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Abstract 10 

Semi-distributed hydrological and water quality models are increasingly used as 11 

innovative and scientific-based management tools. However, their application is usually 12 

restricted to the gauging stations where they are originally calibrated, limiting their spatial 13 

capability. In this study, the semi-distributed hydrological water quality model HYPE 14 

(HYdrological Predictions for the Environment) was tested spatially to represent nitrate-N 15 

(NO3
- -N) and total phosphorus (TP) concentrations and loads of the nested and 16 

heterogeneous Selke catchment (463 km2) in central Germany. First, an automatic 17 

calibration procedure and uncertainty analysis were conducted using the DiffeRential 18 

Evolution Adaptive Metropolis (DREAM) tool to simulate discharge, NO3
- -N and TP 19 

concentrations. A multi-site and multi-objective calibration approach was applied using 20 

three main gauging stations, covering the most important hydro-meteorological and 21 

physiographical characteristics of the whole catchment. Second, the model’s capability 22 

was tested to represent further internal stations, which were not initially considered for 23 

calibration. Results showed that discharge was well represented by the model at all three 24 

main stations during both calibration (1994-1998) and validation (1999-2014) periods with 25 

lowest Nash-Sutcliffe Efficiency (NSE) of 0.71 and maximum Percentage BIAS (PBIAS) 26 

of 18.0%. The model was able to reproduce the seasonal dynamics of NO3
- -N and TP 27 

concentrations with low predictive uncertainty at the three main stations, reflected by 28 

PBIAS values in the ranges from -16.1% to 6.4% and from -20.0% to 11.5% for 29 

NO3
- -N and TP load simulations, respectively. At internal stations, the model could 30 

represent reasonably well the seasonal variation of nutrient concentrations with PBIAS 31 

values in the ranges from -9.0% to 14.2% for NO3
- -N and from -25.3% to 34.3% for TP 32 
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concentration simulations. Overall, results suggested that the spatial validation of a 33 

nutrient transport model can be better ensured when a multi-site and multi-objective 34 

calibration approach using archetypical gauging stations is implemented. Further, results 35 

revealed that the delineation of sub-catchments should put more focus on hydro-36 

meteorological conditions than on land-use features. 37 

Keywords: HYPE model, Nitrate-N, Phosphorus, Internal validation, Uncertainty 38 

analysis, Archetypical gauging station.  39 
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Highlights 40 

• The HYPE model reproduces well the spatiotemporal variability of NO3
- -N and TP  41 

• Multi-site calibration increases the spatial capability of nutrient catchment model  42 

• Hydro-meteorological sub-catchment delineation is important for nutrient prediction  43 
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1. Introduction 44 

High exports of nitrogen (N) and phosphorous (P) from agriculture are continuously 45 

threatening the aquatic ecosystem in surface waters and coastal areas throughout the 46 

world (Reusch et al., 2018). River nutrient loads are highly impacted by agricultural 47 

practices and land-use characteristics (Rode et al., 2009). The main contribution of N 48 

loads in Europe stems from agriculture, while the dominant sources of P are wastewater 49 

and dwellings (Delgado and Scalenghe, 2008; Whiters et al. 2014). The N to P ratio in 50 

the freshwater ecosystem is also much influenced by human activities on a global scale 51 

(Beusen et al., 2016). Hydrological transport has a strong impact on N exports, which are 52 

mostly regulated by subsurface flow (Lam et al., 2012). The high input of N (through 53 

mineral fertilizer and manure application) stimulates the rate of N processing in both 54 

terrestrial and aquatic ecosystems (Hall et al., 2009). Coastal algal blooms are also 55 

induced due to excess N inputs (Le et al., 2019) and P contributions. Recent studies have 56 

suggested that the export of P from terrestrial to stream systems is limited by the 57 

occurrence of storm events that exacerbate soil erosion (Lee et al., 2013). Previous 58 

studies revealed a higher inter-field variation of P influenced by soil characteristics and 59 

soil moisture conditions rather than by effects from the application of crop-rotation 60 

fertilizers (Kistner et al., 2013; Haygarth et al., 2014).  61 

Catchment modeling has been widely used for hydrology sciences and environment-62 

related research studies under different objectives. Distributed and semi-distributed 63 

process-based catchment models offer an opportunity to improve the physical 64 

understanding of processes and to formalize the knowledge of catchment systems 65 

thereby gained, and thus can be used as complex catchment management tools 66 
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(Jackson-Blake et al., 2016). Such models can be used to identify and address data gaps, 67 

to help in the design of monitoring strategies (McIntyre and Wheater, 2004; Jackson-68 

Blake and Starrfelt, 2015) and testing and evaluation of environmental management 69 

strategies (Hashemi et al., 2016). Numerous catchment water quality models such as 70 

SWAT (Soil and Water Assessment Tool), INCA (INtegrated Catchment), HSPF 71 

(Hydrological Simulation Program Fortran) and HBV (Hydrologiska Byråns 72 

Vattenbalansavdelning) have been used in recent decades depending on researchers’ 73 

specific objectives (Wellen et al., 2015). During the development and testing of the HYPE 74 

(HYdrological Predictions for the Environment) model Lindström et al. (2010) made a 75 

comparison with the most commonly used hydrological and water quality models (SWAT, 76 

INCA, MIKE BASIN (an integrated hydrological modeling system developed by the 77 

company DHI Water and Environment), and MONERIS ( modeling Nutrient Emissions in 78 

RIver Systems) based on model complexity, input data constraints, ease of application, 79 

time effectiveness and performance of the model. The SWAT model needs an enormous 80 

amount of input data and neglects the entrance of groundwater into aquifers during 81 

hydrology-related simulations (Chahinian et al., 2011; Glavan et al., 2011), limiting its 82 

application without further adjustment. Wade et al. (2002) have reported that the INCA 83 

model is only focused on the river part of the aquatic system. Although some 84 

improvements have been incorporated in the latest version of the INCA model regarding 85 

nutrient exports from terrestrial parts (Jackson-Blake et al., 2016), this model is still overly 86 

complex for catchment studies (Jackson-Blake et al., 2017). The MIKE BASIN model is 87 

a water resource management tool featuring advances in user interface linked to ArcView 88 

GIS but is limited regarding nutrient transformation descriptions (Kumar et al., 2018). 89 

https://en.wikipedia.org/wiki/Hydrological_modelling
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MONERIS describes nutrient pathways and is based on a regression investigation without 90 

a description of detailed processes and water balance (Behrendt et al., 2002). With regard 91 

to water balance, water compartments, soil nutrient balance and dynamics, the HYPE 92 

model justifies all these characteristics as a process-based hydrological and water quality 93 

model (Lindström et al., 2010) that achieves a balance between complexity and process 94 

representation. Refsgaard (2001) stated that for operational use, conceptual models have 95 

major potential when compared to physically distributed models, though the latter show 96 

potential for research purposes.  97 

Previous studies argued for the importance of gathering informative data from more than 98 

one location (e.g., catchment outlet) regarding spatial reference (Wellen et al., 2015; 99 

Moussa et al., 2007). Relying on observed data from a single location leads to the 100 

possibility of poorly simulated fluxes, especially in heterogeneous catchments (Beven, 101 

2006). Calibration only at the outlet resulted in an over-optimistic evaluation of the model’s 102 

capability to generate the dynamics at internal stations, which includes the source 103 

provenance and land-use consequences (Wellen et al., 2015). Jiang et al. (2014) 104 

suggested calibrating the process-based model at more than one station within the 105 

catchment using a multi-site calibration approach to minimize uncertainties of predictions 106 

of water quality. Studies related to HBV models concluded with the same suggestions 107 

(Pettersson et al., 2001). Besides, numerous studies have reported that a multi-objective 108 

calibration approach improves the optimization of model parameters, refines the internal 109 

processes and reduces the uncertainty in hydrological water quality modeling (Gupta et 110 

al., 1999; Lu et al., 2014; Van Griensven et al., 2006), compared to the traditionally used 111 

stepwise method.  112 
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Generally speaking, hydrological and water quality models are kept restricted to the 113 

gauging stations where they are calibrated (mostly at the outlet), and these are likely to 114 

fail to represent internal stations. There are limited studies that have validated the model 115 

performance internally within sub-catchments (e.g., Dunn et al., 2013). Wellen et al., 116 

(2015) also found in their study evaluating catchment nutrient water quality models that 117 

only 19% of studies from their database conducted calibration at more than one station; 118 

they therefore concluded that using data from more than one gauge station can lead to 119 

considerably improved identification of spatially distributed model parameters. They also 120 

suggested practicing the use of data from multi-sites for parameterization, calibration and 121 

validation to overcome overconfident assessment of the models. This additional internal 122 

validation of semi-distributed models can also increase confidence in applying these 123 

models for management purposes. 124 

As mentioned above, the HYPE model was developed based on achieving an effective 125 

balance between data requirements and reasonable process representation. The HYPE 126 

model parameters are based on physiographical characteristics (such as land use and 127 

soil type) of the catchment rather than sub-catchment divisions. This enhances the 128 

transferral of model parameters to non-gauged catchments, which means that HYPE is 129 

not overly dependent on resolution or on the scale of the model (Lindström et al., 2010) 130 

when compared to other distributed physically-based models that are sensitive to multi-131 

scale problems (Refsgaard, 1997). In terms of water quality and hydrology, the HYPE 132 

model has been shown to represent the measured discharge and nutrient concentrations 133 

reliably in distinct catchments that are subject to different climatic and anthropogenic 134 

conditions (Strömqvist et al., 2012; Jiang et al., 2014; Pechlivanidis and Arheimer, 2015; 135 
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Hundecha et al., 2016; Jomaa et al., 2016; Veinbergs et al., 2017). However, the model 136 

has not been tested widely at internal stations, which were not used for model calibration. 137 

Thus, the objective of this study was (i) to set up the HYPE model for NO3
- -N and TP 138 

concentration calculation in the heterogeneous Selke catchment using multi-site and 139 

multi-objective calibration, (ii) to test the capability of the model to represent the measured 140 

NO3
- -N and TP concentrations at eight internal gauging stations that were not considered 141 

for calibration, and (iii) to analyse the predictive uncertainty of the model for NO3
- -N and 142 

TP concentrations. To this end, the HYPE model was set up for the Selke catchment, 143 

which was delineated according to its internal stations at the outlet of sub-catchments. 144 

The DiffeRential Evolution Adaptive Metropolis (DREAM) tool (Vrugt et al., 2009) was 145 

used to calibrate the model and analyse the predictive uncertainty at three main gauging 146 

stations (Silberhuette, Meisdorf, and Hausneindorf) for discharge, and for NO3
- -N and TP 147 

concentrations. After this, the set of parameters obtained from the calibration process 148 

was further tested at eight internal gauge stations.  149 

2. Methodology 150 

2.1. Study area  151 

The Selke catchment (463 km2) is located in the lower range of the Harz Mountains in 152 

central Germany. The Selke discharges at its station at Hausneindorf into the River Bode, 153 

which continues into the River Elbe until it reaches the North Sea. Monitoring data have 154 

been available since 1993 at three gauging stations at the main stem of the Selke stream 155 

(Silberhuette, Meisdorf, and Hausneindorf). These three stations were used for the 156 

calibration of the HYPE model for discharge, NO3
- -N and TP concentrations. The 157 
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elevation of the Selke catchment varies from 53 to 605 metres (Figure 1). Land use of the 158 

upper part is mainly dominated by three types of forest (broad-leaved, coniferous, and 159 

mixed) and in the lower parts most of the area is dominated by arable land (Figure 1), 160 

resulting in a 52% area of the catchment being covered by arable land and 35% by forest. 161 

A decrease in forest share from upstream towards downstream can be observed with an 162 

increase in arable land use. The mountain area is covered by cambisols (brown soils), 163 

whereas the lowland areas are dominated by chernozems (black soils). The annual mean 164 

precipitation in the mountain part is 792 mm y-1. It then decreases to 450 mm y-1 towards 165 

downstream in lowland areas, resulting in an average of 660 mm y-1 precipitation for the 166 

whole Selke catchment (Haberlandt and Ebner, 2008). Compared to winter, in summer 167 

there is more precipitation, with a ratio of 1.35 between both periods. 9oC of mean 168 

temperature is recorded, with an average monthly high of 15.5oC in July and -1.8oC in 169 

January. From the mountains upstream towards the downstream area of the Selke 170 

catchment, the temperature increases due to lower elevation. Prevailing crops are winter 171 

wheat, triticale, winter barley, rye, corn, and rape. In the fertile lowland area, additionally, 172 

sugar beets are planted. Application of fertilizer in the Selke catchment range from 130-173 

190 kgN ha-1 y-1 to 20-30 kgP ha-1 y-1, according to a survey of farmers. 174 

The long-term average discharge of the fourth-order Selke stream is 1.54 m3 s-1 (1994-175 

2014 is considered). Mean NO3
- -N and TP concentrations recorded at Hausneindorf are 176 

3.15 mgN l-1 and 0.190 mgP l-1, respectively. There is temporal variation in streamflow 177 

caused by high flows during winter periods (rainfall with additional snowmelt) and low 178 

flows with infrequent high flows characterized by extreme rainfall events in summer. 179 

Within areas close to the Selke catchment there were 16 precipitations and two climate 180 
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stations. The density of precipitation stations was higher in mountain areas relative to 181 

lowland areas. The source and resolution of spatial and temporal data used in the model 182 

are presented in Table 2. There is a variation from weeks to a month in sampling 183 

frequency. For discharge, NO3
- -N and TP concentration, the time series data from 1994 184 

to 1998 were used for calibration and from 1999 to 2014 for validation at three main 185 

stations. In addition, measured discharge data from 2001 to 2008 at sub-catchment 2 186 

(Schäfertal, Figure 1) were used for spatial validation of discharge at this station. A 187 

summary of Selke catchment characteristics is given in Table 1. 188 

Figure 1 is near here 189 

Table 1 is near here 190 

Eight internal stations represented as outlets of sub-catchments were used for the spatial 191 

validation of the HYPE model. These internal stations are monitored by State Agency for 192 

Flood Protection and Water Management of Saxony-Anhalt (LHW) at biweekly to monthly 193 

time steps. These were selected based on their locations and data availabilities 194 

regarding NO3
- -N and TP concentration observations. Stations 1, 2, 3, 4, and 5 are located 195 

in the forest-dominant part and Stations 6, 7, and 8 represent the downstream arable-196 

land part of the Selke catchment (Figure 1). Station 2 (Schäfertal) represents an 197 

agriculture-dominated headwater sub-catchment. Station 6 is located at the outlet of a 198 

mixed agriculture- and urban-dominated sub-catchment in the lowlands. These internal 199 

stations (Table S1, Supplementary material) represent exports from all different land-use 200 

characteristics for the whole Selke catchment. For the internal stations, the duration of 201 

observed time series data varied between 1994 and 2014, depending on the station. 202 
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Table 2 is near here 203 

2.2. HYPE model approach 204 

The HYPE model is a process-based and semi-distributed model that simulates 205 

discharge, nutrient transport and transformation. Description of the model and governing 206 

equations are available in detail elsewhere (e.g., Lindström et al., 2010) and here only a 207 

summary of the model is given. For application of the HYPE model, the whole catchment 208 

was delineated into sub-catchments based on the Digital Elevation Model (DEM). Each 209 

sub-catchment was further divided into different combinations of land use and soil type 210 

units, jointly called soil land-use classes (SLCs), and also commonly known as 211 

hydrological response units (HRUs). Water flow and concentration of nutrients for each 212 

sub-catchment are accumulated as the area-weighted sum of respective values from all 213 

SLCs. Simulation of variables from every sub-catchment is routed between sub-214 

catchments and then finally to the outlet of the catchment through flow connections 215 

(Lindström et al., 2010).  216 

2.3. Setup of model and calibration 217 

HYPE was set up for a period of 21 years (1994-2014) for the simulation of discharge and 218 

NO3
- -N and TP concentrations. According to the split-sample approach, the model was 219 

calibrated in the period 1994-1998 and validated in the period 1999-2014. Simulation from 220 

1993 was excluded from the model evaluation because that year was used as a warming-221 

up period for the model. For the study, the catchment was divided into 19 soil types and 222 

ten land-use classes. In total, the Selke catchment was categorized into 117 soil land-use 223 

classes (SLCs) and divided into 11 sub-catchments (three main Stations for model 224 



13 
 

calibration and eight internal Stations for model evaluation). All mean daily discharge data 225 

were calculated from 15 minute high frequency measurements. During the calibration 226 

period (1994-1998) we used biweekly observed N and P concentration data. Daily data 227 

of precipitation and mean temperature for discharge simulation were taken from the 228 

nearby monitoring stations for the relevant sub-catchments. Data relating to different 229 

agricultural practices, main crops and sowing/harvesting time were taken from previous 230 

data published for the Selke catchment (Kistner et al., 2013) and kept constant for the 231 

whole simulation period from 1993-2015. Fertilizer application rates did not show 232 

significant changes since 1993 in the study area (Häußermann et al. 2019). Residue 233 

amounts from plants and animals and their dates of the application were defined on the 234 

basis of livestock types and previous model applications in the Selke catchment (Jiang et 235 

al., 2015). Three-point source input data sets were used from six sewage treatment plants 236 

in the Selke catchment from 1994 to 2014, depending on their availability.  237 

For calibration of the model, a multi-site and multi-objective method was implemented 238 

using the DREAM tool for parameter optimization of both discharge and water quality 239 

parameters. The DREAM tool was coupled with HYPE using MATLAB scripts. Discharge 240 

and water quality parameters were calibrated simultaneously (multi-objective) at 241 

Silberhuette, Meisdorf, and Hausneindorf at the same time (multi-site) using 10,000 242 

iterations. The DREAM tool is based on the Markov chain Monte Carlo (MCMC) 243 

approach, developed by Vrugt et al. (2009). It runs multiple trajectories in parallel to 244 

explore targeted posterior distribution. This works on the principle of self-adaptive random 245 

sampling. It is a globally used tool for the research and optimization for Bayesian 246 

inference of the posterior probability density function of model parameters (Schoups and 247 
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Vrugt, 2010). It has been successfully applied in various model calibration studies (Jiang 248 

et al., 2015; Decker et al. 2012). The multi-site approach was applied to account for the 249 

impact on hydrological and N processes by spatial inconsistencies in climate patterns, 250 

land use, topography and soil type. 251 

HYPE model parameters are divided into three categoriesas a) general parameters, b) 252 

land use dependent parameters and c) soil dependent parameters. (Jiang et al., 2014). 253 

Discharge and NO3
- -N-related sensitive parameters were identified in Jiang et al. (2014). 254 

TP-related sensitive parameters were taken from Namugize et al. (2017) and identified 255 

through manual calibration. Optimization of the sensitive parameters was done by using 256 

DREAM. In this step, the initial values of the parameters and the range of calibrated 257 

parameters were based on values taken from previous application of HYPE (Jiang et al., 258 

2014; Namugize et al., 2017). Details of the parameters are given in Table 3. Two 259 

calibration schemes were used for this study: Scheme 1: calibration only at Hausneindorf, 260 

and Scheme 2: calibration at Hausneindorf, Meisdorf, and Silberhuette. Improved model 261 

performance was obtained by Scheme 2 due to the application of a multi-site and multi-262 

objective approach. The detailed model performance results from Scheme 2 are 263 

discussed in section 4. Results from Scheme 1 are given in Section S2 (Supplementary 264 

material) for gauge stations Hausneindorf, Meisdorf, and Silberhuette as well as for 265 

internal stations. 266 

2.4. Model performance criteria 267 

The capability of the model to predict discharge, NO3
- -N and TP concentrations was 268 

evaluated. Statistical methods and graphical observations were used for the assessment 269 
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of the model’s performance. For the evaluation of hydrological modeling, the Nash-270 

Sutcliffe Efficiency (NSE) measure is widely used. NSE is dependent on factors like size 271 

of the samples, magnitudinal bias, outliers, time-offset of hydrograph models and intervals 272 

between hydrological sampling data (Jain and Sudheer, 2008; McCuen et al., 2006), 273 

resulting in an incomplete evaluation of model performance. Thus, two additional 274 

statistical criteria were considered in the analysis, percentage bias (PBIAS) and mean 275 

values (mean observed vs mean simulated). A more detailed description of these criteria 276 

has been extensively covered in many previous studies (e.g., Gupta et al., 1999; McCuen 277 

et al., 2006; Moriasi et al., 2007; Nash and Sutcliffe, 1970; Ullrich and Volk, 2010). The 278 

above-mentioned criteria were evaluated by the following formulas:  279 

NSE=1-
∑ �Yi

sim-Yi
obs�n

i=1

∑ �Yi
obs-Y�obs�n

i=1
         (1) 280 

 281 

PBIAS=
∑ �Yi

sim-Yi
obs�n

i=1

∑ Yi
obsn

i=1
          (2) 282 

where Yi
simand Yi

obs are the ith simulated and observed values for the criteria being 283 

evaluated, respectively, Y�obsand Y�sim are the mean values of observed and simulated 284 

results for the whole duration, respectively, and n is the total number of observations. 285 

2.5. Uncertainty approach 286 

DREAM was used for the uncertainty analysis of the HYPE model for discharge, NO3
- -N 287 

and TP concentration simulations. It has been used successfully in other studies for the 288 

uncertainty analysis of hydrological and water quality models (Jiang et al., 2015). 289 
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Estimation and assessment, both of parameters and total uncertainty, were conducted by 290 

DREAM. Parameter uncertainty is related to the prediction uncertainty resulting from the 291 

interaction of parameters and the complexity of the model. The total uncertainty is related 292 

to the prediction uncertainty resulting from the non-unique parameters’ behavior and 293 

structure of the model. In this study 95% confidence interval band of parameter and total 294 

uncertainty was obtained from 10,000 MCMC estimations while the total uncertainty 295 

range was generated with random errors (normal distribution). Three different criteria 296 

were used for quantification of prediction uncertainty of the model for discharge, NO3
- -N 297 

and TP concentration simulations. Assessment of 95% confidence interval sharpness 298 

was done by Average Relative Interval Length (Jin et al., 2010). The percentage of 299 

observations embodied by the 95% predicted confidence intervals (PCI) was used for 300 

reliability assessment. Percentage of observed concentrations connected by Unit 301 

Confidence Interval (PUCI) was used to assess the credibility of 95% confidence intervals 302 

and was calculated on the basis of the average relative interval length (ARIL) and PCI 303 

(Lu et al., 2011). ARIL and PUCI were calculated according to equations (3) and (4). 304 

ARIL = 1
n
∑ ( LimitUpper,t-LimitLower,t)

Qobs,t
        (3) 305 

PUCI = (1.0-Abs(PCI-0.95))
ARIL

         (4), 306 

Where LimitUpper, t and LimitLower, t are upper and lower boundaries, respectively, n is the 307 

time interval and Qobs, t is the measured observation at tth time. 308 

Table 3 is near here 309 
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3 Results 310 

3.1 Calibration schemes 311 

Validation PBIAS values at three main stations and at internal stations for these two 312 

schemes are shown in Table 4. Calibration using Scheme 2 (calibration using the three 313 

main stations) shows better results at main stations as well as at internal stations than 314 

calibration using Scheme 1 (where only observation from the outlet of the Selke was 315 

considered). Respective means of PBIAS values for NO3
- -N and TP concentrations were 316 

20.2% and -3.0% (Table 4) at main stations and 5.1% and 20.9% (Table 4) at internal 317 

stations using calibration Scheme 1. However, all PBIAS values that were obtained in 318 

calibration Scheme 2 showed better results than calibrated Scheme 1, except for the 319 

PBIAS value of TP concentration. The latter was lower at three main stations with a PBIAS 320 

value of -7.6% because TP concentration was mainly controlled by point source data, 321 

which were not consistent for the whole validation period at all point source data locations. 322 

Due to better comparative results obtained by calibration Scheme 2 at the main three 323 

stations as well as internal stations, results from calibration Scheme 2 were used for 324 

further discussion and conclusion. 325 

Table 4 is near here 326 

3.2 Calibrated parameters 327 

The calibrated model parameters of discharge, NO3
- -N and TP concentration are listed in 328 

Table 3 with their physical interpretation, initial values and range as well as their optimized 329 

values. The most sensitive parameters (Jiang et al., 2014) for discharge are wcep (for 330 



18 
 

brown soil which is the dominant soil type in mountain areas), rivvel (as a general 331 

parameter) and cevp (for the most dominant land use: arable land and forest). Velocity of 332 

flow (rivvel) in the river is responsible for the presentation of the hydrograph. Epotdist and 333 

cevp are important as these control evapotranspiration. From NO3
- -N-related processes, 334 

the uptsoil parameter (for arable-dominant land) was more sensitive than other 335 

parameters and represents the share of uptake by plants from the first layer of soil. 336 

Parameter denitr is important and sensitive as it controls the denitrification rate of NO3
- -N. 337 

Among TP-related parameters, sedexp is the most sensitive, and is responsible for the 338 

sedimentation factor. The second most sensitive parameter for TP was pnratio, which is 339 

responsible for the relationship between N and P for plant uptake. It was observed that 340 

for discharge, NO3
- -N and TP, most of the calibrated parameters have optimized values 341 

close to the initial given values and not close to minimum and maximum limits. All 342 

optimized values of calibrated parameters are given in Table 3.  343 

3.3 Discharge simulation 344 

Discharge simulation results criteria (Table 5) showed that the model performance for 345 

both calibration (1994-1998) and validation (1999-2014) functioned reasonably well. The 346 

HYPE model was able to capture the seasonal behavior for all three main gauging 347 

stations (Silberhuette, Meisdorf, and Hausneindorf) for both calibration and validation 348 

periods and during low- and high-flow conditions (Figure S1, Supplementary material). 349 

During the calibration period, the highest NSE value (0.87) was recorded in the uppermost 350 

station Silberhuette and the lowest NSE value (0.84) at the outlet station Hausneindorf. 351 

The PBIAS of water balance for the calibrated period at all three main stations was 352 

between -4.8% and 2.1%, which showed the best representation of discharge by the 353 
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model. During the validation period (1999-2014), the highest and lowest NSE values of 354 

0.76 (at Silberhuette) and 0.71 (at Hausneindorf) were observed. The water balance was 355 

better represented by the model during the calibration period compared to the validation 356 

period. During the validation period, the water balance PBIAS values at Silberhuette, 357 

Meisdorf, and Hausneindorf were 11.9%, 3.0%, and 18.0%, respectively. Overall 358 

discharge performance during both calibration and validation was very good and good, 359 

respectively, according to the evaluation criteria of Moriasi et al. (2007). 360 

Table 5 is near here 361 

3.4 Nitrogen simulation 362 

The model performance results of NO3
- -N load simulations are presented in Table 5. Load 363 

simulations were well represented by the model during both calibration and validation 364 

periods. The highest and lowest NSE values of NO3
- -N loads were 0.93 and 0.70 during 365 

both calibration and validation periods. During the calibration, NO3
- -N load simulations 366 

were well represented by the model with the highest performance at Silberhuette (NSE = 367 

0.93, PBIAS = -2.1%) and the lowest performance at Hausneindorf (NSE = 0.74, PBIAS 368 

= -5.7%). For the simulation of NO3
- -N, the model covered both higher and lower values 369 

of observed NO3
- -N concentrations, represented in Figure 2. The model performance at 370 

Silberhuette was better when compared to Meisdorf due to the clear pattern of seasonal 371 

behavior. The highest values of NSE = 0.64 and 0.49 for NO3
- -N concentrations were 372 

found at Silberhuette during calibration and validation periods, respectively (Table S3.1). 373 

Figure 2 is near here 374 
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NSE values of 0.58 and 0.41 for NO3
- -N concentrations (Table S3.1) were attained at the 375 

Meisdorf station during the calibration and validation period, respectively. PBIAS values 376 

for NO3
- -N concentrations were between 2.8% and 11.0% during both calibration and 377 

validation periods, respectively (Table S3.1), which shows the satisfactory performance 378 

of the model at two upper stations. The model performance was not as good at the outlet 379 

(Hausneindorf), compared to the upper part of the Selke catchment (PBIAS = -21.0% for 380 

NO3
- -N concentration). Mean simulated NO3

- -N concentration of 3.10 mgN l-1 was 381 

detected against the mean observed 3.18 mgN l-1 at Hausneindorf station. Mean 382 

observed and mean simulated NO3
- -N concentrations at three main stations are given in 383 

the supplementary material (Table S3.2).  384 

3.5 Phosphorous simulations 385 

Model performance for TP loads is given in Table 5, and TP simulated concentrations are 386 

presented in Figure 3. For TP loads, the best model performances were obtained at the 387 

upper two stations (Silberhuette and Meisdorf). During the calibration period, NSE values 388 

of 0.48 and 0.53 were achieved at Silberhuette and Meisdorf, respectively. However, 389 

during the validation period, Silberhuette had a higher NSE (0.52) compared to Meisdorf 390 

(0.46). PBIAS values of TP loads for two upper stations were observed within a 391 

satisfactory range (-20.0 to 11.5%) for both calibration and validation periods (Table 5).  392 

Figure 3 is near here 393 

TP measured concentration values for both upper gauging stations were predicted well 394 

for both the calibration and validation periods. PBIAS values for TP concentration were 395 

0.9% and -11.0% for Silberhuette and 2.6% and -25.0% for Meisdorf during calibration 396 
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and validation, respectively. Mean simulated and mean observed TP concentration 397 

values testify to the satisfactory performance of the model (Table S3.2). At Hausneindorf, 398 

the performance was affected by the combination of unknown point sources and farming 399 

activities in the agricultural downstream area of the Selke catchment. NSE values for TP 400 

loads were 0.13 for calibration and 0.20 for validation. The performance of the model was 401 

disturbed by the high observed concentration during low flow, which was underestimated 402 

by the model (Figure 3). The PBIAS values for TP concentration during calibration and 403 

validation at Hausneindorf were -6.6% and -13.0%, respectively. A mean simulated TP 404 

concentration of 0.190 mgP l-1 was recorded against 0.210 mgP l-1 mean observed 405 

concentration at Hausneindorf station during the calibration period (Table S3.2, 406 

Supplementary material). 407 

3.6 Spatial validation of NO3
- -N and TP concentration at internal stations 408 

Calibrated model parameters were further tested at internal stations that were not 409 

included in the calibration mode. The calibrated discharge parameter set was used at the 410 

Schäfertal headwater (Station 2, Figure 1) for discharge simulation. Model validation 411 

resulted in NSE = 0.25 and PBIAS = -20.0% for the period from 2001 to 2008. The mean 412 

simulated discharge was 7.5 l s-1 and the mean observed discharged was 10.0 l s-1 for 413 

the whole period. 414 

Observed and simulated NO3
- -N concentrations at five internal stations are shown in 415 

Figure 4, and performance criteria are given in Table 6. The temporal frequency of data 416 

was different for internal stations. These nutrient concentrations were simulated by using 417 
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the same single set of parameters that were obtained after the multi-site calibration 418 

process at three main stations (Silberhuette, Meisdorf, and Hausneindorf). 419 

Table 6 is near here 420 

 Figure 4 presents NO3
- -N concentration simulations of five sub-catchments (Stations 1, 421 

2, 4, 8, and 10). For most of the stations, a good agreement between simulated and 422 

observed NO3
- -N concentrations was found (Table 5), reflecting the capability of HYPE to 423 

represent NO3
- -N concentration at different land-use dominated sub-catchments. The 424 

difference between mean simulated (9.47 mgN l-1) and mean observed concentration 425 

(8.46 mgN l-1) values was greater at Station 8 (Figure 4d) due to agriculture-dominant 426 

land use in that particular sub-catchment.  427 

The model was able to represent well the NO3
- -N concentration of the agricultural 428 

headwater catchment 2 (Station 2, Figure 4e), with simulated and observed mean NO₃-429 

N concentration of 4.35 mgN l-1 and 4.52 mgN l-1, respectively. The model was able to 430 

accurately capture the NO₃-N concentration dynamics of forest-dominated sub-431 

catchments (Stations 1, 4, and 5), simulating a mean concentration of 1.67 mgN l-1 and 432 

2.00 mgN l-1 for Stations 1 and 4 (Figures 4a-b), respectively. PBIAS (%) values for these 433 

five sub-catchments are given in Table 5, with the highest performance at sub-catchment 434 

1 (PBIAS = 2.5%) and the lowest at sub-catchment 8 (PBIAS = 14.2%).  435 

Figure 4 is near here 436 

The model performance criteria of TP concentration are given in Table 5 (Stations 3, 4, 437 

5, 6, and 7) and the simulated time series of five sub-catchments are shown in Figure 5. 438 

A good agreement of observed and simulated mean TP concentrations was obtained. 439 
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Sub-catchments of Stations 3, 4, and 5 (Stations at the main stem) are forest-dominated 440 

with some share of arable land, and the measured TP concentrations were between 0.031 441 

mgP l-1 and 0.051 mgP l-1 (Table 6). 442 

The largest difference between mean measured (0.051 mgP l-1) and simulated (0.036 443 

mgP l-1) TP concentrations was observed at sub-catchment 4, which is located 444 

downstream of a point source impacted reach. The point source impacted sub-catchment 445 

6 (headwater catchment) showed a significant difference between its observed (0.200 446 

mgP l-1) and simulated (0.300 mgP l-1) TP concentrations. Sub-catchment 7 is located at 447 

the main stem in the agriculture part of the Selke catchment and represents two different 448 

periods of TP concentration. Differences between mean observed and simulated TP 449 

concentrations were primarily caused by simulation errors in the first period of higher point 450 

source pollution. The PBIAS values for all sub-catchments range from -25.3% to 34.3%. 451 

Overall, the model performance at the stations situated at the main stream is better than 452 

that located in the tributaries (Figure 1 and Table 5). 453 

Figure 5 is near here 454 

3.7 Uncertainty Analysis 455 

Predicted uncertainty and total uncertainty (95%) ranges of daily discharge, 456 

NO3
- -N concentration and TP concentration are shown for the outlet of the Selke 457 

catchment (Hausneindorf) in Figure 7 and the corresponding ARIL, PCI and PUCI of 95% 458 

predicted confidence intervals are listed in Table 7. The band for parameter uncertainty 459 

(black shaded area) of discharge simulation is narrow, indicating low uncertainty related 460 

to parameter optimization and showing a very similar variation to the observed values 461 
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represented by red dots. This is confirmed by the small value of ARIL (0.093) 462 

characterizing the narrow range (black range) of 95% confidence intervals. The total 463 

uncertainty of discharge prediction was much higher than the parameter uncertainty, and 464 

this is reflected by the high value of ARIL (4.139) and a large range of 95% confidence 465 

intervals (grey band in Figure 7). 466 

Table 7 is near here 467 

Parameter and total uncertainty ranges for NO3
- -N concentration simulations are much 468 

wider, which indicates higher uncertainty when compared to discharge simulations. 469 

Parameter-related uncertainty ranges are much narrower than the total uncertainty, 470 

indicating that the predicted uncertainty is mainly caused by the uncertainty of model 471 

structure error and measurement error. This is confirmed by ARIL values of total 472 

uncertainty (1.242) and parameter uncertainty (0.150). Many of the observed 473 

concentration values are contained in the total prediction confidence interval (92%). A 474 

lower PUCI value of total uncertainty (0.783) was evidence of higher uncertainty in the 475 

predictions of NO3
- -N simulations compared to discharge simulations.  476 

Figure 6 is near here 477 

In comparison to uncertainty for NO3
- -N concentration simulation, higher uncertainty was 478 

revealed for the simulation of TP concentrations with wider ranges of 95% parameter and 479 

the total uncertainty confidence intervals. The PCI value for total uncertainty of TP 480 

concentration simulations (96.1%) was higher than the PCI (92.0%) of NO3
- -N 481 

concentration simulations. A lower value of PUCI for TP concentration simulations 482 

showed that the main drivers of uncertainty stem from model structure and measurement 483 
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errors, a very similar result to the one obtained from discharge and NO3
- -N concentration 484 

simulations. 485 

4 Discussion 486 

Our findings indicate a strong impact of the selected calibration scheme on NO3
- -N and 487 

TP concentration evaluation at the catchment scale. When three gauging stations that 488 

accurately reflected the catchment heterogeneity from upstream to downstream in the 489 

calibration mode were considered, the HYPE model was highly effective at representing 490 

the measured discharge and nutrient concentrations at internal stations. In other words, 491 

good agreement between the measured and simulated NO3
- -N concentration was 492 

achieved only when three main stations for model calibration were considered, instead of 493 

using only the data from the catchment outlet at gauging station Hausneindorf. 494 

Interestingly, this improvement was very similar for the main stations and those additional 495 

internal stations that often provide for more uniform land use and which hence showed 496 

much larger variation in NO3
- -N concentration when compared to the main stations. This 497 

improvement can be explained by the significant hydrogeographical differences between 498 

the three sub-catchments represented by the three main gauge stations. The uppermost 499 

sub-catchment represented by the gauge station Silberhuette is the wettest one with an 500 

average long-term discharge of 414 mm and mixed agricultural and forest land use. The 501 

two downstream gauge stations represent much drier conditions with only 72 mm as an 502 

average long-term discharge in the intermediate sub-catchment between gauge stations 503 

Silberhuette and Meisdorf and 36 mm in the lowest sub-catchment representing the area 504 

between gauge stations Meisdorf and Hausneindorf. Moreover, these two lower sub-505 

catchments differ markedly in geology and land use. Calibrating the model only at the 506 
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catchment outlet does not allow for indicating a representative NO3
- -N parameterization 507 

for these heterogeneous catchment conditions. It is important to note that internal 508 

catchments representing single land-use types like forest (sub-catchment 1) or arable 509 

land (sub-catchments 2 and 8) showed acceptable or good model validation results, even 510 

though model calibration was carried out at gauge stations with mixed land-use patterns. 511 

This indicates that the consideration of meteorological and hydrogeological area 512 

properties seems to be of significantly greater importance for NO3
- -N model calibration 513 

than consideration of land use. Urban areas did not contribute significantly to NO3
- -N load 514 

and point source inputs were controlled by sewage systems, as previous studies like 515 

those of Jiang et al. (2015) and Rode et al. (2016) have also found.  516 

After increasing the calibration gauging stations for TP simulation from one (calibration 517 

Scheme 1) to three (calibration Scheme 2), the validation results improved considerably 518 

only for internal stations. Looking at the three main stations, the PBIAS of the validation 519 

results even became slightly worse. These small changes in model performance when 520 

shifting from calibration Scheme 1 to calibration Scheme 2 are likely caused by the 521 

variability of TP values at the three stations. These were highest at the most downstream 522 

gauging station Hausneindorf. Adding the other two upstream gauge stations to the 523 

calibration procedure will not drastically change the parameters because of the lower 524 

weight of these stations on the optimization process. Nevertheless, including the two 525 

upstream stations allowed the model to also better consider very low TP concentrations 526 

in those sub-catchments not impacted by point source inputs from sewage systems. This 527 

is reflected in the markedly improved mean PBIAS of the internal stations. The results 528 

show that, in contrast to NO3
- -N concentrations, TP concentrations are much more 529 
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strongly affected by point sources. Even sub-catchments with a share of nearly 92% of 530 

agricultural land use (sub-catchment 2) did not reveal considerably different concentration 531 

ranges than the mostly forested (sub-catchment 3) areas, at least during low-flow 532 

conditions. This was well captured by the model.  533 

The model performance for TP concentration simulations at internal stations was lower 534 

than for NO3
- -N concentration simulations. A rise in TP concentration from upstream to 535 

downstream can be explained by an increased share of urban and arable land use. The 536 

HYPE model showed an underestimation of TP concentration in the forest-dominated 537 

sub-catchments 3 and 4 (Figures 5a and 5b) because of an underestimation of some 538 

high-flow events since the main export of TP occurs as a result of overland flow (Jiang 539 

and Rode, 2012). Higher TP concentrations were found at sub-catchments 6 and 7 540 

(Figures 5d and 5e) as these stations provide coverage over a higher share of urban and 541 

arable land. TP concentrations in these sub-catchments (6 and 7) were 2.5 times higher 542 

than in sub-catchments 3 and 4, which may be explained by agricultural sediment and 543 

urban soluble P inputs (Lee et al., 2013). The HYPE model overestimates TP 544 

concentration in sub-catchments 6 and 7, which was possibly caused by uncertainties in 545 

point source data. Simulated high-flow TP concentrations were only sporadically captured 546 

because of mostly low-frequency sampling, which reveals considerable uncertainties in 547 

assessing the model’s performance (Yin et al., 2016). Our findings suggest that only 548 

rough estimates for internal stations can be achieved when the calibration of the model 549 

is conducted exclusively at the catchment outlet. Model performance of internal 550 

catchment stations could be considerably improved if additional stations (Silberhuette and 551 

Meisdorf), representing the upper and middle forest parts of the Selke catchment, were 552 
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included in the calibration of discharge, NO3
- -N and TP parameters. These findings are in 553 

line with results from the meta-analysis of Wellen et al. (2015). They argued that 554 

calibrating a model only at the outlet may lead to an over-optimistic model evaluation for 555 

capturing internal catchment process dynamics. 556 

4.1 Importance of input data 557 

The availability of accurate input data has an impact from the very beginning of a study, 558 

and this can help to improve a model’s performance. In the validation period, the number 559 

of precipitation stations decreased by almost half. This was the main reason for the lower 560 

performance of the model at three main stations for the validation period. Precipitation 561 

and discharge data were established from 2001 to 2008 for Station 2, which is a 1.45 km2 562 

agriculture catchment. In the beginning, interpolated precipitation data were used for this 563 

station, and the mean annual precipitation used for this station was 605 mm, which led to 564 

a large underestimation of discharge, with a PBIAS value of -45.0%. Later, station-specific 565 

precipitation data from here were used from 2001 to 2008 which leads to mean annual 566 

precipitation of 677 mm. By using accurate precipitation data for this station, the HYPE 567 

model showed much better performance for discharge (without calibration) at this station 568 

with a PBIAS value of -20.0% and NSE of 0.25. This improved discharge results in much 569 

more accurate NO3
- -N concentration simulations at this sub-catchment.  570 

4.2 Uncertainty analysis  571 

Regarding uncertainties surrounding our study, more than 98.3% of discharge, 92.0% of 572 

NO3
- -N and 96.1% of TP concentration observations were included in the range of 95% 573 

predicted confidence intervals (PCI). The total prediction uncertainty was less influenced 574 
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by parameter uncertainty with a high value of PUCI than from other uncertainty sources 575 

like structural and measurement uncertainties. This reflects the sensible parameterization 576 

of discharge and water quality parameters. These results are in line with former studies 577 

that also used Bayesian uncertainty analysis (e.g., Yang et al., 2007; Jiang et al., 2019). 578 

Total uncertainty increased from discharge to NO3
- -N and TP concentrations. Prediction 579 

uncertainty relating to water quality simulations can be improved by using high-frequency 580 

observation data during calibration (Jackson-Blake and Starrfelt, 2015; Jiang et al., 2019). 581 

The higher total uncertainty of TP simulations can be explained by the daily simulation 582 

time step (resulting in higher short-term variability of TP concentrations), the lack of 583 

available event data and uncertainties in point source TP concentration data (Dean et al., 584 

2008). Uncertainty analysis of water quantity as well as for water quality simulation 585 

showed the acceptable and justifiable performance of model assessment. 586 

5 Conclusions 587 

Our spatial validation of the HYPE model suggests that consistent spatially-distributed 588 

results can be achieved only when enough observations from representative sub-589 

catchments of the hydrological characteristics of the whole catchment are considered in 590 

the calibration mode. This is true for NO3
- -N simulations and is even more important for 591 

TP concentrations. For the latter, uncertainties of simulated concentrations are higher 592 

than for NO3
- -N and for discharge. Our findings suggest that hydro-meteorological 593 

catchment characteristics are more crucial than the land-use patterns consideration for 594 

delineating uniform sub-catchments that allow for a reasonable NO3
- -N simulation within 595 

these subunits. This has key implications for the choice of calibration gauge stations 596 

within a given larger catchment. We assume that in mesoscale catchments, it will mostly 597 
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not be sufficient to choose only one station at the outlet of the catchment to calibrate the 598 

model if reasonable spatial simulations are also needed within the whole catchment. Due 599 

to low agricultural TP losses during high-flow events, catchment point sources clearly 600 

dominated TP loss in our study, giving us reasonable proof of the model with sparse but 601 

long-term data. If agricultural TP losses are higher, acceptable distributed-model testing 602 

is only possible if more high-frequency data are available to capture TP losses during 603 

high-flow events in more detail. Likely, these findings are also valid for other distributed 604 

nutrient transport models as well as the HYPE model selected for this study. Bearing 605 

these requirements in mind, it is possible to support the development and evaluation of 606 

nutrient management and mitigation strategies using semi-distributed hydrological 607 

nutrient models, which are also valid for smaller subunits within a given catchment. 608 
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Figure 7. The Selke catchment and its dominant land-use classes. The black dots 823 

indicate the three main gauging stations (Silberhuette, Meisdorf and Hausneindorf) used 824 

for the model calibration. The red dots correspond to the location of the eight internal 825 

stations used for the spatial validation of the model. The grey lines shows the contour 826 

elevation.  827 
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Figure 8. Simulated and observed nitrate-N (NO3
- -N) concentrations at three main 828 

stations (Silberhuette, Meisdorf and Hausneindorf) during calibration (1994-1998) and 829 

validation (1999-2014). The black dots and red lines represent the observed and 830 

simulated NO3
- -N concentrations, respectively.  831 
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Figure 3. Simulated and observed total phosphorus (TP) concentrations at three main 832 

stations (Silberhuette, Meisdorf and Hausneindorf) during the calibration (1994-1998) 833 

and validation (1999-2014) periods. The black dots and red lines represent the 834 

observed and simulated TP concentrations, respectively. 835 
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Figure 9. Simulated and observed nitrate-N (NO3
- -N) concentrations at internal stations. 836 

The black dots and red lines represent the observed and simulated NO3
- -N 837 

concentrations, respectively. 838 
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Figure 10. Simulated and observed total phosphorus (TP) concentrations at internal 839 

stations. The black dots and red lines represent the observed and simulated TP 840 

concentrations, respectively. 841 
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Figure 11. Estimated 95% prediction confidence intervals of daily mean discharge, 842 

nitrate-N (NO3
- -N) and total phosphorus (TP) at catchment outlet (gauging station 843 

Hausneindorf) during calibration period (1994–1998). 844 

  845 
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Table 3. Characteristics of three main catchments: 1) Hausneindorf, 2) Meisdorf and 3) 
Silberhuette with mean specific discharge and mean NO3

- -N and TP concentrations.  

Data type Hausneindorf Meisdorf Silberhuette 
Mean elevation (m) 104-469 212-469 409-469 
Area (km2) 463 176.3 98.7 
Soil type Cambisols in the 

upper area and 
Chernozems in the 
lowland area 

Cambisols Cambisols 

Forest Share (%) 35.4 71.9 60.4 
Arable land share 
(%) 

52.3 16.9 25.3 

Mean annual 
precipitation (mm y-1) 

Mountain areas: 625 

Lowland areas: 450 

640 653 

Mean discharge 
 (l s-1 km-2) 

3.99 8.40 13.15 

Mean 
NO3

- -N concentration 
(mg l-1) 

3.91 1.75 1.44 

Mean TP 
concentration (mg l-1) 

0.18 0.07 0.05 
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Table 4. Description of spatial and time series input data for the HYPE model setup in the 846 

Selke catchment. 847 

Data type Data 
description/properties Resolution Source 

Geographical 

data 

Elevation 90 m State Survey Office 

Stream network - State Survey Office 

Soil type 50 m State Survey Office 

Land use 25 m Corrine Land 
Cover 2006 

Meteorological 
data 

Daily precipitation and 
mean air temperature 

16 rainfall and 2 
climate stations  

German Weather 
Service-DWD 

Agricultural 
practices 

Manure and inorganic 
fertiliser application, 
timing and amount for 
fertilisation, sowing and 
harvesting 

- Field survey and 
literature 

Soil nitrogen 
content Initial nitrogen storage - Literature review 

Sewage 
treatment 
plants 

Water flow and 

NO3
- -N concentration  

TP concentration 

Constant daily 
loadings from 6 
sewage 
treatment plants 

Operating reports 
of sewage 
treatment plants 
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Table 3. Physical meanings, initial values and ranges and optimized values of 848 
discharge (Q), nitrate-N (NO3

- -N) and total phosphorus (TP) parameters.  849 

 
 

Physical meaning  Initial 
value 

Initial 
range 

Optimized 
value 

 Discharge parameters (Q)    
cevp 
Agriculture land 
Coniferous forest 
Mixed forest 

Potential evapotranspiration rate (mm d-1 °C-1)  
0.234 
0.170 
0.116 

 
0.01-1 
0.01-1 
0.01-1 

 
0.308 
0.172 
0.200 

rrcs1 
brown soil 

Soil runoff coefficient for the uppermost soil layer 
(d-1) 

 
0.104 

 
0.001-1 

 
0.350 

rivvel Maximum velocity in the stream channel (m s-1) 0.202 0.001-1 0.264 
rcgrw Runoff coefficient for regional groundwater flow (d-

1) 
0.004 0.0001-

0.1 
0.005 

epotdist Decrease of evapotranspiration with soil depth (m-

1) 
6.574 1-10 9.530 

wcfc 
Brown soil 

Fraction of soil layer where water is available for 
evapotranspiration but not for runoff (-) 

0.700 0.01-0.7 0.690 

wcep 
Brown soil 

Fraction of soil layer where water is available for 
runoff (-) 

0.120 0.001-0.2 0.191 

pcadd Correction parameter for precipitation (-) 0.094 0.001-1 0.468 
 Nitrate-N parameters (NO3

- -N)    
denitr Denitrification rate in soil (d-1) 0.022 0.001-0.1 0.050 
uptsoil1 
Agriculture land 
Coniferous forest 
Mixed forest 

 
 
Fraction of nutrient uptake in the uppermost soil 
layer (-) 
 

 
1.000 
1.000 
0.940 

 
0.001-1.0 
0.001-1.0 
0.001-1.0 

 
0.990 
0.587 
0.002 

fertdays Number of days that fertilizer applications occur 
counting from application day 1 and forward using 
the same amount every day 

60 10-150 62 

denitw Parameter for the denitrification in water (kg m2 d-

1) 
2 × 10-

6 
1 × 10-6-
0.1 

7 × 10-6 

wprod Production/decay of N in water (kg m-3 d-1)  0.055 0.0001-
0.1 

0.001 

rivvel2 Parameter for calculating the velocity of water in 
the stream channel 

1.000 0.001-1.0 0.521 

 Total Phosphorous parameters (TP)    
Sedexp Parameter for sedimentation 2.441 0.1-10 3.672 
Pnratio 
Agriculture land 
Coniferous forest 
Mixed forest 

 
 
N and P relationship for nutrient uptake 

 
0.112 
0.181 
0.134 

 
0.001-1 
0.001-1 
0.001-1 
 

 
0.240 
0.792 
0.223 

freund3 
Brown soil 
Sandy soil 
Black soil 

Desorption speed (l d-1)  
0.366 
0.252 
0.141 

 
0.001-1 
0.001-1 
0.001-1 
 

 
0.852 
0.521 
0.561 

Hphalf 
Agriculture land 
Coniferous forest 
Mixed forest 

 
 
Halving depth for humus P pool (m) 

 
0.125 
0.313 
0.051 

 
0.001-1 
0.001-1 
0.001-1 

 
0.334 
0.652 
0.401 
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Table 4. Model validation results using mean of PBIAS (%) values and PBIAS ranges of 850 

NO3
- -N and TP concentration of calibration Schemes: (1) Calibration at catchment outlet 851 

(Hausneindorf) and (2) Calibration at three main gauge stations (Silberhuette, Meisdorf 852 

and Hausneindorf). 853 

Calibration 
Scheme 

Average PBIAS (%)  
at three main stations 

(PBIAS range) 

Average PBIAS (%)  
at internal stations 

(PBIAS range) 
NO3

- -N TP NO3
- -N TP 

Calibration at 
Hausneindorf 

20.2 
(12.0 to 33.6) 

-3.0 
(-19.5 to 6.7) 

5.1 
(-34.0 to 16.8) 

20.9 
(-38.3 to 81.8) 

Calibration at 
three stations 

5.1 
(-2.0 to 11.0) 

-7.6 
(-25.0 to -11.0) 

1.7 
(-9.0 to 14.2) 

4.0 
(-25.3 to 34.3) 
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Table 5. Model evaluation of discharge (Q), nitrate-N (NO3
- -N) and total phosphorous (TP) 854 

simulations at the stations Silberhuette, Meisdorf and Hausneindorf for calibration and 855 

validation period using calibration Scheme 2. 856 

Variable Station Calibration (1994-1998) Validation (1999-2014) 

NSE PBIAS (%) NSE PBIAS (%) 

Q 
Silberhuette 0.87 -4.8 0.76 11.9 

Meisdorf 0.85 0.5 0.73 3.0 
Hausneindorf 0.84 2.1 0.71 18.0 

NO3
- -N Load 

Silberhuette 0.93 -2.1 0.72 2.4 
Meisdorf 0.90 6.4 0.77 -16.1 

Hausneindorf 0.74 -5.7 0.70 -2.5 

TP Load 

Silberhuette 0.48 -20.0 0.52 -10.0 
Meisdorf 0.53 11.5 0.46 -20.0 

Hausneindorf 0.13 -19.1 0.20 6.5 
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Table 6. Model evaluation of nitrate-N (NO3
- -N) and total phosphorous (TP) concentration 857 

simulations at internal stations. Sim and Obs are refering to Simulated and Observed 858 

concentrations.  859 

 

 

  

 
Station 

NO3
- -N (mgN l-1)  TP (mgP l-1) 

PBIAS (%) Mean (Sim) Mean (Obs)  PBIAS (%) Mean (Sim) Mean (Obs) 

1 2.5 2.00 1.90  - - - 

2 -9.0 4.35 4.52  - - - 

3 - - -  -25.3 0.023 0.031 

4 3.9 1.67 1.60  -22.1 0.036 0.051 

5 -3.0 1.90 1.92  20.1 0.049 0.042 

6 - - -  34.3 0.300 0.200 

7 - - -  13.2 0.092 0.081 

8 14.2 9.47 8.46  - - - 
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Table 7. ARIL, PCI and PUCI for discharge, nitrate-N (NO3
- -N) and total phosphorous 860 

(TP) of 95% prediction confidence interval for calibration period at Hausneindorf.  861 

 
 

 

Variable Criterion Parameter Uncertainty Total Uncertainty 

 
Discharge 

ARIL 0.093 4.139 
PCI 0.136 0.983 
PUCI 2.003 0.234 

 

NO3
- -N Concentrations 

ARIL 0.150 1.242 
PCI 0.270 0.920 
PUCI 2.120 0.783 

 
TP Concentrations 

ARIL 0.310 3.112 
PCI 0.330 0.961 
PUCI 1.228 0.317 
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