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Abstract 25 

 26 

Given the global loss of biodiversity, trait-based studies are needed to assess the associated 27 

consequences for ecosystem functions and services. Many studies focus on the assessment of 28 

functional diversity of natural communities as a mechanistic link between biodiversity and 29 

ecosystem functioning. In freshwater ecosystems, diversity of primary producers is crucial for 30 

resource use efficiency and trophic transfer of energy. Furthermore, one indicator of the eco-31 

logical status of surface waters is the composition of natural phytoplankton communities. The 32 

number of available techniques for the quantification and discrimination of different phyto-33 

plankton groups have increased in recent years. For example, phytoplankton community com-34 

position can indirectly be assessed via CHEMTAX, a matrix factorization program, which 35 

calculates the contribution of different phytoplankton taxa to the total chlorophyll a using 36 

concentrations of pigments analysed via liquid chromatography. A more direct, in vivo assess-37 

ment can be achieved with instruments based on spectral fluorometry, such as the Algae Lab 38 

Analyser, which allows for a differentiation of four phytoplankton groups depending on spec-39 

tral fluorescence signatures. In this study, we compared both methods by analyses of phyto-40 

plankton biomass and functional diversity from phytoplankton communities of three lakes of 41 

different trophic states, while a subset of biomass and diversity estimates derived from micro-42 

scopic counts served as a reference. We found marked differences in biomass estimates of all 43 

assessed phytoplankton groups, with cyanobacteria being significantly underestimated by the 44 

Algae Lab Analyser. Furthermore, we show that the level of agreement between the methods 45 

somewhat depends on the trophic state of the lake. We conclude that both methods are suita-46 

ble to estimate phytoplankton functional diversity with specific advantages and disadvantages. 47 

Here we provide users with a flow chart to help them find the most suitable method for their 48 

respective purposes. 49 

 50 
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 56 

Introduction 57 

 58 

The global loss of freshwater biodiversity, which is mainly driven by human-induced climate 59 

change and eutrophication, is predicted to affect the stability of freshwater ecosystems and 60 

challenge ecosystem functioning and services (Dudgeon, 2010; Janse et al., 2015). Phyto-61 

plankton communities, which are primary producers at the base of pelagic food webs, show 62 

fast generation times and thereby respond rapidly to environmental changes (Winder & Som-63 

mer, 2012; Pomati et al., 2013). Phytoplankton pigment composition plays a crucial role for 64 

the ecology and competitive interactions in phytoplankton via traits linked to light use effi-65 

ciency and light use niches (Litchman & Klausmeier, 2008; Striebel et al., 2009; Behl et al., 66 

2011; Lewandowska et al., 2015). On the other hand, phytoplankton groups differ in food 67 

quality for higher trophic levels with far reaching trophic consequences (Ahlgren et al., 1990; 68 

Marzetz et al., 2017; Trommer et al., 2019; Titocci & Fink, 2022). Well known examples are 69 

cyanobacteria that can even reduce the transfer efficiency of energy from primary production 70 

to herbivores (Von Elert et al., 2003; Martin-Creuzburg et al., 2008). Therefore, light use and 71 

food quality help identify functionally distinct groups in phytoplankton communities.  72 

However, with increasing interest in the role of biodiversity per se, alpha diversity measures 73 

such as taxonomic richness and evenness also have received closer scrutiny (Hillebrand et al., 74 

2008; Filstrup et al., 2014). Natural as well as anthropogenic drivers have been identified to 75 

shift dominance among phytoplankton groups (Sommer et al., 1986, 2012). For example, the 76 



PEG model (Sommer et al., 1986) identifies abiotic drivers responsible for seasonal shifts in 77 

phytoplankton, depending also on lake trophic state. The assessment of phytoplankton com-78 

munity shifts with corresponding alterations in functional trait diversity and consequences for 79 

ecosystem functioning have become key challenges of modern aquatic ecology (Kremer et al., 80 

2017; Martini et al., 2021). 81 

In parallel, to ensure the sustainable use of aquatic ecosystems, European Community legisla-82 

tion has introduced the EU Water Framework Directive (WFD, Directive 2000/60/EC). The 83 

WFD defines the composition of the phytoplankton community as one of the most important 84 

biological parameters that determines the quality and ecological status of surface water bodies 85 

(Sarmento & Descy, 2008; Izydorczyk et al., 2009; Catherine et al., 2012; Escoffier et al., 86 

2015). Hence, both for basic and applied research aspects, the frequent monitoring of the tax-87 

onomic and trait diversity of the natural phytoplankton communities is essential. 88 

 89 

Frequent monitoring of natural phytoplankton communities leads to a high number of samples 90 

that have to be processed, which results in very high labour costs when traditional methods 91 

such as microscopic counting are used. Microscopy is extremely time consuming, and the re-92 

sult largely depends on the taxonomic knowledge of the respective person. With the reduction 93 

in taxonomic  instruction at many universities, the lack of taxonomic expertise increases, 94 

which further highlights the need for alternative methods (Drew, 2011). Also, pico-phyto-95 

plankton (< 2 µm) cannot be differentiated accurately via the traditional Utermöhl (1958) mi-96 

croscopic counting techniques (Booth, 1993). These challenges, however, can be partly over-97 

come by assessing phytoplankton community composition via epifluorescence (Callieri & 98 

Stockner, 2002; Crosbie et al., 2003; Salmi et al., 2021) or DNA metabarcoding (Groendahl et 99 

al., 2017; MacKeigan et al., 2022). Advantages and disadvantages of these methods are fur-100 

ther described in the supplementary materials. 101 

 102 



To overcome challenges associated with these aforementioned approaches, chemotaxonomic 103 

alternatives have been proposed, such as in vivo pigment-based spectrofluorometry and in 104 

vitro high pressure liquid chromatography (HPLC) of pigments, in combination with the ma-105 

trix factorization programme CHEMTAX (Mackey et al., 1996). Both approaches are based 106 

on the differences in pigment composition of the main phytoplankton groups. For example, 107 

dinoflagellates contain the pigment peridinin, which is specific for dinoflagellates (Prézelin & 108 

Haxo, 1976; Norris & Miller, 1994; Schulte et al., 2010), while alloxanthin and lutein are 109 

group-specific pigments for cryptophytes and chlorophytes, respectively (Gieskes & Kraay, 110 

1983; Jeffrey et al., 2011). The CHEMTAX approach uses input ratio matrices containing ra-111 

tios of group-specific pigments to chlorophyll a, which can be found in the literature. Re-112 

cently, such ratio matrices have been developed using data from 46 German lakes by Schlüter 113 

et al. (2016). We further introduce and discuss both approaches in supplementary materials. 114 

The advantage of both chemotaxonomic methods is that they are less time consuming than 115 

conventional methods such as microscopy. However, they only allow for a relatively low tax-116 

onomic resolution (class level), compared to microscopy and DNA metabarcoding, which 117 

both usually allow for genus or even species level, given there is enough morphological and 118 

genetic differences, as well as a comprehensive DNA barcode library.  119 

 120 

Some previous studies compared the suitability of spectrofluorometry and HPLC/CHEMTAX 121 

for the assessment of the phytoplankton community composition, e.g., usage of the bbe 122 

Moldaenke FluoroProbe (See et al., 2005) and the bbe Moldaenke Algae Online Analyser 123 

(Richardson et al., 2010) compared to CHEMTAX-derived community composition data (for 124 

more details on findings from these studies, please see supplementary materials).  125 

In this study, we for the first time compare phytoplankton community composition assessed 126 

via Algae Lab Analyzer and HPLC/CHEMTAX in lakes across a gradient of trophic status. 127 

This is important, as trophic status not only can lead to strong differences in phytoplankton 128 



composition and dynamics (Sommer et al., 1986), but also change important traits of biodi-129 

versity per se.  For example, the dominance of cyanobacteria generally increases with trophic 130 

state, resulting in biodiversity loss and decreased species evenness within phytoplankton com-131 

munities (Watson et al., 1997; Kosten et al., 2012; Paerl & Paul, 2012; Rigosi et al., 2014). 132 

Low nutrient supply accompanied by low growth rates often result in more even and diverse 133 

communities, whereas high nutrient supply often results in the dominance of a few fast grow-134 

ing taxa or groups (Huston & DeAngelis, 1994; Huston, 2014) or inedible cyanobacteria, 135 

which may become the dominant group in the community as a consequence of selected graz-136 

ing by the zooplankton on edible eukaryotic algae (Leitão et al., 2018; Ger et al., 2019). 137 

Hence, the accuracy of phytoplankton diversity estimations by proxies should be robust and 138 

not be affected by the trophic status of lakes or an interaction between trophic status and ma-139 

jor algal groups. Otherwise, such bias could result in misinterpretations of observed, but 140 

methodologically-generated, patterns as trophic effects on biodiversity – ecosystem function-141 

ing relationships.    142 

 143 

We addressed the following hypotheses: i) both methods allow for a rapid assessment of phy-144 

toplankton community composition, albeit at lower taxonomic resolution compared to micro-145 

scopic counting; ii) the congruence of the methods does not depend on the trophic state of the 146 

lakes and does not differ between different phytoplankton groups; iii) pigment diversity de-147 

rived from HPLC can be used as a proxy for phytoplankton diversity. 148 

 149 

Methods 150 

 151 

Field experiment and sampling 152 

During summer 2014, we sampled pelagic mesocosms deployed simultaneously in three lakes 153 

of different trophic state situated in Upper Bavaria (Germany): Brunnsee (47°59’01” N, 154 



12°26’12” E, area: 5.8 ha, maximum depth: 20 m), Klostersee (47°58’26” N, 12°27’10” E, 155 

area: 47.0 ha, maximum depth: 16 m) and Thaler See (47°54’16” N, 12°20’17” E, area: 3.8 156 

ha, maximum depth: 7 m). Depending on the average epilimnetic total phosphorus concentra-157 

tion (TP, mean ± standard deviation) determined in summer 2014, Brunnsee can be classified 158 

as an oligotrophic lake (TP = 5.62 ± 1.09 µg L-1), Klostersee as an oligo-mesotrophic lake (TP 159 

= 9.88 ± 2.47 µg L-1) and Thaler See as a mesotrophic lake (16.80 ± 5.18 µg L-1), based on 160 

classifications given in Nürnberg (1996). 161 

The mesocosms were made of transparent plastic foil, forming cylindrical enclosures closed at 162 

the bottom and open at the top to allow exchange with the atmosphere. They had a diameter 163 

of 0.95 m and a length of 5 m (Thaler See) and 6 m (Brunnsee and Klostersee), resulting in a 164 

total volume of approx. 3.5 – 4.2 m³, respectively. Twenty mesocosms were installed (per 165 

lake) and filled with surrounding water from the respective lake, which was pre-filtered over a 166 

250 µm gaze, to exclude mesozooplankton and thus prevent major grazing effects. The meso-167 

cosms were part of another study, but we made use of their availability to obtain samples of 168 

differing phytoplankton communities for the present investigation. We took weekly water 169 

samples from the mesocosms and from the lake itself, using a 2 L integrated water sampler 170 

(KC Denmark), from depths ranging from 0.5-2.5 m. The water samples were transported to 171 

the laboratory and were kept cool and dark until further analyses (within a few hours). In to-172 

tal, we analysed 562 samples (186 from Brunnsee, 187 from Klostersee and 189 from Thaler 173 

See). 174 

 175 

Assessment of the phytoplankton community composition via microscopic counts 176 

For microscopic identification of phytoplankton, we followed the Utermöhl technique 177 

(Utermöhl, 1958). For this purpose, 100 mL subsamples from each mesocosm were fixed with 178 

Lugol's solution. Based on phytoplankton biomass (data from Algae Lab Analyser) corre-179 

sponding amounts of fixed sample were filled in plankton sedimentation chambers 180 



(Hydrobios Kiel, Kiel, Germany) to ensure sufficient density of phytoplankton. Phytoplankton 181 

composition was then analysed by using an inverted microscope (Wild M40, Heerbrugg, 182 

Switzerland), at a magnification of 400x. Phytoplankton were identified to species level, if 183 

possible, otherwise to genus level. The samples were analysed in transects and at least 100 in-184 

dividuals of each species/genus were counted per sample (Lund et al., 1958). This procedure 185 

was valid for most of the taxa in the samples. To ensure rare (fewer than 100 individuals) and 186 

larger species, mainly dinoflagellates, were determined, the bottom of the whole sedimenta-187 

tion chamber was screened at a magnification of 200x. For the final phytoplankton biovol-188 

ume, counts were calculated by species/genus-cell-specific biovolume. Specific biovolume 189 

data used were from (Kremer et al., 2014). We analysed all 63 samples from the first sam-190 

pling event (8th - 10th July 2014; n = 21 per lake, including samples from all 20 enclosures and 191 

the sample from the lake itself).  192 

 193 

In vivo fluorometric analysis (Algae Lab Analyser) 194 

The fluorometric measurement of the chlorophyll a concentration was done using the Algae 195 

Lab Analyser (bbe Moldaenke, Germany). The Algae Lab Analyser contains five different 196 

light-emitting diodes (LEDs) with λ 450 nm, 525 nm, 570 nm, 590 nm, and 610 nm, respec-197 

tively. Based on the group-specific excitation spectra, also called norm spectra, the Algae Lab 198 

Analyser allows for differentiation of four spectral groups: the green group (chlorophytes), the 199 

blue-green group (cyanobacteria), the brown group (chromophytes, which includes diatoms, 200 

chrysophytes and dinoflagellates) and mixed-group (cryptophytes and phycoerythrin-contain-201 

ing algae (Beutler et al., 2002). Calculation of the contribution of each phytoplankton group to 202 

the total chlorophyll a is based on linear unmixing (i.e., solving linear equations). See the sup-203 

plemental materials for further details.   204 

 205 

In vitro chromatographic analysis (HPLC) 206 



For the HPLC analyses, up to 1000 ml of the water samples from the lakes were filtered onto 207 

precombusted glass fibre filters (VWR GF/F, Ø 25 mm). The filters were wrapped in alumin-208 

ium foil and stored at -20 °C until analysis. See the supplemental materials for further details.  209 

Based on our previous knowledge on phytoplankton groups that are usually present in the ex-210 

amined lakes (data from long-term monitoring), we chose 10 pigment standards, of which 9 211 

were obtained from DHI Water (Hoersholm, Denmark): alloxanthin (marker pigment for 212 

cryptophytes), β-carotene, chlorophyll a, chlorophyll b (marker pigment for chlorophytes), di-213 

atoxanthin, echinenone (marker pigment for cyanobacteria), fucoxanthin (marker pigment for 214 

diatoms and chrysophytes), lutein (another marker pigment for chlorophytes) and zeaxanthin 215 

[usually used as the only marker pigment for cyanobacteria (Havskum et al., 2004; Llewellyn, 216 

2004; Lewitus et al., 2005), but also shared with other groups like chlorophytes]. Peridinin 217 

(marker pigment for dinoflagellates, extracted from Symbiodinium spp. following the protocol 218 

from Rogers & Marcovich, 2007) was kindly provided by D. Langenbach, University of Co-219 

logne. With the solvent gradient described above, we were able to separate all pigment peaks 220 

to the baseline except for lutein and zeaxanthin (Supplementary Information, Fig. S1). Alt-221 

hough well separated, diatoxanthin was excluded from the subsequent CHEMTAX analysis as 222 

it was detected in very low amounts and only in a few samples. Also, we excluded β-carotene 223 

as it did not have any effect on the output data (previous CHEMTAX runs, data not shown).  224 

 225 

CHEMTAX 226 

Pigment : chlorophyll a ratio matrices established for oligo- and for meso- and eutrophic lakes 227 

(including our three study lakes) were taken from Schlüter et al. (2016). These ratio matrices 228 

should thus be highly suitable for our study and were used in the present study to calculate the 229 

contribution of six phytoplankton groups (diatoms, chlorophytes, chrysophytes, cryptophytes, 230 

cyanobacteria, and dinoflagellates) to the total chlorophyll a via CHEMTAX (Mackey et al., 231 

1996; version 1.95 provided by S. Wright). See the supplemental materials for further details.  232 



 233 

Data analysis 234 

Estimates of phytoplankton biomass, given as total chlorophyll a (TChl a, in μg L-1) derived 235 

from Algae Lab Analyser or via HPLC, were compared between these two methods for each 236 

lake separately, by performing paired Wilcoxon-Mann-Whitney tests, to account for the fact 237 

that the data originated from the same samples (20 enclosures per lake and the lake itself). 238 

These tests were based on all available data from all 9 sampling events. Additionally, we cal-239 

culated Spearman’s correlation coefficient rS between both phytoplankton biomass estimates 240 

for each lake separately, as well as across all three lakes.  241 

Based on pigment concentrations and phytoplankton community composition, derived from 242 

microscopy, CHEMTAX and Algae Lab Analyser, we calculated Shannon Diversity Indices 243 

as estimates of pigment and phytoplankton functional diversity (Shannon & Weaver, 1949). 244 

For this, we used the equation:  245 

𝐻′ =  − ∑ 𝑝𝑖  ×  𝑙𝑛(𝑝𝑖)

𝑛

𝑖 = 1

 246 

where pi is the proportion of the pigment or phytoplankton class relative to the total amount of 247 

the pigments or the total biovolume or biomass of the phytoplankton community, respec-248 

tively.  Pigment functional diversity was calculated based on all 10 pigments (including chlo-249 

rophyll a, β-carotene and diatoxanthin). Phytoplankton functional diversity derived from mi-250 

croscopic counts and CHEMTAX was calculated based on biovolume or biomass of six phy-251 

toplankton classes: diatoms, chlorophytes (incl. euglenophytes), chrysophytes, cryptophytes, 252 

cyanobacteria, and dinoflagellates. In order to compare the performance of CHEMTAX and 253 

Algae Lab Analyser irrespectively of their taxonomic resolution, we additionally calculated 254 

the functional diversity derived from CHEMTAX based on four classes only, by treating dia-255 

toms, chrysophytes and dinoflagellates as chromophytes, to match the phytoplankton classes 256 

derived from Algae Lab Analyser.  257 



As the data from microscopic counts were available only for the first sampling event, the sta-258 

tistical data analysis was split in two parts. In the first part, we compared the functional diver-259 

sity derived from microscopy, CHEMTAX (based on all six classes) and Algae Lab Analyser 260 

both between the methods for each lake separately, as well as across all three lakes, consider-261 

ing one method at a time. With this approach, we determined if the differences in phytoplank-262 

ton functional diversity between lakes of different trophic state could be equally revealed with 263 

any of the three methods. Similarly, to test the ability of CHEMTAX and Algae Lab Analyser 264 

to correctly estimate the contribution of the different phytoplankton classes to the total bio-265 

mass, relative abundances of the phytoplankton classes based on the biomass estimates de-266 

rived from CHEMTAX and Algae Lab Analyser were compared to the relative abundances of 267 

these classes based on the biovolume derived from the microscopic counts (treated as a refer-268 

ence).  269 

The second part of the analysis was based on all available data from all 9 sampling events 270 

(July to September 2014, n = 562 analysed samples). We compared the functional diversity 271 

derived from CHEMTAX (based on six or four classes) and Algae Lab Analyser, both across 272 

all lakes for each method separately (to test for differences related to the trophic state of each 273 

lake) and across all methods, considering one lake at a time. Additionally, we compared the 274 

pigment functional diversity between all three lakes and calculated the Spearman’s correlation 275 

coefficient rS between pigment functional diversity and phytoplankton functional diversity 276 

based on CHEMTAX biomass estimates, separately for each lake, as well as across all three 277 

lakes. 278 

Finally, the relative abundances of the four phytoplankton classes were compared for each 279 

lake and method separately (to reveal dominant or rare classes in each lake), as well as be-280 

tween the two methods considering only one class at a time, to test for potential identification 281 

mismatches between Algae Lab Analyser and CHEMTAX. 282 



When estimates from only two methods were compared (e.g., relative abundance of Chloro-283 

phytes derived from CHEMTAX vs Algae Lab Analyser), we applied paired Wilcoxon-284 

Mann-Whitney tests. In all other cases, when comparing estimates from all three methods or 285 

across all three lakes, we performed Kruskal-Wallis tests, followed by paired Wilcoxon-286 

Mann-Whitney tests with Holm correction of the p-values. Paired tests were used to account 287 

for the fact that the data originated from the same samples (20 enclosures per lake and the 288 

lake itself). 289 

For all calculations, statistics, and figures, we used the statistical packages R (version 4.4.1, R 290 

Core Team, 2021), dplyr (version 1.0.7, Wickham et al., 2021), ggplot2 (version 3.3.5, Wick-291 

ham, 2016), tidyr (version 1.1.4, Wickham, 2021), and vegan (version 2.5-7, Oksanen et al., 292 

2020). 293 

 294 

Results 295 

 296 

Total biomass 297 

The biomasses per sample, given as TChl a, ranged between 0.01 and 11.51 µg TChl a L-1, as 298 

determined with Algae Lab Analyser, and between 0.22 and 12.92 µg TChl a L-1, as deter-299 

mined via HPLC (across all lakes and the entire experimental period, Fig. 1A, Tab. 1). The 300 

average TChl a per lake was significantly higher when determined with Algae Lab Analyser 301 

(0.86 ± 0.62 µg L-1 in the oligotrophic lake and 3.19 ± 1.96 µg L-1 in the mesotrophic lake; 302 

mean ± standard deviation) compared to the values determined via HPLC (0.53 ± 0.25 µg L-1 303 

and 2.01 ± 1.44 µg L-1, respectively; Wilcoxon-Mann-Whitney test, p < 0.001 for both lakes), 304 

while the total biomass estimates for the oligo-mesotrophic lake did not differ between these 305 

two methods (1.27 ± 0.61 µg L-1 as determined with Algae Lab Analyser and 1.26 ± 0.57 µg 306 

L-1  as determined via HPLC; Wilcoxon-Mann-Whitney test, p = 0.72). Nevertheless, we 307 

found a high positive correlation for the estimated TChl a between the two methods (rs = 308 



0.82, p < 0.001) across all three lakes (all sampling events considered). This correlation, albeit 309 

significant, was less strong when lakes were considered individually (oligotrophic: rs = 0.56, 310 

p < 0.001; oligo-mesotrophic: rs = 0.59, p < 0.001; mesotrophic: rs = 0.72, p < 0.001).  311 

 312 

Phytoplankton composition 313 

The phytoplankton communities of all three lakes were strongly dominated by chromophytes 314 

(Supplementary Information, Tab. S6). Based on biomass estimates from Algae Lab Analyser, 315 

the mean relative abundance of chromophytes ranged from 55 ± 29 % in the oligo-meso-316 

trophic lake (all available data considered, Fig. S3) to 76 ± 20 % as found in the oligotrophic 317 

lake. The second most abundant group in the oligo-mesotrophic and the mesotrophic lake 318 

were cryptophytes (32 ± 30 % and 23 ± 21 %, respectively), while the chlorophytes were the 319 

second most abundant group in the oligotrophic lake (16 ± 19 %). Cyanobacteria were found 320 

only in very low abundances being even below 2 %. When the lakes were considered individ-321 

ually, we found significant differences between all four phytoplankton groups (Kruskal-Wal-322 

lis test, oligotrophic: X2
3,182 = 514.5, p < 0.001; oligo-mesotrophic: X2

3,183 = 381.8, p < 0.001; 323 

mesotrophic: X2
3,185 = 511.4, p < 0.001).  324 

Similarly, based on CHEMTAX biomass estimates, we found significant differences between 325 

all four phytoplankton groups, except in the mesotrophic lake, where we found no difference 326 

between the relative abundance of cyanobacteria (13 ± 7 %) and chlorophytes (12 ± 6 %, Wil-327 

coxon-Mann-Whitney test, p = 0.071) or cryptophytes (12 ± 7 %, Wilcoxon-Mann-Whitney 328 

test, p = 0.315). In all three lakes, chromophytes were the most abundant group (oligotrophic: 329 

71 ± 17 %; oligo-mesotrophic: 49 ± 21 %; mesotrophic: 63 ± 12 %).   330 

The congruence of CHEMTAX and Algae Lab Analyser was in general very low, and partly 331 

differed across the lakes and the phytoplankton groups,but did not follow any patterns. The 332 

relative abundance of chlorophytes was lower in the oligotrophic and mesotrophic lake, and 333 

higher in the oligo-mesotrophic lake when determined via CHEMTAX compared to the 334 



estimates derived from Algae Lab Analyser (Fig. 2A and 3A). While the relative abundances 335 

of chromophytes in the mesotrophic lake was equally estimated by both CHEMTAX and Al-336 

gae Lab Analyser, CHEMTAX found less chromophytes in both the oligotrophic and oligo-337 

mesotrophic lakes compared to Algae Lab Analyser (Fig. 2B and 3B). The relative abundance 338 

of cryptophytes was significantly lower in the oligo-mesotrophic and mesotrophic lake when 339 

determined via CHEMTAX compared to the estimates derived from Algae Lab Analyser, 340 

while both methods equally estimated the relative abundance of cryptophytes in the oligo-341 

trophic lake (Fig. 2C and 3C). In contrast, the relative abundance of cyanobacteria was con-342 

sistently higher when determined via CHEMTAX compared to the estimates derived from Al-343 

gae Lab Analyser, independent of the lakes’ trophic state (Fig. 2D and 3D).  344 

We found differences in the ability of CHEMTAX and Algae Lab Analyser to correctly dif-345 

ferentiate between the four main phytoplankton classes: compared to the phytoplankton com-346 

munity composition derived from microscopic counts, CHEMTAX significantly underesti-347 

mated the relative abundance of chlorophytes (in all three lakes, Fig. 4A and 6A) and crypto-348 

phytes (in the oligotrophic and oligo-mesotrophic lake, Fig. 5A and 6C), and overestimated 349 

the relative abundance of chromophytes (in all three lakes, Fig. 4C and 6B) and cyanobacteria 350 

(in the oligotrophic and oligo-mesotrophic lake, Fig. 5C and 6D). In contrast, in the meso-351 

trophic lake, CHEMTAX significantly overestimated the relative abundance of cryptophytes, 352 

and underestimated the relative abundance of cyanobacteria. In all three lakes, Algae Lab An-353 

alyser significantly overestimated the relative abundance of chromophytes (Fig. 4D and 6B) 354 

while it underestimated the relative abundance of cyanobacteria (Fig. 5D and 6D). The ability 355 

of Algae Lab Analyser to accurately estimate the relative abundance of chlorophytes and 356 

cryptophytes differed between the three lakes: while it equally estimated the relative abun-357 

dance of the chlorophytes in the mesotrophic lake, Algae Lab Analyser significantly overesti-358 

mated their relative abundance in the oligotrophic lake and underestimated their relative abun-359 

dance in the oligo-mesotrophic lake (Fig. 4B and 6A). The relative abundance of cryptophytes 360 



was significantly underestimated in the oligotrophic and oligo-mesotrophic lake and overesti-361 

mated in the mesotrophic lake (Fig. 5B and 6C). All significant differences are based on 362 

paired Wilcoxon-Mann-Whitney tests (p < 0.001 or p < 0.01 for all comparisons, Fig. 6). 363 

With CHEMTAX, we were able to differentiate between the subgroups of chromophytes (dia-364 

toms, chrysophytes and dinoflagellates) and thus achieved a higher taxonomic resolution of 365 

the phytoplankton community composition compared to the Algae Lab Analyser. According 366 

to the CHEMTAX calculations, in the oligotrophic lake (Supplementary Information, Fig. 367 

S4), the diatoms were the most abundant phytoplankton group (44 ± 19 %, all available data 368 

considered), followed by dinoflagellates (17 ± 11 %), cyanobacteria (17 ± 11 %), chloro-369 

phytes (11 ± 12 %) and chrysophytes (10 ± 5 %), while the average relative abundance of the 370 

cryptophytes was below 1 %, as indicated by the very low amount of alloxanthin (Supplemen-371 

tary Information, Fig. S2). The phytoplankton community in both the oligo-mesotrophic and 372 

the mesotrophic lakes was dominated by chrysophytes (37 ± 20 % and 33 ± 16 %, respec-373 

tively). As indicated by high amounts of zeaxanthin, chlorophyll b and lutein in the oligo-374 

mesotrophic lake (Fig. S2), the chlorophytes (23 ± 11 %) were the second most abundant phy-375 

toplankton group in this lake (Fig. S4), followed by cyanobacteria (16 ± 10 %), while dino-376 

flagellates were the least abundant group (1 ± 5 %). In the mesotrophic lake, diatoms were the 377 

second most abundant phytoplankton group (16 ± 8 %), while the other four phytoplankton 378 

groups were all present in relatively similar abundances, ranging from 12 ± 7 % (crypto-379 

phytes) to 13 ± 8 % (cyanobacteria and dinoflagellates, respectively, Fig. S4).  380 

We found that CHEMTAX significantly underestimated the contribution of the diatoms to the 381 

total biomass in the oligo-mesotrophic and mesotrophic lake, and overestimated the biomass 382 

estimates of chrysophytes, compared to the phytoplankton community composition derived 383 

from microscopic counts (Wilcoxon-Mann-Whitney tests, p < 0.001 for all comparisons; Sup-384 

plementary Information, Fig. S8A and S8B). In contrast, CHEMTAX overestimated the rela-385 

tive abundance of diatoms and underestimated the relative abundance of chrysophytes in the 386 



oligotrophic lake (Wilcoxon-Mann-Whitney tests, p < 0.001 for all comparisons, Fig. S8A 387 

and S8B). As for dinoflagellates, the agreement between microscopic counts and CHEMTAX 388 

differed across the three lakes (Fig. S8C): while CHEMTAX significantly overestimated the 389 

abundance of dinoflagellates in the oligotrophic lake (Wilcoxon-Mann-Whitney tests, p < 390 

0.01), it underestimated their abundance in the oligo-mesotrophic lake (Wilcoxon-Mann-391 

Whitney tests, p < 0.05). The relative abundance of dinoflagellates in the mesotrophic lake 392 

was equally estimated by both microscopic counts and via CHEMTAX (Wilcoxon-Mann-393 

Whitney tests, p = 0.66). 394 

Interestingly, in more than 63 % of the samples, we found only 1 or 2 functional groups when 395 

using Algae Lab Analyser (46 and 310 samples, respectively), while 3 or 4 groups were found 396 

in 186 and 20 samples, respectively. With CHEMTAX, we found all four phytoplankton 397 

groups in 482 out of 562 samples (86 %), while 78 samples had a functional richness of 3 398 

(Supplementary Information, Fig. S9).  399 

 400 

Functional diversity 401 

We found a strong correlation between the functional diversity based on pigment concentra-402 

tions and CHEMTAX biomass estimates of all six phytoplankton groups, especially when 403 

each lake was considered separately (oligotrophic: rS = 0.77; oligo-mesotrophic: rS = 0.77; 404 

mesotrophic: rS = 0.78, Fig. 1B). The correlation was less strong when all three lakes were 405 

considered together (rS = 0.62). Based on pigment concentrations, the functional diversity in 406 

the oligo-mesotrophic and mesotrophic lakes was higher than in the oligotrophic lake (Krus-407 

kal-Wallis test, X2
2,559 = 33.96, p < 0.001, Tab. 2). 408 

The phytoplankton functional diversity based on the biomass estimates of four phytoplankton 409 

groups (chlorophytes, chromophytes, cryptophytes and cyanobacteria) determined with Algae 410 

Lab Analyser was the highest in the mesotrophic lake, while the oligotrophic lake was the 411 

least diverse (Kruskal-Wallis test, X2
2,559 = 131.5, p < 0.001; Fig. 1C, Tab. 2). 412 



Similar to Algae Lab Analyser, CHEMTAX revealed the highest average phytoplankton func-413 

tional diversity in the mesotrophic lake, but the oligo-mesotrophic lake was the least diverse 414 

(Kruskal-Wallis test, X2
2,559 = 200.4, p < 0.001; Fig. 1C, Tab. 2). 415 

However, when only four groups were considered, the CHEMTAX based phytoplankton 416 

functional diversity was the highest in the oligo-mesotrophic lake and the lowest in the oligo-417 

trophic lake (Kruskal-Wallis test, X2
2,559 = 183.3, p < 0.001; Fig. 1D, Tab. 2). 418 

We found significant differences between lakes and methods when comparing the phyto-419 

plankton functional diversity derived from microscopic counts, CHEMTAX (based on all six 420 

groups) and Algae Lab Analyser based on the first set of samples (8th - 10th July 2014). The 421 

highest average diversity, derived from microscopic counts, was found in the oligotrophic 422 

lake (H’ = 1.36 ± 0.12; Kruskal-Wallis test, X2
2,60 = 17.40, p < 0.001), while no differences 423 

were found between the oligo-mesotrophic (H’ = 1.22 ± 0.14) and mesotrophic lake (H’ = 424 

1.21 ± 0.15; Wilcoxon-Mann-Whitney test, p = 0.69). In contrast, CHEMTAX revealed the 425 

highest average diversity in the mesotrophic lake (H’ = 1.49 ± 0.09; Kruskal-Wallis test, X2
2,60 426 

= 40.47, p < 0.001), while no differences were found between the oligotrophic (H’ = 0.87 ± 427 

0.30) and the oligo-mesotrophic lake (H’ = 0.98 ± 0.09; Wilcoxon-Mann-Whitney test, p = 428 

0.21). Finally, based on biomass estimates derived from Algae Lab Analyser, the oligo-meso-429 

trophic lake was less diverse (H’ = 0.36 ± 0.29; Kruskal-Wallis test, X2
2,60 = 20.04, p < 0.001) 430 

compared to the oligotrophic (H’ = 0.65 ± 0.04) and the mesotrophic lake (H’ = 0.70 ± 0.07). 431 

None of the methods revealed similar estimates of phytoplankton functional diversity when 432 

lakes were considered separately.  433 

 434 

Discussion 435 

 436 

General 437 



Both the Algae Lab Analyser and HPLC/CHEMTAX allowed for a rapid assessment of natu-438 

ral phytoplankton communities and their functional diversity, albeit at a somewhat limited 439 

taxonomic resolution. Phytoplankton biomass estimates (determined as total chlorophyll a) 440 

were very similar with both methods. This demonstrates the general utility of both approaches 441 

and corroborates our first hypothesis, as both methods require relatively little time in compari-442 

son to e.g., microscopic counting, which makes them highly suited for monitoring and routine 443 

phytoplankton analyses. 444 

Despite their general comparability in estimating the total phytoplankton biomass, both meth-445 

ods differed markedly in some important aspects. This applies in particular, but not exclu-446 

sively, to the determination of cyanobacterial abundances, which are a major focus of phyto-447 

plankton community assessment in the context of water quality management (Izydorczyk et 448 

al. 2009; UBA, 2012; Carmichael and Boyer, 2016; Huisman et al., 2018). In general, the 449 

congruence of Algae Lab Analyser and CHEMTAX was low, irrespective of phytoplankton 450 

group and the trophic state of the lakes. Despite a few exceptions, these findings to a large 451 

part support our second hypothesis, which postulates that the congruence of the methods does 452 

not depend on the trophic state of the lakes and does not differ between different phytoplank-453 

ton groups. Finally, we found a strong correlation between pigment diversity derived from 454 

HPLC and functional diversity based on CHEMTAX biomass estimates, confirming our third 455 

hypothesis, and suggesting that pigment diversity can be used as a proxy for phytoplankton 456 

functional diversity.   457 

 458 

Comparative assessment of methods 459 

In our study, the Algae Lab Analyser was frequently unable to detect any cyanobacteria in the 460 

lakes’ phytoplankton, even though the detection of echinenone in the HPLC gave clear indica-461 

tions of cyanobacterial presence which is supported by microscopic observations of a subset 462 

of the samples that showed a presence of cyanobacteria in the majority of analysed samples, 463 



especially in those from the mesotrophic lake. It should  be noted that the manufacturer sug-464 

gests calibrating the Algae Lab Analyser with phytoplankton species isolated from the water 465 

bodies of interest to get a more accurate assessment of the phytoplankton community compo-466 

sition. However, this may not be realistic in practice, in particular, for routine laboratories and 467 

water authorities that monitor numerous surface water bodies in parallel. 468 

An important aspect that might explain the observed differences between the two methods is 469 

the possibility to adjust the sensitivity of the HPLC/CHEMTAX method via the filtered vol-470 

ume of samples. While only 25 ml of the water samples were measured in the Algae Lab Ana-471 

lyser, we filtered 500 – 1000 ml of water for each sample for the pigment-analyses via HPLC. 472 

Thus, the concentration of the pigments extracted from the filters and detected via HPLC was 473 

higher compared to the pigment concentrations in the water sample measured in vivo with Al-474 

gae Lab Analyser. Furthermore, HPLC has the advantage of measuring the total concentration 475 

of pigments within the cells (as pigments are extracted from the phytoplankton cells prior to 476 

HPLC analysis), while Algae Lab Analyser is applied in vivo without cell extraction, and 477 

therefore only allows for detection of pigments on the surface of the cells. This probably al-478 

lowed for the higher sensitivity of the HPLC/CHEMTAX method and its accuracy in the esti-479 

mation of low cyanobacterial abundances. The sensitivity of HPLC could potentially be fur-480 

ther increased by applying a lower flow rate of the solvents within the HPLC system and us-481 

ing microbore HPLC columns (Zweigenbaum et al., 2000; Barco et al., 2002). 482 

Three specific aspects in the comparative evaluation of the HPLC-based and the in vivo 483 

method merit particular attention. The first applies to the distinction between cryptophytes 484 

and cyanobacteria, which is of particular relevance for water quality assessment and monitor-485 

ing (Catherine et al., 2012; Gregor et al., 2005; Izydorczyk et al., 2009): the detection of cryp-486 

tophytes by the Algae Lab Analyser depends not only on the main cryptophyte marker pig-487 

ment alloxanthin, but further on the specific absorption of phycoerythrin (Beutler et al., 2002, 488 

Beutler et al., 2004), which is also an important pigment for many “red” and “blue” 489 



cyanobacteria (Bryant, 1982; Gregor et al., 2005; Haverkamp et al., 2009). As the lipophilic 490 

extraction commonly applied prior to the HPLC separation of pigments does not capture the 491 

hydrophilic pigment groups of phycoerythrins and phycocyanins, these pigments cannot be 492 

evaluated by the CHEMTAX approach. This led us to the assumption that CHEMTAX may 493 

underestimate the abundance of cyanobacteria in lake phytoplankton. Interestingly, our data 494 

indicated quite the opposite, i.e., a much higher relative abundance of cyanobacteria in the 495 

phytoplankton community assessment via CHEMTAX as compared to the Algae Lab Ana-496 

lyser. Catherine et al. (2012) also reported a “potentially strong misattribution towards crypto-497 

phytes of “red” cyanobacteria” when they compared the biomass estimates of cryptophytes 498 

and cyanobacteria from FluoroProbe to the microscopic counts. When examining cyanobacte-499 

rial blooms in reservoirs, in some samples dominated by cyanobacteria, Gregor et al. (2005) 500 

detected certain amounts of cryptophytes (approx. 1 - 20% of TChl a) via FluoroProbe, alt-501 

hough microscopic counts revealed no cryptophyte abundances. This may be explained by the 502 

inclusion of phycoerythrins into the detection of cryptophytes by the Algae Lab Analyser (and 503 

FluoroProbe). Admittedly, there have been attempts to account for this potential problem by 504 

the manufacturers of the Algae Lab Analyser (Beutler et al., 2003; Beutler et al., 2004). Nev-505 

ertheless, our data indicate that under certain conditions, the CHEMTAX approach may be 506 

more sensitive for the detection of low cyanobacterial abundances in comparison to the in 507 

vivo approach of the Algae Lab Analyser. 508 

Beyond the distinction between cryptophytes and cyanobacteria, it may also be challenging to 509 

distinguish chlorophytes from cyanobacteria under certain conditions. Most published HPLC 510 

gradients have difficulties in separating the peaks of lutein and zeaxanthin (Latasa et al., 511 

1996; Ston-Egiert and Kosakowska, 2005; Van Heukelem and Thomas, 2001). This was also 512 

the case for our HPLC gradient. Therefore, lutein may be frequently underestimated, which 513 

would lead to an underestimation of chlorophytes relative to cyanobacteria. In our HPLC data, 514 

no lutein peak could be identified in some samples, although microscopic counts indicated the 515 



presence of chlorophytes. Such an underestimation of chlorophyte abundances due to an in-516 

sufficient separation of lutein and zeaxanthin and consequently the misattribution of chloro-517 

phytes towards cyanobacteria may explain the disagreement between CHEMTAX and Algae 518 

Lab Analyser and differences in their ability to accurately identify chlorophytes and cyano-519 

bacteria. CHEMTAX estimates the relative abundance of chlorophytes mainly based on the 520 

occurrence of lutein and chlorophyll b. If chlorophyll b, but no lutein is detected, this is prob-521 

ably a consequence of the aforementioned weak separation of the lutein and zeaxanthin peaks 522 

in the HPLC. An alternative explanation could be the occurrence of euglenophytes that are 523 

characterised by the possession of chlorophyll b without a concomitant abundance in lutein 524 

(Fietz and Nicklisch, 2004; Sarmento and Descy, 2008, Schlüter et al., 2006). However, mi-525 

croscopic observations of our samples gave little indications of common occurrences of eu-526 

glenophytes in our study lakes. 527 

The third important difference of the two methods is related to the distinction of diatoms and 528 

chrysophytes. As both groups share the characteristic pigment fucoxanthin, the Algae Lab 529 

Analyser does not allow for a distinction between them. This is somewhat unfortunate, as 530 

these two algal groups often dominate phytoplankton communities in oligo- and mesotrophic 531 

lakes (Buchaca et al., 2005; Järvinen et al., 2013; Ptacnik et al., 2008; Poxleitner et al., 2016, 532 

Schlüter et al., 2016). CHEMTAX provides the distinct advantage of separating chrysophytes 533 

from diatoms based on their specific fucoxanthin : chlorophyll a ratios. As mentioned before, 534 

the final output ratio of fucoxanthin : chlorophyll a for diatoms and chrysophytes differed be-535 

tween the oligotrophic lake and the oligo-mesotrophic and the mesotrophic lake, resulting in a 536 

different ratio of diatoms to chrysophytes depending on the trophic state (oligotrophic lake: 537 

diatoms more abundant than chrysophytes, while the opposite was the case in the oligo-meso-538 

trophic and the mesotrophic lake). However, microscopic counts indicated an overall lower 539 

biovolume (common proxy for phytoplankton biomass) of chrysophytes compared to diatoms 540 

across all three lakes. One possible explanation might be the use of different pigment ratio 541 



matrices for initial CHEMTAX calculations, which were chosen according to the trophic state 542 

of each lake. Specifically, in the case of the oligo-mesotrophic lake, we used a ratio matrix 543 

with average pigment : chlorophyll a ratios based on the two matrices established in Schlüter 544 

et al. (2016). However, CHEMTAX calculations for the oligo-mesotrophic lake with the ratio 545 

matrix established for oligotrophic lakes (Schlüter et al., 2016) yielded unaltered results (data 546 

not shown). This suggests that the choice of the initial pigment ratio matrix is less important 547 

for an accurate assessment of the phytoplankton community, and that the final output is 548 

strongly driven by the pigment concentrations measured via HPLC. However, it also indicates 549 

that a differentiation between diatoms and chrysophytes based on their specific fucoxanthin : 550 

chlorophyll a ratios is not sufficient to accurately discriminate these two phytoplankton 551 

groups.  552 

Similar results were found by Simmons et al. (2016), who compared the phytoplankton com-553 

munity composition via HPLC/CHEMTAX estimates to biovolume estimates derived from 554 

microscopic counts for oligotrophic Lake Michigan. There, CHEMTAX overestimated chrys-555 

ophytes versus diatoms. Interestingly, the output fucoxanthin : chlorophyll a ratios for both 556 

groups of Simmons et al. (2016) were similar to the final output fucoxanthin : chlorophyll a 557 

ratios for the oligo-mesotrophic and the mesotrophic lakes from our study, which leads to a 558 

consistent favouring of chrysophytes over diatoms. To overcome the observed mismatch be-559 

tween diatoms and chrysophytes, Simmons et al. (2016) suggested including chlorophyll c1 560 

and c2 into CHEMTAX analyses. This is because (freshwater) diatoms contain both chloro-561 

phyll c1 and c2, while most chrysophytes contain only chlorophyll c2 (Jeffrey et al., 2011). We 562 

additionally suggest including other pigments into the CHEMTAX approach for a more accu-563 

rate differentiation of diatoms and chrysophytes, e.g., violaxanthin, which is a commonly used 564 

marker pigment for chrysophytes (Buchaca et al., 2005; Descy et al., 2000; Lauridsen et al., 565 

2011; Schlüter et al., 2016). 566 

 567 



Phytoplankton functional diversity  568 

Although both, Algae Lab Analyser and HPLC/CHEMTAX, allow for a lower taxonomic res-569 

olution compared to microscopy, this may not be a major constraint, as multiple studies have 570 

shown functional phytoplankton diversity to be a better predictor of ecosystem functioning 571 

than species richness (Striebel et al., 2009; Behl et al., 2011, Stockenreiter et al., 2013). While 572 

reducing data complexity (e.g., by aggregating taxa into functional groups based on traits such 573 

as pigment composition) might result in loss of ecological information, this might not neces-574 

sary be the case if functional diversity highly correlates with taxonomic diversity, thereby 575 

highlighting complementarity. In fact, the use of functional approaches is crucial to improve 576 

our understanding of how community composition can be linked to ecosystem functioning 577 

(Abonyi et al., 2018, and references therein). This means that Algae Lab Analyser and 578 

HPLC/CHEMTAX approach might be a good alternative and/or complementary tools to as-579 

sess the phytoplankton community composition and investigate research questions related to 580 

the biodiversity - ecosystem functioning relationship.  581 

In general, the functional diversity of the natural phytoplankton communities based on 582 

CHEMTAX biomass estimates was overall higher than the functional diversity derived from 583 

Algae Lab Analyser, which may be related to the observation that in more than 63% of the 584 

samples, the Algae Lab Analyser identified only one or two phytoplankton groups. This 585 

seems highly unlikely for samples from natural phytoplankton communities. Thus, for studies 586 

on functional diversity of phytoplankton communities, CHEMTAX appears to be more suita-587 

ble, as it in general allows for a higher functional resolution of natural phytoplankton commu-588 

nities. Furthermore, the high positive correlation between the pigment-based and the phyto-589 

plankton-based functional diversity derived via HPLC and CHEMTAX indicates that the pig-590 

ments can be used as a proxy for functional groups. This provides estimates of functional di-591 

versity within natural phytoplankton communities without the necessity to perform 592 

CHEMTAX calculations. Moreover, assessing the pigment diversity of the phytoplankton 593 



may be crucial to predict compositional shifts and potential consequences of biodiversity 594 

changes for functions provided by phytoplankton, such as biomass production, as pigments 595 

are a functionally relevant trait linked to light use efficiency.  596 

Interestingly, we found the lowest average functional diversity in the oligotrophic lake 597 

Brunnsee with both Algae Lab Analyser and CHEMTAX (when only the four main groups 598 

were considered). This was surprising, as former studies claim that oligotrophic lakes usually 599 

harbour more diverse phytoplankton communities (in terms of species richness) compared to 600 

mesotrophic or eutrophic lakes (Leibold, 1999; Dodson et al., 2000). This is probably due to a 601 

strong dominance of chromophytes and in particular diatoms in lake Brunnsee. Nevertheless, 602 

we cannot exclude that despite the low functional diversity observed in Brunnsee, there may 603 

be an underlying high species richness within one functional group. It needs to be noted that 604 

the diversity of the phytoplankton communities does not depend on the trophic state alone, but 605 

is also determined by other variables, such as physical environment or stratification (layering) 606 

conditions in the lake (Borics et al., 2021; Stockenreiter et al., 2021), which however have not 607 

been assessed here. 608 

 609 

Role of trophic state 610 

In most cases, the agreement between both methods was low, irrespective of the lake trophic 611 

status. Compared to CHEMTAX, the Algae Lab Analyser consistently underestimated the cy-612 

anobacterial abundances across all three lakes. However, with the exception of cyanobacteria, 613 

we did not find a clear pattern. For example, the relative abundance of chromophytes in the 614 

mesotrophic lake was equally estimated by the two methods, but differed significantly in the 615 

oligotrophic and the oligo-mesotrophic lakes. The best agreement for cryptophytes was found 616 

in the oligotrophic lake, while the relative abundance of cryptophytes in the two other lakes 617 

significantly differed between the two methods. Furthermore, the estimates of total biomass 618 

(given as TChl a) were similar between these two methods in the case of the oligo-619 



mesotrophic lake, while TChl a derived from Algae Lab Analyser was significantly higher in 620 

the oligotrophic and mesotrophic lakes compared to TChl a determined via HPLC. This indi-621 

cates that the agreement between the two methods might depend on the overall biomass found 622 

in the lakes: too low or too high chlorophyll a concentrations might be difficult to estimate ac-623 

curately via HPLC. Based on our results, we present an overview of the advantages and disad-624 

vantages of both approaches. This allows us to provide a flow chart to support decision-mak-625 

ing for the most suitable method (Fig. 8). 626 

 627 

Conclusions 628 

Both the Algae Lab Analyser and HPLC/CHEMTAX can be fast and useful tools for the as-629 

sessment of phytoplankton community composition. However, the agreement between the 630 

methods was not always satisfactory, which may be due to different marker pigments utilised 631 

by the two methods. In general, more pigments should be included in the HPLC analysis, es-632 

pecially to be able to distinguish between diatoms and chrysophytes, e.g., violaxanthin and 633 

chlorophylls c1 and c2. As both methods have advantages and disadvantages, the method of 634 

choice depends on the aim of the study or the field of use. While the Algae Lab Analyser is 635 

more suitable for rapid monitoring, CHEMTAX provides a higher resolution of the functional 636 

diversity in the community and better estimates of cyanobacterial abundances.  637 
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Figures 885 

 886 

 887 

 888 

Fig. 1: (A) Total chlorophyll a concentration (µg L-1) and (C, D) phytoplankton functional di-889 

versity H’ determined spectrofluorometrically in vivo with Algae Lab Analyser (y-axis) and 890 

chromatographically in vitro via HPLC and CHEMTAX (x-axis). (B) Pigment functional di-891 

versity H’including chlorophyll a (x-axis) and phytoplankton functional diversity H’CHEMTAX (y-axis), 892 

determined via HPLC and CHEMTAX. Data from all 9 sampling events (July to September 893 

2014) is shown. Coloured lines in (B) represent the linear regression for each lake. Colour of 894 

the symbols represents the trophic state of the lakes, blue: oligotrophic (lake Brunnsee, n 895 



=186); light green: oligo-mesotrophic (lake Klostersee, n =187); dark green: mesotrophic 896 

(lake Thaler See, n =189); n in parentheses indicates the number of water samples per lake an-897 

alysed within this study. Data originating from enclosures are depicted as circles, while data 898 

originating directly from the lakes are depicted as squares. Diamonds in panels (A, C, D) rep-899 

resent the mean values, while horizontal and vertical error bars represent the standard devia-900 

tion (based on all data points per lake). 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 



909 

Fig. 2: Relative abundance (%) of (A) chlorophytes, (B) chromophytes, (C) cryptophytes and 910 

(D) cyanobacteria determined spectrofluorometrically in vivo with Algae Lab Analyser (x-911 

axis) and chromatographically in vitro via HPLC and CHEMTAX (y-axis). Data from all 9 912 

sampling events (July to September 2014) are shown. For legend, see Fig. 1. 913 
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 915 

 916 

 917 

 918 



 919 



Fig. 3: Relative abundance (%) of (A) chlorophytes, (B) chromophytes, (C) cryptophytes and 920 

(D) cyanobacteria determined chromatographically in vitro via HPLC and CHEMTAX 921 

(CHEM) and spectrofluorometrically in vivo with Algae Lab Analyser (ALA). Data from all 9 922 

sampling events (July to September 2014) are shown (blue: oligotrophic, n =186; light green: 923 

oligo-mesotrophic, n =187; dark green: mesotrophic, n =189). Data originating from enclo-924 

sures are depicted as circles and connected with coloured lines, while data originating directly 925 

from the lakes are depicted as squares and connected with black lines. Boxplots on each side 926 

show the median (thick line), interquartile range between 25th percentile 75th percentile (IQR, 927 

box) and smallest and largest value within the 1.5 × IQR below 25th percentile and above 75th 928 

percentile, respectively (whiskers), while outliers were omitted from plotting. Significant dif-929 

ferences based on paired Wilcoxon-Mann-Whitney tests are depicted as follows: ***: p < 930 

0.001, **: p < 0.01, *: p < 0.05, n.s.: p ≧ 0.05 (not significant). 931 



 932 

 933 

Fig. 4: Relative abundance (%) of (A, B) chlorophytes (and euglenophytes in the case of mi-934 

croscopy) and (C, D) chromophytes (including diatoms, chrysophytes and dinoflagellates) de-935 

termined via microscopic counts (x-axis in all panels), chromatographically in vitro via HPLC 936 

and CHEMTAX (panels A and C, y-axis) and spectrofluorometrically in vivo with Algae Lab 937 

Analyser (panels B and D, y-axis). For legend, see Fig. 1. Only data from the first sampling 938 

event (8th - 10th July 2014) are shown (n = 21 for each lake). 939 



 940 

Fig. 5: Relative abundance (%) of (A, B) cryptophytes and (C, D) cyanobacteria determined 941 

via microscopic counts (x-axis in all panels), chromatographically in vitro via HPLC and 942 

CHEMTAX (panels A and C, y-axis) and spectrofluorometrically in vivo with Algae Lab An-943 

alyser (panels B and D, y-axis. For legend, see Fig. 1. Only data from the first sampling event 944 

(8th - 10th July 2014) are shown (n = 21 for each lake). 945 

 946 



 947 



Fig. 6: Relative abundance (%) of (A) chlorophytes, (B) chromophytes, (C) cryptophytes and 948 

(D) cyanobacteria determined via microscopic counts (Micro, orange symbols), chromato-949 

graphically in vitro via HPLC and CHEMTAX (CHEM, blue symbols) and spectrofluoromet-950 

rically in vivo with Algae Lab Analyser (ALA, green symbols). Data originating from enclo-951 

sures are depicted as circles and connected with grey lines, while data originating directly 952 

from the lakes are depicted as squares and connected with black lines. Only data from the first 953 

sampling event (8th - 10th July 2014) are shown (n = 21 for each lake). Significant differences 954 

based on paired Wilcoxon-Mann-Whitney tests are depicted as follows: ***: p < 0.001, **: p 955 

< 0.01, *: p < 0.05, n.s.: p ≧ 0.05 (not significant). 956 
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 966 

 967 

Fig. 7: Phytoplankton functional diversity H’ determined via microscopic counts (x-axis in 968 

both panels), chromatographically in vitro via HPLC and CHEMTAX (based on all 6 phyto-969 

plankton classes; panel A, y-axis) and spectrofluorometrically in vivo with Algae Lab Ana-970 

lyser (panel B, y-axis). The dashed lines in all four panels represent the 1:1 relationship. Col-971 

our of the symbols represents the trophic state of the lakes, blue: oligotrophic; light green: ol-972 

igo-mesotrophic; dark green: mesotrophic. Data originating from enclosures are depicted as 973 

circles, while data originating directly from the lakes are depicted as squares. Diamonds rep-974 

resent the mean values, while horizontal and vertical error bars represent the standard devia-975 

tion (based on all data points per lake). Only data from the first sampling event (8th - 10th July 976 

2014) are shown (n = 21 for each lake). 977 
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 982 

Fig. 8: Flow chart to support decision-making for the most suitable method, depending on time effort, taxonomic resolution and traits of interest. 983 

We focused only on the approaches presented in the study: microscopic counting following the Utermöhl-technique (Utermöhl, 1958), HPLC in 984 

combination with CHEMTAX, and Algae Lab Analyser. Inverted microscope and HPLC system originate from BioRender (https://biorender.com/). 985 

https://biorender.com/


Tables 986 

Tab. 1: Biomass estimates (given as contribution to total chlorophyll a in µg L-1) of the four main phytoplankton groups as determined with Algae 987 

Lab Analyser or via HPLC/CHEMTAX. Given are mean, standard deviation, median, minimum, and maximum value for each phytoplankton group 988 

and each lake, based on samples from all 9 sampling events (July to September 2014; oligotrophic: n = 186; oligo-mesotrophic: n = 187; meso-989 

trophic: n = 189). Total biomass (TChl a) and associated summary statistics are given in bold. 990 

Trophic state 

 

Group 

 Biomass (µg TChl a L-1) 

  Algae Lab Analyser  CHEMTAX 

  Mean SD Median Min Max  Mean SD Median Min Max 
               

oligotrophic 

 Chlorophytes  0.21 0.50 0.08 0.00 5.18  0.07 0.13 0.03 0.01 0.96 
 Chromophytes  0.60 0.27 0.59 0.00 1.74  0.37 0.18 0.34 0.08 1.33 
 Cryptophytes  0.05 0.17 0.00 0.00 1.41  0.01 0.04 0.00 0.00 0.48 
 Cyanobacteria  0.00 0.01 0.00 0.00 0.07  0.09 0.07 0.07 0.01 0.47 

  TChl a  0.86 0.62 0.70 0.01 5.87  0.53 0.25 0.50 0.22 1.79 
               

oligo-mesotrophic 

 Chlorophytes  0.18 0.37 0.00 0.00 2.20  0.28 0.16 0.23 0.07 1.02 
 Chromophytes  0.72 0.47 0.64 0.00 2.09  0.64 0.42 0.57 0.00 2.28 
 Cryptophytes  0.35 0.33 0.26 0.00 1.78  0.14 0.21 0.04 0.00 1.51 
 Cyanobacteria  0.02 0.06 0.00 0.00 0.43  0.20 0.14 0.15 0.03 0.83 
 TChl a  1.27 0.61 1.20 0.26 4.16  1.26 0.57 1.15 0.42 3.91 

               

mesotrophic 

 Chlorophytes  0.70 1.05 0.41 0.00 8.05  0.24 0.30 0.18 0.04 2.97 
 Chromophytes  1.89 1.15 1.78 0.00 5.51  1.32 1.16 1.00 0.18 10.58 
 Cryptophytes  0.60 0.76 0.40 0.00 6.75  0.22 0.15 0.20 0.00 1.02 
 Cyanobacteria  0.01 0.08 0.00 0.00 0.86  0.23 0.13 0.22 0.01 0.98 
 TChl a  3.19 1.96 2.90 0.28 11.51  2.01 1.44 1.69 0.42 12.92 

                              

 991 



1 

 

Tab. 2: Functional diversity of the natural phytoplankton communities, given as Shannon Di-992 

versity Index H’, based on biomass estimates derived from Algae Lab Analyser (four groups) 993 

or via HPLC/CHEMTAX (six or four groups). Additionally, pigment functional diversity is 994 

given, based on pigment concentration derived via HPLC (all 10 pigments considered). Given 995 

are mean, standard deviation, median, minimum, and maximum value for each lake, based on 996 

samples from all 9 sampling events (July to September 2014; oligotrophic: n = 186; oligo-997 

mesotrophic: n = 187; mesotrophic: n = 189). Highest average functional diversity (highest 998 

mean H’) for each method is given in bold, while the lowest average functional diversity 999 

(lowest mean H’) is given in italics.  1000 

Trophic state 
  Functional diversity 

  Mean SD Median Min Max 
       

H'Algae Lab Analyser       

oligotrophic  0.43 0.25 0.51 0 0.91 

oligo-mesotrophic  0.6 0.31 0.65 0 1.37 

mesotrophic  0.72 0.15 0.69 0 1.14 
       

H'CHEMTAX (6 groups)       

oligotrophic  1.29 0.24 1.35 0.48 1.7 

oligo-mesotrophic  1.27 0.19 1.29 0.75 1.77 

mesotrophic  1.56 0.19 1.59 0.65 1.79 
       

H'CHEMTAX (4 groups)       

oligotrophic  0.71 0.21 0.7 0.33 1.31 

oligo-mesotrophic  1.04 0.22 1.08 0.55 1.38 

mesotrophic  1 0.19 1 0.36 1.34 
       

H'Pigments (incl. chl a)       

oligotrophic  1.16 0.13 1.17 0.78 1.48 

oligo-mesotrophic  1.24 0.13 1.24 0.93 1.51 

mesotrophic  1.22 0.12 1.23 0.65 1.54 

              

 1001 


