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Highlights 4 

 5 

• PAH-removing cultivable fungi diversity revealed in PAH-contaminated marine 6 
sediments 7 

 8 

• Alternaria destruens F10.81 strain exhibited highest capacity for removing PAHs  9 
 10 

• Homogeneous pyrene internalization in A. destruens F10.81 strain hyphae 11 
 12 
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Abstract 31 

The cultivable fungal diversity from PAH-contaminated sediments was examined for the tolerance 32 

to polycyclic aromatic hydrocarbon (PAH). The 85 fungal strains, isolated in non-selective media, 33 

revealed a large diversity by ribosomal internal transcribed spacer (ITS) sequencing, even including 34 

possible new species. Most strains (64%) exhibited PAH-tolerance, indicating that sediments retain 35 

diverse cultivable PAH-tolerant fungi. The PAH-tolerance was linked neither to a specific taxon nor 36 

to the peroxidase genes (LiP, MnP and Lac). Examining the PAH-removal (degradation and/or 37 

sorption), Alternaria destruens F10.81 showed the best capacity with above 80% removal for 38 

phenanthrene, pyrene and fluoranthene, and around 65% for benzo[a]pyrene. A. destruens F10.81 39 

internalized pyrene homogenously into the hyphae that contrasted with Fusarium pseudoygamai 40 

F5.76 in which PAH-vacuoles were observed but PAH removal was below 20%. Thus, our study paves 41 

the way for the exploitation of fungi in remediation strategies to mitigate the effect of PAH in coastal 42 

marine sediments. 43 

 44 
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Introduction  50 

Polycyclic aromatic hydrocarbons (PAHs) are important pollutants threatening the marine 51 

environment due to their toxicity (Duran and Cravo-Laureau, 2016). Although the more spectacular 52 

input of PAHs in marine environments is due to accidental oil spills, the main source remains on 53 

natural oil seeps (Duran and Cravo-Laureau, 2016). PAHs accumulate in sediments because of their 54 

hydrophobicity constituting a chronic contamination (Rothermich et al., 2002). Their fate in the 55 

environment depends on biotic and abiotic factors (Duran and Cravo-Laureau, 2016).  56 

Many microorganisms including archaea, bacteria, algae and fungi are able to degrade PAHs (Duran 57 

and Cravo-Laureau, 2016; Bordenave et al., 2008; Germouche M'rassi et al., 2015; Haritash and 58 

Kaushik, 2009). In the last years, the interest on PAHs removal and biodegradation by fungi has 59 

increased (Mineki et al., 2015; Morales et al., 2017). The fungal removal of PAHs consists in three 60 

main processes: two oxidation processes involving extracellular peroxidases (lignin peroxidase, 61 

manganese peroxidase and laccase; Chen et al., 2001; Scheel et al., 2000), and membrane attached 62 

monooxygenases (cytochrome P450; Črešnar and Petrič, 2011; Syed et al., 2010), and absorption 63 

and storage of PAHs in lipid vacuoles (Verdin et al., 2005). The ability of fungi to use PAHs as sole 64 

carbon and energy sources has been described (Rafin et al., 2000). However, it has been reported 65 

that most of fungi require co-metabolism with another carbon source for PAH degradation (Cerniglia 66 

et al., 1986).  67 

Fungi have been found in all marine habitats (Orsi et al., 2013), revealing their high diversity (Jones, 68 

2000). Ascomycota and Basidiomycota are the main fungal phyla found in marine environments as 69 

described for soil ecosystems (Clemente et al., 2001; Field et al., 1992; Godoy et al., 2016; Li et al., 70 

2008; Mineki et al., 2015; Potin et al., 2004; Valentín et al., 2006). Although fungi of terrestrial origin 71 

have been isolated from marine ecosystems (Li and Wang, 2009), recent molecular analysis revealed 72 

specific fungal sequences suggesting the existence of novel species of marine fungi (Amend et al., 73 

2019; Grossart and Rojas-Jimenez, 2016). Fungi isolated from marine habitats exhibit similar 74 

morphological characteristics to their terrestrial counterparts (Méjanelle et al., 2000). However, 75 

they might possess particular properties to survive in marine environments (Amend et al., 2019), 76 

particularly in PAHs contaminated sediments (Greco et al., 2018). Such properties, as salinity 77 

tolerance and the capacity to degrade and accumulate PAHs, less bioavailable due to adsorption 78 

solid materials, remain to be explored (Bonugli-Santos et al., 2015; Bugni and Ireland, 2004; 79 

Trincone, 2010). 80 
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This study aimed to explore the cultivable marine fungi, recovered from oil-contaminated saline 81 

sediments, for their PAH-tolerance capacity. For this purpose fungal strains were isolated from 82 

various marine coastal environments, characterized and identified by ITS sequence analysis, and 83 

their features explaining the PAH tolerance examined.  84 

 85 

Material and Methods 86 

Culture media  87 

The culture media used in this study were based on the seawater minimal medium (swMM; Brito et 88 

al., 2006), which composition was as follow: KCl 0.75 g/L, CaCl·2H2O 1.47 g/L, NH4Cl 1.5 g/L, 89 

MgSO4·7H2O 6.64 g/L, NaCl 20 g/L, Na2CO3 0.265 g/L, 1 mL of trace elements solution (H3BO3 300 90 

mg/L, FeSO4·7H2O 1.1 g/L, CoCl2·6H2O 190 mg/L, MnCl2·2H2O 50 mg/L, ZnCl2 42 mg/L, NiCl2·6H2O 24 91 

mg/L, Na2MoO4·2H2O 2mg/L), 1mL of vitamin solution (biotine 2 mg/L, ρ-aminobenzoate 10 mg/L, 92 

thiamine 10 mg/L, pantothenate 5 mg/L, pyridoxamine 50 mg/L, vitamin B12 20 mg/L, nicotinate 20 93 

mg/L), and 100 µL of phosphate buffer 50 mM. The pH was adjusted with HCl to 6.5. Chemicals were 94 

purchased from Sigma Aldrich (Germany). 95 

The malt dextrose agar (MDA) and malt dextrose (MD) media, in which distillated water was 96 

exchanged by swMM (MDAsw and MDsw respectively) to keep salinity conditions, were used for 97 

the isolation and for maintaining fungal strains. 98 

Selection and conservation of fungal strains 99 

Oil polluted sediment collected from different coastal areas were used as inoculum for the isolation 100 

of fungal strains with the ability to degrade PAHs. Each sample was inoculated directly in MDAsw 101 

and incubated for 5 days. Also, dilutions at 10-1, 10-2 and 10-3 were performed taking 100 mg of each 102 

source.  103 

The isolated fungal strains were conserved as conidia and mycelia in glycerol at -70°C. Fungi were 104 

inoculated in MDsw grown until conidia overwhelmed cultures. Mycelia and conidia were recovered 105 

from the flask and then dispatched in at least 3 Eppendorf tubes (100 mg of biomass each) for each 106 

strain. After addition of 1 mL glycerol (30% solution), the tubes were frozen and kept at -70 °C until 107 

use. In order to check viability one tube with mycelia was tested after 7 days of storage by 108 

inoculating MDsw culture. 109 
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Fungi identification sequencing and phylogenetic analysis 110 

Fungi were harvested from MDAsw cultures from 10 days of incubation and DNA was extracted 111 

using the QUIAGEN DNeasy® UltraClean® Microbial Kit (Cat. No. 12224-40) following the 112 

manufacturer instructions. The identification was based on ITS sequences, which were amplified 113 

using the primers ITS1F (CTTGGTCATTTAGAGGAAGTAA) and ITS4 (TCCTCCGCTTATTGATATGC) that 114 

amplify the ITS1, 5.8S and ITS2 region of the rRNA genes operon. The amplified region allows the 115 

identification at the species level and even at the subspecies level (Fajarningsih, 2016). The PCR 116 

reaction mix was prepared with 1 µL of extracted DNA in 9.5 µL of DEPC-treated water, 1 µL of each 117 

primer (20 µM), 12.5 µL AmpliTaq Gold 360 Master Mix 2X (Thermo Fisher Scientific, USA). The 118 

amplification was performed through 35 cycles of 95 °C (30 s), 55 °C (30 s) and 72 °C (1 min), with a 119 

previous activation start of 95 °C (10 min) and final extension step at 72 °C (10 min). ITS amplified 120 

fragments were sequenced at the Eurofins platform (France).  121 

Sequence data were edited using Chromas Pro version 1.34. For identification, fungal ITS rRNA 122 

sequences were compared with NCBI (National Centre for Biotechnology Information; 123 

http://www.ncbi.nlm.nih.gov) database as previously described (Giloteaux et al., 2010). Fungal ITS 124 

sequences in this study and reference sequences from GenBank were edited and aligned using 125 

CLUSTAL-W (Thompson et al., 2003) as described (Bruneel et al., 2008). The aligned sequences were 126 

imported into MEGA 3.1 (Kumar, 2004) for creating Neighbour-joining (NJ) trees based on pairwise 127 

genetic distances. The quality of the branching patterns for NJ was assessed by bootstrap resampling 128 

of the data sets with 1,000 replications and rooted to Rhizopus oryzae CBS 112.07T (NR 103595.1) 129 

and Trametes versicolor CFMR FP-135156-SpT (NR 154494.1). The sequences determined in this 130 

study have been submitted to the ITS NCBI database and assigned Accession nos. MT889820 to 131 

MT889904. 132 

Fungal tolerance to PAHs 133 

The tolerance to hydrocarbons was tested by inoculating and cultivating the fungi in swMM 134 

supplemented with 25 mg/L of each fluoranthene, phenanthrene, pyrene and 5 mg/L of 135 

benzo[a]pyrene as only carbon source. The analytical grade PAHs (Aldrich Chemical Co) were added 136 

to the media as solution in acetone. Fungal strains were inoculated in the plates and incubated at 137 

20 °C in darkness during 15 days in order to maintain culture condition closer to that observed in 138 

the environment. The capacity of fungi to grow and develop conidia was considered as tolerance 139 

while in absence of development the strain was classified as no-tolerant.  140 
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Fungal PAHs removal rates 141 

Between 80-100 mg of mycelia and conidia were recovered of MDAsw plates and inoculated in 80 142 

mL flasks with 30 mL of MDsw (1% MD). Fluoranthene, phenanthrene, pyrene and benzo[a]pyrene 143 

were then added from a stock solution prepared in acetone that contain 20 mg/L of each 144 

hydrocarbon. Samples were set for 1 hour before incubation to let acetone evaporate. An un-145 

inoculated flask was used as abiotic control and PAHs concentration reference. Cultures were 146 

incubated in darkness for 20 days at 20 °C with gentle shaking at 80 rpm, in order to maintain culture 147 

condition closer to that observed in the environment. Hydrocarbons were extracted after incubation 148 

adding 30 mL of ethyl acetate and shacked for 15 min at 600 rpm. The recovery yield was estimated 149 

to be about 98% of the initial concentration using the abiotic controls as reference. Chrysene was 150 

used as internal standard during extraction in a concentration of 10 mg/L. Two milliliters of organic 151 

phase was pulled in a glass vial for its analysis in Gas Chromatography equipped with Flame 152 

Ionization Detector (GC-FID) (Agilent Technologies®, Network 6850 GC System) with a capillarity C18 153 

reverse column (30 m*0.25 mm*0.25 µm). For the analysis, 1 µL was injected with a split ration of 154 

1/50 using helium as carrier gas. Column temperature ramp settle from 200 to 240 °C with stepped 155 

temperature increase of 5 °C/min and held during 1 min at 240°C. Flame ionization detector was 156 

settled at 290 °C.  157 

The removal capacities (degradation and/or sorption) for selected strains (Alternaria destruens 158 

F10.81 and Fusarium pseudonygamai F5.76 strains exhibiting the highest and the lowest removal 159 

capacities, respectively) was determined in triplicate with an incubation period of 15 days at with 160 

gentle shaking at 80 rpm in order to maintain culture condition closer to that observed in the 161 

environment. PAHs extraction was performed as above described. Phanerochaete chrysosporium 162 

strain was used as reference for PAH-removal capacity, which often serves as reference for the 163 

comparison of PAH-removal capacities even between strains from different phyla, as it is the fungi 164 

the most studied in PAH-degradation (Cao et al., 2020). A one-way of analysis of variance (ANOVA) 165 

was used to assess the significance of PAH-removal differences between samples with a significance 166 

level of p < 0.05.  167 

PCR detection of peroxidase and laccase genes  168 

The presence of genes encoding for enzymes known to be related to PAHs degradation: laccase (lac), 169 

manganese peroxidase (MnP1, MnP2, MnP3) and lignin peroxidase (LiP1, LiP2, LiP3, LiP4, LiP5, LiP6) 170 

was checked by PCR amplification. Phanerochaete chrysosporium, an effective PAH degrader 171 
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(Bamforth and Singleton, 2005; May et al., 1997), was used as positive control for the presence of 172 

the peroxidase genes. The sequences of the primers and the Tm for the amplification of the different 173 

genes are presented in Table 1. The reaction mix was prepared with 1 µL of extracted DNA in 9.5 µL 174 

of DEPC-treated water, 1 µL of each primer (20 µM), 12.5 µL AmpliTaq Gold 360 Master Mix 2X 175 

(Thermo Fisher Scientific, USA). The amplification was performed through 35 cycles of 95 °C (30 s), 176 

Tm (Table1, 45 s) and 72 °C (45 s), with a previous activation start of 95 °C (10 min) and final 177 

extension step at 72 °C (10 min). Peroxidase genes amplified fragments were sequenced at the 178 

Eurofins platform (France).  179 

PAHs internalization and transport 180 

The capacity to internalize and transport PAHs through hyphae was examined for selected strains 181 

(F. pseudonygamai F5.76 and A. destruens F10.81). The experimental setup consisted on an empty 182 

petri dish with two MDAsw cubes over a crystal slide with a separation of 6 mm between them. One 183 

of the cubes contained pyrene at 30 mg/L while the other no. The fungi were inoculated in the cube 184 

with pyrene and incubated for 7 days in darkness at 20°C. The transport of PAHs was evaluated 185 

inside the mycelia that reach the cube without pyrene using an epifluorescence microscope (Nikon, 186 

Eclipse E600) with DAPI light filter (excitation 345 nm, emission 485 nm) for PAH detection 187 

(fluorescence wavelengths range from 210-380 nm) (Verdin et al., 2005).     188 

 189 

Results and discussion 190 

Identification of fungal strains Isolated from coastal sediments 191 

In total, 85 fungal strains were isolated from PAHs contaminated coastal sediments in seawater 192 

media containing malt dextrose agar (swMDA). The strains were identified with the complete ITS 193 

sequence (including ITS1, 5.8S rRNA gene, and ITS2 regions), which provide accurate identification 194 

of fungi species even at the subspecies level (Fajarningsih, 2016). The phylogenetic analysis showed 195 

that 83 strains belong to the Ascomycota Phylum and two strains belong to the Basidiomycota 196 

Phylum (Fig. 1 and 2). Such result was not surprising since fungi belonging to Ascomycota have been 197 

found prevalent in marine sediments (Babu et al., 2010; Birolli et al., 2018; Ravelet et al., 2000) and 198 

other environments (Reyes-César et al., 2014). The 85 fungal strains fall into six different Orders: 199 

Capnodiales (59 strains), Eurotiales (14 strains), Trichosphaeriales (1 strain), Hypocreales (2 strains), 200 

Pleosporales (7 strains) and Polyporales that belong to Basidiomicota Phylum (2 strains).  201 
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The isolated strains affiliated to Eurotiales included strains belonging to Talaromyces (T. helicus), 202 

Aspergillus (A. fumigatus and A. chevalieri), and Penicillium (P. glandicola, P. crustosum, and P. 203 

bialowiezense) genera (Fig. 1). Talaromyces and Aspergillus genera are known for their ability of PAH 204 

degradation in soil (Fayeulle et al., 2019), while Aspergillus genera, especially A. fumigatus, has been 205 

detected in oil-contaminated mangrove sediments (Ghizelini et al., 2019). The isolated strains 206 

related to the Nigrospora genus (Trichosphaeriales), N. rubi and N. gorlenkoana, are described for 207 

the first time in marine sediments. The presence of these strains in the sediments might be 208 

explained by plant material entering into the sea by air transportation or runoff, as they are known 209 

to be associated with plants (Hao et al., 2020). Similarly, the strains affiliated to the Hypocreales, 210 

Fusarium pseudonygamai (plant pathogen), Lecanicillium longisporum and Akanthomyces 211 

muscarius (entomopathogens) have been described only in soil so far (Ansari and Butt, 2012; 212 

Bashyal et al., 2016; Danilovich et al., 2020). Regarding the Pleosporales, the strain F1.72, closely 213 

related to Neosulcatispora strelitziae and Phaeosphaeria podocarpi, recently described fungal 214 

species (Crous et al., 2014, 2016), represents probably also a novel fungal species. However, further 215 

analysis, including multi-locus based phylogeny, is required to characterize the strain. Two other 216 

strains were closely related to species within the Pleosporales, Alternaria destruens and Epicoccum 217 

poae, which have been isolated from plants (Kumar and Kaushik, 2013; Chen et al., 2017). So far, 218 

these strains have not been shown to exhibit hydrocarbon degradation capacity. The strains 219 

affiliated to the Polyporales were related to Trametes versicolor and Bjerkandera adusta that are 220 

known to be able to degrade hydrocarbon (Lladó et al., 2012; Andriani et al., 2016). 221 

All the Capnodiales were affiliated to two complexes of the Cladosporium genus (Fig. 2) defined by 222 

a multi-locus phylogeny (Schubert et al., 2007). Among the Cladosporioides complex, the isolated 223 

strains were affiliated to species known to be associated with human and animals diseases such as 224 

C. crousii, C. welwitschiicola, C. austroafricanum, C. pini-ponderosae, and C. puyae (Sandoval-Denis 225 

et al., 2016), and with marine organisms such as C. colombiae (Ravi Theja and Chandra, 2020). 226 

Similarly, the isolated strains belonging to the Herbarum complex, C. rhusicola, C. subcinereum, C. 227 

angustiherbarum have been described involved in human and animals infections (Sandoval-Denis et 228 

al., 2016), while C. allicinum was found associated with marine organisms (Poli et al., 2020; Bovio et 229 

al., 2019) and several strains related to C. herbarum have been described for their ability to degrade 230 

PAH in marine sediment (Marco-Urrea et al., 2015; Xiao et al., 2020). Noteworthy, the strain D16.68 231 

is the more distant from Cladosporium species (Fig. 2) suggesting that it might represent a novel 232 

species within the Cladosporium genus, but further phylogenetic analysis based on multi-locus are 233 
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required to elucidate the taxonomic position. Although Cladosporium has been already reported in 234 

saline environments (Zalar et al., 2007), in hydrocarbon contaminated sediments (Ravelet et al., 235 

2000) showing as well resistance to metals (Shao and Sun, 2007), it was surprising to obtain mainly 236 

strains of this genus. It is likely that members of the Cladosporium genus are well adapted to the 237 

culture conditions imposed during the screening procedure. The cultural approach owns some 238 

limitations. Indeed, the development of conidia is controlled by different factors (Tan et al., 1995), 239 

such as the presence of PAHs (Zafra et al., 2015), influencing the selection of cultivable strains. In 240 

order to overcome such limitations, the application of different culture conditions will enlarge the 241 

diversity of isolated strains. 242 

Despite the limitations inherent of the cultivable approach, a large diversity of cultivable fungi was 243 

obtained from hydrocarbon-contaminated marine sediments, spanning 11 fungal genera. The 244 

isolated strains included not only strains affiliated to Orders which members were isolated from 245 

marine sediments (Mouton et al., 2012; Ravelet et al., 2000) showing the capacity to degrade PAHs 246 

(Fedorak et al., 1984; Simister et al., 2015), but also some isolated strains yet not described in marine 247 

sediments, nor for their tolerance to the presence of PAHs. Thus, our study shows that a large fungal 248 

diversity remains hidden in marine sediments, which represent a metabolic potential for the 249 

development of remediation strategies for the mitigation of the effect of PAHs.  250 

 251 

PAHs tolerance and removal capacities of the fungal isolated strains 252 

Most of the isolated fungal strains (54 strains, 64%) were able to grow in the presence of at least 253 

the presence of one PAH showing their tolerance to hydrocarbons (Fig. 3). Among them, 61% 254 

tolerate the presence of benzo[a]pyrene, 52% pyrene and 45% fluoranthene. Few fungal strains 255 

were able to develop in presence of phenanthrene either alone (19%) or in mixture with other PAHs 256 

(14%). Similar results showing high tolerance of fungal strains to pyrene, and low tolerance to 257 

phenanthrene and PAHs mixture have been reported in the same range of concentrations (Lee et 258 

al., 2014). Toxic effects on fungal growth have been observed with phenanthrene (Lisowska, 2004) 259 

and metabolites produced from PAHs mixture (Lundstedt et al., 2003). Interestingly, the tolerance 260 

capacity is consistent with the phylogeny (Fig. 3), the members of the same Order showing similar 261 

tolerance patterns. Noteworthy, the two groups Cladosporioides and Herbarum within the 262 

Capnodiales Order showed distinct tolerance capacities, which further support the classification into 263 

two distinct groups.  264 
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In order to assess the PAHs removal capacity (degradation and/or sorption) of fungal isolated 265 

strains, maltose and dextrose were added as extra carbon source, since fungi have been shown to 266 

have low ability to use PAHs as sole carbon source (Harrison, 2009). In these conditions, fungal 267 

strains belonging to the Pleosporales Order showed the most efficient removal capacities while 268 

strains affiliated to the Hypocreales Order showed the lowest removal capacity (Fig. 3). In the 269 

Pleosporales Order, 85% of the strains showed removal capacity above 70%. The Cladosporoides 270 

group of the Capnodiales Order exhibited the less number of strains with removal capacities above 271 

70%. The comparison of the removal capacities of the isolated strains showed two main clusters 272 

(Fig. 4) separating the strains with high removal capacities from those with low removal capacities. 273 

Interestingly, members of the same species showed divergent removal capacities. Such 274 

discrepancies have been described (Lee et al., 2014), strains from the same species showing 275 

different metabolic capacities.  276 

The analysis also showed that pyrene and fluoranthene (4 rings PAHs) clustered together, further 277 

confirmed by strong correlation between pyrene and fluorentene removal capacities (Pearson 278 

coefficient: 0.996, R2: 0.993), indicating that they were removed by almost a similar pattern of fungal 279 

strains (Fig. 3). The benzo[a]pyrene (5 rings PAH) and phenanthrene (3 rings PAH) were apart 280 

indicating that the patterns of fungal strains able to remove them were different. Such observations 281 

highlighted that the removal capacity depends also on the PAH structure as previously suggested 282 

(Ghosal et al., 2016).  283 

In order to further characterize the genetic PAH degradation potential of the isolated fungal strains, 284 

the presence of genes encoding manganese peroxidase (MnP), lignin peroxidase (LiP) and laccase 285 

(Lac), known to participate in the degradation of PAHs (Ghosal et al., 2016), was examined in their 286 

genomes by PCR (Fig. 4). All strains posses at least one of these genes, the LiP2 being the most 287 

distributed (82/85 strains, 96%) among the isolated fungal strains (Fig. 4). Noteworthy, when the 288 

LiP2 gene was not present, the strain possessed the MnP2 gene. Almost all strains (80/85 strains, 289 

94%) possessed at least a manganese peroxidase gene, MnP2 gene being the most detected (75/85 290 

strains, 88%). Such results were not surprising since most of the peroxidase enzymes are known to 291 

be produced in marine environment (Bonugli-Santos et al., 2015). Surprisingly, the Lac gene, found 292 

in many marine fungal species (Ben Ali et al., 2020; D’Souza-Ticlo et al., 2009), was detected in only 293 

4 strains, which exhibited the most genetic potential possessing more than 5 of the targeted genes. 294 

However, since various types of Lac genes have been described in fungi (Moreno et al., 2017; Yang 295 
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et al., 2016), the primers used to detect the presence of Lac genes are probably not well suited for 296 

recovering the entire Lac gene diversity. The use of primers targeting broader Lac gene diversity or 297 

targeting at least Lac gene detected within the Ascomycota phyla (the major phyla of the isolated 298 

strains) is required to better define the presence of Lac genes in the isolated strains. Similar 299 

observations can be drawn for the LiP and MnP genes indicating that further efforts are needed for 300 

in depth characterization of the genetic potential of the isolated strains.  301 

Interestingly, the genetic potential of Alternaria destruens F10.81, exhibiting the highest PAH 302 

removal capacity, was different to that of Fusarium pseudonygamai F5.76, showing the lowest 303 

removal capacity, by just the presence of the LiP1 gene. Although it cannot be excluded that the 304 

expression of the genes might be controlled by different regulation mechanisms in both strains, 305 

such observation suggested that the presence of the LiP, MnP and Lac genes was not linked with 306 

the PAH-removal capacity. In the same way, Pearson correlation analysis was unable to establish 307 

correlation between the genetic profiles (LiP, MnP and Lac) and PAH-removal capacity of the 308 

isolated fungal strains, but confirmation by determining the activity of the enzymes would be 309 

required in order to conclude on the involvement of the enzymes in PAH-removal. Anyway, 310 

considering the observed genetic potential and despite the inherent bias of the molecular tools used 311 

in our study, these results suggested that other mechanisms are probably involved in PAH removal. 312 

Thus, further studies are required for elucidating whether the PAH-removal potential of the isolated 313 

strains involves degradation and/or sorption mechanisms. The mechanisms described so far involve 314 

monooxygenase genes (Cerniglia, 1997; Cerniglia and Sutherland, 2010), particularly the 315 

intracellular P450 monooxygenase gene that implies the internalization of PAH into fungal cells 316 

(Cerniglia, 1997). In order to determine whether the internalization of PAH and the hyphae PAH 317 

transport are mechanisms involved in PAH removal, the Alternaria destruens F10.81 and Fusarium 318 

pseudonygamai F5.76 strains were selected, because they exhibited the highest and lowest PAH 319 

removal capacities respectively, for further characterization. 320 

 321 

PAH removal characterization of Alternaria destruens F10.81 and Fusarium pseudonygamai F5.76 322 

The removal capacity of Alternaria destruens F10.81 and Fusarium pseudonygamai F576 was 323 

compared with that of Phanerochaete chrysosporium, which is the most studied fungi for PAH-324 

degradation (Cao et al., 2020). It serve often as control fungi even for comparing PAH-removal 325 

capacity from strains belonging to different phyla (Cao et al., 2020), because it exhibit the capacity 326 



 13 

to degrade a broad range of organic compounds (Deschler et al., 1998; Duran et al., 2002), including 327 

several PAHs (Pointing, 2001). Under our conditions P. chrysosporium presented low rates of PAHs 328 

removal (< 30%), just above to that exhibited by F. pseudoygamai F5.76 and around 3 times less to 329 

that observed for A. destruens F10.81 (Fig. 5). In fungi, gene regulation involves complex control 330 

mechanisms as those observed for peroxidases genes. It is known that in most fungal strains the LiP, 331 

MnP and Lac genes are expressed during the idiophase, the fungal secondary phase, when nitrogen 332 

is limited and under the control of complex regulation signals (Junghanns et al., 2005; Kamitsuji et 333 

al., 2004; Knop et al., 2015; Duran et al., 2002; Solé et al., 2012), although the expression of MnP 334 

genes have been observed under high nitrogen content in fungal genera such as Pleurotus and 335 

Trametes (Kaal et al., 1995; Janusz et al., 2013; Stajić et al., 2006). Thus, the differences observed in 336 

removal capacities between the fungal strains are probably due to the medium composition and 337 

culture conditions.  338 

It is likely that the seawater medium with high nitrogen content as well as the culture conditions 339 

used in our study limited the removal capacities of P. chrysosporium (Singh and Chen, 2008) and F. 340 

pseudoygamai F5.76. In contrast, A. destruens F10.81 exhibited removal rates above 80% for all 341 

PAHs except for benzo[a]pyrene (65% removal; Fig. 5). Such higher PAH removal capacity of A. 342 

destruens F10.81 suggested that either its genes involved in PAH removal respond to different 343 

regulation signals than the other two strains or the PAH removal was performed by other 344 

mechanisms. For example, the expression of LiP, MnP and Lac genes has been observed under high 345 

nitrogen content in some fungal species (i.e. Pleurotus ostreatus and Trametes trogii) and even 346 

under both high and low nitrogen content for Dichomitus squalens, while for other fungal species, 347 

such as P. chrysosporium, the peroxidase genes are expressed under nitrogen limitation (Janusz et 348 

al., 2013; Stajić et al., 2006). The expression of genes involved in PAH-removal even in high nitrogen 349 

content might be an asset for the fungal saprotrophic life-style in marine environments where 350 

secreted enzymes, such as peroxidases, are likely to be lost by rapid diffusion in the aquatic 351 

environment (Richards et al., 2012). 352 

Possible PAH removal has been described through biosorption mechanisms, which include 353 

adsorption onto cell surface (Raghukumar et al., 2006) and absorption into the cell (Verdin et al., 354 

2005; Yang et al., 2013). Several studies have demonstrated the capacity of fungi to uptake PAHs 355 

(Deng et al., 2010; Wu et al., 2009) and also to transport them along the fungal hyphae (Furuno et 356 

al., 2012; Schamfuß et al., 2013). Both strains, Fusarium pseudoygamai F5.76 and Alternaria 357 
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destruens F10.81, were able to uptake and transport pyrene (Fig. 6). Clear pyrene containing 358 

vacuoles were observed in F. pseudoygamai F5.76 (Fig. 6c,d) while pyrene was homogeneously 359 

distributed in A. destruens F10.81 (Fig. 6e,f) suggesting that the fungal strains have developed 360 

different strategies for PAH uptake. It has been demonstrated that the vacuoles serves for possible 361 

storage of PAHs as carbon source and for PAH transport along the hyphae allowing the distribution 362 

of PAH within the mycelia network (Darrah et al., 2006; Furuno et al., 2012). Consistently, pyrene 363 

was also accumulated into conidia in F. pseudoygamai F5.76 (Fig. 6c,d), which represents carbon 364 

source reserve for the development of conidia as previously reported (Allaway et al., 1997; Bago et 365 

al., 2002). In contrast, the homogenous pyrene distribution in A. destruens F10.81 (Fig. 6e,f) 366 

suggested a diffusion mechanism. Such different pyrene uptake mechanism probably explains the 367 

highest removal capacities of A. destruens F10.81 in comparison to F. pseudoygamai F5.76 (Fig. 5). 368 

However, further studies are required to determine whether higher pyrene absorption or internal 369 

degradation by monooxygenease (i.e. cytochrome P450) are the underlying physiological 370 

mechanisms of PAH removal in A. destruens F10.81.  371 

 372 

Conclusion 373 

The exploration of the cultivable fungal diversity of hydrocarbon-contaminated coastal sediments 374 

revealed that coastal sediment hide fungal diversity yet unexplored for their metabolic potential, 375 

especially regarding PAH removal capacity. A large proportion of the isolated strains (48%), 376 

dispatched within 6 fungal genera, exhibited PAH-tolerance with a removal capacity (degradation 377 

and/or sorption) above 60%. Such diversity in PAH-removal capacity represents a functional 378 

potential for ecosystem recovery exploitable for bioremediation treatments (Harms et al., 2011). 379 

However, the mechanism underlying the PAH-removal capacity (degradation and/or sorption) is 380 

unclear because it is probably not related to the presence of extracellular peroxidase genes (LiP, 381 

MnP and Lac) and it is strain specific. The comparison of two isolated strains exhibiting contrasted 382 

removal capacities showed different PAH-uptake behaviour suggesting that the mechanisms by 383 

which fungi perform PAH-uptake might determine the efficiency of PAH-removal. Alternaria 384 

destruens F10.81, the most efficient PAH-remover (above 80%) was able to internalize pyrene 385 

homogenously into the hyphae that contrasted with the behaviour of Fusarium pseudoygamai F5.76 386 

in which PAH-vacuoles were observed but exhibiting a PAH-removal capacity below 20%. It is likely 387 

that Alternaria destruens F10.81 owns features well adapted to PAH-contaminated coastal 388 
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sediments, which represent potential for the development of a bioremediation process. However, 389 

further studies are required to understand the PAH-removal mechanism in order to manage fungal 390 

resources to mitigate the effects of PAH contamination.  391 
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Figure captions 795 

Fig. 1: Phylogenetic tree, based on ITS sequences, showing the positions of fungal strains isolated 796 

from oil contaminated coastal marine sediments. The Neighbour joining phylogenetic tree was 797 

rooted with the ITS sequence of Rhizopus orzyzae CBS 112.07T (NR 103595.1). The scale bar 798 

corresponds to 0.05 substitutions per nucleotide position. Percentages of 1,000 bootstrap re-799 

sampling that supported the branching orders in each analysis are shown above or near the relevant 800 

nodes. For the isolates, the number of isolated strains is indicated in parenthesis. For the type 801 

strains, the accession number is indicated in parenthesis. 802 

Fig. 2: Phylogenetic tree, based on ITS sequences, showing the positions of fungal strains isolated 803 

from oil contaminated coastal marine sediments within the Cladosporium genus. The Neighbour 804 

joining phylogenetic tree was rooted with the ITS sequence of Trametes versicolor CFMR FP-135156-805 

SpT (NR 154494.1). The scale bar corresponds to 0.05 substitutions per nucleotide position. 806 

Percentages of 1,000 bootstrap re-sampling that supported the branching orders in each analysis 807 

are shown above or near the relevant nodes. For the isolates, the number of isolated strains is 808 

indicated in parenthesis. For the type strains, the accession number is indicated in parenthesis. 809 

Fig. 3: PAHs tolerance and removal capacities of isolated fungal strains. PAHs tolerance 810 

corresponds to the capacity of the fungal strains to grow (green) or not (red) on solid seawater 811 

minimal medium in the presence of different PAHs and PAHs mixture. PAHs removal capacity, 812 

determined in liquid cultures containing a mixture of PAHs, corresponds to the percentage of PAHs 813 

eliminated after 20 days of fungal growth. The color gradient follows to the removal capacity from 814 

low (red) to high (green). Phe, phenanthrene; Flu, fluoranthene; Pyr, pyrene; BaP, benzo[a]pyrene; 815 

Mix, mixture of the 4 PAHs. 816 

Fig. 4: Comparison of PAHs removal capacity of the isolated fungal strains and their genetic 817 

potential. The heatmap is based on similarity index calculated from removal capacity data shown 818 

in Fig 3. Phe, phenanthrene; Flu, fluoranthene; Pyr, pyrene; BaP, benzo[a]pyrene. The genetic 819 

potential corresponds to the presence (dark blue) of peroxidase genes assessed by PCR targeting 820 

manganese peroxidase (MnP1-3), lignin peroxidase (LiP1-6) and laccase (Lac). The absence of the 821 

genes is indicated in pale blue. The fungal strains selected for further analysis, corresponding to 822 

the highest and lowest removal capacities, are highlighted in red.  823 
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Fig. 5: PAHs removal capacities of Alternaria destruens F10.81 and Fusarium pseudonygamai F5.76 824 

compared to that of the reference strain Phanerochaete chrysosporium. Means of tree replicates 825 

are presented. The bar indicates SD. In each hydrocarbon removal test, mean followed by the same 826 

letter do not differ statistically by the Turkey test at 5%. 827 

Fig. 6: PAHs internalization in the hyphae of Alternaria destruens F10.81 and Fusarium 828 

pseudonygamai F5.76. (a) Experimental schema for the detection of internal transport of PAHs 829 

along the mycelia. Fungi were inoculated in a 1 cm3 cube of solid seawater minimal media with 830 

10% LB and 20 mg/L of pyrene. The red arrow indicates the direction of the hyphae growth. (b) 831 

Macroscopic observation showing the colonization of Fusarium pseudonygamai F5.76 of a piece of 832 

media from the other. The red arrow indicates the hyphae forming bridges between the two 833 

pieces of media. Observation of Fusarium pseudonygamai F5. 76 hyphae after colonization by (c) 834 

light microscopy and by (d) fluorescence after exposing to DAPI light. The red arrows show the 835 

storage of PAHs into conidia. Observation of Alternaria destruens F10.81 hyphae after colonization 836 

by (e) light microscopy and by (f) fluorescence after exposing to DAPI light. The red arrows show 837 

the homogeneous distribution of PAHs into the hyphae. The microscopic observations were 838 

performed at a magnification of 160X.  839 
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Table 1. Primers used for the amplification of fungal peroxidases genes  841 

Gene* Sequence (5'-3')** Tm 
(°C) 

Size 
(nt) Reference 

LiP1 

LIG1u (F): 
GCCGCAATTTCTCTTGCTCTTTCCA 

57 179/126 Broda et al., 
1995 LIG1d (R): 

TACATCGAACCACGCGCACGAGATT 

LiP2 

LIG2u (F): 
CATCGCAATTTCGCCCGCCATGGAGGA 

57 222/179 Broda et al., 
1995 LIG2d (R):  

ACCTTCTGAACGAATGGCTTCTGGAGC 

LiP3 

LIG3u (F):  
TATTGCCATCTCTCCTGCTATGGAGGCC 

57 179/126 Broda et al., 
1995 LIG3d (R): 

ATGTTAGGGTGGAAGTTGGGCTCGATG 

LiP4 

LIG4u (F): 
GTGCGCCTGGTTCCCCATTCTGCAG 

57 350/222 Broda et al., 
1995 LIG4d (R): 

AATTGGTCTCGATAGTATCGAAGAC 

LiP5 

LIG5u (F): 
GGTCTCGATCGAGGAGAAGGTAATGATC 

57 350/222 Broda et al., 
1995 LIG5d (R): 

TTGCCCCGACGGCGTGCACAC 

LiP6 

LIG6u (F): 
GACCTGCTCGAACGGCAAGGTCGTCC 

57 350/222 Broda et al., 
1995 LIG6d (R): 

CATGATAGAACCATCGGCGCCTCGC 

MnP1 

mnp1-f (F): 
CAGACGGTACCCGCGTCACC 

60 246/123 Bogan et al., 
1996 mnp1-r (R):  

AGTGGGAGCGGCGACATCAC 

MnP2 

mnp2-f (F): 
CCGACGGCACCCGCGTCAGC 

60 ≈900 Bogan et al., 
1996 mnp2-r (R): 

CGAGCGGGAGCGGCGACGCC 

MnP3 

mnp3-f (F): 
CCGACGGTACCAAGGTCAAC 

60 ≈900 Bogan et al., 
1996 mnp3-r (R): 

AGCGGCAGCGGCGACGCGAC 

Lac 

Lac (F): 
CACTGGCACGGNTTCTTCCA 

52 246/123 D'Souza et al., 
1996 Lac (R): 

GTGACTATGATACCAGAANGT 
*LiP, lignine peroxidase; MnP, manganese peroxidase; Lac, laccase. **(F), forward; (R), reverse. 842 
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