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Abstract 

BACKGROUND: Plant invasions are global concern. In eastern China, bamboo is 

rapidly expanding, negatively influencing neighbouring forest communities. However, 

the studies on how bamboo invasion affects belowground communities, especially for 

soil invertebrates, are still lacking. In the present study, we focused on a highly 

abundant and diverse fauna taxon – Collembola. Collembola communities have three 

typical life-forms (i.e., epedaphic, hemiedaphic and euedaphic) inhabiting different soil 

layers and playing distinct roles in ecological processes. Specifically, we studied their 

abundance, diversity, and community composition at the three stages of bamboo 

invasion: uninvaded secondary broadleaf forest, moderately invaded mixed bamboo 

forest, and completely invaded bamboo (Phyllostachys edulis) forest. 

RESULTS: Our results showed that bamboo invasion negatively influenced 

Collembola communities by decreasing their abundance and diversity. Moreover, 

Collembola life-forms differed in their responses to bamboo invasion, with surface-

dwelling Collembola being more vulnerable to bamboo invasion than soil-living 

Collembola. 

CONCLUSION: Our findings indicate differential response patterns to bamboo 

invasion within Collembola communities. The negative effects of bamboo invasion on 

soil surface-dwelling Collembola may further influence ecosystem functioning. 

 

Keywords: Community composition; High-throughput sequencing; Life-form; 

Molecular ecology; Plant invasion; Soil fauna   
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1. Introduction 

Biological invasion is a universal driver of global change that threatens biodiversity 

globally with widespread economic consequences.1-5 At a local scale, plant invasion 

threatens biodiversity of native communities which may degrade ecosystem functions 

and services.1, 2, 6-8 Various studies have shown that invasive plants could decrease local 

plant species diversity9-12 and negatively shift soil physicochemical properties through 

changing the quantity and quality of plant litter, further causing biodiversity loss in 

soils.4, 5, 13, 14 This is of concern because the abundance, diversity, and community 

composition of soil organisms are important in regulating ecosystem functions, such as 

litter decomposition and nutrient cycling.15-19 

 

In the process of plant invasion, studies on soil microorganisms, earthworms and 

microfauna have attracted widespread attention,20-22 but less studies have focused on 

the community structure of soil mesofauna which can affect litter decomposition mainly 

by promoting microbial activity.23 Collembola (springtails) are among the most 

widespread and abundant mesofauna in most terrestrial ecosystems.24-26 Hence, they 

provide an excellent model for studying soil mesofauna responses in the context of 

environmental changes27, 28. Additionally, they are functionally diverse, serving as an 

important driving force in several key soil processes, such as litter decomposition and 

nutrient turnover.29 Collembola can regulate the diversity and composition of the soil 

microbial community through disseminating microbiota propagules, and feeding on 

fungal mycelium and spores, as well as bacterial membranes.25, 30, 31 Additionally, soil 
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Collembola can pose strong indirect effects on plant morphological characteristics and 

tissue chemistry by regulating the availability of soil nutrients.32-35 

 

The structure and function of soil fauna communities varies with soil depth.36, 37 Litter-

dwelling fauna plays an important role in the earlier stage of decomposition, whereas 

soil-dwelling fauna plays a more important role in later stages of decomposition.38 

Further, surface-dwelling species are typically more sensitive to environment changes 

than soil-dwelling species.39 According to the vertical stratification of soil Collembola, 

they are often divided into three life-forms: epedaphic (dwelling on the soil surface), 

euedaphic (dwelling in the soil), and hemiedaphic (showing intermediate characteristics 

between epedaphic and euedaphic).25, 39, 40 Studying how these distinct Collembola life-

forms respond to plant invasion is important to better understand and predict the 

consequences for ecosystem function. 

 

In the past two decades, bamboo invasion has become a major concern, both in its native 

habits in China and Brazil, as well as and newly introduced habitats in Japan and North 

America.41-44 As a native species in subtropical China, moso bamboo (Phyllostachys 

edulis) was widely planted for its ecological, economic and cultural values, and at its 

peak, this species accounted for about 70% of the nation’s bamboo growing area.45 

However, a large number of bamboo plantation areas were abandoned in recent years 

and moso bamboo has spread from these former plantations, invading the adjacent 

broadleaf forests.46, 47 This has negatively impacted the plant diversity and litter inputs 
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of these forests,41, 48-50 and thereby the soil physical and chemical properties, as well as 

the structure and function of soil communities.46, 47, 49, 51 The bamboo invasion has been 

reported to cause biodiversity loss of soil mesofauna.47 However, how different life-

forms of soil Collembola will respond to bamboo invasion still remains unknown. 

 

To test the impact of bamboo invasion on Collembola communities, we sampled 

secondary broadleaf forest, mixed bamboo forest and Phyllostachys edulis forest, 

representing three stages of invasion: uninvaded, moderately invaded, and completely 

invaded. We investigated the effects of bamboo invasion on Collembola taxonomic 

richness, diversity, abundance and community composition, with focus on the different 

life forms, and hypothesized that: (1) bamboo invasion decrease the diversity and 

abundance of Collembola; (2) bamboo invasion alter the community composition of 

Collembola from a more complex community to a less complex community; (3) 

Collembola life-forms differ in their response to bamboo invasion, with surface-

dwelling species being more responsive than soil-living species. 

 

2. Materials and Methods 

2.1. Study site 

Our study site was located at an altitude of about 500–650 m in the Tianmu Mountain 

National Nature Reserve (30°18’–30°25’N, 119°23’–119°29’E), in Zhejiang Province, 

eastern China. This area is dominated by a typical seasonal monsoon climate, with 

annual rainfall of 1829 mm and mean temperature of 15°C. After the abandonment of 
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bamboo plantations in the 1970s, the research site has been severely affected by moso 

bamboo (Phyllostachys edulis) invasion.52 We selected three types of forest stands at 

this site, representing three stages of invasion, i.e., secondary broadleaved forest (SBF, 

uninvaded native forest dominated by Cunninghamia lanceolata, Quercus serrata var. 

brevipetiolata, and Pinus massoniana), mixed bamboo forest (MBF, a transition zone 

moderately invaded by moso bamboo), and Phyllostachys edulis forest (PEF, 

completely invaded and occupied by moso bamboo).47 

 

2.2. Experimental design and Collembola extraction 

Four parallel transects (180 m in length and 50 m apart) were set up as four replicates 

along the invasion trajectory from broadleaved forest to moso bamboo forest, with three 

plots (each plot: 20 × 20 m) in each transect representing the three types of forest stands, 

resulting in 12 plots in total. In each of the 12 plots, we established four sub-plots (5 × 

5 m, one for each season) (Fig. S1). For each sub-plot, we collected a cylindrical soil 

core (10 cm in diameter, 20 cm in depth) from five sampling points, including all 

surface litter (2–3 cm thickness). Materials collected from the five sampling points in 

each sub-plot were treated as one sample. Samples were collected in May 2018 (spring), 

August 2018 (summer), November 2018 (autumn) and February 2019 (winter), 

resulting 48 samples (3 forest types × 4 seasons × 4 replicates). 

 

Modified Berlese-Tullgren funnels were used to extract Collembola.53 The samples 

were placed on a sieve (2 mm-meshed diameter) above a funnel and exposed to white 
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incandescent electric lamps for 48 h. Soil mesofauna were collected in conical flasks 

filled with anhydrous ethanol and all the collembolan were picked out for further study. 

 

2.3. High throughput sequencing (HTS) and data processing 

We used a highly efficient and reliable high-throughput sequencing (HTS) technique54, 

55 to obtain the DNA sequences of soil Collembola. The protocols of sequencing and 

data processing followed Wei et al.47 Specifically, all 48 samples were ground and 

homogenized with liquid nitrogen for DNA extraction using DNeasy® Blood and 

Tissue kit (QIAGEN, Hilden, Germany). The primers Ill_B_F (5′. 

CCIGAYATRGCITTYCCICG. 3′56 and Fol_degen_rev (5′. 

TANACYTCNGGRTGNCCRAARAAYCA. 3′57 were used to amplify the 418 bp 

polymerase chain reaction (PCR) of the cytochrome oxidase subunit I (COI) gene 

(barcode fragment). Each sample was amplified for triplicates on an ABI GeneAmp 

®9700 (Applied Biosystems, USA), following the PCR protocol of Arribas et al. 

54After adding dual-index barcodes (Illumina TruSeqTM DNA Sample Prep Kit), 

purified amplicons were pooled and were sequenced on an Illumina MiSeq platform (2 

× 300 bp paired-end) after quality control. The raw sequences were quality-filtered by 

Trimmomatic 58 and amalgamated with FLASH.59 Only contigs with the length of 418 

bp were preserved. 

 

Operational taxonomic units (OTUs) were clustered with 95% similarity cutoff using 

UPARSE version 7.1 with a novel ‘greedy’ algorithm that performs chimera filtering 
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and OTU clustering simultaneously.60 OTU is usually considered the biological 

equivalent of a species. The 5% value for OTU delimitation of Collembola is in line 

with levels defining intra- and interspecific differentiation for grouping barcode data.26 

In order to avoid sequencing error, low-abundant OTUs (total counts < 5) were 

eliminated. The trimmed mean of M values method (TMM) was used by the 

BioConductor package EdgeR to normalize the OTU counts of 48 samples.61, 62 The 

result of TMM was used for subsequent analysis. We identified all the OTUs to the 

genus level based on the barcoding database of Collembola in eastern China with 

integration of morphological determination.63, 64 We then classified observed 

Collembola into three life-forms, i.e., epedaphic, euedaphic and hemiedaphic (Table 

S1). 

 

2.4. Data analyses 

Collembola species richness (species number),65 Shannon-Wiener diversity66 and 

community composition (distribution of species in each sample) were calculated 

according to the sequence number of each OTU (= species) in each sample, while the 

relative abundance in the total sequence number of all 48 samples was used for 

abundance. Calculations were carried out using R v.4.0.3.67 Species richness and 

Shannon-Wiener diversity of the total Collembola communities and separately for each 

of the three life-forms were computed using the R packages ‘vegan’ and ‘picante’.68, 69 

The effects of stand type, season, and their interaction on Collembola species richness, 

Shannon-Wiener diversity, abundance and community composition were estimated by 
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permutational multivariate analysis of variance (PERMANOVA) with 999 

permutations using the R package ‘vegan’.61 In addition, we used the R packages 

‘vegan’, ‘ape’ and ‘RColorBrewer’ to perform principal coordinate analysis (PCoA) 

based on Bray-Curtis distance to test the differences among the three types of forest 

stands, with the model constrained to the factor of interest while controlling for the 

other factors.61, 70 These results were visualized using R packages ‘ggplot2’ and Origin 

(Origin Lab Corporation, Northampton, MA, USA). Based on Collembola abundance, 

a heatmap and Manhattan plots were used to demonstrate the variations in the 

community structure of the three life-forms of Collembola at the genus level in each 

sample. The heatmap was performed by R package ‘pheatmap’. The Manhattan plots 

were performed by R packages ‘edgeR’, ‘tidyverse’ and ‘ggplot2’ to further 

demonstrate the structural variation of Collembola communities among the three forest 

stands. Redundancy analysis (RDA) was performed using R packages ‘vegan’ and 

‘ggplot2’ to evaluate the relationship between the Collembola life-forms and the 

environmental variables (i.e., the physical and chemical properties of litter and soil). 

 

3. Results 

3. 1. The responses of diversity indices to bamboo invasion 

Bamboo invasion significantly reduced the species richness of total Collembola, as well 

as richness of epedaphic and hemiedaphic species but not euedaphic species (P < 0.05) 

(Table 1, Figure 1a). The species richness of Collembola communities was generally 

lower in winter than in other seasons (except for euedaphic species) (Table 1, Figure 
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1b). No interaction effects were detected between forest stand type and season on 

Collembola species richness (Table 1). 

 

Except for hemiedaphic and euedaphic species, the Shannon-Wiener diversity of 

Collembola communities was significantly negatively affected by bamboo invasion (P 

< 0.05) (Table 1, Figure 2a). The Shannon-Wiener diversity was significantly affected 

by season only for epedaphic Collembola with the lowest diversity in winter (P < 0.05) 

(Table 1, Figure 2b). No interaction effects were detected between forest stand type and 

season on Shannon-Wiener diversity (Table 1). 

 

3.2. The responses of abundance to bamboo invasion 

The abundances of total and epedaphic Collembola were significantly lower in 

Phyllostachys edulis forest stands than in moderately invaded and uninvaded stands 

(i.e., secondary broadleaf forest and mixed bamboo forest) (P < 0.05) (Table 1, Figure 

3a). However, the abundances of hemiedaphic and euedaphic did not respond to 

bamboo invasion (Table 1, Figure 3a). The abundances of total and epedaphic 

Collembola were generally higher in spring and lower in winter than in other seasons, 

while the abundances of hemiedaphic and euedaphic Collembola were not affected by 

season (Table 1, Figure 3b). No interaction effects were found between forest stand type 

and season on Collembola abundance (Table 1). 

 

3.3. The responses of community composition to bamboo invasion 
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Bamboo invasion significantly affected Collembola community composition (P < 0.05) 

(Table 2). Principal coordinate analysis (PCoA) showed clear separation between 

uninvaded, moderately invaded, and completely invaded stands, for total Collembola 

and for the three Collembola life-forms (P < 0.05) (Figure 4). Specifically, PCo1 

explained 59–85% of the variance while PCo2 accounted for 14–40% of the variance 

(Figure 4a). Except for hemiedaphic and euedaphic species, Collembola community 

composition also significantly varied among seasons (P < 0.05) (Table 2; Figure 4b). 

However, no any interaction effects between forest stand type and season were detected 

for Collembola community composition (Table 2). 

 

In addition, we found that a total of 19 genera and 46 OTUs underwent significant 

changes in abundance in response to bamboo invasion (P < 0.05) (Figure S2). The first 

RDA axis accounted for 57% of the variation of Collembola community composition; 

epedaphic species explained most of the variation (Figure 5a). The abundance of 

epedaphic Collembola positively correlated to total carbon, carbon/nitrogen ratio, and 

cellulose in litter (Figure 5a), while their abundance positively correlated with soil 

temperature and negatively correlated with soil pH (Figure 5b). 

 

4. Discussion 

We examined the effects of bamboo invasion on the diversity, abundance, and 

community composition of soil Collembola across seasons using high-throughput 

sequencing. We found that bamboo invasion significantly reduced (1) Collembola 
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species richness and (2) Collembola abundance, particularly for surface-dwelling 

species; (3) significantly shifted the taxonomic composition of Collembola 

communities. 

 

4.1. How do Collembola diversity and abundance respond to bamboo invasion? 

In support of our first hypothesis, bamboo invasion caused a significant reduction in 

diversity of total Collembola, including species richness and Shannon-Wiener diversity. 

This is in line with previous studies showing that plant invasion reduces the species 

richness of soil microarthropods.5, 23 For example, changes in soil properties and 

vegetation composition as a result of Robinia pseudoacacia invasion has been shown 

to cause richness loss of soil mesofauna.5 However, some other studies have shown that 

invasive plants do not always reduce the diversity of soil microarthropods, for example 

in case of Solidago gigantea.71 This seems contradictory to our finding, but it could be 

indicate that that taller or woody plants (e.g., shrubs or trees) generally have a greater 

impact on soil biota.72-74 Moso bamboo (Phyllostachys edulis) is a tall woody grass 

(Poaceae: Bambuseae). Bamboo invasion caused the species richness loss of the 

aboveground plant,48 which might further reduce the soil Collembola diversity. Several 

previous studies have shown that low plant species richness may lead to a decline in 

the species richness of Collembola,75-77 as plant-soil positive feedback interaction. 

Additionally, our finding is consistent with some other studies, showing reduced 

abundance of soil microarthropods after plant invasion.5, 23 Indeed, bamboo invasion 

simplified the plant composition of subtropical forest and its litter types.46, 78 This could 
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explain the reason that lower numbers of surface-dwelling epedaphic Collembola in 

completely invaded forest stands could result in the abundance reductions of total 

Collembola in this study. 

 

4.2. How does Collembola community composition shift in response to bamboo 

invasion? 

In line with our second hypothesis, bamboo invasion significantly altered the 

community composition of soil Collembola, from a complex community to a simplified 

community. Compositional shifts with less abundance and diversity are likely related 

to the changes in litter inputs with lower litter quality after bamboo invasion.79 

Specifically, bamboo invasion into neighboring evergreen broadleaved forests 

decreased litter production and quality,80 and thereby soil detritivores.81-84 Moreover, 

bamboo invasion into neighboring forests may significantly alter the community 

structure of microbial community, by increasing the abundance and activity of bacterial 

community; whereas by decreasing that of fungal community.20, 50, 51, 85, 86 Further, such 

compositional changes in microbial communities may have lock-on effects on the 

community structure of microbivorous fauna, such as soil Collembola.25, 47 

 

Additionally, changes in soil abiotic conditions and the composition structure of 

vegetation caused by plant invasion can have top-down effects on soil 

microarthropods,5 which may further affect the community structure of Collembola. A 

better understanding of bamboo invasion effects on the community compositions of 
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Collembola may help to further predict how soil ecosystems will respond and adapt to 

plant invasion. As the functional role of Collembola depends on the vertical position of 

their specific life-forms, and bamboo invasion had stronger effects on the community 

composition of surface-dwelling Collembola,38 and this may slow down the earlier 

stages of litter decomposition. 

 

4.3 The sensitivity to bamboo invasion: surface-dwelling vs. soil-living Collembola 

Our results support the third hypothesis that Collembola life-forms differ in response 

to bamboo invasion, i.e., the effects of bamboo invasion were more profound for 

surface-dwelling Collembola than for soil-living Collembola. Specifically, we found 

(stronger) negative effects of bamboo invasion on Shannon-Wiener diversity and 

abundance of epedaphic species than of euedaphic species. This could be explained by 

invasion-induced changes in soil condition (e.g. via litter inputs), that the epedaphic 

Collembola are more vulnerable to such environmental changes than euedaphic 

Collembola.39, 87 

 

Therefore, the surface-dwelling epedaphic Collembola are better indicator for 

environmental changes. Previous studies showed that bamboo invasion decreased the 

litter quality by lowering the ratio of cellulose/lignin.80, 85 As a consequence, this might 

be not conductive to epedaphic Collembola. As Collembola feed basically on fungi,88-

90 bamboo invasion into neighboring broadleaved forest may significantly decrease the 

abundance and activity of fungal community.51 This supports our result that bamboo 
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invasion had a negative effect on surface-dwelling Collembola. Besides, soil pH in 

bamboo invasion was confirmed to increase in previous studies;20, 91, 92 we further found 

the increased pH value was significantly related to a decreased abundance of epedaphic 

Collembola. Such result to some extent can be supported by da Silva et al.,36 who found 

pH was the main soil parameter that negatively influencing Collembola community. 

Taken together, bamboo invasion may cause negative shifts in Collembolan community 

through the regulation of physical and chemical properties of litter inputs and soil.46, 51, 

85, 91 Because the semi-field experiment is a simplified system, the results cannot be 

directly extrapolated to the field results. Such linkages therefore need to be confirmed 

by further comprehensive field investigation. 

 

5. Conclusions 

As bamboo invasion a case study, our results showed that plant invasion was able to 

influence soil invertebrate communities, i.e., reducing their diversity and abundance, 

and shifting their community composition, in a negative direction. Moreover, these 

detrimental effects were differential along the vertical distribution of soil invertebrate. 

For instance, Collembola provide as an excellent model taxon, which showed rather 

different responses among their life-forms (i.e., epedaphic, hemiedaphic, and euedaphic) 

to plant invasion. In general, surface-dwelling species were particularly more 

vulnerable, compared to soil-living species. These differential responses within soil 

communities along such a vertical stratification may have further cascading effects on 

ecosystem functions. For example, if such a detrimental effect on surface-dwelling 
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Collembola will slow down litter decomposition, particular for its earlier stages, which 

will potentially threaten the ecosystem function they provided. However, future 

empirical studies are encouraged to directly test how shifts in Collembola communities 

under plant invasion (other global changes) influence soil food web dynamics and 

associated soil carbon and nutrient cycling processes. 
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Table 1. Results of PERMANOVA testing (F-values) the effects of stand, season, and 

their interaction on species richness, Shannon-Wiener diversity and abundance of total, 

epedaphic, hemiedaphic, and euedaphic communities of Collembola. 

Indices Effects df Total Epedaphic Hemiedaphic Euedaphic

 Species richness    

 Stand 2 0.31*** 0.27*** 0.33*** 0.01 

 Season 3 0.46*** 0.50*** 0.27*** 0.11 

 Stand × Season 6 0.05 0.06 0.09 0.14 

Shannon-Wiener diversity    

 Stand 2 0.21** 0.24*** 0.08 0.03 

 Season 3 0.05 0.14* 0.05 0.06 

 Stand × Season 6 0.12 0.19* 0.08 0.19 

Abundance    

 Stand 2 0.14* 0.15* 0.09 0.04 

 Season 3 0.26** 0.15* 0.09 0.05 

 Stand × Season 6 0.07 0.10 0.06 0.19 

Note: *, P < 0.05; **, P < 0.01; ***, P < 0.001; no asterisk, non-significant differences.  
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Table 2. Results of PERMANOVA testing (R-values) the effects of stand, season, and 

their interaction on community composition of total, epedaphic, hemiedaphic, and 

euedaphic Collembola. 

Groups df Total Epedaphic Hemiedaphic Euedaphic 

Stand 2 0.15*** 0.13*** 0.17*** 0.14*** 

Uninvaded vs moderately invaded 1 0.08** 0.09*** 0.06 0.11*** 

Moderately vs completely invaded 1 0.12*** 0.10*** 0.13*** 0.05 

Uninvaded vs completely invaded 1 0.15*** 0.10*** 0.18*** 0.16*** 

 

 

 

 

 

 

 

Season 3 0.15** 0.19*** 0.08 0.05 

Spring vs Summer 1 0.06* 0.11** 0.06 0.03 

Spring vs Autumn 1 0.13** 0.17*** 0.07 0.02 

Spring vs Winter 1 0.14*** 0.16*** 0.07 0.03 

Summer vs Autumn 1 0.09** 0.12*** 0.04 0.04 

Summer vs Winter 1 0.10** 0.13*** 0.06 0.05 

Autumn vs Winter 1 0.09* 0.12*** 0.04 0.02 

Stand × Season 6 0.09 0.10 0.09 0.12 

Note: *, P < 0.05; **, P < 0.01; ***, P < 0.001; no asterisk, non-significant differences. 
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Figure legends 

 

Fig. 1 Effects of stand type (a) and season (b) on species richness of total, edaphic, 

hemiedaphic and euedaphic Collembola. Boxplots show median (horizontal line), the 

mean (black dot), first and third quartile (rectangle), 1.5 × interquartile range (whiskers), 

and data distribution (scattered dots). Lowercase letters represent significant 

differences between stand types and seasons at P < 0.05. SBF, uninvaded secondary 

broadleaved forest; MBF, moderately-invaded mixed bamboo forest; PEF, completely 

invaded Phyllostachys edulis forest; ***, P < 0.001. 

 

Fig. 2 Effects of stand type (a) and season (b) on Shannon-Wiener diversity of total, 

edaphic, hemiedaphic and euedaphic Collembola. Boxplots show the median 

(horizontal line), mean (black dot), first and third quartile (rectangle), 1.5 × interquartile 

range (whiskers), and data distribution (scattered dots). Lowercase letters represent 

significant differences between stand types and seasons at P < 0.05. SBF, uninvaded 

secondary broadleaved forest; MBF, moderately-invaded mixed bamboo forest; PEF, 

completely invaded Phyllostachys edulis forest; n.s., P > 0.05, **, P < 0.01; ***, P < 

0.001. 

 

Fig. 3 Effects of stand type (a) and season (b) on relative abundance of total, edaphic, 

hemiedaphic, and euedaphic Collembola. Boxplots show the median (horizontal line), 

the mean (black dot), first and third quartile (rectangle), 1.5 × interquartile range 
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(whiskers), and data distribution (scattered dots). Lowercase letters represent 

significant differences between stand types and seasons at P < 0.05. SBF, uninvaded 

secondary broadleaved forest; MBF, moderately-invaded mixed bamboo forest; PEF, 

completely invaded Phyllostachys edulis forest; n.s., P > 0.05; *, P < 0.05; **, P < 0.01. 

 

Fig. 4 Constrained effects of stand type (a) and season (b) on Collembola community 

composition. Principal coordinate analysis (PCoA) using the Bray-Curtis distances for 

total, epedaphic, hemiedaphic, and euedaphic Collembola. Ellipses indicate 95% 

confidence intervals. SBF, uninvaded secondary broadleaved forest; MBF, moderately-

invaded mixed bamboo forest; PEF, completely invaded Phyllostachys edulis forest; 

n.s.; P > 0.05; **, P < 0.01; ***, P < 0.001. 

 

Fig. 5 Redundancy analysis (RDA) showing the relationship between Collembola life-

forms and the physical and chemical properties of litter (a) and soil (b). Each colored 

dot indicates one sample. Green arrows indicate Collembola life forms, while black 

arrows indicate environmental factors. SBF, uninvaded secondary broadleaved forest; 

MBF, moderately-invaded mixed bamboo forest; PEF, completely invaded 

Phyllostachys edulis forest. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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