reproductive census models. Although 

both databases have a metadata field that reports this information (CensusType), it is often not 

reported in original publications and thus COM(P)ADRE includes records with incomplete 

metadata. Users may therefore need to carefully consider the source publication (e.g., retrieved 

using the DOI_ISBN and AdditionalSource column metadata) or contact the original 

authors to determine suitability. 

Finally, Rcompadre includes a function, cdb_build_cdb, which allows users to access the 

full functionality of Rcompadre for their own data by constructing valid CompadreDB objects 

from user-supplied lists of matrices, (optional) stage information, and an accompanying data frame 

of metadata. Furthermore, we provide a way for users to augment COM(P)ADRE with a 

CompadreDB object containing their own data using the function cdb_rbind. This nimble data 

extensibility ensures the continued utility of Rcompadre’s suite of workflow tools without 

dependency on externally-maintained data.

In Box 1 we illustrate the use of Rcompadre to download, check, and filter the COMADRE 

database (animal MPMs) in preparation for a later analysis of mammal life span using Rage. 

Vignettes at the Rcompadre documentation website (https://jonesor.github.io/Rcompadre/) give 

further detailed coverage of the package’s capabilities.

Rage

The Rage package contains functions to facilitate the calculation of life history metrics (Table 2) 

from MPMs. The guiding philosophy of the package centres on (i) augmenting the suite of life 

history analyses that are implemented in R and (ii) providing support for analyses—whether new 

in Rage or previously implemented elsewhere—to be conducted in a standardised way across A
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large numbers of MPMs. Other functions are novel, such as estimates of the pace and shape of 

reproduction (Baudisch & Stott, 2019). Broadly, the functions fall into six categories (Fig 1B, 

Table 2):

1) Transformation: reshape, resize, and reorder whole MPMs

2) Life tables: convert MPMs to life tables and life table components

3) Life history traits: calculate life history metrics

4) Vital rates: extract and summarise the component vital rates of MPMs

5) Visualisation: plot the life cycle graph

6) Perturbation analyses: calculate sensitivity and (stochastic) elasticity of any demographic 

statistic to perturbations of MPM elements, vital rates, or transition types

To illustrate the functionality and inter-compatibility of functions among these categories, we 

describe a workflow that reconciles a common problem in comparative life history analysis: the 

desired life history metric requires an age-structured life table, but the available data are stage-

structured MPMs. Although the mathematical descriptions for each step have long been available 

in the demographic literature, Rage both implements these as R functions and does so in a way 

that enables interoperability of function inputs and outputs. We provide in-depth vignettes for each 

group of functions at the Rage documentation website (https://jonesor.github.io/Rage/). However, 

several Rage functions, such as mpm_to_table, entropy_... and shape_..., rest on 

the production of age-based life tables from stage-based matrices and thus it is pertinent to outline 

this important aspect of Rage here. 

To enable a broader range of life history analyses on data from MPMs, Rage implements 

conversions of stage-structured MPMs to age-specific mortality and fertility life tables using 

methods developed by Cochran and Ellner (1992), Caswell (2001) and Caswell et al. (2018). 

These methods require that MPMs are decomposed into their constituent submatrices, U, and 

optionally F and/or C (see above) and the determination of the stage we consider to be the start of 

the life cycle (e.g., seed establishment, seed germination, etc.).  In a nutshell, the method works by 

an iterative procedure whereby a synthetic cohort starting at age zero is projected using the matrix 

model. At every iteration the cohort ages by one projection interval (often one year), and we can A
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keep track of survivorship (lx), the proportion of the original cohort that have survived each 

iteration. Fecundity is calculated in an analogous way. The result is a full life table that is readily 

available for use in analyses that require age-, rather than stage-structured trajectories of 

demographic processes. We direct readers to Caswell (2001), Caswell et al. (2018) and in the 

supplementary information of Jones et al. (2014).

Once an lx trajectory is calculated, the other quantities of standard life tables can be calculated 

using standard life table calculations (Preston, Heuveline, & Guillot, 2000). In Rage, the function 

mpm_to_table applies these calculations to produce a life table that includes standard life table 

columns including age, survivorship, age-specific probability of death, force of mortality, 

remaining life expectancy. In addition, Rage provides functionality to calculate age trajectories 

for individual variables (i.e., subsets of the full life table) using the mpm_to_... set of functions 

(e.g., mpm_to_lx; Box 1).

Importantly, converting MPMs to life tables can introduce mathematical artefacts that compromise 

the resulting analyses. Rage provides functions to diagnose and, when possible, correct for these 

artefacts. All age-from-stage calculations produce age-trajectories that inevitably asymptote as a 

mathematical consequence of describing the vital rates as functions of discrete stages (Horvitz & 

Tuljapurkar, 2008). Regardless of how low the survival probabilities are in an MPM, there will be 

a non-zero probability that an individual could reach ages of 100, 10,000, or >1 million years. The 

exponential rate that these probabilities decay with increasing age is determined by the dominant 

eigenvalue of U, but even rapid decay can bias some life history metrics (e.g., entropy and life 

span measures). Rage provides a convenient and principled way of correcting for this artefact by 

imposing a lower probability threshold defined by the degree of convergence to the quasi-

stationary distribution (see also the Supplementary Information of Owen R. Jones et al., 2014). In 

Rage we do this by first scaling the right eigenvector (w) so that it sums to one and then, for each 

iteration of the age-from-stage calculations, we measure the convergence of the proportional 

cohort structure as Δx = 0.5 ||px - w||, where px is the proportional stage structure at the xth iteration 

of the age-from-stage calculations (i.e., at time x). When px eventually converges to equal w, Δx 

will equal 0. We can use this information to truncate the life tables produced from age-from-stage 

methods to, for example, ages where Δx> 0.05. Furthermore, we may judge the reliability of age-

from-stage methods by comparing the lx trajectory with the Δx trajectory: If convergence is A
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reached before lx declines to, for example, 0.05 (i.e., 5% of the cohort remaining alive) we suggest 

reconsidering the use of this approach for that particular model. 

In Box 2 we demonstrate the use of Rage via a global analysis of mammalian longevity 

introduced in Box 1. The life history metric of interest is calculated with Rage’s longevity 

function—a novel implementation in this package—by projecting a hypothetical cohort of 

individuals with an MPM until only a user-defined (default: 1%) fraction of individuals from the 

initial cohort remain alive. Since only a single cohort is tracked, the function requires only the U 

submatrix (stage-specific survival and transition rates) as the demographic process input, which 

may be supplied directly by the user or extracted from a CompadreDB object using the matU 

function from Rcompadre.

The longevity function also requires us to define which stage we consider to be the start of the 

life cycle. This is fairly clear for most mammals but may be more subjective in some groups 

depending on the goals of the analysis (e.g., seed maturation vs germination for plants with a 

persistent seed bank). The Rcompadre function mpm_first_active facilitates scaling this 

task across a large number of MPMs by returning an integer index for the first active stage class 

(i.e., non-dormant), as defined by the original study author of the MPM. Like the results of 

Rcompadre∷cdb_flag, we intend this to be used as a guide—not a replacement—for careful 

evaluation of suitability. It may be more appropriate to identify the start of life manually in some 

cases. Users may control the cohort survivorship threshold via the argument lx_crit. The 

default, 0.01 (=1%) may not be suitable for all organisms, and users may find that exploring other 

quantiles (e.g., 50%) offers a richer description of the age-at-death distribution. Finally, the 

function requires us to set a maximum age to consider (xmax, default = 1000) as a pragmatic 

matter of computational speed. This default can be increased for exceptionally long-lived 

organisms, and we remind users that all measures of age in the Rage package use the projection 

interval of the MPM provided (see the ProjectionInterval metadata column for 

COM(P)ADRE data retrieved using Rcompadre::cdb_fetch). A final important caveat for the 

general use of Rage is that the life history calculations, like most other MPM calculations, assume 

that the models are parameterised using post-reproductive census data. Therefore, outputs are 

likely to be incorrect if the models were parameterised using pre-reproductive data (see Kendall et 
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al., 2019). We advise users to check the type of data included in analyses carefully and to exclude 

pre-reproductive matrices.

Conclusions

The tools provided by Rcompadre and Rage facilitate efficient and at-scale use of an unrivalled 

database of demographic process rates and the calculation of numerous life history and 

demographic metrics that are useful in ecology and evolution. In so doing, this pair of packages 

fills gaps and reduces overhead in the analytical workflow of comparative and macroecological 

demographic analysis. Although we designed the packages to operate together, Rage is also well-

suited for general use with non-COM(P)ADRE matrix population models, whether in support of 

the analysis of new empirical MPMs or simulation-based theoretical studies of life history. We 

showcase the use of these packages to illustrate how they may be particularly useful in 

comparative demographic studies, for example, to address topics related to the evolution of life 

histories or comparative population dynamics across many species.

Users can obtain a complete index of the functions available in Rcompadre and Rage by 

running ?Rcompadre and ?Rage respectively in R, or by visiting the package documentation 

websites at https://jonesor.github.io/Rcompadre/ and https://jonesor.github.io/Rage/, respectively. 

Our ultimate hope is that democratising access to demographic data and analytic tools will 

empower a wide range of users to unlock the great potential of matrix population models. This 

will allow the community to further our basic understanding of life history, enable data-driven 

conservation management, and educate and inspire the next generation of population biologists.
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Box 1: Using Rcompadre to download and prepare MPM data for analysis

In the following example, we illustrate the use of Rcompadre to carry out typical data download 

and preparation tasks for an analysis relevant to comparative population dynamics research. 

Specifically, we aim towards an analysis of mammalian life span and its relationship with 

generation time (continued in Box 2).

After loading the required packages, we download the COMADRE data and conduct some basic 

checks of the matrices. We then filter the data set to include only mammals, to include no missing 

values in the U matrix, and to ensure that the U and F matrices are not filled entirely with zero 

values, nor that columns of the U matrix sum to 0. We further filter the data to ensure that the 

projection interval is 1 year. Finally, we can plot the geographic distribution of these data using 

tools from the ggplot2 and maps packages (Fig. 2).

# Load packages

library(Rcompadre)

library(tidyverse)

# Fetch data, and conduct basic checks

comadre <- cdb_fetch("comadre", flag = TRUE)

# Filter for mammals, split matrices, NA/0 values in U and F matrices 

and a

# projection interval of 1

mammals <- comadre %>%

  filter(Class == "Mammalia") %>%

  filter(MatrixSplit == "Divided") %>%

  filter(

    check_NA_U == FALSE, check_zero_U == FALSE,

    check_zero_F == FALSE, check_zero_U_colsum == FALSE

  ) %>%

  filter(ProjectionInterval == 1)
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# Plot geographic distribution

ggplot(mammals, aes(x = Lon, y = Lat)) +

  borders(database = "world", fill = "grey80", col = NA) +

  geom_point(alpha = 0.4, color = "#E69F00") +

  scale_x_continuous(breaks = seq(-180, 180, 90), expand = c(0, 0)) +

  scale_y_continuous(expand = c(0, 0)) +

  labs(x = "Longitude", y = "Latitude") +

  theme_minimal()
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Box 2: Using Rage to calculate and visualise longevity

Here we demonstrate the use of Rage, focussing on the global analysis of mammalian longevity 

introduced in Box 1. We begin our mammal longevity analysis by adding columns to the data 

extracted from COMADRE (Box 1) that contain the two user-supplied arguments, matU and 

start_life, using the dplyr function mutate. We can then pair mutate with the base R 

function mapply to call the longevity function with each row’s matU and start_life 

arguments and return the estimated longevity in a new column. Then we check the age of 

convergence to the quasi-stationary stage distribution (QSD), and filter the data set so that it 

only includes matrices where the estimated longevity is less than or equal to the age at which QSD 

is reached.

# Load package

library(Rage)

# Add columns for matU and matF, then calculate generation time, 

longevity and

# convergence

# Filter to ensure that QSD is not reached before estimated longevity.

mammals <- mammals %>%

  mutate(

    matU = matU(.),

    start_life = mpm_first_active(.)

  ) %>%

  mutate(

    matF = matF(.),

    start_life = mpm_first_active(.)

  ) %>%

  mutate(gentime = mapply(gen_time, matU, matF)) %>%

  mutate(longevity = mapply(longevity, matU)) %>%

  mutate(convage = mapply(qsd_converge, matU)) %>%

  filter(longevity - convage <= 0)A
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library(khroma)

ggplot(mammals, aes(x = gentime, y = longevity)) +

  geom_point(aes(colour = Order)) +

  scale_color_manual(values = c(as.vector(colour("bright")(7)),"black")) 

+

  scale_x_continuous(trans = "log", breaks = c(2, 5, 10, 20, 40, 80)) +

  scale_y_continuous(trans = "log", breaks = c(2, 5, 10, 20, 40, 80, 

160)) +

  labs(x = "Generation time (years)", y = "Longevity (years)") +

  geom_smooth(method = "lm", colour = "grey50") +

  theme_minimal()

#> `geom_smooth()` using formula 'y ~ x'

As one might expect, there is a strong association between generation time and our measure of life 

span (Fig. 3). It would of course be interesting to use more formal statistical methods to explore 

this (and similar relationships) further, for example to examine the variation in the scaling 

relationship across orders. When doing so it will be important to carefully consider taxonomic and 

geographic or ecoregion bias in the dataset. In addition, researchers should carefully vet the 

included data for suitability - including a consideration of whether the models are based on pre- or 

post-reproduction censuses.
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Supplementary materials

We provide several vignettes which guide users through most of the functionality of Rcompadre 

and Rage. These vignettes are available at the package development web pages at 

https://jonesor.github.io/Rcompadre/ and https://jonesor.github.io/Rage/, under “Articles”, in the 

dropdown menu.

An additional piece of supplementary material is a version of the code in Boxes 1 and 2 that does 

not use pipes: non_piped_version.pdf
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Figure captions

Figure 1. Workflow of using Rcompadre and Rage for ecological and evolutionary analyses of 

matrix population model data. (A) Once the author(s) have identified the research question, 

demographic data in the format of MPMs can be accessed from the COMPADRE and/or 

COMADRE databases via the Rcompadre R package. This package allows for the online 

acquisition, checking (according to data needs) and management of the CompadreDB data object 

(e.g., using cdb_fetch to download the data and cdb_flag and filter/subset to produce 

a data set for analysis). (B) The filtered data (or other user-provided MPM data) can be then 

migrated for calculations of life history traits with Rage (alternatively, these can be done directly 

on MPMs provided by the author). The families of functions archived in Rage include: 

transformation (e.g., mpm_collapse), creation of life tables (e.g., mpm_to_lx), derivation of 

life history traits (e.g., longevity), calculation of vital rates (e.g., using vital_rates to 

calculate average survival, reproduction, development, etc.), visualisation of life cycles (e.g., 

plot_life_cycle), and perturbation analyses (e.g., perturb_stochastic).

Figure 2. The spatial extent of data in the subset of mammal data used in our example analysis. 

Note that 186 of the matrices for mammals in our set (~27%) lack associated spatial information.

Figure 3. The relationship between estimated generation time and longevity (defined as the age 

that 1% of a synthetic cohort would reach, based on the MPM). The line represents the fit of an 

ordinary least-squared regression through the data. The slope is 1.28 (±0.07) and the intercept is 

0.26 (±0.16); R2=0.90; F1,43= 379; p <0.001).
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Table 1. The functions in Rcompadre are grouped into four categories: Data acquisition, Data 

checking, Data management and Accessor functions. We outline the most important functions 

here, with a brief description. Users should consult the package documentation for a full 

description of named functions (e.g., ?cdb_fetch) and to see a full list of functions.

Category Function Description

Data acquisition cdb_fetch() Downloads the current version of the 

COMPADRE or COMADRE databases, or 

loads a local database file.

cdb_metadata() Extracts a tibble with only metadata from 

a CompadreDB object.

Data checking cdb_collapse() Collapses a CompadreDB object by 

averaging projection matrices over levels of 

one or more grouping variables.

cdb_compare() Compares two versions or subsets of 

CompadreDB objects

cdb_flag() Flags potential problems with projection 

matrices within a CompadreDB object, 

such as missing values, singular U 

submatrices, non-ergodicity, non-

irreducibility, primitivity etc. (see Iain Stott 

et al., 2012).

cdb_check_species() Checks for specific species in a 

CompadreDB object.

Data as_cdb() Generates an S4 CompadreDB object from A
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management S3 formatted data.

cdb_flatten() Converts a CompadreDB object into a flat 

data frame with projection matrices and 

vectors stored in string representation.

cdb_unflatten() Converts a flattened data frame back into a 

CompadreDB object.

cdb_id() Creates a vector of integer identifiers 

corresponding to unique combinations of a 

given set of columns.

cdb_id_stages() Creates a vector of integer identifiers 

corresponding to unique combinations of a 

species and matrix stage class definitions.

cdb_id_studies() Creates a vector of integer identifiers 

corresponding to unique combinations of 

publication metadata.

cdb_mean_matF() Calculates a population specific mean 

fecundity submatrix (F) for each set of 

projection matrices in a CompadreDB 

object.

cdb_rbind() Merges two CompadreDB objects using a 

row-bind of the data slots.

cdb_unnest() Unnests a CompadreDB object by 

spreading the nested components of 

CompadreMat into separate columns.A
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mat_mean(), 

mpm_mean()

Calculates an element-wise mean over a list 

of projection matrices or CompadreMat 

objects.

mat_to_string(), 

vec_to_string(), 

string_to_mat(), 

string_to_vec()

Converts vectors or square numeric 

matrices to and from string representation.

mpm_has_prop(), 

mpm_has_active(), 

mpm_has_dorm()

Extracts stage-class information (e.g., 

propagule, dormant, and active stages) from 

a CompadreMat or CompadreDB object.

mpm_first_active() Extracts the integer index of the first active 

(i.e., non-dormant, non-seedbank) stage 

class in a CompadreMat or 

CompadreDB object.

Accessor 

functions

matA(), matU(), 

matF(), matC() 

Extracts full projection matrix (A), or the 

survival (U), sexual reproduction (F), or 

clonal reproduction (C) submatrices from a 

CompadreMat or CompadreDB object.
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Table 2. The functions in Rage are grouped into six categories: Life history traits, Life tables, 

Vital rates, Perturbation analyses, MPM transformation, and Visualisation. We outline the most 

important functions here with a brief description. Users should consult the package documentation 

for a full description of named functions (e.g., ?life_expect_mean) and to see a complete list 

of functions.

Category Function Description

Life history traits life_expect_mean(), 

life_expect_var()

Applies Markov chain approaches to 

obtain the mean and/or variance of life 

expectancy from a matrix population 

model.

longevity() Calculates the age at which survivorship 

falls below some critical proportion from a 

matrix population model (see SI in Owen 

R. Jones et al., 2014).

net_repro_rate() Calculates net reproductive value (R0) 

from a matrix population model.

gen_time() Calculates generation time from a matrix 

population model.

mature_age(), 

mature_distrib(), 

mature_prob()

Calculates the mean age at first 

reproduction, the stage distribution of 

individuals achieving reproductive 

maturity, and the probability of achieving 

reproductive maturity using Markov chain 

approaches.

entropy_d() Calculates Demetrius' entropy (L. A
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Demetrius, 1978) from vectors of age-

specific survivorship (lx) and fecundity 

(mx).

entropy_k() Calculates Keyfitz's entropy (Keyfitz & 

Caswell, 2005) from a vector of age-

specific survivorship (lx).

shape_rep() Calculates a 'shape' value for distribution 

of reproduction over age (Baudisch & 

Stott, 2019).

shape_surv() Calculates a 'shape' value for survival 

lifespan inequality (Baudisch, 2011).

Life tables mpm_to_table() Generates a life table from a matrix 

population model using age-from-stage 

decomposition methods (Cochran & 

Ellner, 1992; Caswell, 2001).

mpm_to_hx(), 

mpm_to_lx(), 

mpm_to_mx(), 

mpm_to_px()

Calculates mortality hazard (hx), age-

specific survivorship (lx), reproduction 

(mx), and survival probability (px) from a 

matrix population model using age-from-

stage decomposition methods.

lx_to_px(), 

lx_to_hx(), 

px_to_lx(), 

px_to_hx(), 

hx_to_lx(), 

hx_to_px()

Converts between vectors of age-specific 

survivorship (lx), survival probability (px), 

and mortality hazard (hx).
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qsd_converge() Calculates the time for a cohort projected 

with a matrix population model to reach a 

defined quasi-stationary stage distribution 

(see SI in Owen R. Jones et al., 2014).

Vital rates vitalRates() Derives the mean vital rates for a matrix 

population model.

vr_dorm_enter(), 

vr_dorm_exit(), 

vr_fecundity(), 

vr_growth(), 

vr_shrinkage(), 

vr_stasis(), 

vr_survival()

Derives mean vital rates of survival, 

growth (or development), shrinkage (or de-

development), stasis, dormancy, or 

reproduction from a matrix population 

model, by averaging across stage classes.

vr_vec_dorm_enter(), 

vr_vec_dorm_exit(), 

vr_vec_growth(), 

vr_vec_reproduction(

), 

vr_vec_shrinkage(), 

vr_vec_stasis(), 

vr_vec_survival()

Derives vectors of stage-specific vital rates 

of survival, growth, shrinkage, stasis, 

dormancy, or reproduction from a matrix 

population model.

vr_mat_R(), 

vr_mat_U()

Derives survival-independent vital rates for 

growth, stasis, shrinkage, and 

reproduction.

Perturbation 

analyses

perturb_matrix() Perturbation analysis of an emerging 

demographic property (e.g., population 

growth rate, damping ratio) with respect to A
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changes on matrix elements.

perturb_trans() Perturbation analysis of transition types 

within a matrix population model.

perturb_vr() Perturbation analysis of underlying vital 

rates (Franco & Silvertown, 2004) in a 

matrix population model.

perturb_stochastic(

)

Perturbation analysis of an emerging 

demographic property (e.g., population 

growth rate, damping ratio) with respect to 

changes on matrix elements.

MPM 

transformation

mpm_collapse() Collapses a matrix population model to a 

smaller number of stages using weighted 

averages (Salguero-Gómez & Plotkin, 

2010).

mpm_rearrange() Rearranges the stages of a matrix 

population model to segregate reproductive 

and non-reproductive stages.

mpm_split() Converts a matrix population model into 

survival (U), fecundity (F), and clonal (C) 

matrices.

mpm_standardize() Transforms a matrix population model to a 

standardized set of stage classes.

repro_stages() Identifies which stages in a matrix 

population model are reproductive.A
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standard_stages() Identifies the stages of a matrix population 

model that correspond to different parts of 

the reproductive life cycle.

Visualisation plot_life_cycle() Plots a life cycle diagram from a matrix 

population model.
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