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Abstract

1. Allometric equations for calculation of tree aboveground biomass (AGB) form the basis 

for estimates of forest carbon storage and exchange with the atmosphere. While 

standard models exist to calculate forest biomass across the tropics, we lack a 

standardized tool for computing AGB across boreal and temperate regions that comprise 

the global extratropics.

2. Here we present an integrated R package, allodb, containing systematically selected 

published allometric equations and proposed functions to compute AGB. The data 

component of the package is based on 701 woody species identified at 24 large Forest 

Global Earth Observatory (ForestGEO) forest-dynamics plots representing a wide 

diversity of extratropical forests.

3. A total of 570 parsed allometric equations to estimate individual tree biomass were 

retrieved, checked, and combined using a weighting function designed to ensure optimal 

equation selection over the full tree size range with smooth transitions across equations. 

The equation dataset can be customized with built-in functions that subset the original 

dataset and add new equations.

4. Although equations were curated based on a limited set of forest communities and 

number of species, this resource is appropriate for large portions of the global 

extratropics and can easily be expanded to cover novel forest types.

Key words: aboveground biomass, extratropics, forest carbon storage, Forest Global Earth 

Observatory (ForestGEO), R, temperate forest, tree allometry, tree biomass
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Introduction

Forest trees account for 70-90% of the land biomass of earth (Houghton 2008). Quantification 

of forest aboveground biomass (AGB) is an essential step to understand the sources, sinks and 

flow of carbon worldwide and, more importantly, how carbon storage and fluxes are changing 

through time (Houghton 2005). Changes in forest carbon storage will strongly influence the 

course of climate change (Friedlingstein et al. 2006), and forest conservation, management, and 

restoration are among the most cost-effective tools for climate change mitigation (Griscom et al. 

2017). Indeed, changes in forest carbon are emphasized in the guidelines for national 

greenhouse gas inventories by the Intergovernmental Panel on Climate Change (IPCC, Calvo 

Buendia et al. 2019), and account for approximately one-quarter of national emission 

reductions planned by countries under the Paris Climate Agreement (Grassi et al. 2017). Thus, 

accurate estimates of tree biomass are critical to understanding forest carbon dynamics and 

managing forests for climate change mitigation.

Despite rapidly developing technology focusing on remote-sensing to estimate forest biomass 

over large areas (Knapp et al. 2020; Zolkos, Goetz, and Dubayah 2013), ground-based 

assessments that combine tree census data and allometric equations remain the most widely 

applied indirect method to estimate forest biomass and are still required to calibrate remote 

sensing data (Chave et al. 2014, 2019). These models are based on common biomass predictors 

including diameter at breast height (DBH) and height (H) (e.g. Feldpausch et al. 2012), 

sometimes incorporating wood density and crown structure (Chave et al. 2005, 2014; Goodman, 

Phillips, and Baker 2014). Although ground-based LiDAR is emerging as a promising technique 

for non-destructive allometry development (Stovall, Anderson-Teixeira, and Shugart 2018), the 

vast majority of biomass allometries have been created through destructive tree harvest. Yet, 

development of reliable allometric equations requires large sample sizes (Duncanson, Rourke, 

and Dubayah 2015), particularly for large trees that are the most problematic to sample 

(Stovall, Anderson-Teixeira, and Shugart 2018) and usually underrepresented (Burt et al. 2020). 

Moreover, allometric relationships vary across species (Poorter et al. 2015; but see Paul et al. 

2016) and with environmental factors such as climate and nutrient availability (Duncanson, A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Dubayah, and Enquist 2015; Lines et al. 2012), stand age (Fatemi et al. 2011), and stand density 

(Gower, Vogt, and Grier 1992). Whereas tropical biomass data has been pooled to form the basis 

of a standardized approach to biomass estimation across the tropics (Chave et al. 2005, 2014; 

Réjou-Méchain et al. 2017), no such standardized approach currently exists for extratropical 

regions (above 23.5  latitude N or S). Rather, a wide variety of allometries developed for ∘

various levels of taxonomic and geographic organization, and of variable quality, are scattered 

throughout the literature (Chojnacky, Heath, and Jenkins 2014; Conti et al. 2019; Jenkins et al. 

2004; Luo et al. 2020; Luo, Wang, and Ouyang 2018; Muukkonen 2007; Návar 2009; Paul et al. 

2016; Rojas-García et al. 2015). These equations differ in functional form, input and output 

variables, units, and size range across which they can be applied. This makes identification and 

application of appropriate allometries a time-consuming and error-prone process (Breugel et al. 

2011) with low reproducibility and little standardization across studies (Somogyi et al. 2007). 

While challenging for studies at individual sites, this becomes particularly problematic for 

studies aiming to apply an approach that is both locally optimized and standardized across 

multiple forest types and regions (e.g., Lutz et al. 2017).

Several key principles should guide the development of temperate and boreal allometries. First, 

larger sample sizes of trees used to develop allometric equations greatly reduce biases and 

systematic errors (Duncanson, Rourke, and Dubayah 2015), and are particularly important in 

constraining the uncertainty in AGB estimates of large trees (Chave et al. 2004; Stovall, 

Anderson-Teixeira, and Shugart 2018; Sullivan et al. 2018). For example, pantropical models 

based on large datasets (Chave et al. 2005; Feldpausch et al. 2011) give reliable results with 

smaller errors compared to regional models (Rutishauser et al. 2013). Second, the precision of 

predictions can be improved by using equations calibrated with trees from a similar taxonomic 

group, and that grew in similar climatic conditions (Daba and Soromessa 2019; Ngomanda et al. 

2014; Roxburgh et al. 2015). In practice, these two principles are in conflict, in that taxa- or 

location-specific allometries are usually constructed based on a much lower sample size than 

generic allometries. Furthermore, specific allometries are often limited in the size range over 

which they were calibrated and are largely driven by a very small number of large trees, leading A
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to potentially large errors if extrapolated beyond their size range, or to discontinuous functions 

if an alternative equation is applied beyond the calibrated range. Lastly, biomass allometries 

should be continuous functions of tree size. This is especially critical for applications using 

records of tree diameter growth to estimate woody productivity (e.g., Helcoski et al. 2019; 

Anderson-Teixeira et al. in press) or to compare carbon stocks or fluxes across tree size classes 

(e.g., Lutz et al. (2018); Meakem et al. (2018); Piponiot, C. unpublished data). Ideally, continuous 

functions based on sufficient sample sizes would be derived from re-analysis of data collected to 

produce existing sets of allometric equations, as has been done for the tropics (Chave et al. 

2014), but unfortunately original data are often difficult to access, lack proper documentation, 

or are unavailable. Although there has been some progress in developing comprehensive 

databases to support the development of allometries (Falster et al. 2015; Henry et al. 2013; 

Schepaschenko et al. 2017), these are not yet comparable in coverage to the existing set of 

allometric models. Thus, for now, a standardized process for applying biomass allometries 

across extratropical forests must draw upon existing sets of allometric equations.

Here we present a framework aimed at facilitating tree biomass estimation across globally 

distributed extratropical forests. To standardize and simplify the biomass estimation process 

we developed allodb (Table 1, https://docs.ropensci.org/allodb/) as an open-source application 

aiming to: a) compile relevant published and unpublished allometric equations, focusing on AGB 

but structured to handle other variables (e.g., height and biomass components); b) objectively 

select and integrate appropriate available equations across the full range of tree sizes; and c) 

serve as a platform for future updates and expansion to other research sites globally.

Software development and workflow

Focal sites and species

We focus on multiple sites within the Forest Global Earth Observatory (ForestGEO), the largest 

worldwide network of long-term forest monitoring sites using standardized methods 

(Anderson-Teixeira et al. 2015; Davies et al. 2021). As such, it is a good model for assembling 

and applying allometric equations across a wide range of species, forest environments, and to A
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understand associated challenges in calculating biomass. ForestGEO currently includes 33 

extratropical forests across North America (n=17), Europe (n=4), and Asia (n=12), ranging in 

latitude from 23 to 61 degrees N. At each site, all stems  1 cm DBH within 5-50 ha plots are ≥

censused following standardized protocols, including identification to species level (Condit 

1998). From the 24 participant sites included in allodb (Table S1), there are 1109 species-

location combinations, 701 woody species, 248 genera, and 86 plant families represented (see 

site-species table in allodb).

Systematic search for biomass allometries

We compiled 570 allometric equations from the literature, focusing on retrieving equations to 

estimate AGB based on DBH and developed primarily in extratropical regions (Chojnacky, Heath, 

and Jenkins 2014; Forrester et al. 2017; Jenkins et al. 2004; Luo, Wang, and Ouyang 2018), and 

drew upon these and local expertise to help identify original, species-specific, and location-

specific allometries (Fig. S1). Three of our focal sites have local biomass allometries (SCBI: 

Stovall, Anderson-Teixeira, and Shugart 2018; Wytham Woods: Fenn et al. 2015; Yosemite: Lutz 

et al. 2014). For eighteen species found at the University of California Santa Cruz ForestGEO site 

(UCSC, Table S1), we include new local allometric equations to estimate H, which is an 

independent variable in some allometric models. In some cases, equations were only available 

for separate tree components (stem, bark, branches, foliage); these were summed to obtain AGB. 

For each equation, we retrieved standard information including location, taxa, units, DBH 

ranges, sample size (see allodb equations table for other categories), which are used in the 

proposed weighting scheme. We assigned Köppen climate zones to each equation using the R 

package kgc (Bryant et al. 2017; Köppen 2011). When equations were calibrated for broad 

regions (e.g., North America, Northern Germany) or vaguely-defined locations, we estimated 

their location from brief descriptions or regional maps in the original publication and included 

all possible Köppen zones. Details on all equations are available in the equations.csv file within 

allodb.
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Inputs for calculating biomass

Prior to calculating tree biomass using allodb, users need to provide: (a) DBH (cm); (b) parsed 

species Latin names, and (c) site coordinates (Fig. 1).

(a) DBH: allodb makes consistent calculations of AGB (kg) based on DBH (cm) as the primary 

predictor. In some instances, available allometric equations include H as an additional 

predictor (e.g., Jansen and Faber 1996), for these cases, inputs of H (m) refine 

predictions. We structured allodb expecting that the input DBH from plot inventories is 

checked in advance. For sites where trees are commonly measured at heights other than 

the standard 1.3 m (e.g., buttresses, trunk irregularities, differing census protocols), we 

recommend users to apply a taper correction function to improve estimates of biomass 

changes (see Cushman et al. 2014) before using allodb. As many forest census protocols 

recommend measuring stems at 1.3m (including shrubs), we provided additional 

equations to convert DBH into diameter at base (dba, i.e., diameter conversion models by 

Lutz 2005; Paul et al. 2016) for those allometries that use dba or diameter at stump 

height (20-30 cm above ground) to predict biomass.

(b) Latin species names: Species identification is critical for selecting appropriate allometric 

equations. To standardize spelling and nomenclature, plant names for all sites were 

checked using the function correctTaxo from the BIOMASS package (Réjou-Méchain et al. 

2017). Accepted family names (used in the weighting scheme) were retrieved using the 

function tax_name from the package taxize (Chamberlain et al. 2020). We recommend 

the use of such a function to homogenize and correct taxonomic information prior to 

using allodb.

(c) Site coordinates: These are needed to account for climate zones. The Köppen 

classification scheme (Köppen 2011) provides an efficient way to describe climatic 

conditions defined by multiple variables with a single and ecologically relevant metric 

(Chen and Chen 2013) and allows the assignment to a particular climate based on site 

coordinates. allodb obtains the Köppen climate zone of a given site using the kgc R A
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package (Bryant et al. 2017). The obtained climate is then compared to the allometric 

equations’ Köppen zone(s) and used in the weighting scheme. By including a climate 

input we are able to represent bioclimatic variables otherwise not included in original 

publications.

A user constructs a table with DBH, species, and site coordinates, as in the example provided in 

the allodb package:

install.packages("remotes")

remotes::install_github("ropensci/allodb")

library(allodb)

data(scbi_stem1)

scbi_stem1$agb =

  get_biomass(

    dbh = scbi_stem1$dbh,

    genus = scbi_stem1$genus,

    species = scbi_stem1$species,

    coords = c(-78.2, 38.9)

  )

AGB estimation in allodb

allodb estimates AGB (or any other dependent variable) by calibrating a new allometric 

equation for each taxon and location in the user-provided census data. The new allometric 

equation is based on a set of allometric equations that can be customized using the 

new_equations() function. Each equation is then given a weight by the function weight_allom() 

based on: 1) its original sample size (numbers of trees used to develop a given allometry), 2) its 

climatic similarity with the target location, and 3) its taxonomic similarity with the target taxon 

(see weighting scheme below). The final weight attributed to each equation is the product of 

those three weights. Equations are then resampled with the function resample_agb(): the 

number of samples per equation is proportional to its weight, and the total number of samples 

is 10  by default. The resampling is done by drawing DBH values from a uniform distribution on 4A
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the DBH range of the equation, and estimating the AGB with the equation. The pairs of values 

(DBH, AGB) obtained are then used in the function est_params() to recalibrate a new allometric 

equation: this is done by applying a linear regression to the log-transformed data (see example 

in Fig. 1). The parameters of the new allometric equations are then used in the get_biomass() 

function by back-transforming the AGB predictions based on the user-provided DBHs. By using 

the function illustrate_allodb(), the user can visualize in a plot the top 10 resampled equations 

and the final fitted equation (e.g., Figs. 1, S3).

Weighting scheme of allometric equations

Each equation is given a weight by the function weight_allom(), calculated as the product of the 

following components:

1) sample-size weight: because larger sample sizes greatly reduce biases and systematic 

errors (Duncanson, Rourke, and Dubayah 2015), we attribute a larger weight to 

equations calibrated with a larger number of trees. This weight is calculated as an 

asymptotic function of the sample size : . The sample-size weight 𝑛 1 ― 𝑒
―𝑛 ⋅ (𝑙𝑜𝑔(20)

𝑤95 )

increases sharply at low sample sizes and gets close to one (its asymptotic value) for 

sample sizes > .  is 500 by default, and may be adjusted by the user. Equations 𝑤95 𝑤95

with no sample size information are given a sample-size weight of 0.1 by default: this 

value can be adjusted by the user using the argument .𝑤𝑛𝑎

2) climatic weight: equations calibrated in similar climatic conditions as the target location 

are given a higher weight, using the 3-letter system of Köppen climate scheme (Köppen 

2011). This weight is calculated in 3 steps: (1) if the main climate group (first letter) is 

the same, the climate weight starts at 0.4; if one of the groups is “C” (temperate climate) 

and the other is “D” (continental climate), the climate weight starts at 0.2 because the 2 

groups are considered similar enough; otherwise, the weight is 1e-6; (2) if the equation 

and site belong to the same group, the weight is incremented by an additional value 

between 1e-6 and 0.3 based on precipitation pattern similarity (second letter of the 

Köppen zone), and (3) by an additional value between 1e-6 and 0.3 based on A
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temperature pattern similarity (third letter of the Köppen zone). The resulting weight 

has a value between 1e-6 (different climate groups) and 1 (exactly the same climate 

classification). When an equation was calibrated with trees from several locations with 

different Köppen climates, the maximum value out of all pairwise equation-site climate 

weights is used.

3) taxonomic weight: equations calibrated with trees from a similar taxonomic group as 

the target taxon are given a higher weight (Fig. S2). The taxonomic weight is equal to 1 

for same species equations, 0.8 for same genus equations, 0.5 for same family equations 

and for equations calibrated for the same broad functional or taxonomic group (e.g., 

shrubs, conifers, angiosperms). All other equations are given a low taxonomic weight of 

10 : these equations will have a significant relative weight in the final prediction only ―6

when no other more specific equation is available.

The choices of weighting functions and parameter values are selected based on our current 

understanding of the principles of allometric equations and experimentation with various 

options, and weightings may be adjusted based on user discretion. However, adjusting these 

values can result in unsatisfactory predictions: alternative weighting schemes should be 

checked before being used for predictions.

In particular, we use taxonomic similarity as an easily measurable proxy of expected similarity 

among species’ allometries, but the assumption that related species have similar allometries 

does not always hold. For example, the North American high-elevation five-needle pines (Pinus 

longaeva, P. aristata, P. albicaulis, and P. balbouriana) are morphologically similar to one 

another but extremely different from the more common Pinus species (e.g., Pinus strobus). 

Because generic genus-level equations are usually based on the more common species (e.g., 

Chojnacky, Heath, and Jenkins 2014), biased predictions can result where the target species has 

vastly different morphology or wood density from the genus-level mean, particularly if they 

grow in similar climate zones. The resulting errors can be especially important when dealing 

with large trees. Using species’ phylogenetic or morphological similarity and wood density A
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could help reduce such biases, but this information is not always available for all species and 

equations. We recommend that researchers working with species that do not conform to 

generalized allometric models for their taxa and climate zone (i.e., ~8% of species in analysis of 

Paul et al. 2016) carefully evaluate the weighting of allodb equations and apply alternative 

allometric models if needed.

Evaluation and validation of methods

To validate and evaluate allodb, we (1) screened for equation errors; (2) evaluated against 

widely used regional allometric models; and (3) compared allodb predictions against raw data.

As a preliminary test to detect preventable equation errors (e.g., unit conversion issues, typos 

when transcribing, errors within original publications), we manually evaluated each equation in 

R (R Core Team 2018) as it was entered into our dataset to ensure that predictions were within 

reasonable range. We identified outliers through plotting of each species per focal ForestGEO 

site to compare biomass values predicted by the different equations on a hypothetical DBH 

range between 1-200 cm (e.g. Fig. S3). Through this process, equation errors were corrected 

when possible, and problematic equations removed.

Next, we evaluated how AGB estimates using allodb compare to those obtained from the widely 

the widely-used regional equations for North America of Chojnacky, Heath, and Jenkins (2014). 

Using the SCBI ForestGEO plot as a test case, we found that allodb predictions aligned 

reasonably with those of the Chojnacky, Heath, and Jenkins (2014) equations (Fig. S4), but with 

differences that can be meaningful. The most notable departure occurred for the largest-DBH 

trees in the plot, for which absolute differences could be large (>3000 kg) for a couple species 

(e.g., Quercus velutina), with the Chojnacky, Heath, and Jenkins (2014) allometries predicting 

higher AGB. Across smaller and intermediate tree sizes, allodb predictions could be higher or 

lower depending on the species, with an overall tendency for allodb predictions to be higher. 

Both of these differences align with the findings of a terrestrial LiDAR study at this site (Stovall, 

Anderson-Teixeira, and Shugart 2018), which found that the Chojnacky, Heath, and Jenkins 

(2014) equations underestimated biomass overall while overestimating biomass of the largest A
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individuals. Summing across all trees in the SCBI plot, allodb predicted a total AGB of 307.6 Mg 

ha-1, which is 19% higher than a published estimate of 258.9 Mg ha-1 that applies Chojnacky, 

Heath, and Jenkins (2014) equations to the same data (Lutz et al. 2018).

Finally, we tested the accuracy of allodb predictions against a comprehensive compilation on 

destructive sampling by Schepaschenko et al. (2017). A subset (n=6266 trees) from the original 

dataset was used providing DBH (> 1cm), H (m), and measured AGB (kg) at 176 sites distributed 

in Eurasia (Fig. S5). The allodb predictions were reasonable across the tree size range, with 

root-mean-square error (RMSE) of 87.02 kg on a linear scale (and a mean relative error-MRE- of 

72%) and 0.71 kg on a logarithmic scale.

Conclusions and future improvements

Calculation of tree biomass has multiple challenges that we tried to overcome when designing 

allodb. The allodb package makes it possible to obtain consistent, reproducible AGB estimates 

for extratropical forests, noting that careful attention to versioning (i.e., citation of package 

version) will be necessary to ensure reproducibility. We believe that these estimates are as 

accurate as possible given the issues that currently plague the field (e.g., limited diameter 

ranges, allometries based on low sample sizes, lack of harvested data, Burt et al. 2020). In 

addition, the allodb platform and scope can be expanded to include more equations and thereby 

represent more species and sites. It can also be expanded to cover more response variables (e.g., 

roots, foliage, heights and crown dimensions) so that we can better predict AGB (or below 

ground biomass) on an ecosystem scale, characterize forest structure, and potentially link it 

with LiDAR applications and more general remote sensing methods. With appropriate 

accounting for snags and down wood (Janik et al. 2017) and appropriate reduction factors (e.g., 

Harmon et al. 2011), allodb can also form the basis for calculating dead woody biomass. We 

encourage the user community to contribute to building allodb into an increasingly useful 

resource for estimating extratropical forest biomass, thereby better meeting the challenge of 

characterizing and managing forest carbon stocks and fluxes in an era of climate change.
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Table 1. Description of data and functions in allodb. A detailed explanation of functions and 

data can be found in the allodb R package documentation 

(https://docs.ropensci.org/allodb/reference/index.html).

Name Description

Data

equations A dataframe with retrieved equations from literature and auxiliary data

references
A dataframe listing all references by reference ID used in equation 

table

site-species
A dataframe listing focal sites in this study and the identified family, 

genus, and species per site.

Metadata

equations_metadata A dataframe explaining fields in the equation table

missing_values
A dataframe describing the use of codes for missing values used in 

the equation table

reference_metadata A dataframe explaining fields in the reference table

site-species_metadata A dataframe explaining fields in the site-species table

Functions

est_params
Estimates the parameters (slope, intercept, sigma) of the recalibrated 

allometric equations

get_biomass Executes the AGB calculation per stem (kg)

illustrate_allodb Produces illustrative graphs of the recalibration process

new_equations
Customizes the original set of allometric equations by subsetting it 

and/or by adding new equations

resample_agb Resamples the original equations
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Name Description

weight_allom
Combines multiple variables (taxa, climate, and sample size) to 

attribute a weight to each equation
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Figure 1: Illustration of allodb workflow and predictions. User provides a dataframe with 

DBH (cm), parsed species Latin names, and site coordinates. allodb estimates AGB by calibrating 

a new allometric equation for each taxon in the user-provided data. The equations table in 

allodb can be customized using the new_equations() function. Each equation is given a weight by 

the weight_allom() function and then resampled with the function resample_agb(). The values 

obtained are used in the function est_params() to recalibrate a new allometric equation and 

then used in the get_biomass() function. illustrate_allodb() is used to visualize the top resampled 

equations (details for each equation can be found in the equations table within allodb) and the 

final fitted equation.
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