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Abstract  

A major goal of translational toxicology is to identify adverse chemical effects and determine 

whether they are conserved or divergent across experimental systems. Translational toxicology 

encompasses assessment of chemical toxicity across multiple life stages, determination of toxic 

mode-of-action, computational prediction modeling, and identification of interventions that protect 

or restore health following toxic chemical exposures. The zebrafish is increasingly used in 

translational toxicology because it combines the genetic and physiological advantages of 

mammalian models with the higher-throughput capabilities and genetic manipulability of 

invertebrate models.  Here, we review recent literature demonstrating the power of the zebrafish 

as a model for addressing all four activities of translational toxicology. Important data gaps and 

challenges associated with using zebrafish for translational toxicology are also discussed.       

 

Key words: Adults; developmental toxicology; disease modeling; gene editing; gut microbiome; 

hazard identification; interventions; juveniles; life stages; mode-of-action; molecular toxicology; 

predictive toxicity; toxicity testing 

 

Abbreviations: AhR = arylhydrocarbon receptor; BPA = bisphenol A; BPAF = bisphenol AF; 

BPB = bisphenol B; BPF = bisphenol F; BPS = bisphenol S; CYP1A1 = cytochrome P450, 

family 1, subfamily A, polypeptide1; DOHaD = developmental origins of health and disease; dpf 

= days post-fertilization; DMSO = dimethylsulfoxide; GenX = ammonium salt of 

hexafluoropropylene oxide dimer acid fluoride; eGFP = enhanced green fluorescent protein; 

gper-1 = G protein-coupled receptor 1; hpf = hours post fertilization; LELs = lowest effect levels; 

mrp1 = multi-resistance-associated protein-1; PFAS = per- and polyfluoroalkyl substances; 

PFOS = perfluorooctane sulfonate; SARs = structure activity relationships; slincR = sox9b long 

intergenic noncoding RNA; sox9b = SRY-box transcription factor 9b; QSARs = Quantitative 

SARs; TCDD = 2,3,7,8-Tetrachlorodibenzo-p-dioxin; VHL = von-Hippel Lindau syndrome   
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1.0 Introduction  

       A main goal of toxicology is to determine the potential for and the mechanisms by which 

xenobiotic agents cause harm to biological systems. While the human is a predominant target 

species of interest, for most xenobiotics there is limited human data. To address this data gap, it 

is often necessary to extrapolate data integrated from diverse species across varying levels of 

organization, ranging from computational, biochemical, in vitro, to in vivo systems. In vivo models 

offer a distinct advantage by enabling assessment of integrative effects across organ systems, 

and across different life stages. However, all experimental models fail to recapitulate some 

aspect(s) of human biology so it is important to understand and account for the limitations of any 

given model (Figure 1A).  

Due to genetic and physiologic conservation between zebrafish and humans (Box 1) and 

the relevance of this small aquatic vertebrate to translational toxicology (Box 2), the zebrafish has 

become a widely used model for toxicological research [1,2] that is increasingly being used to  

address long-standing challenges in toxicology. For example, zebrafish are a powerful mode for 

studying the toxicity of chemical mixtures, as exemplified by a recent study in which gene 

expression changes and lethality were quantified in embryonic zebrafish exposed to multiple 

concentrations of three different pesticides, either individually or as binary or tertiary mixtures [3]. 

The authors concluded that the quantitative and qualitative effects of the mixtures would not have 

been predicted based on changes elicited by exposure to individual chemicals. Another long-

standing challenge – sex differences in toxic outcomes – was recently studied in zebrafish 

exposed to perfluorooctane sulfonate (PFOS). Transcriptomic analysis of multiple organs 

revealed that PFOS altered expression of genes associated with fatty acid metabolism and neural 

function in a manner that varied not only according to the target organ, and concentration and 

duration of PFOS exposure, but also sex [4]. In a separate study, wildtype female zebrafish were 

found to be significantly more sensitive to the behavioral effects of chronic ethanol exposure than 

long fin striped females or males [5], suggesting that sex and genetic background interact to 
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determine toxic outcome. These studies suggest the potential for using zebrafish to identify 

specific gene x environment interactions that influence individual susceptibility for adverse 

outcomes [6]. 

The zebrafish is also proving to be a strong model for addressing emerging questions in 

toxicology, such as the role of xenobiotics in the developmental origins of health and disease 

(DOHaD), epigenetic mechanisms of toxicity [7], and the role of the microbiome in modifying toxic 

effects of xenobiotics [8,9]. For example, the effects of bisphenol A (BPA) or the replacement 

chemicals BPAF, BPB, BPF, or BPS on developmental toxicity and microbiome community 

structure were recently studied in zebrafish [10]. Chemical potency was conserved in a zebrafish 

developmental toxicity assay when compared to previously reported estrogen receptor activity in 

both zebrafish reporter and in vitro human systems [10]. However, an inverse relationship 

between zebrafish developmental toxicity and chemical-dependent microbiome disruption was 

observed indicating that traditional toxicology tests fail to capture microbiome-dependent effects. 

Through the use of colonized, microbe-free axenic, and conventionalized zebrafish, recent work 

has shown that host-associated microbes biotransform xenobiotic agents into metabolites with 

unknown toxicity profiles [11,12].  

 

2.0 Evaluating zebrafish for translational toxicology research 

Translational toxicology broadly refers to the determination of toxicological effects as 

conserved or divergent across different experimental systems. Four activities are proposed to 

comprise translational toxicology [13]. First, assessing chemical toxicity across multiple life 

stages. Second, identifying chemical mode of action and relevance of key events across models. 

Third, using data from one model to predict chemical toxicity in other systems. Fourth, deploying 

models to develop and evaluate interventions to protect or restore a healthy status following 

chemical exposure. Here, we discuss recent evidence collected in zebrafish that encompasses 

these four activities (Figure 2).       
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2.1 Assessing chemical toxicity across the zebrafish lifespan  

  Zebrafish pass through four major life stages: embryonic, larval, juvenile, and adult. 

Zebrafish are considered embryos from fertilization until hatching, which can occur between 48–

96 hours post-fertilization (hpf), at which point they are considered larvae. Zebrafish transition to 

the juvenile stage at ~30 days post-fertilization (dpf) (https://zfin.org/zf_info/zfbook/stages/), which 

corresponds to the age when many laboratory-bred strains have determined their sex. Sexual 

maturity and the ability to produce offspring signals the adult stage, which occurs by ~90–120 dpf. 

Compared to humans, the key molecular and cellular transitions that occur during the 

development and maturation of most major organ systems are similar in terms of sequence, but 

occur more rapidly in zebrafish (Figure 1B).  

Zebrafish embryos and larvae are widely used for developmental toxicology studies for 

theoretical reasons – the molecular and cellular mechanisms of early development are among 

the most conserved between zebrafish and humans [14] – and practical considerations – 

zebrafish develop rapidly and external to the mother and for the first 7 dpf, obtain most of their 

nutrients from the yolk sac. Zebrafish are therefore readily adapted to higher throughput formats 

that deploy 96- or 384-well plates and automated tools for image acquisition, processing, and 

associated analyses. Because of its relatively short life cycle, the zebrafish offers significant 

advantages for assessing transgenerational (e.g., epigenetic) effects [7] and differential 

vulnerability to toxic effects across the lifespan. With regard to the latter, a recent evaluation of 

embryonic (3 hpf), larval (3 dpf), juvenile (30 dpf) and adult (3 month old) zebrafish exposed to 

varying concentrations of four different strobilurin fungicides revealed that the larval stage was 

the most susceptible [15]. Whether this reflects toxicokinetic or toxicodynamic mechanisms has 

yet to be determined.  

In contrast, there are significantly fewer examples of juvenile and adult zebrafish being 

used for toxicology research. This may be because unlike embryonic and larval zebrafish, juvenile 

and adult zebrafish cannot be maintained in multi-well format plates for prolonged periods of time 

https://zfin.org/zf_info/zfbook/stages/
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and they are not optically transparent. Despite these limitations, juvenile and larval zebrafish are 

advantageous for toxicological studies of phenotypes not exhibited at earlier life stages, such as 

sex, reproductive function, and adaptive immunity (Figure 1B), and behaviors that cannot be 

readily assessed in younger fish, including learning, memory, social, and anxiety-like behaviors 

[16]. For example, adult zebrafish were recently used to evaluate the therapeutic and toxic effects 

of the antidepressant amitriptyline [17]. Adult zebrafish are gaining traction as models for studying 

chemical effects on phenotypes and diseases associated with aging, including various cancers 

[18]. For example, screening novel small molecule therapeutics for liver cancer that have a better 

therapeutic index than the standard of care, sorafenib [19]. Adult zebrafish have also recently 

been validated as a model for evaluating drug-induced kidney injury [20]. Larval zebrafish have 

only one pair of nephrons whereas the adult zebrafish kidney has several hundred nephrons with 

similar histological structure and physiological function as the mammalian kidney (reviewed in 

[20]). The renal pathology observed in adult zebrafish exposed to nephrotoxic levels of gentamicin 

or doxorubicin were similar to those seen in mammals, and a screen of 28 chemicals with known 

nephrotoxicity and 14 with no known nephrotoxicity in humans demonstrated that 16 of the 

nephrotoxic chemicals and none of the negative controls caused drug-induced kidney injury in 

adult zebrafish.  

 

2.2 Using zebrafish to define chemical mode-of-action  

A significant strength of the zebrafish is that molecular insights into chemical mode-of-

action can be obtained using diverse approaches ranging from chemical screens to elucidate 

structure-activity relationships (SARs) to genetic manipulation that identifies molecular targets of 

xenobiotics. Chemical screens in zebrafish have revealed novel mechanistic information about 

compounds with unknown modes-of-action via phenotypic mapping to compounds with known 

modes-of-action. For example, in a screen of 14,000 compounds, automated behavior testing of 

zebrafish coupled with a barcoding-based computational approach was used to identify novel 
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neuroactive compounds that shared behavioral profiles with compounds with known modes-of-

action [21]. This strategy has since been applied to identify chemicals that regulate zebrafish 

sleep/wake cycles [22], passive and active threat response [23], addiction [24], and psychosis 

[25]. Phenotypic SARs have been identified for the developmental toxicity of oxygenated, 

hydroxylated, or heterocyclic polycyclic aromatic hydrocarbon (PAH) derivatives [26]. In the same 

study, a relationship between behavior phenotypes and specific PAH substitutions was not 

apparent [26]. More recently, a smaller-scale comparison of alkyl sulphonic acid, alkyl carboxylic 

acid, or branched or ether containing per- and polyfluoroalkyl substances (PFAS) showed that 

exposure to alkyl sulfonic acid PFAS with more than four fluorinated carbons caused hyperactivity 

and the potency for this structural sub-class of PFAS correlated with fluorinated carbon chain 

length [27]. Quantitative SARs (QSARs) have also recently been used to predict zebrafish acute 

toxicity for neutral [28] or ionizable [29] organic chemicals. 

Medium-to-high-throughput zebrafish screens coupled with automated morphological and 

behavioral phenotyping represent a powerful strategy to identify SARs that illuminate phenotypic 

readouts particularly sensitive to chemical disruption. Subsequent unbiased pathway-level 

assessment and gene editing can then be used to solve mode-of-action in vivo. Unbiased [30-37] 

or targeted RNA sequencing [38] are routinely used to identify chemical-dependent perturbations 

in zebrafish at the level of genes and pathways. As an example of the translational potential of 

this approach, changes in gene expression following exposure to three hepatotoxic compounds 

were compared across whole zebrafish, mouse and rat livers, in vitro mouse and rat hepatocytes, 

and primary human hepatocytes [39]. While specific changes in gene expression were not 

generally conserved across models, shared pathway-level perturbations were identified 

demonstrating that the zebrafish harbors the capacity to identify pathway-level transcriptomic-

based disruptions that indicate liver toxicity in a suite of mammalian models [39]. The observed 

lack of concordance on the gene level likely stems from comparing profiles obtained from whole 

zebrafish homogenates versus liver-specific human cells or tissues. Future studies should 
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consider isolating sorted populations of cells or micro-dissected tissue to enable cross-species 

transcriptomic comparisons based on similar cell types or tissues.  

Once key phenotypes and pathway-level perturbations have been identified, zebrafish can 

easily be used for mechanistic research, with the goal of identifying causative events that link 

chemical exposure to phenotypic outcomes. Alternatively, molecular toxicology approaches can 

be used to disprove dogma related to assumed or predicted modes-of-action. One recent example 

of the latter was the demonstration of the non-essentiality of PPARγ for ciglitazone-dependent 

dorsoventral patterning defects in early zebrafish development [40]. Injection of an anti-sense 

oligonucleotide morpholino into single cell stage zebrafish to transiently suppress the generation 

of PPARy protein revealed that defects in patterning elicited by ciglitazone exposure occurred via 

a PPARy-independent mechanism [40]. While some researchers have argued that morpholino 

knockdown phenotypes can be more severe than mutant phenotypes because of off-target effects 

[41], lack of concordance between morpholino knockdowns and stable gene knockouts may be 

more complex and involve genetic compensatory mechanisms specific to gene knockouts, but 

not knockdowns, at least at certain loci [42]. Nevertheless, gene editing approaches (e.g., 

CRISPR/Cas9) are now widely used to discover mutations that cause phenotypes and define 

toxicological modes-of-action. This endeavor is aided by a wide array of mutant zebrafish 

available via the Zebrafish Mutation Project [43] and the generation of cell type-specific mutant 

zebrafish lines [44]. While concerns regarding off-target effects of CRISPR/Cas9-based gene 

editing have been raised [45], recent whole exome sequencing evidence obtained across two 

generations of zebrafish derived from the same founding mutant pair failed to show evidence of 

off-target, de novo mutations [46], supporting the use of CRISPR/Cas9-based gene editing to 

uncover mechanisms by which toxicants elicit adverse outcomes.   

There are several recent examples of using gene editing to solve toxicological mode-of-action in 

zebrafish. In an elegant study that integrated human hepatocellular carcinoma samples, human 

hepatocyte culture, and zebrafish, CRISPR/Cas9-dependent knockout of G protein-coupled 
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receptor 1 (gper-1) was sufficient to block liver growth in 17-beta-estradiol exposed zebrafish 

[47]. This work identified gper-1 as a fundamental hepatic estrogen sensor. Given the known 

associations between gper signaling and atherosclerosis, heart failure, reproduction, metabolic 

disorders, cancer, and menopause, generated in human and rodent studies, this research 

broadly illustrates that zebrafish can be used to elucidate human-relevant toxicity mechanisms 

[47]. 

CRISPR/Cas9-dependent gene knockout was also effectively deployed to show that the 

efflux transporter multi-resistance-associated protein-1 (mrp1) functions to efflux both cadmium 

and benzo[a]pyrene [48]. Increased compound accumulation, mortality and, at lower 

concentrations, increased incidence of pericardial edema and failure to hatch, was observed in 

mrp1 mutant zebrafish exposed to either compound [48]. Perturbation of arylhydrocarbon receptor 

(ahr)-dependent signaling represents a well-studied molecular mechanism by which xenobiotic 

exposure triggers adverse outcomes. Mutant zebrafish lines have revealed the essentiality of ahr2 

[49] and sox9b [50] to mediate TCDD-dependent effects on zebrafish heart development. 

Morpholino-mediated knockdown of the long non-coding RNA slincR was used to demonstrate 

that slincR repressed sox9b expression as part of the mechanism by which TCDD exposure 

induced vascular hemorrhage in zebrafish [51]. Mutant ahr2 zebrafish have also been leveraged 

to reveal the essentiality of the receptor for mono-substituted isopropylated triaryl phosphate, a 

component of Firemaster 550, to cause a heart looping defect [52].  

 

2.3 Retrofitting zebrafish toxicity data to build or evaluate predictive toxicity models  

Historically, zebrafish toxicity data has been used for hazard identification and chemical 

prioritization [53-58]. To fully leverage available zebrafish toxicity data, its ability to predict toxicity 

in humans must be defined. An early key paper calculated overall concordances between 

developmental toxicants in zebrafish and rat (52%) or rabbit (47%) guideline studies [59]. 

Interestingly, the percentage of concordant chemicals identified between rat and rabbit studies 
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was similar (58%), indicating that at least for the evaluated set of chemicals, zebrafish toxicity 

data was generally as predictive as the calculated concordance between two widely used 

mammalian models [59]. A subsequent meta-analysis compared zebrafish toxicity data on 443 

chemicals, 19 aggregated toxicity phenotypes (e.g. cardiovascular), and 57 individual toxicity 

phenotypes (e.g. pericardial edema) to guideline toxicity data collected in rat, mouse, and rabbit 

[60]. Zebrafish LC50 values were highly correlated with acute mammalian inhalation toxicity where 

zebrafish LC50 values were roughly 180% more sensitive than their mammalian counterparts [60]. 

From a developmental perspective, zebrafish hatching rate, pericardial edema, and decreased 

heart rate positively correlated with rabbit lowest effect levels (LELs) for prenatal loss [60]. In an 

interesting twist, the authors incorporated human exposure values to rank chemicals based on 

the integration of zebrafish toxicity data and human exposure estimates [60]. The resulting hazard 

index identified 14 chemicals where exposure levels in humans occur at concentrations that cause 

toxicity in zebrafish and therefore deserve further scrutiny [60].  

A refinement of toxicity concordances that considers SARs is critical to understanding 

chemical blind-spots inherent in the zebrafish test system. For example, several compounds 

identified as reference compounds for developmental neurotoxicity because of documented 

human developmental toxicity were negative hits in a screen of 91 compounds for teratological 

and behavioral effects in larval zebrafish [53], including lead acetate trihydrate, valproic acid 

sodium salt, and toluene. Whether these compounds are true negatives or the lack of toxic effect 

is due to toxicokinetic (e.g. reduced bioavailability due to minimal uptake of the compound, lack 

of metabolic activation, or photoinactivation of the compound) or toxicodynamic (e.g. deficient 

target expression) differences in developing zebrafish versus mammalian models remains to be 

determined.  

These observations are relevant to a second challenge in establishing concordance 

between zebrafish and mammalian toxicity data, which is that most of the zebrafish data used in 

these analyses compare nominal media concentrations to phenotypic outcomes. Tissue dose in 
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zebrafish as a result of waterborne exposure is affected by diverse physicochemical properties 

[28,29,55]. If a compound fails to provoke phenotypic effects in zebrafish, paired analytical 

chemistry data is necessary to demonstrate chemical uptake and confirm the assumption that a 

chemical is negative for the measured toxicity outcome. For example, a recent study showed that 

GenX, an emerging PFAS compound of public health concern, was unstable in dimethylsulfoxide 

(DMSO), a solvent widely used in zebrafish chemical screening studies. Without tissue dose 

measurements, this compound would have been assumed to be negative for a number of 

developmental toxicity and developmental neurotoxicity endpoints [27].  

Zebrafish also contribute to translational toxicology as tools for evaluating computational 

models based on in vitro and biochemical data generated with human cells or receptors. A 

computational model predicting xenobiotic disruption of blood vessel development [61] was 

subsequently validated using a transgenic zebrafish assay for evaluating chemical-dependent 

effects on vessel development [62]. Comparison of human amino acid sequence similarities for 

members of the predictive signature in the computational model to zebrafish demonstrated 

biological domain-specific differences in protein sequence conservation [63], and the zebrafish 

assay proved zebrafish are particularly adept at detecting vascular disruptors associated with 

chemokine and/or extracellular matrix disruption in human in vitro assays [63].  

 

2.4 Testing interventions in zebrafish  

 Zebrafish are increasingly used in phenotypic screens to identify compounds that reverse 

or suppress adverse effects of genetic mutations. For example, zebrafish expressing a germline 

mutation in the vhl gene were used to identify pharmacologic approaches for reversing the loss 

of vision associated with von-Hippel Lindau (VHL) syndrome [64], a rare disease characterized 

by vision loss associated with retinal capillary hemangioblastomas (tumors of retinal blood 

vessels). Zebrafish nullizygous for vhl, which were developed because Vhl knockout is 

embryolethal in mice, exhibit ectopic ocular blood vessels and aberrant eye development 
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associated with an absent optokinetic response and significantly reduced visual motor response 

[64]. Sunitinib malate, an anti-angiogenic compound approved for cancer treatment, was found to 

reverse the ocular behavioral and morphological phenotypes in the vhl knockout zebrafish [64]. 

The methods used in this study were not high throughput; however, an automated system for 

histological analyses in zebrafish was recently described in which a commercially available 

platform that automates the transfer of zebrafish larvae from multi-well plates was combined with 

a customized spinning disk confocal microscope interfaced to software for high resolution image 

acquisition and analysis [65]. Using this system to screen 175 chemicals in transgenic larvae that 

expressed enhanced green fluorescent protein (eGFP) in myelinating oligodendrocytes 

Tg(mbp:eGFP), three novel compounds were identified that significantly modulated myelination 

[65].  

 Zebrafish are also being leveraged to screen for compounds that mitigate the adverse 

effects of xenobiotics. A screen of 2,271 small molecules identified 120 compounds that 

prevented cardiotoxicity in doxorubicin-exposed zebrafish, and combined SAR and target 

enrichment analysis of the seven most effective compounds identified CYP1A1 as a putative 

target [66]. This was corroborated by showing that cyp1a knockout zebrafish larvae were resistant 

to doxorubicin-induced cardiotoxicity [66]. In a separate study, the age-dependent sensitivity of 

zebrafish to cyanide was exploited to identify novel therapeutic targets for cyanide poisoning [67]. 

Initial studies revealed that zebrafish embryos are highly resistant to cyanide during the first 3 dpf 

but become progressively more sensitive as the larvae mature. Unbiased transcriptomic and 

metabolomic analyses revealed age-dependent differences in energy metabolism during cyanide 

exposure [67]. This observation led to the identification of compounds that modulate the pyruvate 

dehydrogenase complex and the small molecule sodium glyoxylate as potential prophylactic 

treatments for modulating sensitivity to cyanide poisoning [67]. 

 

 3.0 Major data gaps and summary 
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Zebrafish are widely used for hazard identification and chemical prioritization 

[27,32,33,53,55,57,58,60,63]. To improve the use of zebrafish toxicity data in human risk 

assessment, several data gaps need to be addressed. First, harmonization of common toxicity 

assays and assessments are necessary to overcome variability in zebrafish testing protocols [68]. 

Additionally, recent advances in developmental toxicity SARs [26,55] and chemical uptake [28,29] 

need to be expanded, and large-scale SAR analysis of more sensitive behavior endpoints, such 

as hyperactivity [27], are needed.  

A major hindrance to the identification of relevant target pathways in zebrafish is the 

widespread use of whole animal transcriptomic data, due in part to the technical difficulties 

associated with obtaining organ- or cell type-specific expression data. Future work should 

capitalize on the ability to sort specific populations of cells from transgenic zebrafish lines to 

increase the ability to detect xenobiotic-dependent transcriptional effects on sensitive, but low 

abundant cell types. In addition, while there are a growing number of examples in zebrafish 

[47,48,50,69], more studies should consider using gene engineering to characterize toxicity 

mechanisms. 

Perhaps the area ripest for gains is the development of computational models to predict 

human toxicity from zebrafish toxicity data. Here, toxicokinetic data must be more routinely 

gathered in phenotypic zebrafish studies, both to identify true negative compounds [27] and to 

serve as the basis for dose extrapolation to human-relevant exposure scenarios.  

In summary, zebrafish is an exceptional model for the illumination of chemical-dependent 

toxic effects that are conserved or divergent across different experimental systems and humans. 

Because of the inherent power of the system for medium-to-high throughput chemical-genetic 

screens, zebrafish represents a powerful experimental system for assessing chemical toxicity 

across lifespan, identification of chemical mode-of-action, generation of datasets for the prediction 

of chemical toxicity in humans, and rapid assessment of interventions to prevent chemical toxicity 
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in exposed organisms. Researchers who focus on translational research using zebrafish may 

ultimately have a deep impact on the protection of both human health and the environment.   
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Figure Legends  
 

Figure 1: Comparisons of model organisms to humans. (A) Strengths and weaknesses of 
widely used translational toxicology animal models. (B) Comparative timelines for zebrafish and 
human development (https://zfin.org/zf_info/zfbook/stages/). The timing of all developmental 
events in zebrafish is influenced by temperature. Abbreviations: dpf = days post-fertilization; hpf 
= hours post-fertilization; wk = weeks. aKeane et al. 2011 Nature 477:289-294; bFritz et al. 2013 
Microbiome 1:14; cKostic et al. 2013 Genes Dev 27:701-718; dNagpal et al. 2018 Front Microbiol 
9:2897; eBedell et al. 1997 Genes Dev 11:11-43; fSeok et al. 2013 Proc Natl Acad Sci U S A 
110:3507-3512; gHowe et al. 2013 Nature 496:498-503; hMacRae and Peterson 2015 Nat Rev 
Drug Discov 14:721-731; iCayuela et al. 2018 Front Cell Dev Biol 6(178); jAluru et al. 2018 Environ 
Epigenet  4:dvy005; kGoldsmith and Jobin (2012) J Biomed Biotechnol 2012: 817341; lBargmann 
2006 Worm Book 1-29; mClark and Walker 2018 Cell Mol Life Sci 75:93-101; nKim et al. 2018 
Genetics 210:445-461; oKimmel et al. 1995 Dev Dyn 203:253-310; pO'Rahilly et al. 1979 Anat 
Embryol (Berl) 157:167-176; qPhelps et al. 2017 Sci Rep 7:11244; rRawls et al. 2007 Proc Natl 
Acad Sci U S A 104:7622-7627. 
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Figure 2: Translational toxicology in zebrafish. Zebrafish can be used to assess the four 
components of translational toxicological research, including assessment of chemical toxicity 
across life stages, delineation of chemical mode of action, development or testing of interventions 
that block chemical-dependent toxicity outcomes and restore health, or prediction of chemical 
toxicity in other systems, including humans. 
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Box 1. Relevance of zebrafish to human biology and disease. 
Zebrafish express gene orthologs for >70% of human genes, 82% of human disease-causing proteins, and 
85% of known human drug targets [70]. Zebrafish proteins resemble their human counterparts, particularly 
within functional domains. For example, while the zebrafish glucocorticoid receptor is only 54% identical to the 
human glucocorticoid receptor, the ligand binding domain is 74% identical and its pharmacologic properties 
closely resemble those of the human [71]. There is also considerable anatomic and physiologic conservation. 
Zebrafish possess counterparts of most human organ systems, and zebrafish organs largely perform the same 
functions as their human analogs. Physiologic mechanisms are well conserved at the molecular and cellular 
levels, and some cases (e.g., cardiac electrophysiology), zebrafish are a better model of the human than 
rodents (reviewed in [71]). Zebrafish possess many of the human sensory modalities, including vision, 
olfaction, taste, touch, balance and hearing. They have an extensive behavioral repertoire, ranging from simple 
stimulus-response behaviors to complex behaviors such as sleep, pain, affective and depressive-like behavior, 
locomotion, social interactions and cognitive behaviors [16]. 
Zebrafish are widely used to model diverse human diseases. Because targeted gene mutations can be 
generated and phenotyped more efficiently in zebrafish than in rodents, there is significant interest in using 
zebrafish to investigate rare genetic disorders. For example, using a scn1lab mutant zebrafish that 
recapitulates critical clinical features of Dravet syndrome, a chemical library screen identified the 5-HT2B 
receptor as a novel therapeutic target for this rare genetic seizure disorder [72]. In a second example, 
zebrafish expressing human type I collagen gene mutations were engineered to investigate human genetic 
skeletal dysplasias because unlike mouse models, zebrafish bone mutants survive into adulthood [73]. Using 
micro-computed tomography (µCT) for detailed and rapid skeletal phenotyping of zebrafish mutants and 
systematic collagen analysis by SDS/PAGE and mass-spectrometry, the authors demonstrated that zebrafish 
and human type I collagen are compositionally and functionally related, and that expression in zebrafish of 
select human mutations in type I collagen gives rise to phenotypic variability that mirrors the clinical variability 
associated with human disease pathology [73].  

Box 2.  Zebrafish are a powerful model for toxicology research. 
The zebrafish model is particularly well suited for molecular and developmental toxicology studies. This is 
largely because the zebrafish genome has been completely sequenced and is highly homologous to the 
human genome [70], and powerful gene-editing techniques continue to be developed and optimized for use in 
zebrafish [74].  
Another significant advantage of zebrafish is that toxic outcomes can be measured at the molecular (e.g., 
mRNA or protein expression), structural (e.g, cell, organ and systems level, including structural [75] and 
electrophysiological [76] parameters of neural circuitry), and behavioral levels. This enables molecular effects 
to be anchored to phenotypic outcomes.  
In contrast to cell-based assays that provide limited toxicokinetic information, zebrafish can reveal critical 
insights about the absorption, distribution, metabolism, and excretion (ADME) of xenobiotics. Zebrafish have a 
functional liver, kidneys, and blood-brain barrier, expression conserved tissue-specific transporters, and exhibit 
both phase I and II metabolism (reviewed in [71]).  
Zebrafish are easily exposed by direct addition of chemicals to the house media (referred to as water-borne 
exposures), which is a significant advantage for screening studies. However, nominal media concentrations 
are not necessarily representative of internal dosimetry [77,78], and this remains an important challenge in the 
use of zebrafish for toxicity testing. Compounds that do not readily dissolve in aqueous solutions represent 
another challenge for waterborne exposures; however, this can be overcome by injecting chemicals directly 
into zebrafish [79].   


