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Abstract 20 

Conserving the world’s tree species requires syntheses on which tree species are most vulnerable 21 

to pressing threats, such as climate change, invasive pests and pathogens, or selective logging. 22 

We review the population and forest dynamics models that, parameterized with data from 23 

population studies, forest inventories, or tree rings, have been used for identifying species’ life 24 

history strategies and threat-related changes in population demography and dynamics. The 25 

available evidence suggests that slow-growing and long-lived species are the most vulnerable. 26 

However, a lack of comparative, multi-species studies still challenges more precise predictions of 27 

tree species’ vulnerability to threats. Improving data coverage for mortality and recruitment, and 28 

accounting for interactions among threats would greatly advance vulnerability assessments for 29 

conservation prioritizations of trees worldwide. 30 
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Demography as a tool for tree species conservation assessments 31 

Trees provide vital ecosystem services, including carbon sequestration, habitat provision, 32 

element cycling, timber, and cultural values [1,2]. However, 30% of the 73,000 known tree 33 

species on Earth are currently threatened with extinction [3], and more than 100 tree species 34 

have been lost in the last 500 years [4,5]. Deforestation is currently the greatest threat to trees, 35 

while climate change, the infestation with alien and invasive pests and pathogens, and selective 36 

logging for timber threaten specific tree species in the remaining forest ecosystems [5]. 37 

Conserving the world’s tree species requires information on the occurrence and prevalence of 38 

threats as well as on the effects of threats on species demography [6] as life history strategies 39 

(see Glossary) can strongly shape population resilience to threats [7]. Plant species’ life history 40 

strategies are generally structured along two independent axes: the fast-slow continuum, i.e., 41 

from fast-growing, short-lived species to slow-growing, long-lived species, and a reproductive 42 

strategy axis, ranging from species that reproduce much and often, but only for a short period of 43 

time, to those that reproduce at a lower rate for a long period of time [8–10]. Trees occupy a 44 

considerable proportion of the life history strategy space of plants [11], but are unique in that 45 

they are potentially very long-lived [12]. In the case of long-lived trees, following single 46 

individuals over the course of their lives (Box 1) to monitor variation in growth or death is 47 

challenging, if not impossible, complicating a precise quantification of vital rates [13]. 48 

Demographic approaches can quantify the vulnerability of a tree species to a threat by 49 

quantifying vital rates across the species’ life cycle (e.g., juvenile, adult), and by using linear 50 

operators, such as structured population models [14,15], to estimate the potential effects of a 51 
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threat on population size and structure. The results of these assessments readily lend themselves 52 

to conservation prioritizations [16]. For example, the IUCN red list considers threats that cause 53 

declines in population size by more than 30% over three generations to be severe [17]. 54 

To help prioritise conservation efforts, we review the effects of important threats on tree species 55 

in naturally regenerating forests, and the modelling approaches and data used for assessing 56 

which vital rates at which life cycle stages are the most critical to population response to threats. 57 

Furthermore, we highlight paths forward to a comparative understanding of the vulnerability of 58 

tree species based on their life history strategies, which is essential for improved identification 59 

of conservation priorities and potential actions [18]. 60 

Demographic modelling approaches and data used for assessing vulnerability 61 

Several types of population and forest dynamics models are applied to assess the consequences 62 

of threats on the viability of tree populations (Box 2). Structured population models, such as 63 

matrix population models (MPMs) and integral projection models (IPMs) [19], are analytically 64 

tractable [20] and  oftentimes used for sensitivity analyses [21] and population viability analyses 65 

[22]. Their standardised output and widespread application have fuelled comparative analyses 66 

across hundreds of species [9]. However, MPMs and IPMs have to date not frequently accounted 67 

for competitive interactions and hence community dynamics (but see e.g., [23]). The perfect-68 

plasticity approximation (PPA) is an analytically tractable model of forest dynamics that simulates 69 

height-structured light competition based on vital rates in discrete dynamic canopy layers 70 

[24,25]. Individual based models (IBMs) can also simulate light competition and community 71 

dynamics, but are typically not analytically tractable [26]. Forest landscape models (FLMs) are 72 
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the most common tool to project how entire forest communities change over time by considering 73 

simplified representations of light competition [27]. However, PPA models, IBMs, and FLMs have 74 

so far rarely been applied to the analysis of the vulnerability of single tree species to threats (but 75 

see [28]). 76 

A variety of data sources can be used for demographic model parameterization (Table 1). Single-77 

species population studies provide detailed information on vital rates across the entire life cycle  78 

[29]. However, such data are often collected on small plots and within a few years ([29,30]; but 79 

see [31]), challenging a robust assessment of long-term tree population dynamics. In contrast, 80 

forest inventory data capture the demography of all species in a community and can be used to 81 

quantify neighbourhood interactions [32,33]. However, forest inventory data yield little 82 

information on the demography of rare species and poorly capture the demography of early life 83 

stages as only trees above a relatively large size threshold (e.g., 5 or 10 cm diameter at breast 84 

height, dbh) are followed. Another key source for demographic information is tree-ring data, 85 

which allows correlations between tree growth, tree age, and past environmental conditions 86 

[34]. Tree-ring data are potentially available for all species with seasonal growth, forming clear 87 

rings, from boreal to even tropical species [35]. However, tree-ring data are often biased towards 88 

successful individuals that have lived long lives, obscuring the dynamics of the whole forest. 89 

The varied role of threats in tree demography - current knowledge and gaps 90 

Species-specific threats act differently on vital rates [36]. For example, high temperature can 91 

increase reproduction [37], selective logging can favour the growth of juveniles [38], while 92 

drought and insects can reduce the survival of the largest trees [39,40]. Here, we review the state 93 
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of our demographic knowledge on three important species-specific threats to trees: climate 94 

change, pests and pathogens, and selective logging. For each, we discuss the challenges and 95 

limitations of the demographic data and approaches used to assess species vulnerability and 96 

synthesise the available evidence on which tree life history strategies will be most vulnerable to 97 

the threat.  98 

Climate change 99 

Climate change will exacerbate the frequency and intensity of heat waves and the magnitude of 100 

negative and positive precipitation anomalies. These changes will increase the number and 101 

length of droughts and the area and frequency of wildfires [41].  102 

Data, approaches, and challenges 103 

Most demographic models to date have assessed tree species' vulnerability to climate change by 104 

estimating the link between climate and vital rates using observations of demography across 105 

space [42] or via physiological models [43]. For instance, an IPM based on observational data has 106 

shown that drying and warming conditions lead to declines in recruitment and survival, though 107 

the strength of responses varied between species [44]. Low recruitment might occur if seedlings 108 

tolerate a smaller range of moisture conditions than adults [45]. On the other hand, physiological 109 

models predict, and evidence suggests, that tall trees are the most likely to die from drought 110 

stress [40]. While these approaches can clearly advance our understanding of population 111 

responses to climate change, spatial observations of vital rates must be interpreted cautiously 112 

[46] because their variation across sites can be confounded by range position, local adaptation, 113 
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land use and disturbance history, or plant community composition. Furthermore, physiological 114 

models that focus on simulating photosynthesis can miss important processes, such as carbon 115 

allocation for modelling growth, hydraulic failure for modelling mortality, and mechanisms 116 

underlying seedling establishment and survival [47–49]. Finally, decades of classical plant 117 

demography using elasticity analyses may have oversimplified how threats affect the viability of 118 

tree populations [50], which could give the incomplete impression that long-lived plants can 119 

persist without investing in successful recruitment. Prolonged recruitment failure, however, may 120 

drive long-lived species into "extinction debt" [51]. Forest models in use today for climate impact 121 

assessment do not represent establishment and mortality with the same complexity as growth, 122 

highlighting opportunities for incisive future model developments [52]. 123 

Synthetic knowledge 124 

There is general consensus across studies that an increase in temperature, drought, and/or fire 125 

frequency will lead to a decline of species with slow life history strategies (which are usually called 126 

in this literature “late successional species” [53,54]). Because slow species tend to have a long 127 

lifespan [9], they often have delayed maturity and achieve larger sizes at maturity [55,56]. These 128 

traits could make slow species particularly vulnerable to increased mortality of large individuals 129 

triggered by climatic extremes. Adult trees are essential to maintain populations in the face of 130 

fluctuating climatic conditions [57]. Moreover, slow tree species in temperate and subtropical 131 

mountains could also face recruitment failure [54,58]. At the rear range edge, i.e., the low-132 

latitude or low-altitude limit of a species’ distribution, seedling establishment and survival might 133 

fail [59]. At the leading range edge, insufficient dispersal ability [58,60,61] might hamper 134 
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migration. The disadvantages of slow life history strategies seem particularly strong in boreal 135 

forests, where fast deciduous species are projected to replace slow conifers [53,60]. Sprouting 136 

ability can help populations persist through disturbances such as fire, potentially making them 137 

less vulnerable to this threat than seed-obligate species [62].  138 

Pests and pathogens 139 

Invasive alien insect pests and pathogens threaten tree populations worldwide, an effect that is 140 

exacerbated by climate change and global trade [63]. Pest or pathogen infestations can increase 141 

mortality [39,64] and reduce growth and reproduction of surviving trees [63]. These changes in 142 

vital rates ultimately cause population declines and increased extinction risk even of common 143 

tree species, such as green ash (Fraxinus pennsylvanica) [65].  144 

Data, approaches, and challenges 145 

MPMs and analyses of life table response experiments show that the effect of pests and 146 

pathogens on tree populations is often determined by increased mortality of large individuals 147 

[39,65]. Due to their typically high longevity, many tree populations are especially sensitive to 148 

changes in adult mortality [66]. These demographic effects can be extreme, for example chestnut 149 

blight can kill all of the largest stems of American chestnut (Castanea dentata), leaving only small 150 

clones to resprout post-infestation [29]. IBMs that assess tree population and forest community 151 

dynamics after infestation estimated, for instance, that it will take 300 years before the density 152 

of large American beech trees (Fagus grandifolia) recovers after beech bark disease [67], or that 153 

eastern hemlock (Tsuga canadensis) might lose its relative dominance over other tree species in 154 

some areas unless it develops at least some resistance to its pest, the adelgid [68].  155 
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However, vital rates of infested versus non-infested trees before or during outbreaks are often 156 

unknown. Hence, model parameters are taken from different populations [64,65,68] that might 157 

experience confounding environmental conditions. Moreover, many population models do not 158 

include processes that are likely relevant for species’ vulnerability, such as (1) positive or negative 159 

density-dependence of infestation-related mortality [54,65] (but see [69]); (2) the spatial 160 

aggregation of host populations, currently only considered in FLMs (e.g., [70]); (3) resistance 161 

traits of individual trees of a population (but see [64]), and (4) a trade-off between reproduction 162 

and chemical defence [71] that could influence infestation-related changes in population growth 163 

rates. 164 

Synthetic knowledge  165 

While comparative studies on how the vulnerability of trees to pests and pathogens is related to 166 

tree life histories have not yet been conducted, this is a promising future direction. First, if pests 167 

and pathogens primarily cause mortality of large tree individuals [39] (but see [64]), we expect 168 

tree species with slow life history strategies to be more vulnerable. Second, we expect that the 169 

species’ mortality rate during the reproductive stage in conjunction with allocation trade-offs 170 

between reproduction and defence [71] might affect the species’ overall reproductive output. 171 

And third, tree species with longer generation times may have a higher potential to show 172 

plasticity [72]. Yet, they may also have a lower potential to evolve resistance due to slower 173 

responses to selection, especially if there are no resistant genotypes present at the time of 174 

infestation [73]. Whether rare or common species are more vulnerable to pest and pathogen 175 

infections will depend on the interplay between spatial aggregation, vital rates, and resistance-176 
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gene diversity of the host-tree (cf. [74]). In addition, our current knowledge on tree vulnerability 177 

comes mostly from temperate host-pest systems, and studies in the tropics are needed to 178 

achieve a global understanding.  179 

Selective logging 180 

Demographic studies that consider the effects of selective logging on the full life-cycle of trees 181 

primarily come from the Neotropics and Africa. In these regions, selective logging is more 182 

common and important than in Southeast Asia [75,76], where the tree community is primarily 183 

composed of high value timber species. The goal of these studies is to assess the effects of 184 

repeated removal of large/reproductive individuals on population size or ‘harvestable timber 185 

volume’, and to identify species-specific requirements for minimum cutting diameters, rotation 186 

lengths, and/or the number of retained seed trees that enable sustained timber yields [77]. 187 

Data, approaches, and challenges 188 

Although the design of species-specific harvesting regimes is recommended for all high-value 189 

timber species [78], detailed demographic studies have only been carried out for a few species, 190 

mostly in Brazil (e.g., [79,80]). MPMs, IPMs, and hybrid models are often parameterized using 191 

vital rates from intact (i.e., unlogged) forests. Thus, most of these models do not consider that 192 

the removal of large trees creates canopy gaps that temporarily increase light availability, 193 

potentially benefiting recruitment and growth of remaining individuals [38].  194 

In population models, performance differences between individual trees can be incorporated 195 

through growth autocorrelation of individuals [81], e.g., estimated from tree-rings [82]. Spatially-196 
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explicit IBMs by definition account for spatial and temporal heterogeneity in light. However, only 197 

the IBM ‘SELVA’ has been applied so far in the context of selective logging [83]. Incorporating 198 

gap-dependent recruitment in this model significantly improved post-logging recovery of 199 

Dicorynia guianensis, a major timber species in French Guiana [83], but not in other species 200 

[81,84]. 201 

Many valuable light-demanding timber species require larger canopy openings for successful 202 

recruitment than the openings typically created by low-intensity logging [76,85]. However, even 203 

for premium timber species, such as mahogany, specific light requirements for successful 204 

regeneration are uncertain. This shortcoming hampers reliable assessments of species 205 

vulnerability to selective logging and the design of sustainable management strategies [81].  206 

Synthetic knowledge 207 

Many of the highest value timber species in the Neotropics and Africa (e.g., big-leaf mahogany 208 

Swietenia macrophylla, cedro Cedrela odorata, Tabebuia spp, and courbaril Hymenaea courbaril) 209 

are relatively fast-growing and light-demanding as juveniles, and reach relatively large adult sizes 210 

[79]. In intact forests, they often show ‘flat’ diameter distributions with few small trees and can 211 

be classified as long-lived pioneers [86]. Demographic studies including multiple species show 212 

that these fast-growing but poorly-recruiting species as well as species with small size at maturity 213 

(e.g., Jacaranda copaia, Simarouba amara, Symphonia globulifera) are less vulnerable to logging 214 

than slow-growing species and/or species with large reproductive size [79,80,84,87,88], because 215 

they reach their reproductive size/age before the next rotation, ensuring continued recruitment. 216 
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This coincides with the recommendation that the logging rotation length should be determined 217 

by the ‘age at minimum commercial size’ [89], which is likely correlated with reproductive age. 218 

The proportion of individuals in small size classes is another important indicator for the 219 

population recovery of trees after selective logging [35,79,84]. For tree species with a high 220 

proportion of small stems, populations recover quickly after logging, and reducing logging 221 

intensity by increasing minimum cutting diameters or seed tree retention can improve recovery 222 

even more [79]. For species with a low proportion of small individuals, increasing minimum 223 

cutting diameters improves recovery for some species [79–81,90], but not for others [79].  224 

Synthesising which demographic knowledge is needed across threats 225 

Our review shows that, to date, we have an often incomplete understanding of how threats affect 226 

vital rates of trees, and how trees’ life history strategies, including their reproductive strategy,  227 

influence their vulnerability to different threats. Yet, such information is key to improving 228 

quantitative vulnerability assessments. To close this gap, we identified three research areas: (1) 229 

improving data coverage for mortality and recruitment, (2) performing sensitivity analyses and 230 

systematic modelling exercises, and (3) accounting for interactions among threats across 231 

different scales.  232 

Improving data coverage for mortality and recruitment 233 

To assess which tree life stages are most critical for species vulnerability to threats, full life-cycle 234 

models need to be parameterized, requiring detailed data on mortality and pre-recruitment life-235 

stages. Estimating threat effects on mortality is difficult for most tree species, because overall 236 
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mortality is low, especially in large old trees, and large sample sizes are necessary to detect 237 

change (e.g., a change from 1% to 3% mortality can dramatically decrease tree longevity, but is 238 

difficult to detect) [13,57]. However, tree densities in large size classes are low, and in some 239 

biomes, e.g. temperate forests, old-growth forests are rare, precluding precise mortality 240 

estimation for old and senescent trees. Several recent research avenues are already improving 241 

tree mortality estimates, such as remote sensing technology to monitor mortality of large trees  242 

[91], Bayesian modelling to account for data sparseness [38,92], changepoint detection statistics 243 

in mortality analyses [13], and dendrochronological dating of tree deaths to distinguish between 244 

continuous and episodic patterns of tree mortality (e.g., related to infestations, or drought) [93]. 245 

Data on reproduction, dispersal and seedling vital rates are often lacking [94,95]. Most forest 246 

inventories cover only data of individuals that have reached recruitment status (Table 1). To 247 

improve our understanding on which of the vital rates in the early life stages are crucial for 248 

population viability, extensive data collection efforts are needed, such as forest inventories with 249 

nested design covering seeds and seedlings (see e.g., [96], 250 

https://www.forestgeo.si.edu/research-programs/flowers-seeds-and-seedlings-initiative). 251 

Moreover, seed production and seedling establishment and their responses to climate are highly 252 

variable spatio-temporally [97]. The appropriate examination of this pattern calls for distributed 253 

observation networks to collect demographic data across the range of a species (cf. PlantPopNet, 254 

or MASTIF network). Reproductive success likely depends on resource availability, which changes 255 

over the course of forest succession. Thus, to better assess the vulnerability of species to threats, 256 

data on species’ resource requirements are urgently needed, e.g.,  on light requirements for 257 

successful regeneration in selectively logged species [81]. 258 
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So far, viability analyses have been biased towards temperate tree species as well as high-value 259 

timber species of the (sub-)tropics. Comparative studies based on standardised demographic 260 

data across many tree species differing in phylogeny, life history and biome (cf. ForestGEO 261 

network, [98]) are necessary for cross-species vulnerability assessments. 262 

Incorporating sensitivity analyses and performing systematic modelling exercises 263 

As the demographic modelling approaches outlined in our review suffer from different limitations 264 

(see Box 2), we suggest combined approaches and systematic modelling exercises. One such 265 

combined approach is a sensitivity analysis performed with PPA models based on estimates of 266 

vital rates [25,99] to assess the relative importance of different vital rates for population growth 267 

rates in variable environments [24,100]. For instance, increased mortality of large individuals due 268 

to drought might be more relevant for slow-growing species than for fast-growing species. Such 269 

sensitivity analyses may allow conservation management to better target the most sensitive life 270 

stages of species with certain demographic strategies. 271 

Much of the demographic data required to parameterize full life-cycle models of trees are 272 

difficult to obtain. Even using functional traits to predict demographic rates is still challenging 273 

[101]. Thus, in cases where data are scarce, we suggest performing systematic modelling of vital 274 

rates with IBMs, which explicitly account for changes in light availability as is caused by threat-275 

related mortality. IBMs could simulate variation in vital rates due to different climatic range 276 

positions of a population (cf. [102]) or contingent upon different conservation measures, they 277 

could mimic the interplay among the spatial aggregation of host tree species, disease-related 278 

density-dependent mortality, and pest dispersal (cf. [103]), or combine parameterisations for 279 
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single species (harvested species) and those for plant functional types (remaining species) (cf. 280 

[25]).  281 

Integrating interactions among threats across different scales 282 

Ideally, the systematic modelling exercises would also incorporate interaction effects between 283 

threats, such as between drought-stress, insect attacks, and/or fires [104]. Such an 284 

implementation is even more challenging, since the scales at which these threats affect tree 285 

populations can vary in space and time [105]. Moreover, as environmental site conditions can 286 

alter demographic responses of tree populations to biotic and abiotic threats [102], models 287 

would need to incorporate threat interactions while considering the location of a tree population 288 

within the distributional range of the species. Though previous FLMs have incorporated threat-289 

interactions across scales (e.g., iLand, [105]), these models are usually not mathematically 290 

tractable. This circumstance hampers sensitivity analyses similar to the ones proposed above for 291 

stand-scale IBM and PPA models. To understand how life history strategies translate to species 292 

vulnerability at the landscape scale, such sensitivity analyses would be urgently needed. 293 

Concluding Remarks 294 

Our review shows that, due to their typically high longevities, trees pose a severe data challenge 295 

that so far has hindered a synthetic understanding of the role of tree species’ life history 296 

strategies for their vulnerability to different threats across space and time. These data gaps can 297 

be filled in the future with distributed observation networks (including standardised assessment 298 

of early life stages) and through links to other research fields (e.g., remote sensing to improve 299 

mortality data). Where threats interact, systematic modelling exercises are a promising option. 300 
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Sensitivity analyses with PPA models or FLMs could help test which vital rates are the most critical 301 

for vulnerability to a given threat and how this vulnerability changes across a species range (see 302 

Outstanding Questions). Cross-species analyses are needed to assess which species, based on 303 

their demographic strategies, are most vulnerable to each threat. We argue that such a 304 

demographic framework will leverage a general understanding of tree species vulnerability to 305 

global change drivers, and will help develop targeted conservation measures focusing on the 306 

most sensitive life stages of threatened tree species. 307 
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Boxes & Figures 313 

Box 1 Life cycle of a tree 314 

 315 

Figure I. Life cycle of a tree with vital rates. It can take centuries for a tree to fulfil its life cycle, 316 

growing from seed to seedling to sapling to a mature tree. How reproduction is quantified varies largely 317 

among data sources and demographic modelling approaches (see Box 2 and Table 1), and how strongly 318 

reproduction varies e.g., due to climate change or pest/pathogen infestation is rarely assessed. Data on 319 

growth rates are abundant, while data availability is sparse at the beginning and end of a tree’s life 320 

(germination and seedling establishment, and mortality rates of the largest adult trees, respectively), 321 

though small changes in large-tree mortality (e.g., through logging) can have large effects on a 322 

population’s growth rate. Mortality rates may differ by several orders of magnitude, often being highest 323 

for seedlings and saplings, and very low for mature trees (indicated here by line thickness), though 324 
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mortality rates may increase for very old trees, resulting in either monotonically decreasing or U-shaped 325 

curves of size-dependent mortality, respectively.  326 
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Box 2 327 

Demographic modelling approaches 328 

In Table I we present a comparison of population and forest demographic models and their 329 

suitability to derive metrics identified as crucial for conservation. 330 

Table I. Comparison of demographic modelling approaches, their representation of demographic 331 

processes, spatial and temporal scales covered, life history traits that can be derived, other factors that 332 

can be included, and typical questions addressed by the different approaches. (Graphics: MPM – A.  333 

Compagnoni; IPM – C. Merow; PPA – N. Rüger; IBM – N. Rüger/UFZ; FLM – Forest Ecology, ETH Zürich) 334 

  Population 

projection models 

(MPM, IPM) 

Perfect plasticity 

approximation 

(PPA) models 

Individual based 

models / forest 

gap models (IBM) 

Forest landscape 

models (FLM) 

 

 

 

 
 

   

Description represent 

populations based 

on the 

demography of 

size, and 

sometimes age 

classes 

sub-divide forest 

stands into 

dynamic canopy 

layers to 

approximate 

competitive 

interactions 

simulate the 

dynamics of 

individuals or tree 

cohorts; represent 

demographic 

processes and 

their responses to 

intra- and inter-

specific 

competition and 

represent the 

cohort dynamics 

of single species 

based on their 

demography and 

physiology (local 

scale dynamics 

typically based on 

IBMs, landscape 

scale dynamics 
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site conditions incorporate 

interactions of 

dispersal and 

disturbances 

Level of 

representation of 

vital rates 

MPM: discrete 

classes (e.g., size 

or age) 

IPM: discrete 

(e.g., age) and 

continuous (e.g., 

size) classes 

dynamics of tree 

cohorts in discrete 

canopy layers 

dynamics of 

individual trees or 

tree cohorts 

cohort dynamics 

of single species 

Spatial scale non-spatial (but 

see [106])  

tree gap to stand 

scale 

tree gap to stand 

scale 

landscape (100k 

ha or more) 

Temporal scale most studies 

examine 

asymptotic 

population growth 

rate 

up to centuries of 

forest dynamics 

up to centuries of 

forest dynamics 

long-term 

(>100yrs) 

Mathematically 

tractable 

yes yes no no 

Sensitivity 

analyses 

common uncommon, but 

computationally 

feasible 

uncommon 

(computationally 

expensive) 

uncommon 

(computationally 

expensive) 

Life history traits 

that can be 

derived 

(examples) 

net reproductive 

rate (R0), 

asymptotic 

population growth 

rate (λ), 

generation time, 

degree of 

iteroparity 

population growth 

rate (potentially, 

more life history 

traits could be 

derived) 

population growth 

rate (potentially, 

more life history 

traits could be 

derived) 

population growth 

rate (potentially, 

more life history 

traits could be 

derived) 
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Including 

competition for 

light 

no (but see [107]) yes yes no (but see 

exceptions in [27]) 

Incorporating 

effects of site 

conditions and 

climate 

yes yes possible (but only 

a small proportion 

of the models do 

this) 

yes 

Accounting for 

disturbances 

yes 

 

possible yes yes 

Typical questions 

addressed 

population 

responses to 

management, 

disturbance, 

climate, 

pathogens, 

herbivory. 

Biological 

conservation (e.g., 

Population 

viability analyses) 

forest succession; 

Embed 

demography into 

Earth System 

Models 

forest succession 

in response to 

disturbance, 

climate, and 

management 

effects of 

disturbances, 

landscape 

composition, and 

dispersal on long-

term forest 

dynamics; effects 

of forest 

management 

 335 

Strengths and limitations of four main demographic modelling approaches and their suitability for 336 

conservation assessments: Population projection models are the standard tool for comparative 337 

demographic analyses, sensitivity analyses, and population viability analyses [14,22]. On the other hand, 338 

MPMs are problematic in trees, because by subdividing the population in a few discrete classes, their 339 

estimates can be imprecise in the long term [19]. Moreover, these tools cannot satisfactorily describe light 340 

competition among trees [107]. Light competition is modelled successfully by IBMs, which can therefore 341 

produce accurate forecasts of population dynamics [42]. However, both population models and IBMs 342 

most often refer to single sites because of data (population projection models) and computational (IBMs) 343 

limitations. These limitations are addressed by FLMs, which use forest inventory data and employ 344 
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simplified representations of light competition to project how entire forest landscapes change over time, 345 

though assessments of prediction accuracy are generally missing in FLMs [27]. PPA models could in theory 346 

address the limitation of FLMs, because they are a tractable model of light competition, they are 347 

parameterized with forest inventory data, and they produce accurate predictions at the plot scale [24]. 348 

PPA models, like IBMs and FLMs, have occasionally been employed for comparative demographic analyses 349 

(see e.g., [108]) but have not incorporated sensitivity analyses. However, this limitation could be in 350 

principle overcome in PPA models by exploiting their mathematical tractability. A promising approach are 351 

hybrid models that extend IBMs to include growth autocorrelation [81] or size-dependent survival 352 

functions (e.g. ‘individual-based forward simulation’ in [107], or 'demographic process model' in [96]). 353 

These are ways to quantify vital rates over size, or individual heterogeneity, which can improve 354 

performance and inference of the original models. 355 
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Table 1 Sources of tree demographic data. 356 

Comparison of sources of tree demographic data that can be used as input to the models in Box 357 

2 and beyond. 358 

  Population studies 

 

 

Forest inventory data 

 

 

Tree-ring data 

 

 

Description detailed 

demographic 

measurements 

covering all life 

cycle components 

of a single species 

to assess population 

dynamics and its 

drivers; data often 

collected to 

parameterize 

population models 

(MPMs, IPMs)  

repeated census of 

individual size and status 

(alive, dead) of all trees 

in a plot above a 

minimum size threshold: 

a) large plots 

b) spatially distributed 

small plots   

c) (sub)national forest 

inventories 

tree age and annual 

growth (ring width) 

can be derived from 

tree cores; 

can be used to 

assess sensitivity of 

growth rates of 

different life stages 

to environmental 

variation, incl. 

climate change or 

pest and pathogen 

infection  

Measurement 

interval 

most often 

annually, but up to 

10 years 

often 5-10 years annual growth rings 

Study duration most often <5 years often long-term (>20 

years) 

lifespan of tree 

individuals 

Spatial scale often restricted to 

few populations 

(locations) 

a) single location 

b) several/many 

locations across an 

environmental gradient 

c) regular grid 

often restricted to 

few individuals at 

one location or 

several locations 

across an 

environmental 

gradient 
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Coverage of life 

cycle 

often extensive, i.e., 

including 

reproduction, 

germination, 

seedling dynamics 

size threshold 

a) often 1 cm dbh 

b) often 5 cm dbh 

c) often 7 or 10 cm dbh 

>1.3 m (cores usually 

taken at breast 

height), usually no 

information on 

smaller life stages 

and population-level 

rates (recruitment, 

mortality) 

Miscellaneous difficult to 

parameterize for 

long-lived 

organisms such as 

trees 

- capture entire 

community, but little 

information on rare 

species 

- if spatial coordinates 

are recorded, 

neighborhood 

interactions can be 

quantified   

- when using national 

forest inventories, plots 

without silviculture 

might need to be 

selected 

- mostly in biomes 

with seasonal 

climate, few species 

with tree rings in the 

tropics 

- biases need to be 

accounted for (e.g., 

sampling bias 

towards old trees at 

marginal sites) 

- allow inferring 

climate-sensitivity of 

growth 

Example 

databases/ 

networks 

COMPADRE, 

PADRINO 

a) ForestGEO 

b) Afritron, Global 

Ecosystem Monitoring 

network (GEM) 

c) Global Forest 

Biodiversity Initiative 

(GFBI), FunDivEurope 

(including several  

national forest 

inventories), US Forest 

Inventory and Analysis 

International Tree-

Ring Data Bank 

(ITRDB) 

  359 
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Glossary 360 

Extinction debt: time for declining populations to disappear following environmental 361 

perturbations. 362 

Generation time: the average age of reproductive individuals in a population. In the case of 363 

trees, the average age of ‘parents’ of new germinants. 364 

Life history strategy (also ‘Demographic strategy’): a species’ tactic with respect to patterns of 365 

resource allocation to and timing of survival, growth, and reproduction; the range of strategies 366 

is constrained by trade-offs between vital rates. 367 

Life history trait (also ‘Demographic metric’): traits derived from vital rates (below) via 368 

demographic models, e.g., age at maturity, size at maturity, reproductive value, generation 369 

time, lifespan/longevity. 370 

Lifespan/longevity: the expected age at death of individuals in a population. In trees, average 371 

lifespan can vary substantially, depending on which individuals are counted as part of the 372 

population (e.g., all trees starting from seedlings or only canopy trees). Hence, there can be a 373 

large difference between average lifespan and maximum longevity of a species. 374 

Life table response experiment (LTRE): uses the vital rates of an organism as the response 375 

variable in studies of the population-level response to different environmental or biological 376 

factors (e.g., different drought severity levels; infested vs. non-infested).  377 

Population growth rate (λ): the expected, long-term rate of change in population size per unit 378 

time, e.g., the average annual population growth rate. 379 
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Population viability analyses (PVA): evaluate the threats faced by populations of species, their 380 

risks of extinction or decline, and their chances for recovery under a variety of conditions, often 381 

based on species-specific demographic data and models. 382 

Recruitment: the rate of individuals of a species crossing a specified size threshold (e.g., > 2m 383 

height, or >10 cm diameter at breast height), typically expressed as number of individuals per 384 

ha per year, or per adult basal area per year. 385 

Reproduction: the reproductive output of an individual; for trees often estimated as seed mass 386 

produced by a tree of a given species and size, or approximated based on the recruitment of 387 

new trees (see also ‘Recruitment’ above). This can be done via seed traps, or by assuming the 388 

ratio of seedlings in time t+1 is proportional to the reproductive effort (e.g., number of 389 

flowers/cones) in time t. 390 

Resilience: the ability of a system to res a disturbance. 391 

Sensitivity analysis: quantification of changes in a system’s property (e.g., the growth rate of a 392 

population) in response to an infinitesimally small change in one of its components (e.g., a vital 393 

rate in the population). 394 

Tree cohort: a collection of individual trees of the same species expected to have the same vital 395 

rates (in a given microhabitat), often characterized by being the same age and/or size.  396 

Vital rate (also ‘Demographic rate’): any of the demographic processes that aid in the 397 

completion of the life cycle of a species. E.g., survival, growth, reproduction. 398 

Vulnerability: the sensitivity of a population to a threat, depending on how strongly the threat 399 

affects one or several vital rates and how sensitive the population growth rate is to changes in 400 

the vital rate(s). 401 
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