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Remote sensing depicts riparian vegetation responses to water stress in a 

humid Atlantic region  

 

Abstract 

Riparian areas harbour a diverse array of plant and animal species, which provide key 

ecosystem regulating services, such as soil retention and water quality. However, 

riparian plants have been degraded as a result of anthropogenic alterations and 

increasing frequencies and intensities of climate extremes, such as drought. In this 

study, we explored seasonal and inter-annual variations of riparian vegetation 

(2015-2019) by means of the Normalised Difference Vegetation Index (Sentinel 2 - 

NDVI) in northwest Portugal. We investigated their responses to climate (maximum 

temperature and precipitation) and elevation, across different land uses (natural and 

managed) and vegetation types (coniferous, broadleaved and grassland). Our results 

indicated marked seasonal changes which were common to all years, but NDVI curves 

differed between drier and wetter years. We found that intra-annual dynamics of 

NDVI-based primary productivity were influenced by the longitudinal river zonation. 

Our models showed that the productivity of riparian vegetation during the dry season 

was positively influenced by annual rainfall and by the type of riparian vegetation 

(broadleaved > conifer > grassland). In contrast, elevation or variables describing 

rainfall occurring over shorter periods or seasons had lower statistical support. These 

findings suggest that reductions in annual rainfall or modifications from broadleaved 

vegetation to conifer or grassland types could severely reduce the productivity of 

riparian vegetation. The emergent long lags between climatic variation and riparian 

plant productivity provides interesting opportunities to forecast early warnings of 

climatically-driven impacts. In addition, the different basal productivity levels of 

grasslands, conifer and broadleaved vegetation should be considered when assessing 

climatic impacts on riparian vegetation. Future applications of Sentinel 2 products 

could seek to distinguish riparian areas that are likely to be more vulnerable to 

changes in the annual water balance from those that are more resistant under 

longer-term changes in climate. 
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Remote sensing depicts riparian vegetation responses to water stress in 

a humid Atlantic region  

 
Highlights 
 
 

 We explored intra-annual trends of riparian plants from Sentinel 2 images 
 

 Reduced annual rainfall induced detectable intra-annual changes in plant 
productivity 

 
 Temperature and elevation had a lower influence on plant productivity 

 
 Vegetation types responded similarly to water stress but had different 

basal levels 
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Abstract17

Riparian areas harbour a diverse array of plant and animal species, which provide key 18 

ecosystem regulating services, such as soil retention and water quality. However, riparian 19 

plants have been degraded as a result of anthropogenic alterations and increasing 20 

frequencies and intensities of climate extremes, such as drought. In this study, we explored 21 

seasonal and inter-annual variations of riparian vegetation (2015-2019) by means of the 22 

Normalised Difference Vegetation Index (Sentinel 2 - NDVI) in northwest Portugal. We 23 

investigated their responses to climate (maximum temperature and precipitation) and 24 

elevation, across different land uses (natural and managed) and vegetation types 25 

(coniferous, broadleaved and grassland). Our results indicated marked seasonal changes 26 

which were common to all years, but NDVI curves differed between drier and wetter years. 27 

We found that intra-annual dynamics of NDVI-based primary productivity were influenced by 28 

the longitudinal river zonation. Our models showed that the productivity of riparian vegetation 29 

during the dry season was positively influenced by annual rainfall and by the type of riparian 30 

vegetation (broadleaved > conifer > grassland). In contrast, elevation or variables describing 31 

rainfall occurring over shorter periods or seasons had lower statistical support. These 32 

findings suggest that reductions in annual rainfall or modifications from broadleaved 33 

vegetation to conifer or grassland types could severely reduce the productivity of riparian 34 

vegetation. The emergent long lags between climatic variation and riparian plant productivity 35 

provides interesting opportunities to forecast early warnings of climatically-driven impacts. In 36 

addition, the different basal productivity levels of grasslands, conifer and broadleaved 37 

vegetation should be considered when assessing climatic impacts on riparian vegetation. 38 

Future applications of Sentinel 2 products could seek to distinguish riparian areas that are 39 

likely to be more vulnerable to changes in the annual water balance from those that are more 40 

resistant under longer-term changes in climate. 41 

 42 

Keywords: NDVI, primary productivity, forestry, Sentinel 2, climate change, rivers 43 
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1. Introduction44

 45 

Riparian zones represent transitional areas occurring between land and freshwater 46 

ecosystems, that provide many ecosystem functions and services related to water quality, 47 

microclimate regulation, structural habitat for wildlife, energy base for the food web, and bank 48 

stability (Naiman et al., 2005). Particularly, riparian plants represent a primary energy source 49 

for in-stream consumers, especially in headwater sections, having a strong influence on the 50 

structure of freshwater communities (e.g. macroinvertebrate; Ono et al., 2020). Moreover, the 51 

composition and structure of riparian vegetation can affect the suitability of habitat for riparian 52 

predators as well as the terrestrial stages of aquatic organisms (Larsen et al., 2015). 53 

Riparian vegetation provides shade and regulates microclimate conditions, which can 54 

influence the activity and dispersal patterns of several adult aquatic insects (e.g. 55 

Ephemeroptera, Plecoptera and Trichoptera) and amphibians (Collier and Smith, 2000; 56 

Briers et al., 2003; Kominoski et al., 2012). In addition, riparian vegetation can capture and 57 

filter surface runoff due to physical impact of living and dead plants on hydraulics, mitigating 58 

impacts of sedimentation or nutrients on aquatic ecosystems (Dosskey et al., 2010). 59 

However, riparian ecosystems are exposed to multiple anthropogenic pressures, such as 60 

agriculture, climate change or hydromorphological alterations, which deteriorate their health 61 

(Bruno et al., 2016; Stella and Bendix, 2019).  62 

Climate change is expected to cause shifts in precipitation and stream runoff patterns, 63 

including extreme differences between high and low streamflow, reduce groundwater 64 

recharge, alter nutrient dynamics and ecosystem functions (Johnson et al., 2012; Raymondi 65 

et al., 2013). Drought is one of the most dramatic consequences of climate change with 66 

impacts on the biosphere. Although drought events are common in arid or semi-arid and 67 

Mediterranean climate regions, with documented impacts on freshwater ecosystems (e.g. 68 

Bunn et al., 2006), these events are intensifying across the globe even in humid and 69 

temperate regions (Gómez-Gener et al., 2020; Masante et al., 2018). This may be the case 70 

of northwest  Portugal, located in a transition between Mediterranean and Atlantic climate, 71 

where mean annual rainfall can be greater than 2500 mm (Trigo and Da Camara, 2000). 72 

Indeed, in this region, a strong reduction in mean precipitation and duration of the rainy 73 

season is expected to occur according to climate change scenarios (IPCC 2014; Miranda et 74 

al., 2002; Nunes et al., 2019).  75 

These changes in climate may lead to significant alterations in several physiological aspects 76 

and phenophases of riparian plants, such as, leaf unfolding and flowering of plants in spring 77 

or colour changing and leaf fall in autumn (Gordo and Sanz, 2010). The effects of 78 

changing climate have been also associated with a considerable increase in the susceptibility 79 

of riparian plant species to pathogens and insect pests, leading to regional tree die-offs 80 
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(Breshears et al., 2005) and changes in the distribution of vegetation (Bodner and Robles,81

2017). Moreover, physiological performance of plant responses to climate stress may vary 82 

between different plant species and tissues (Garssen et al., 2014; Sun et al., 2020). For 83 

example, willows (Salix sp.) are considered more sensitive to drought than cottonwoods 84 

(Populus sp.), due to their smaller seed size and a slower growth of  roots (Amlin and Rood 85 

2002). In addition, gradual climate change may lead to long-term destabilisation of grassland 86 

and forest communities, favoring  forest species with slower phanerophyte dynamics (Barros 87 

et al., 2018).  88 

Since some changes may occur gradually and others may occur episodically (e.g., wildfire), 89 

long-term monitoring is needed to detect accurately where, when, and how climate effects 90 

occur for riparian vegetation (Dwire et al., 2018). However, due to the spatial arrangement, 91 

dynamism and inaccessibility of riparian ecosystems, collecting data in field studies can be 92 

difficult and labour-intensive, especially for large areas (i.e. at the river basin scale or for 93 

more than 100 km of a river) (Johansen et al., 2007). 94 

Remote sensing techniques have been recognized as a convenient way to obtain continuous 95 

data, over a variety of scales and resolutions, and have been recently used for studying 96 

fluvial environments, especially the riparian zones (Tomsett and Leyland, 2019). These 97 

techniques allow a better characterization of riparian vegetation properties (e.g., diversity, 98 

biomass, health) and dynamics (e.g., phenology and phenofases) than it was previously 99 

possible (Goetz, 2006). Among the available satellite programs, the polar-orbiting Landsat-8 100 

(launched 2013), Sentinel-2A (launched 2015) and Sentinel-2B (launched 2017) sensors 101 

offer high resolution satellite images (10 m to 30 m) multi-spectral global coverage providing 102 

 (Li and Roy, 2017; Sudmanns et al., 103 

2019). This increased frequency of image acquisition together with the advances in the ability 104 

to process data provides new opportunities for detecting rapid or gradual riparian vegetation 105 

changes. When using remote sensing, vegetation phenology is typically monitored by means 106 

of time series of spectral vegetation indices that provide a rapid and non-destructive method 107 

108 

(Novillo et al., 2019). Among the high number of vegetation indices, the Normalized 109 

Difference Vegetation Index (NDVI) has been frequently used to assess long-term trends of 110 

vegetation (Peng et al., 2012), to monitor system primary productivity over time (Stöckli and 111 

Vidale, 2004) and, more recently, to investigate productivity diversity relationship (Wang et 112 

al., 2016; Rocchini et al., 2018;  Torresani et al., 2019). In addition, NDVI anomaly has been 113 

correlated to pant growth reduction, loss of green coverage and eventual tree mortality in 114 

response to environmental change (Camarero et al., 2015; Lloret et al., 2016; Breshears et 115 

al., 2005; Rajah et al., 2019; Gouveia et al., 2017).  116 
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In this study, we applied a transferable remote sensing approach aiming to i) detect seasonal 117

and/or intra-annual changes in riparian vegetation productivity at the river basin scale related 118 

to water stress, ii) assess how climatic variability (rainfall) and catchment attributes 119 

(elevation, vegetation type and management) influence the riparian vegetation productivity 120 

during the dry season. We employed temporal analysis (from 2015 to 2019) based on the 121 

long term Normalized Difference Vegetation Index (NDVI) data sets derived from Sentinel-2 122 

sensors in order to detect changes in the long term vegetation productivity of riparian zones. 123 

We expect that decreased precipitation will increase water stress and induce loss of NDVI-124 

based primary productivity on riparian plants. Specifically, we hypothesize that: (i) Increasing 125 

water stress inhibit plant growth and photosynthesis influencing the duration of vegetation 126 

greenness across seasons, with detectable intra-annual changes in NDVI; (ii) productivity of 127 

riparian zone during the dry season increases when more precipitation is accumulated over 128 

long periods of time, i.e. the higher the precipitation along the year, the higher the water 129 

storage and the NDVI; and (iii) water stress responses differ among riparian tree forest with 130 

higher stability of forests than grasslands due to the slower phanerophyte dynamics (they 131 

grow slower, live longer and mature later). 132 

 133 

2. Methods 134 

2.1 Description of study area  135 

All study sites are at the Cávado River basin in the north Portugal (Figure 1). This basin 136 

occupies an area of 1589 km2, with a mean elevation of 564 m with several peaks of 1500m, 137 

and an average population density of ca. 200 inhabitants/km2 (minimum of 22 at Montalegre 138 

and maximum of 1770 at Braga) (Vieira et al., 1998). The annual average precipitation is 139 

2348 mm, 42% of which is concentrated in the months of December, January and February. 140 

Mean annual air temperatures is 12.7°C, with a maximum average temperatures of 16.2°C 141 

and a minimum average of 8.3°C (Portal do Clima http://portaldoclima.pt/en/, Trigo and Da 142 

Camara, 2000). The water is intensively used for hydropower generation, domestic and 143 

industrial water supply and agricultural irrigation. Main tributaries are the Rabagão River (left 144 

side, with a drainage area of 257 Km2) and the Homem River (right side, with a drainage 145 

area of 246 km2). 146 

 147 

2.2 Description of data used in the study 148 

2.2.1 Riparian vegetation study plots 149 

The distribution of stream riparian zones was derived from VHR Land Cover/Land Use (RZ 150 

LC/LU), a reference layer distributed by Copernicus Land Monitoring Services  151 
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(https://land.copernicus.eu/local). We focused our analysis on three types of riparian 152

vegetation: Coniferous forest, Grasslands and Broadleaved forest.  153 

Then, twenty plots (100 x 100m) were placed within each riparian vegetation classes 154 

selecting only riparian zones without close proximity to strong human impacted areas 155 

(Rocchini et al., 2016; Rocchini et al.,  2018; Torresani et al., 2019). Successively, based on 156 

MAES concept (Mapping & Assessment of Ecosystems and their Services) and using the 157 

Level 2 and 3 of Hierarchical Nomenclature associated with the Riparian Zone layer, 158 

information on management type were derived characterizing each plot into natural/semi-159 

natural or cultivated/managed areas. Specifically, in natural areas, the vegetative cover is in 160 

balance with the abiotic and biotic forces of its biotope; in semi-natural areas, vegetation is 161 

defined as not planted by humans but influenced by human actions (e.g., grazing); whereas 162 

in cultivated and managed areas, vegetation is considered artificial and requires human 163 

activities to maintain it in the long term (Di Gregorio, 2005) 164 

Digital Surface Models  were also used, in Quantum GIS (QGIS Development Team, 165 

2009), to derive altitude values for each plot. To assess if river longitudinal zonation influence 166 

NDVI-based primary productivity, study plots were grouped into three river sections (upper, 167 

middle and lower), taking into account their spatial proximity. 168 

2.2.2 Sentinel 2 imagery and NDVI 169 

We looked for Sentinel-2 images (S2A MSI L1C) that were cloud-free in the study area 170 

(T29TNG tile) from 2015 to 2019. This resulted in 43 valid observations (date of Sentinel-2 171 

images used are reported in Table S1) acquired from the EarthExplorer (EE) user interface 172 

(https://earthexplorer.usgs.gov/) developed by United States Geological Survey (USGS). 173 

All images were processed for atmospheric correction, using Dark Object Substract 1 174 

(DOS1) correction carried out with the Semi-Automatic Classification plugin (Congedo, 2016) 175 

in QGis software. Following this correction, NDVI was calculated for all 43 images as per Eq. 176 

1 using bands 4 and 8 in Sentinel-2 which have been calibrated to sense radiation in the 177 

visible (Red) and near-infrared (NIR) regions of the spectrum respectively.   178 

 179 

NDVI = (NIR  Red) / (NIR + Red)         (Eq. 180 

1)  181 

 182 

NDVI values range between -1.0 and 1.0 with values nearing zero and below indicating 183 

features which are not vegetated such as water, snow, ice, clouds and barren surfaces. Next, 184 

using the derived NDVI rasters (at 10m pixel size), for each plot we extracted the average 185 

NDVI values within the plot area (100 × 100 m in our case) representing our NDVI value in 186 

respect to the local riparian vegetation class. 187 

 188 
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2.2.3 Climatic data189

Since there are few long-term weather stations within our study area, we used gridded 5km 190 

temperature and precipitation dataset (2015 2019) implemented within the CLIMALERT 191 

project (www.climalert.eu). The underlying station data set is the global surface summary of 192 

day (GSOD v7, https://www.ncei.noaa.gov/data/global-summary-of-the-day). Spatial fields 193 

have been generated using external drift kriging with elevation as additional information.  194 

Monthly data of the covered period were extracted using QGis software. In addition, for each 195 

year we calculated several cumulative rainfall metrics for different periods by summing up 196 

month input data: May-July (rain spring); February-April (rain winter); November-January 197 

(rain autumn). Annual rainfall amounts (rain_12m) were computed, starting from 1 month 198 

before the beginning of the dry periods (August), as determined below. This one-month lead 199 

was introduced in order to take into account the lag between photosynthetic activity 200 

variations and those of rainfall (adapted from Camberlin et al., 2007). 201 

 202 

2.3 Data analysis 203 

Firstly, using monthly data averaged by spatial group (n=132) and General Additive Models 204 

(GAM), we modelled intra-annual changes in NDVI. GAMs included year, month and spatial 205 

group data and an interaction between month and year as predictors. Month was smoothed 206 

using a cubic spline (k=12) to capture seasonal variation. We tested the inclusion of the 207 

interaction and the appropriateness of GAM respect to a linear model with the same set of 208 

predictors using Akaike Information Criterion (AICc) for small samples. To conduct GAMs, 209 

we used the mgcv R library (Wood, 2017). 210 

Secondly, we used linear mixed-effect models (LME) and a multi-model inference approach 211 

(Burnham and Anderson, 2002) to explore if inter-annual changes in NDVI during the dry 212 

season were explained by catchment aspects, riparian vegetation type and/or climate. We 213 

focused on August NDVI values because it is the month of maximum hydrologic stress over 214 

the hydrological year (Trigo and Da Camara, 2000). 215 

We first built nine LME, including (as fixed factors): exclusively catchment features (altitude, 216 

riparian vegetation type and management type), exclusively climatic predictors (with different 217 

rainfall metrics), or a combination of them, including also interactions between climate and 218 

riparian vegetation type (Table 1). Interactions allow to test if climate have similar effects 219 

across riparian land-uses. Plot was included as random factor to account for multiple 220 

measures taken at the same site. To avoid collinearity, we excluded maximum temperature 221 

from climatic predictors as it was highly correlated with rainfall variables (Pearson r>|0.70|). 222 

Second, based on AICc, we ranked the nine alternative models according to their AICc 223 

224 

ranking first (Burnham and Anderson, 2002). We also derived total model explained variance 225 
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(r2) and Akaike weights (w) for each model to inform on the explanatory capacity and the 226

relative likelihood of each model, respectively. For each LME model, two measures of 227 

goodness-of-fit were estimated (Nakagawa and Schielzeth, 2013): marginal goodness-of-fit 228 

(r2m) indicates the variance explained only by the fixed factors, while conditional goodness-229 

of-fit (r2c) shows the variance accounted for by both fixed and random terms. In all cases, 230 

model residuals were visually assessed to verify linear model assumptions (Zuur et al., 231 

2009). 232 

For final GAM and LME models, we also checked the spatial autocorrelation structure of the 233 

234 

I values were significantly higher than I>|0.50|, we added a residual spatial 235 

autocorrelation covariate (RAC) as predictor to capture the spatial effects non-considered by 236 

the fixed factors (Crase et al., 2012). This RAC term considers the correlation between the 237 

residuals at a given plot and those from its neighbouring locations. For final GAM and LME 238 

models, we found a temporal dependence in the model residual. In these cases, we added 239 

an autoregressive integrated moving average (ARIMA) term to account for the lack of 240 

temporal independence of residuals. 241 

 242 

3. Results 243 

3.1 Inter-annual and intra-annual climatic and riparian vegetation NDVI patterns  244 

Concerning climatic patterns, 2016 was the wettest year of the series, with a total of 1400mm 245 

of rainfall, whereas the 2017 was the driest with a total of 800mm (Figure 2a). The highest 246 

average temperature was recorded during 2018, followed by 2016 and 2017 (Figure 2b). In 247 

contrast, cooler mean temperatures were found during 2015 and 2019 (Figure 2b). Inter-248 

annual variability of NDVI values, derived from Sentinel 2, is shown in figure 2c.  Overall, 249 

NDVI values were lower during the driest year (2017) compared to the other years of the 250 

analysed temporal series. Outputs from the GAMs for modeled intra-annual changes in NDVI 251 

are shown in figure 3. Year, month, spatial group and the interaction between month and 252 

year were significant predictors of NDVI dynamics (details in Table S2). When looking at 253 

intra-annual patterns, NDVI values were generally higher in the middle and lower section of 254 

the basin compared to the upper section. Intra-annual dynamics showed marked variations 255 

across years, but they all showed maximum NDVI from March to September (Figure 3); 256 

NDVI started to decrease during autumn and showed minimum values during winter. 257 

However, the studied seasonal dynamics differed inter-annually. The seasonal maximum 258 

NDVI occurred in summer 2016 (NDVI= 0.73±0.09), whereas minimum occurred in winter 259 

2017 (NDVI= 0.40±0.14). In 2018, high values of NDVI were maintained until November and 260 

then decreased in December. A similar seasonal behaviour was found in 2016. In contrast, in 261 

2017 NDVI started decreasing earlier in August.  262 
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263

3.2 Catchment and climate influence on NDVI during the dry season 264 

Model ranked first included both climatic (12 month precipitation) and catchment variables 265 

(riparian vegetation types and elevation), but no 266 

< 2; r2m=0.73; Table 2). Model ranking also suggests that 12 month precipitation is a better 267 

predictor of NDVI than seasonal precipitation. Our model ranking also shows that interactions 268 

between climatic and catchment variables had low support. Exclusively climatic models 269 

tended to explain lower amounts of NDVI variance (r2c=4  11%) than exclusively catchment 270 

models (r2c=39%), while those including both types of variables had the most explanatory 271 

capacity. Precipitation, either annual or seasonal, tended to have a positive influence on 272 

NDVI. 273 

When accounting for spatial autocorrelation in the model ranking first (Table 3), 12 month 274 

precipitation and vegetation type were still significant and explained 51% of the variance (Fig. 275 

4). In this model, annual rainfall amounts (12 month precipitation) had a significant positive 276 

relationship with NDVI, although NDVI showed different levels for each vegetation type. 277 

Broadleaved vegetation type tends to have highest NDVI, conifers were linked to higher 278 

NDVI than grasslands. However, same effect (slope) across vegetation types was detected 279 

(Table 3; Fig. 4). Altitude and management type (natural/seminatural or cultivated/managed 280 

areas) were not significantly related to NDVI. Through the end of the dry season, NDVI 281 

values were consistently highest for broadleaved forest, intermediate for coniferous and 282 

lowest for grassland (Figure 4). 283 

 284 

4. Discussion 285 

Our results clearly showed that NDVI-based primary productivity has observable and 286 

quantifiable seasonality as revealed by Sentinel 2 satellite remote sensing. Marked seasonal 287 

changes between spring/summer and autumn/winter were common to all years with 288 

minimum values occurring during autumn/winter, and maximum values occurring during the 289 

spring/summer season in all years. However, differences in NDVI curves were detected 290 

between the wettest (2016 and 2018) and the driest (2017) years. These patterns suggest 291 

that the decrease in water availability influences the duration of greenness that can be 292 

interpreted as a surrogate of the length of the growing season (Fu et al., 2014; Badr et al., 293 

2015). Particularly, drought has generally been associated with reduced leaf longevity in 294 

deciduous species, depending on the length and severity of the drought (Leuzinger et al., 295 

2005; Estiarte and Peñuelas, 2015). Therefore, NDVI loss can be used as a practical tool to 296 

illustrate relevant ecological consequences of water stress on riparian plants, i.e., loss of 297 



 10 

photosynthetic activity, crown partial dieback, complete or partial foliage drop and reduction 298

leaf longevity. 299 

In our study, NDVI-based primary productivity recovered quickly after the driest year, 300 

suggesting high resilience of riparian plants to climate variability. Many riparian plants are 301 

adapted to hydrologic, geomorphic and climatic disturbances and tolerate both seasonal and 302 

annual variation in environmental conditions (Naiman and Decamps, 1997; Stromberg et al., 303 

2013; Bruno et al. 2016). For example, rapid root extension, reduction in leaf size, crown 304 

dieback and branch abscission are common for riparian trees and potentially reduce the 305 

stress related to seasonally-variable water content (Stella et al., 2013). 306 

In this study, we found that river longitudinal zonation influence NDVI-based primary 307 

productivity with higher NDVI values occurring in the middle and lower sections of the river 308 

basin. Such result can be explained considering two aspects: firstly, the commonly observed 309 

unimodal pattern of riparian species richness with peaks in the middle reaches of a river 310 

(Renöfält et al., 2005; Catford and Jansson, 2014); secondly, the relationship between 311 

species richness and productivity (Wang et al., 2016; Torresani et al., 2019). In other words, 312 

plots with high riparian species richness may tend to have a higher mean NDVI and lower 313 

variation in NDVI than plots with low species richness.  Unfortunately, due to the lack of field 314 

data such hypothesis needs to be confirmed in further research.    315 

Based on our statistical models, NDVI-based primary productivity during the dry season was 316 

positively influenced by annual rainfall for all vegetation types and the response varied 317 

slightly among types (broadleaved, coniferous, and grassland). This pattern was not 318 

influenced by elevation. Our results also suggest that reductions in annual rainfall or 319 

modifications from broadleaved vegetation to conifer or grassland types severely reduced the 320 

productivity of riparian vegetation. Regional decrease in vegetation productivity (NDVI) in 321 

southern Europe was detected during the 2003 drought episode and exhibited important 322 

differences between forest types (Gobron et al. 2005; Lobo and Maisongrande, 2005; Lloret 323 

et al., 2007). Higher anomalies were detected in herbaceous than in woody vegetation, and 324 

in deciduous than in evergreen broadleaf forests (Lobo and Maisongrande, 2005). Among 325 

coniferous forests, NDVI decreased in Mediterranean (Pinus halepensis) and mesic (Pinus 326 

sylvestris Pinus uncinata) pine 327 

forests (Lloret et al., 2007). According to Barros et al., 2018, drought impacts on structural 328 

stability showed that forests were generally more stable than grasslands due to a slower 329 

phanerophyte dynamics and because established canopies reduced drought intensity and 330 

protected communities from extreme drought effects. However, in contrast to that predicted, 331 

we found no differences between forest types and grasslands in terms of responses to the 332 

reduction in annual rainfall (Table 3), but differences in the basal NDVI levels among 333 

vegetation types (broadleaved > conifer > grassland, Figure 4). These results suggest that 334 
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changes in riparian vegetation types can severely reduce the productivity of these areas. 335

Considering that riparian zones are the main source of carbon to streams (Lamberti et al., 336 

2017; Ledesma et al., 2018), lower productivity would lead to lower concentration of stream 337 

dissolved organic carbon in the catchment (Mzobe et al., 2018) with potential implications to 338 

the functioning of these freshwater ecosystems (Warren et al., 2016). 339 

Our results also confirm that variables describing rainfall occurring over shorter periods or 340 

seasons had a lower influence on NDVI than accumulated annual rainfall. Moreover, NDVI 341 

was significantly correlated with precipitation accumulated during previous periods of the 342 

year. Soil water conditions are well known to be one of the foremost drivers of species 343 

composition, biomass and plant phenology (Wang et al., 2019). Particularly, soil moisture 344 

levels are strongly influenced not only by precipitation accumulated during the current 345 

growing season, but also by precipitation accumulated over a relatively long period of time 346 

(Wang et al., 2003). Therefore, the more precipitation is stored along the year, the higher 347 

NDVI is expected even at the end of the dry season. Indeed, our findings suggest long lags 348 

(ca. 1-year time lag) between climatic variation and productivity of riparian vegetation.  349 

 350 

5. Conclusion 351 

In this study, we demonstrate that Sentinel 2 derived products have the matching temporal 352 

and spatial resolution to assess and monitor riparian ecosystem response to water stress, 353 

offering an inexpensive and consistent means of simulated time series, that could be 354 

updated regularly. The emergent long lags between climatic variation (e.g., annual 355 

precipitation) and productivity of riparian vegetation can provide interesting opportunities for 356 

forecast NDVI-based primary productivity during the dry season and develop early warnings 357 

of productivity anomalies. However, the different basal levels of productivity of grasslands, 358 

conifer and broadleaved vegetation, depicted in our study, should be considered when 359 

assessing climatic impacts on riparian vegetation. Our findings can further help to distinguish 360 

those riparian areas that are likely to be more vulnerable to changes in the annual water 361 

balance from those that are more resistant under longer-term changes in climate. Although 362 

our inferences are limited to our study area, the approach described here are readily 363 

transferable to other regions and can provide a valuable resource for prioritizing 364 

management actions for riparian areas and evaluating their effectiveness to improve 365 

adaptation to climate change. 366 

 367 

 368 
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Climatic (4) rain_aut+rain_spn+rain_win 

0.

11 

0.

72 6 

352

.28 

-692

.57 

51.

43 0.00 

Mixed (6) 

alt+veg_type,+man_type+rain_

m+rain_m:veg_type 

0.

44 

0.

66 

1

0 

352

.85 

-685

.70 

58.

30 0.00 

Mixed (5) 

alt+veg_type,+man_type+rain_

m 

0.

43 

0.

65 8 

349

.33 

-682

.65 

61.

35 0.00 

Exclusively 

Catchment (1) alt+veg_type,+man_type 

0.

39 

0.

60 7 

333

.65 

-653

.30 

90.

70 0.00 

Exclusively 

Climatic (2) rain_m 

0.

04 

0.

65 4 

323

.23 

-638

.47 

105

.53 0.00 



 

Table 3. Significance of fixed effect terms of the best supported model 

 
 

 
 
 
  

 

Estimat

e 

Std.Erro

r df 

t-valu

e 

p-valu

e 

(Intercept) 0.56141 0.02366 

23

9 23.73 0.000 

rain_12m 0.00018 0.00002 

23

9 10.64 0.000 

alt -0.00003 0.00003 54 -1.23 0.225 

veg_type_typeConiferous -0.04830 0.01896 54 -2.55 0.014 

veg_type_typeGrassland -0.15953 0.01964 54 -8.12 0.000 

man_type_typenatural/seminatural 

areas -0.01855 0.01594 54 -1.16 0.250 

ac 0.02004 0.00775 54 2.59 0.012 
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Figure 1. Locations of the study plots along the Cávado River basin 

(northwest Portugal). 

 

Figure 2. Interannual variability of annual rainfall (a), maximum average 

temperature (b) and NDVI (c). 

 

Figure 3. Modelled intra-annual and spatial trends of riparian vegetation NDVI 

along the Cávado river basin derived from General Additive Models (GAMs). 

Month was smoothed using a cubic spline (k=12) to capture seasonal variation. 

 

Figure 4. Relationship between NDVI (August) against cumulative precipitation 

12 month per Vegetation Type (Coniferous, Grassland, Broadleaved) at the 

Cávado river basin. 

 

 

 
 
  



Supporting information 

Table S1. Scenes used of the T29TNG tile, caught by the S2A MSI L1C sensor 

(*= Sentinel-2A was launched on 23 June 2015). 

2015* 2016 2017 2018 2019 

25 July 24 Jannuary 25 Jannuary 30 Jannuary 10 Jannuary 

4 August 14 March 24 February 14 February 14 February 

15 November 30 Abril 16 March 21 March 11 March 

20 May 5 Abril 25 Abril 30 Abril 

22 June 14 June 15 May 30 May 

29 July 14 July 24 June 24 July 

21 August 13 August 23 August 23 August 

30 October 2 September 22 September 12 September 

16 November 22 October 22 October 22 October 

29 December 26 November 31 December 

21 December 



Table S2. Results of the GAMM relating NDVI intra-annual dynamic. GAM 

included year, month and spatial group and an interaction between month and 

year as predictors (n=132).  

edf df F p-value 

year 4.00 169.33 0.00 

group 2.00 42.24 0.00 

s(month):year2015 1.71 2.00 11.76 0.00 

s(month):year2016 3.63 8.00 4.99 0.00 

s(month):year2017 5.27 9.00 12.59 0.00 

s(month):year2018 4.20 8.00 6.04 0.00 

s(month):year2019 5.56 8.00 10.10 0.00 

R2 84.80 












