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Abstract 

Population models can provide valuable tools for Ecological Risk Assessment 

(ERA). A growing amount of work on model development and documentation is now 

available to guide modelers and risk assessors to address different ERA questions. 

However, there remain misconceptions about population models for ERA, and 

communication between regulators and modelers can still be hindered by a lack of 

clarity in the underlying formalism, implementation, and complexity of different 

model types. In particular, there is confusion about differences among types of models 

and the implications of including or ignoring interactions of organisms with each 

other and their environment. In this review, we provide an overview of the key 

features represented in population models of relevance for ERA, which include 

density dependence, spatial heterogeneity, external drivers, stochasticity, life-history 

traits, behavior, energetics, and how exposure and effects are integrated in the models. 

We differentiate three broadly defined population model types (unstructured, 

structured, and agent-based) and explain how they can represent these key features. 

Depending on the ERA context, some model features will be more important than 

others, and this can inform model-type choice, how features are implemented, and, 

possibly the collection of additional data. We show that nearly all features can be 

included irrespective of formalization, but some features are more or less easily 

incorporated in certain model types. We also analyze how the key features have been 

used in published population models implemented as unstructured, structured, and 

agent-based models. The overall aim of this review is to increase confidence and 

understanding by model users and evaluators when considering the potential and 

adequacy of population models for use in ERA.  
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Keywords: Good modeling practice, ecological risk assessment, matrix models, 

agent-based models, ODE models 

INTRODUCTION 

The last two decades have seen substantial advances in the development of 

population models for the ecological risk assessment (ERA) of chemicals. These 

include guidance on systematic and consistent model creation and documentation 

(Grimm et al., 2020; Schmolke et al., 2017b), model evaluation and testing (Augusiak 

et al., 2014; Grimm et al., 2014; Schmolke et al., 2010b) and choosing models of 

appropriate complexity to address different types of risk assessment questions 

(Raimondo et al., 2018). A growing collection of case studies has clearly 

demonstrated how such models can inform risk assessment and risk management 

decisions (Forbes et al., 2016; Hommen et al., 2016), and slowly but surely there are 

indications that the acceptance of population models for risk assessment will continue 

to increase (EFSA, 2014; National Research Council, 2013). Nevertheless, there 

remains confusion about population models for ERA, including that related to 

differences among model types and the implications of including or ignoring different 

aspects of reality in the models. In addition, there is a lack of consensus on the role 

that the models should play in the ERA process. 

Population models can be used to assess population-level effects over 

extended time periods, representing observed organism-level effects in an 

ecologically relevant context (Forbes et al., 2011; Hanson and Stark, 2011). While 

population models applied to ERA contexts share the objective to provide a tool for 

estimating long-term risks to populations, their underlying formalism, 

implementation, and complexity vary widely (Forbes et al., 2016; Grimm, 2010; 
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Raimondo et al., 2018; Schmolke et al., 2010a). Population dynamics can be 

formalized in models according to three basic types: unstructured, structured, and 

agent-based. These three types are mechanistic models, as they represent biological 

mechanisms underlying the structure and dynamics of populations. They differ from 

statistical, or empirical models, such as species distribution models (Elith and 

Leathwick, 2009), which are based on correlations. 

Many characteristics of a species and its interactions with the environment can 

affect the structure and dynamics of its populations and, hence, also its responses to 

toxic chemicals. Key features that need to be considered irrespective of model type 

include density dependence, spatial heterogeneity, external drivers, stochasticity, life-

history traits, behavior, energetics, and how exposure and effects are integrated in the 

models (see Table 1). In population models, they may be simplified, represented in 

great detail or not represented at all, depending on the specific purpose and scope of 

the model, the data available for parameterization and testing, but also on the 

familiarity of the model developers with different types of models. Depending on the 

problem at hand, some features are more important than others and could inform the 

choice of a model type. The absence of clarity and transparency about how to choose 

the key features to represent and the adequacy of different model types can increase 

skepticism towards population models. 

Our goals are to provide an overview of the key features represented in 

population models of relevance for ERA, to clarify the differences among population 

model types, and define how they incorporate, or do not incorporate, these key 

features. We discuss the advantages and limitations of each model type and provide a 

perspective on the insights that can be gained by using different model structures and 
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including or excluding various model features. We focus on the conceptual 

differences among model types but not on their formalisms in terms of equations or 

algorithms, which have been covered in earlier reviews of population models for ERA 

(Grimm, 2010; Schmolke et al., 2010a), or on details of parameterization and 

implementation, which are covered in textbooks and monographs about each model 

type (see references below). 

Our overview is augmented by a statistical analysis of 450 population models 

published between 2004 – 2014 and compiled in a recent review (Forbes et al., 2016). 

In the review, models were categorized by model type and assessed with respect to 

features they represent. We evaluate these previously published models in terms of 

whether or not they include the key features of Table 1 and how inclusion is 

correlated with the three main model types. Our overview and analysis are intended to 

facilitate the systematic and efficient selection and evaluation of population models 

for use in ERA, and increase their understanding and use by risk assessors and risk 

managers. 

We conclude that, as a result of their greater flexibility, ABMs are more 

amenable to the addition of all of the key features than are unstructured or structured 

model types if the data are available to do so. However, ABMs are more difficult to 

implement, analyze, and communicate than the other model types. Model complexity 

is not determined by model type, but rather by the number and type of features that 

are incorporated. The greater the model complexity, the more difficult a model is to 

implement and analyze, and the greater are the data demands. There is therefore a 

trade-off between the need to incorporate a particular feature, data availability and 

computational/mathematical effort that modelers have to take into account when using 
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population models to answer specific ERA questions. When possible, we advise the 

use a multi-modeling approach, because it can increase confidence in model outputs 

to inform regulatory decisions. 

MODEL TYPES 

We distinguish three model types: (1) unstructured, (2) structured, and (3) agent-

based models (ABMs). Other terms used are ‘scalar’ or ODE (ordinary differential 

equation) for unstructured models, ‘matrix’ for structured models, and ‘individual-

based’ for ABMs, but we suggest using our terminology consistently in the future as it 

is non-technical and based on the key structural feature of each model type. 

Unstructured models ignore population structure whereas structured models do not, 

and agent-based models focus on the agency of individuals, in particular their 

adaptive behavior. Well-known examples of these model types are provided by Liu et 

al., (2005) for unstructured models, Caswell (2001) for structured models, and Grimm 

and Railsback, (2005) and Topping et al., (2009) for ABMs. The key aspects that 

distinguish the three model types are the kind of state variables they use to 

characterize a population and consequently, how demography, i.e., survival and 

reproduction, is represented.  

 In unstructured population models, the only state variable used is population 

size or total biomass. Any structure regarding, e.g., age, size, sex, or distribution in 

space, is disregarded. All these aspects are implicitly averaged over the entire 

population, and only the net outcome of survival and reproduction, the per capita 

population growth rate, is considered. It is possible in principle to add stochasticity to 

unstructured models, but this is rarely done for ERA because stochastic differential 

equations are much more difficult to parameterize, solve, and interpret than ODEs 
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(e.g., Goel and Richter-Dyn, (1974)). Because population structure, spatial 

relationships and usually also stochasticity are not explicitly implemented in 

unstructured models, they include the implicit assumption that populations are large 

enough to disregard differences among individuals, space, and random variations (i.e., 

environmental and demographic stochasticity). In addition, unstructured model 

approaches imply that all interactions in the population are global, i.e. everybody 

equally affects, and is affected, by everybody else. For well-mixed populations, for 

example Daphnia populations in the laboratory, this assumption holds, e.g. (Martin et 

al., 2013), but for most real populations in the field it does not. Because of their 

limitations, unstructured models in an ERA context are mostly used as models of 

subsystems where their limitations are less relevant. Implementing unstructured 

models is straightforward. The well-established language of calculus can be used to 

clearly communicate the models, and standard software packages exist to solve the 

equations numerically (but see Seppelt and Richter (2005), on possible numerical 

artifacts). ‘Solutions’ in this case are the projected changes of population size over 

time, i.e., population size time series.  

 In structured population models, the state variables capture certain aspects of 

population structure such as age or stage. For example, for species with annual 

reproduction, numbers of individuals in each age class, ranging from recruits to the 

maximum achievable age, form a vector characterizing the structure of the population 

in a given year. Structured models represent the fact that demographic rates 

(sometimes called life-history traits) depend on age or stage, and demographic rates 

are averaged accordingly within each age or stage. Structure often matters. For 

example, a population of mainly old individuals will have a different growth rate, and 

respond differently to stress, than a population comprised of mostly young 
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individuals. Most structured models are implemented by a set of linear difference 

equations, representing each class of the structure, for example each yearly age class. 

Each equation calculates the number of individuals in the next time step. The first 

equation, for class zero, includes the contribution to this class from all other age 

classes. Structured models are widely used in conservation biology, fisheries 

management and related fields, and are relatively popular in ERA (Forbes et al., 

2016). Data from field surveys of populations are often recorded as age- or stage-

specific numbers, which can be directly used to parameterize structured models. The 

population growth rate can easily be calculated and used as a comparative endpoint 

for risk assessment (Forbes et al., 2016, 2008). Additionally, structured models can 

include further features, such as density dependence or stochasticity, but then 

population growth cannot be calculated analytically, and population dynamics is 

simulated by updating the matrix of demographic rates in each time step and 

multiplying it with the current vector representing the population’s structure. 

Structured models are easy to communicate and implement with existing software. 

 In ABMs, each individual is represented and may differ from all other 

individuals depending on its traits and behavior. Individuals are characterized by a set 

of state variables. In the simplest case this would only be age, and the ABM would be 

similar to an age-structured model. Usually, however, further variables are included 

because they are assumed to affect the individual’s behavior, life history, and, in turn, 

survival and reproduction. ABMs are used when one or more of the following features 

are considered essential: (1) individuals are different, both within a population and 

over time as they grow and develop; (2) individuals usually interact locally, not 

globally; (3) individuals show adaptive behavior. Their decisions, for example about 

how to allocate energy to growth, maintenance, or reproduction, or when and where to 
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forage, depend on what they know, what they want, and on the state of themselves 

and their environment. In ABMs, demographic rates thus emerge from agent 

interactions and/or the adaptive behavior of individuals rather than being imposed via, 

e.g., fixed survival rates or functions. Many ABMs are spatially explicit because they 

consider local interactions and the responses of individuals to local habitat features. 

Likewise, most ABMs are stochastic to represent variation that has been observed and 

is likely to be relevant, but for which mechanistic representation is considered 

infeasible or not necessary. ABMs have been used in ecology since about 1990. They 

are implemented as computer programs. In contrast to unstructured and structured 

models, which use the established language of mathematics and calculus, initially no 

established methods for formulating, implementing, or analyzing ABMs existed. 

However, the last decade has seen a maturation of such methods, including standards 

for model formulation and communication (ODD protocol, Grimm et al. (2020)), 

overall quality assurance (TRACE, Grimm et al. (2014); Schmolke et al. (2010b)), 

and systematic model analysis (Grimm and Berger, 2016; Thiele et al., 2012). Still, 

the range of complexity and the structural diversity of ABMs are much greater than 

those of unstructured and structured models. They are usually harder to develop, 

parameterize and analyze, but they are richer in structure and mechanisms, which 

makes them more realistic and easier to validate with various aspects of real systems 

(‘pattern-oriented modeling’, Grimm et al. (2005); Grimm and Railsback (2012)).  

KEY FEATURES TO CONSIDER IN MODEL DEVELOPMENT AND 

EVALUATION 

In this section, we provide an overview of key features that should be considered 

when developing, implementing and evaluating population models used for ERA: 

density dependence, spatial heterogeneity, external drivers, stochasticity, organism 
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life-history traits, behavior, energetics and integration of exposure and effects. All 

these features are relevant for understanding population dynamics in general, and 

each of them has also been demonstrated in case studies to be relevant for ERA. 

Table 1 summarizes and briefly defines these features and illustrates that often the 

three main model types defined above can take into account any of these features. 

The following sections describe each feature in more detail by discussing their 

relevance for ERA, data needs, and whether and how they can be represented in the 

different model types. 

Density dependence  

Density dependence refers to variation in population growth rate with 

population size (Lebreton, 2009). It can be caused by different processes. The most 

common is when a resource is limited and individuals have to share it. Individuals 

may compete directly or indirectly for resources. In interference competition, 

individuals interact directly, often through aggression, to compete for a limiting 

resource, e.g., a territory. In exploitative competition, individuals interact indirectly 

by using up a common limiting resource, e.g., food or space. Competition may also be 

described as contest competition (in which the winner takes all and the loser gets 

none; e.g., territory, mate) or scramble competition (in which everyone gets less; e.g., 

food or space). Other sources of density dependence, such as cooperation and 

facilitation, can induce an “inverse” density dependence known as the Allee effect. In 

these cases, populations under a certain density threshold have a very low, or even 

negative, population growth rate, which can increase their likelihood of extinction 

(Courchamp et al., 1999; Pavlova et al., 2016). Hence, growth rate actually increases 

with increasing density. Allee effects can for example be caused by limitations in 
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mating caused by low density, or any other social mechanisms that require a certain 

minimum density. 

Relevance for risk assessment  

Whereas it is expected that most populations in the field are under some form 

of density-dependent control (Moe, 2008), most ecotoxicological tests are performed 

under density-independent conditions in which test organisms are not constrained by 

limited resources. This is relevant for risk assessment because ignoring density 

dependence can lead to both over- and under-estimation of toxicant effects in field 

populations. For instance, compensation mechanisms can occur when populations 

under strong density-dependence are exposed to a stressor (Vaugeois et al., 2020): 

decreased density after exposure to a chemical reduces competition so that the 

remaining individuals may grow faster and bigger, and reproduce more. In terms of 

overall biomass or abundance, the direct negative effect of the stressor may thus be 

quickly compensated, but still lead to changes in population structure that affect risk 

(Gergs et al., 2013). Forbes et al. (2001b) reviewed experimental studies of density-

toxicant interactions and found that some studies showed additive interactions 

between density and chemical effects on population growth rate, others found less-

than-additive effects, and still others found more-than-additive effects. In at least one 

study, the form of the interaction varied across a chemical concentration gradient, 

with effects shifting from less-than-additive at low toxicant concentrations to more-

than-additive at higher toxicant concentrations (Linke-Gamenick et al., 1999). Forbes 

et al. (2001b) were unable to identify simple, general a-priori predictions of the 

responses to toxicants of populations living under density-dependent control, which 

argues for explicitly incorporating density dependence in population models. 
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Incorporation in population models and data needs 

There are two general approaches for incorporating density dependence in 

population models. The first involves making assumptions about the form of the 

density dependence and choosing a particular function to describe the relationship 

between population density and population growth rate (e.g., the Ricker Model, 

Ricker (1954)). The second approach involves incorporating rules for individuals to 

interact with each other or with the environment such that density dependence arises 

as an emergent property of the system.  

Density dependence is usually included in unstructured population models by 

assuming that the population grows logistically until population growth rate is zero 

and density reaches a plateau (the habitat carrying capacity). Carrying capacities are 

inferred from observed equilibrium population sizes or from expert judgements or 

meta-analyses of the literature. Modifications of the logistic equation can also be 

found, e.g., to take into account the Allee effect. Density dependence can be added to 

structured models using a discrete time form of the logistic equation (Miller et al., 

2002). This model is simple, because it does not require additional parameters or 

mathematical functions. If density dependence is known to act only on certain age or 

stage classes of the population (e.g. adult males competing for a territory), or if the 

strength of density dependence is likely to vary with stage or age, structured models 

can be used to incorporate such effects (Sable and Rose, 2008). This will require 

assumptions to be made about the carrying capacity of the population (Miller et al., 

2002). In ABMs, similar approaches as in unstructured and structured models can be 

incorporated but are rarely used as they require the unrealistic assumption that 

individuals “know” the density of the population. In ABMs, density dependence 
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rather emerges as a result of frequency-dependent interactions among individuals with 

each other or through the exploitation of simulated resources. Incorporating density 

dependence in ABMs requires that rules governing the behavior of individuals in the 

model be defined.  

Density-dependence relationships are calibrated with laboratory or field data 

(Strauss et al., 2016). However, specifying density-dependent relationships from field 

data is very difficult (Lebreton, 2009; Sable and Rose, 2008). At the same time, if 

little is known about the strength or form of density dependence in a population, it 

may be misleading to assume an arbitrary functional relationship. For example, 

Raimondo (2013) showed that the functional form of density dependence can 

determine if toxicant exposure and density dependence are synergistic, compensatory, 

or additive. Thus, getting the functional form incorrect can dramatically change model 

outcome by influencing how density and toxicants interact. With ABMs it can be 

easier to represent density dependence, because for well-studied species sufficient 

data can allow the realistic representation of behavior and, hence, the emergence of 

density dependence (Stillman and Goss-Custard, 2010). 

Model type considerations 

Density dependence can be included in all model types. In unstructured and 

structured models this is usually done by adjusting a theoretical function, whereas in 

ABMs density dependence can be implemented as an emergent property linked to the 

rules governing interactions among individuals and influenced by environmental 

drivers. Letting density dependence emerge has the advantage that this can also be 

done for new conditions, which usually is not possible for imposed functional 

relationships. 
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Spatial heterogeneity 

A model is deemed spatially explicit if it incorporates spatial heterogeneity 

and represents a landscape using cells (grids) or other approaches (e.g. networks of 

patches) (Dunning et al., 1995; Minor and Urban, 2007). The basic idea of “grid-

based” models is that within each unit or cell, spatial relationships, e.g., the position 

of organisms, are ignored. This requires using a cell size that is small enough for this 

assumption to hold. If no such cell size can be found, e.g., because the organisms to 

be represented vary over orders of magnitude in size, grid-free approaches are used. 

Examples are the zone-of-influence approach for modeling plant populations and 

communities (e.g., IBC-Grass, Reeg et al. (2018)), or network-based models in which 

habitat patches are modeled as nodes in a network, and links between nodes represent 

possibilities for movement between them (Bodin and Saura, 2010).  

Relevance for risk assessment  

Organisms and environmental toxicants both exhibit considerable temporal 

and spatial heterogeneity (Spromberg et al., 1998). Therefore, representing spatial 

differences can be particularly relevant to study ecological processes that operate at 

different spatial scales, to explore different management strategies (Dunning et al., 

1995), and to understand temporal and spatial heterogeneity of environmental 

toxicants (Spromberg et al., 1998). Spatially-explicit population models can increase 

the accuracy of exposure assessments and thereby support management decisions 

(Purucker et al., 2007). Moreover, it is valuable to consider spatial heterogeneity and 

take into account zones beyond the toxicant-contaminated area, because fluxes of 

organisms or materials functionally link the contaminated area to the surrounding 

landscape (Johnson, 2002).  
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Incorporation in population models and data needs. 

By themselves, unstructured population models cannot deal with space, but if 

used as submodels of local habitat patches, they can represent space differences 

among different habitats. For example, one can divide space into two or more patches 

(or grid cells), each containing a population described by differential equations. These 

(sub)populations are characterized by their own abundance, survival, reproduction, 

and immigration/emigration rates and possibly other properties (Dunning et al., 1995). 

Mathematically, these models can represent the studied systems in two ways. One 

way is using a set of diffusion-reaction equations for each grid cell. They add a 

diffusion term, which represents random movement, to the ODE. Diffusion is driven 

by the difference in population densities between neighboring grid cells and used to 

calculate immigration or emigration rates (Spromberg et al., 1998). The other way is 

to use only one equation describing the change in the fraction of occupied patches 

over time (Maurer and Holt, 1996). Spatially explicit, unstructured models can be 

used to study dispersal and site-specific contamination, evaluate population 

persistence, or explore possible rules-of-thumb for predicting when a chemical 

exposure is likely to endanger the persistence of an entire population (Maurer and 

Holt, 1996). In structured models, space is taken into account using a similar logic as 

with unstructured models: sub-populations in different habitats are represented by 

separate matrices that are linked by functions defining migration between the sub-

populations. The demographic rates combine demographic and dispersal information 

in potentially complicated ways (Hunter and Caswell, 2005). Usually, species’ habitat 

and dispersal are included in stage-structured matrices using integrodifference 

equations, i.e., equations integrating both population demography and dispersal 

probabilities in a spatial domain (Lutscher and Lewis, 2004). Therefore, data on 
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survival and reproduction rates and their spatiotemporal variability at different stages 

are required (Akçakaya, 2000). Since structured models are extensively used in 

conservation biology and species management, a substantial effort has been made to 

include spatial aspects in the models, despite the mathematical complexity of doing 

so. For example, RAMAS Landscape (Akçakaya et al., 2004) links a metapopulation 

model to the LANDIS landscape model, which is a forest succession model (Scheller 

et al., 2008). Agent-based models can easily take into account spatial heterogeneity, 

since each individual’s location can be monitored (Topping et al., 2005). Such models 

can represent hypothetical or simplified spatial configurations (Ascensão et al., 2013; 

Purucker et al., 2007), describe a particular habitat in detail (Railsback et al., 2009), or 

be coupled with sophisticated landscape generators (Langhammer et al., 2019). 

Usually spatially-explicit ABMs are data demanding. However, if data are available, 

they can represent multiple spatial characteristics. Agent-Based Landscape Models 

(ABLM), for example, can include details about many processes, such as spatially-

dependent animal behavior, food availability and accessibility, pesticide exposure and 

land management (Topping et al., 2005). When ABMs are supported by enough data, 

they can improve risk assessment by underlining the importance of factors such as the 

location of individuals in a population with respect to chemical exposure gradients 

(Liu et al., 2013). Nevertheless, simpler spatially explicit ABMs can also be useful in 

ERA (e.g., Purucker et al., 2007).  

Model type considerations  

Spatial heterogeneity can be included directly or indirectly within all model 

types. If data are rare or absent, unstructured models are a good choice since they can 

be used to study different spatial dynamics and thus guide future data collection and 
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management decisions. If a fair amount of data is present and the modeler understands 

the complexity of particular mathematical constructs, structured models can be 

chosen. Available software can help model analysis, but this requires a deep 

understanding of the assumptions behind the software. If spatial data are available, 

and spatial heterogeneity and movement are supposed to influence many processes, 

ABMs are the best choice. They are mathematically less demanding and can 

potentially capture more spatially-dependent processes than the other model types.  

External drivers 

We define external drivers as any natural or human-induced factor that 

directly or indirectly causes a change in population size or structure and, hence, 

dynamics. External drivers can be chemical, physical or biological, and can affect an 

individual in different ways (activity patterns, energetic balances, physiology, etc.), 

eventually leading to an overall population response. They are major determinants of 

the structure and function of ecosystems, and may drive organismal adaptations that 

permit populations to persist (Barnthouse, 2004). External drivers can have a regular 

pattern (e.g. diurnal or seasonal) and therefore be easily predicted. Examples of such 

drivers are temperature, rainfall, tidal height, or fluctuating interspecific interactions. 

Other drivers are less predictable, such as fires, flooding or other extreme climatic 

events. Depending on the timescale of the study and the ecological and biological 

processes impacted by a stressor, external drivers might need to be included. 

Relevance for risk assessment 

Analysis of population trajectories is central to assessing risk in populations of 

concern (Alexander et al., 2009). External drivers can strongly modulate these 
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trajectories, affecting different stages of an organism’s life cycle and ultimately 

causing population-level fluctuations at various time scales (daily cycles or 

oscillations over multiple years). Some populations are much more influenced by 

external drivers than others. For example, for fish that overwinter, including seasonal 

environmental elements in a population model is critical and may give a very different 

outcome than assuming the population reproduces all year round. The dynamics of 

amphibian populations may be influenced by the availability of inundated areas and 

have very different dynamics in wet versus dry years. Consequently, exposure to 

toxicants may have different effects both at the individual and population-level 

depending on environmental fluctuations (Akçakaya et al., 2004). This may be 

especially important when considering impacts of climate change, since chemical 

stressors, temperature variability and related extreme climatic events may have 

complex and non-intuitive effects on organisms and populations. Determining 

whether and how to include external drivers in population models requires some basic 

ecological knowledge of the system under study (e.g., knowing how temperature 

influences different aspects of the life history), can be explored through the 

development of different model scenarios, and can be informed by sensitivity analyses 

(Raimondo et al., 2018; Schmolke et al., 2017b). Finally, external drivers can also 

have important consequences on the environmental distribution and toxicity of 

chemical pollutants (Noyes et al., 2009), as explained in the section Integration of 

exposure and effects.  

Incorporation in population models and data needs 

External drivers can be included in unstructured models by creating sets of 

equations and imposing rules, such as “if time equals tx, then a fraction of the 
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population is eliminated”, or equivalently by expressing them as a set of equations 

representing different time periods (Barnthouse, 2004). In structured models, it is 

possible to take into account environmental drivers such as catastrophes, 

environmental variability or long-time cycles due to inter-specific interactions 

(Akçakaya et al., 2004; Carlson and Simpfendorfer, 2014). This can be adjusted ad 

hoc, by removing periodically a defined percentage of the population of particular age 

classes. Alternatively, vital rates of each stage can be multiplied by coefficients that 

change periodically, allowing the representation of population cycles (Akçakaya et 

al., 2004). Effects of random environmental variability can be expressed by 

probabilistically choosing among different transition matrices (Haridas et al., 2013) 

(see also the section on Stochasticity below). Matrix population models or models 

based on RAMAS/Metapop can also represent changes over time (and sometimes 

over space) of properties like carrying capacity or management strategies 

(Bagavathiannan et al., 2012; Meulebrouck et al., 2009). In ABMs, effects of external 

drivers can be added by modulating particular organism processes. For example, one 

can simulate temperature and/or food fluctuations and calculate their effects on 

individual metabolism at each time step (Accolla et al., 2019). Other environmental 

drivers can be hydrological variability and water turbidity (Focks et al., 2014b; 

Railsback et al., 2009), flooding (Schmolke et al., 2017a), or flowering periods 

affecting pollinator foraging (Becher et al., 2014). Alternatively, states of agents may 

vary according to a pattern defined by the day of the year or season. Data can come 

from actual environmental monitoring. Alternatively, one can use theories or rule-

based criteria set by the modeler. 
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Model type considerations 

External drivers can be theoretically incorporated in the three model types. 

However, in unstructured models this means creating a set of ODEs, instead of a 

single population model. Structured models and ABMs are more suitable for 

representing environmental drivers. Often, special rules need to be implemented to 

represent processes at different time scales. ABMs are particularly flexible in this 

regard. 

Stochasticity 

Stochasticity refers to random variations. Observed variations are referred to 

as ‘random’ if we do not know, or cannot know, the mechanisms underlying them. 

Examples are daily rainfall or temperature fluctuations, frequency of flooding or fires, 

etc. Conceptually, stochasticity (i.e., random differences) differs from variability (i.e., 

the extent to which values in a statistical distribution diverge from the average value 

and from each other) and from uncertainty (i.e., lack of knowledge about a value or 

process or measurement errors). However, in practice it is often not feasible to 

distinguish among these. Stochasticity, variability, and uncertainty in parameters, 

external drivers or other features of population models are often represented by 

drawing values from an assumed statistical distribution.  

Relevance for risk assessment  

 Environmental conditions, such as good year versus bad year, can affect 

population growth rates and generate stochastic variation in population size. The 

greater the variability to which a population is subject, the greater the chances of 

going extinct (Tuljapurkar and Orzack, 1980). Stochasticity is even more important 
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after a series of bad years that lead to small populations, which have a higher 

extinction probability. In a similar fashion, chemical exposure in the environment can 

be stochastic due, for example, to random rainfall or runoff events that drive input 

into nearby water bodies. Accounting for stochasticity may be crucial for ERAs given 

its potential influence on population dynamics and the responses of populations to 

chemicals and other stressors. 

Incorporation in population models and data needs. 

Including stochasticity in population models for ERA is helpful for 

quantifying the range of model output predictions regardless of model structure. This 

is usually done by randomly drawing variables from a probability distribution and 

iterating this process in every time step of the model projection. For example, if a 

survival probability is 0.3, a random number between 0 and 1 is generated and if it is 

larger than 0.3, the individual dies. The probability distributions can reflect the 

distribution of measured field data or can be defined a priori from probability theory 

(e.g., lognormal).  

Unstructured models containing stochasticity are called SDEs (stochastic 

differential equations) instead of ODEs. These equations usually have one or more 

terms representing white noise or Poisson processes, but are relatively uncommon in 

ERA. In structured population models, stochasticity can be incorporated in the class-

specific demographic parameters (e.g., death, birth and dispersal) by sampling 

different demographic rates from probability distributions at every time step. In 

ABMs, stochasticity can be included in multiple processes beyond mortality and 

reproduction (e.g., behavior, movement, physiology, inter- and intra- specific 
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interactions). The number of stochastic processes accordingly depends on the model 

complexity, i.e., how many processes are represented that could include stochasticity.  

Even though stochasticity is about random occurrences, an underlying 

knowledge of the frequency of such occurrences is important to generate reliable 

ERAs. As highlighted above, in practice it may be difficult to clearly distinguish 

stochasticity from variability and uncertainty. All of these contribute to the confidence 

(or lack thereof) in the resulting risk estimates. In general, the more processes to be 

represented in a model, the more opportunity for stochasticity, variability, and 

uncertainty to influence risk estimates, thus the higher the model’s data demands. 

Because ABMs tend to include more processes than unstructured or structured 

models, data requirements, including those to capture stochasticity, tend to be greater.  

Model type considerations  

Stochasticity can be included in all model types. The inclusion of stochasticity 

means that unstructured and structured models cannot be solved analytically, but have 

to be solved by numerical simulations. The choice of probability distributions should 

be guided by data and knowledge about the stochastic processes irrespective of model 

type. Detailed methodology and code for the incorporation of stochasticity in models 

of different structure are available in (Caswell, 2008; Ellner et al., 2016; Grimm and 

Railsback, 2005; Morris and Doak, 2002). Current software packages such as 

RAMAS (for structured models) and VORTEX (for ABMs) greatly facilitate the 

incorporation of stochasticity.  



 

This article is protected by copyright. All rights reserved. 

A
c

c
e

p
te

d
 A

r
ti

c
le

 
Life-history traits 

The life cycle of an organism refers to the sequence of events that occurs 

during the course of its development, starting with fertilization and ending with death. 

An organism’s life cycle can be characterized by a series of life-history traits 

(including demographic or vital rates as well as qualitative features of the life cycle) 

that represent investment in survival, growth, and reproduction. They refer to 

individual-level traits and include age at first reproduction, time between reproductive 

events, lifespan, number and size of offspring, etc. 

Relevance for risk assessment  

The traits described above are important contributors to an organism’s fitness, 

and for this reason are common test endpoints in ecotoxicology. In ERA, one is rarely 

concerned with protecting individual organisms, but rather populations and groups of 

populations (i.e., communities, ecosystems) (Hommen et al., 2010). Therefore, it is 

necessary to extrapolate the impacts of chemicals on individual life-history traits to 

population-level responses. Since the relationships between life-history traits and 

population dynamics are typically non-linear, context dependent, and vary among 

species, population models are needed to integrate them (Accolla et al., 2019; 

Schmolke et al., 2010a; Vaugeois et al., 2020). For example, the same percentage 

reduction in adult survival can have very different impacts on population growth rate 

for a long-lived species that produces few young compared to a short-lived, highly 

fecund species (Stark et al., 2004). Accordingly, toxic effects observed at the 

organism level can have very different implications for long-term population 

dynamics and persistence dependent on the species’ life history (Forbes et al., 2001a; 

Forbes et al., 2019a; Martin et al., 2014). Currently, ecological risk assessments 
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generally ignore the influence of life history and focus predominantly on individual-

level toxicological sensitivity. 

Incorporation in population models and data needs. 

Unstructured models do not represent the life-history traits of the organisms, 

but generally use the intrinsic growth rate of the population r, which takes into 

account average birth and mortality rates. Structured models integrate information on 

demographic rates (i.e., stage-specific mean survival, growth and reproduction) to 

estimate population dynamics. Sometimes, structured models can integrate more 

complex physiological aspects or energetic theory (e.g. Klanjscek et al. (2006), see 

feature ‘Energetics’). ABMs usually incorporate individual survival/reproduction 

rates (e.g. calculating the probability of surviving or reproducing at each time step). 

These rates can change depending on the individual life stage (egg, juvenile, adult, 

etc.) if information is available. Life-history traits can also be implemented as 

resulting from more complex processes (see feature ‘Energetics’) or can be rendered 

variable between individuals in the population, for instance, based on their genetics 

(Bruggeman et al., 2010).  

Because survival, growth and reproduction are the most common 

ecotoxicological endpoints measured, there are often data available from laboratory 

toxicity tests from control and chemically-exposed groups that can be used to estimate 

the relative change in these traits as a result of chemical exposure. Challenges can 

arise in obtaining relevant field data, particularly for inconspicuous life stages or age 

classes. For example, although fish are among the most frequently monitored taxa in 

the field, often there is no information on early life-stage survival, and it may be 

necessary to make some assumptions to fill in the missing data. This could be done 
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using allometric relationships (e.g., relationship between adult body size and egg 

number) (Reiss, 1989), life-history theory (Stearns, 1992), or closely related surrogate 

species (Banks et al., 2010).  

Model type considerations  

Unstructured population models do not explicitly include aspects of an 

organism’s life history. Therefore, this model type is not appropriate if it is of interest 

to incorporate life-history information, which often aligns with data measured in 

laboratory toxicity studies. In contrast, structured models require information on age- 

or stage-specific survival probabilities as well as fertility or reproductive rates at a 

minimum. Most agent-based models also explicitly incorporate life-history traits and 

aim to capture how these vary among individuals. 

Behavior  

Behavior is an organism’s response to physiological and external biotic and 

abiotic factors. It is highly adaptable within genetic limits and therefore represents an 

important mechanism for how an organism reacts to environmental changes, 

including contaminants (Gerhardt, 2007). 

Relevance for risk assessment  

In the context of ERA, the role of behavior can be considered for both how it 

affects an organism’s exposure to a stressor of interest and how it may be altered by 

stressor exposure. There are numerous examples of stressor impacts on the behavior 

of organisms in the context of ecotoxicological laboratory studies, which could lead to 

altered feeding patterns, movement speed and patterns (including local movements as 

well as migration), predator avoidance, aggression, etc., when considered in an 
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ecological context (Chmist et al., 2019; Hedgespeth et al., 2014; Nabe-Nielsen et al., 

2014). An example is avoidance behavior, which can be both driven by the stressor 

and impacts exposure to the stressor (Chaumot et al., 2003). Because behavior may 

influence organism exposure and response to a stressor, and stressors may cause 

sublethal behavioral responses that impact population dynamics, affected behaviors 

may be crucial to include in a population model.  

Incorporation in population models and data needs 

Behavior can only indirectly be incorporated in unstructured models. If one or 

more parameters depend on behavior, it is possible to create separate models (equal in 

structure but different in parameter values), and then compare the results. Preston and 

Snell (2001), for example, use a classical Lotka-Volterra model to study population 

growth in a predator-prey system of rotifers in the presence of a stressor affecting 

both reproduction and behavior (swimming speed). In this model, the prey-capture 

rate per predator depends on predator and prey swimming speeds, and can therefore 

change depending on the impacts of a stressor. Similarly, in structured models, 

behavior can indirectly be incorporated by the implementation of sub-models. Every 

sub-model is defined by its own stage-dependent properties (survival rate, fecundity, 

etc.), which can vary with external factors, such as stressor concentration and 

environmental properties. The links between these sub-models depend on behavioral 

dynamics. For example, toxicant-related behavior can be defined as a proportion of 

the population in a particular sub-model (or patch) that “decides” to move to another 

sub-model, characterized by a different environment and toxicant level (Chaumot et 

al., 2003). Behavior can be incorporated in ABMs directly, i.e., each individual 

behaves as in the real system. With this type of model, it is possible to take into 
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account behavioral processes, such as mating, territoriality, nest building, as well as 

how toxicants affect those behaviors (Mintram et al., 2018). ABMs can also easily 

represent different spatial behaviors and the consequences of movement on exposure 

if the model is spatially explicit (Liu et al., 2013).  

Behavior can be difficult to measure and quantify in a standard way across 

species, because it can take extremely diverse forms even if associated with similar 

life-history events (e.g. reproductive behaviors) (Hayward et al., 2012). To understand 

what behavioral considerations may be important for a population model, it is 

necessary to understand the role of those behaviors in the population dynamics of the 

species (e.g., the impact of predator avoidance on mortality rates), the impact of 

behavior on the exposure of an individual to the stressor (e.g., avoidance behaviors), 

and the consequences of stressor-induced behavioral changes on population dynamics 

(e.g., avoidance behaviors leading to less food consumption or impaired predator 

avoidance leading to higher mortality rates). Therefore, it is not possible to uniquely 

define the data needed to incorporate behavior as they are dependent on the particular 

behavior represented (different swimming speeds, probabilities to make a choice, 

mating strategies, stressor avoidance techniques, migration patterns, etc.), and how 

these activities interact with toxicant concentration and its spatio-temporal variability 

(see section on Spatial heterogeneity). Usually, specific laboratory experiments or 

field monitoring have to be performed to have a good parameterization of behavioral 

dynamics.  

Model type considerations 

Estimates of how an altered behavior may impact relevant endpoints 

(mortality or fecundity rates, predation rates, etc.) can be incorporated in any model 
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type. However, unstructured and structured models offer limited possibilities to 

incorporate this feature. ABMs are particularly well suited, since they are designed to 

allow the simulation of individual behavior.  

Energetics  

Energetics is the branch of comparative physiology that quantifies the 

metabolic cost of various aspects of an organism’s biological activity (Tomlinson et 

al., 2014). Usually this includes the energy required to fuel basal metabolic rate 

(BMR), standard metabolic rate (SMR), thermoregulation, growth, locomotion, 

reproduction, and any other set of activities that requires energy intake or 

consumption (Tomlinson et al., 2014). In the last decades, there has been a growing 

utilization of the concept of assimilated energy, both to determine organism growth 

and ecosystem productivity (Liao et al., 2006). The main reason for the growing 

appeal of energetic approaches is that they rely on the first principle of 

thermodynamics, i.e. the conservation of matter and energy (Beyers et al., 1999). 

Moreover, metabolism is one of the great unifying processes in biology, making 

connections between all levels of organization, from molecules to ecosystems (Brown 

et al., 2004). 

Relevance for risk assessment 

Organisms live in a fluctuating environment, often adjusting their energy use 

to stressful conditions such as resource limitation. If an additional pollutant-related 

stressor is present, the organism energy allocation may be impacted, likely causing a 

reduction in growth, reproduction or maintenance (Beyers et al., 1999). From an ERA 

perspective, understanding the energy budget of an organism can help to identify 
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which metabolic process(es) is(are) affected by a toxicant (Kooijman, 2010; Sibly et 

al., 2013). Exposure to toxicants can be represented by a change in energetic 

parameters, such as a reduction in the assimilation of food or an increase in 

maintenance costs (Álvarez et al., 2006). The advantage of this approach is that the 

mode of action of the stressor can be better understood by analyzing which parameter 

change results in the best representation of data. For example, a reduction in 

reproduction can be caused by a stressor affecting different metabolic pathways. 

Depending on the mode of action, very different outcomes may result at the 

population level, even if the effect on individual reproduction is similar (Martin et al., 

2014).  

Incorporation in population models and data needs. 

The energy budget of an organism, or of a group of organisms, is always 

represented as a balance between energy intake and expenditure. Energetics can be 

considered as a sub-individual module that is integrated more or less easily in 

different model types. The equations describing the different processes of metabolism 

(food consumption, growth, metabolic costs and waste products) can be empirically 

parameterized (Hanson et al., 1997; Pachzelt et al., 2013; Schmitt et al., 2013) or 

mechanistically calculated. Examples of empirically parameterized models include 

the Wisconsin fish model. Energetic models based on mechanistic theories (Sibly et 

al. ,2013) include the dynamic energy budget - DEB - model (Kooijman, 2010); the 

metabolic theory of ecology – MTE (Brown et al., 2004); the model for ontogenetic 

growth (West et al., 2001). Parametrization of any energetic model, whether 

empirically- or mechanistically- based, requires a large amount of information, e.g. 
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foraging, assimilation and growth efficiencies, allocation rules, physiological needs, 

morphological relationships, etc. (Emlen, 1989).  

In unstructured models, energetics is represented by differential equations 

representing the change in biomass production of a population. Similarly, within 

structured models each class can be characterized by its own energetics and develops 

according to metabolic processes. Energy uptake and expenditure can be modeled as a 

function of age-specific or stage-specific body mass or age. Energy therefore drives 

the development of each class (Miller et al., 2011; Pachzelt et al., 2013). Other studies 

link more complicated energy budget models, such as DEB theory, to structured 

model parameters (Klanjscek et al., 2006; Klok et al., 2007). To do so, one must 

mathematically link the energetics model to stage-related survival and fecundity, 

solving complicated equations (see Klanjscek et al. (2006)). As for the other two 

model types, equation terms of energetically-based ABMs can be mechanistically 

explained (e.g. MTE or DEB) or defined operationally through measured (or 

measurable) changes in metabolic rates, most commonly through changes in 

measured respiration rate under different experimental conditions (Nisbet et al., 

2012). Examples can be found in Jager et al. (2013); Schmolke et al. (2019). 

Model type considerations  

Energetics can be incorporated in unstructured, structured and agent-based 

models. They require a large amount of data to be adequately parameterized in any of 

the three model types, and the complexity of their mathematical formulation is mainly 

linked to the chosen energetic theory. Mechanistic theories usually result in more 

complicated equations, which have to be adapted to the specific model at hand. 
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However, these theories provide a common, codified framework to compare model 

results across different species and different levels of biological organization.  

Integration of exposure and effects  

The traditional risk assessment paradigm consists of problem formulation, 

exposure assessment, effects assessment, and risk characterization (Suter, 2007). 

Exposure and effects assessments are typically conducted in parallel, and then brought 

together in the risk characterization phase. At its simplest, this is in the form of a risk 

or hazard quotient in which a measured or predicted exposure concentration is divided 

by an effects concentration threshold (below which minimal effects are expected). In 

some cases, distributions of exposure and effects concentrations are compared with 

the area of overlap providing a probabilistic risk estimate.  

Relevance for risk assessment  

The entire purpose of ecological risk assessment is to relate the concentrations 

of chemicals to which organisms are likely to be exposed with those causing adverse 

effects to estimate risk. However, since the exposure and effects assessments are 

conducted independently, there is sometimes a mismatch that makes their integration 

challenging. For example, in aquatic systems, exposure to a pesticide may occur as a 

series of irregular peaks in time as a result of runoff events. This is then compared 

with the effects measured in a laboratory toxicity test performed under constant 

exposure concentrations and for a different duration than the relevant exposure 

duration in the field. This mismatch has to be addressed by ERA, especially with 

increasing evidence of climate-change driven alterations of environmental parameters, 

which affect the environmental distribution and biological effects of toxicants (Noyes 
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et al., 2009). Population models can integrate exposure and effects on relevant spatial 

and temporal scales.  

Incorporation in population models and data needs. 

The link between exposure and effects is often implemented as a 

concentration-response relationship relating a particular toxicant concentration to an 

endpoint of interest (e.g. mortality rate). However, for temporally varying exposure 

scenarios, toxicokinetic/toxicodynamic (TKTD) models are the most appropriate tool 

for relating external exposure to internal uptake and organism-level effects. TK deals 

with the time course of the toxicant concentration in the organism, which changes 

because of absorption, distribution, elimination and biotransformation. TD deals with 

the processes that affect the organism at the toxicant target sites. TD models can be 

energetically based, describing the metabolic pathway that is affected by the toxicant 

(Ashauer et al., 2011). The General Unified Threshold model of Survival (GUTS) 

(Jager and Ashauer, 2018) has been developed to capture lethal effects, and DEB-Tox 

models (DEB models integrating sublethal toxicant effects) have been used as TD 

models. Incorporating spatially varying exposure scenarios into population models 

usually requires using a model that is spatially explicit (see section on Spatial 

heterogeneity above). Either monitoring data or fate model predictions are needed to 

characterize the exposure variability, and on the effects side, measurements of 

relevant effects at several exposure concentrations and/or durations will generally be 

needed.  

Some unstructured models can describe exposure and effects through 

calculating an average mortality rate due to the exposure (Baveco et al., 2014) or 

through a TKTD model (Schmitt et al. (2013), see section on Energetics above). 
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Systems of ODEs (called non-autonomous ODEs) can also integrate variability in 

effects as a consequence of different exposure scenarios or toxicant dynamics. This 

involves the implementation of rules affecting, for example, demographic variables in 

response to pesticide application (Banks et al., 2008). This approach is already more 

efficient than using static dose-response assessments of toxicity, even if other model 

types can better incorporate effects over multiple generations (Banks et al., 2008). 

Structured models can integrate the effects that may occur during the various stages of 

the life cycle of an exposed organism by adjusting the stage- or age-specific 

demographic variables. Structured metapopulation models can take into account the 

spatial heterogeneity of exposure, but even without adding spatial complexity, these 

models allow characterization of the impact of a toxicant at the population level and 

over a longer temporal scale than can be tested in typical toxicity tests (e.g. Ducrot et 

al. (2007)). ABMs are increasingly used to integrate exposure and effects. Since 

ABMs can represent spatial and temporal variations without using complex 

mathematical objects, they can easily represent different spatial exposure and 

temporal scenarios. Such models have been used to test different exposure-effect 

scenarios and analyze the consequent changes in population dynamics and recovery 

patterns (e.g. Focks et al. (2014a); Galic et al. (2012)). Moreover, TKTD models are 

often used with ABMs (Ashauer et al., 2011). 

Model type considerations  

Although integration of exposure and effects are possible in any type of 

population model, ABMs are best able to incorporate the effects of temporally 

varying exposures, and spatially explicit ABMs and structured metapopulation models 

are well designed to incorporate effects of spatially varying exposures. The 
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integration can be very simple (e.g., consider scenarios with different numbers and 

locations of clean versus contaminated patches in a metapopulation model) or very 

complex (e.g., overlay a GIS map of an actual landscape with realistic habitat features 

and actual field contamination data with a detailed simulation of individuals moving 

around the landscape and being exposed in space and time (Dalkvist et al., 2009)). 

ANALYSIS OF PREVIOUSLY PUBLISHED POPULATION MODELS  

We revisited an existing database of population models (Forbes et al., 2016) to 

investigate how some of the key features discussed above are associated with the 

different model types. Forbes et al. (2016) analyzed the frequency of incorporation of 

some features in population models from 403 peer‐ reviewed English‐ language 

publications published during 2004 to 2014. Reviewed publications described 

population models that have been applied to assess risks of pesticides to listed species 

or used in other contexts that could provide useful approaches and/or data for listed 

species risk assessments. In their review, the authors categorized models in terms of 

structure, taxonomic coverage, purpose, inputs and outputs, and whether the models 

included density dependence, stochasticity, risk estimates, or were spatially explicit. 

For the purpose of our study, we revisited the structure category, which had four 

attributes (Matrix, IBM, Unstructured, Multiple and Other), to match our three model 

types. Matrix was included as structured and IBM as agent-based. The Multiple and 

Other and the Unstructured categories were re-evaluated and included as appropriate. 

Moreover, we increased the number of entries to 450 because some studies included 

multiple model types. Our analyses extend the work of Forbes et al. (2016) by 

analyzing how some of the model features they assessed are associated with different 

model types.  
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Based on the information available in the database, we investigated the 

association between model type and the following six key features: density 

dependence, spatial heterogeneity, stochasticity, life-history traits, behavior, and 

energetics. We did not consider external drivers or the integration of exposure and 

effects, because these features were not present in the original database. We built 

contingency tables for each feature and performed Chi-square tests of independence 

to determine if there was a significant association between model type and each key 

feature. We then performed a Cramer’s V test to determine the strength of the 

association. Finally, we performed a random forest analysis to understand which key 

features are the most important to distinguish the different model types. The modified 

database and details of the statistical analyses we performed are available in the SI.  

Model types and key features 

First, it is important to note that the database shows what key features have 

been included in models of the three types, not which key features they can or should 

include. Our analyses show that almost all key features have been included in all 

model types (life-history traits are not included in unstructured models), but that some 

features occur more frequently in some model types than in others (Figure 2). As 

indicated by the Chi-square tests, no features are independent of model type. For each 

feature, this means that the frequencies of inclusion in each model type are different 

than what would be expected from the overall frequency of this feature for all model 

types pooled. Density dependence has more often been included in ABMs (80% of 

ABMs in the database), whereas it has only been included in about 50% of the 

unstructured and structured models. ABMs are more often spatially explicit (more 

than 60%) than structured models (less than 45%) and unstructured models (less than 
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20%). Stochasticity has been included in the majority of models for all model types. 

About 90% of ABMs included stochasticity, whereas about 70% and 60% of 

structured and unstructured models included it, respectively. ABMs and structured 

models included life history in about 95% of cases. Behavior was included in about 

10% of unstructured models, about 20% of structured models, and about 65% of 

ABMs. Finally, energetics was more often included in ABMs and unstructured 

models (10-20%) than in structured models (less than 5%). 

The strength of the association (Cramer’s V test) indicates which of the key 

features are more characteristic of certain model types, i.e. how different the 

frequency of inclusion of a feature is among different model types. The Cramer’s V 

test does not specify which model type is associated with the analyzed key feature. 

The stronger associations were observed for behavior (Cramer’s V test of 0.409) and 

life history representation (0.919). This means that these two features are most 

distinctive among model types. Density dependence (0.248), spatial heterogeneity 

(0.242), energetics (0.211), and stochasticity (0.191) are all less strongly associated 

with any particular model type.  

We additionally analyzed the key features differentiating between model types 

using a random forest analysis. This method can be used to determine which variables 

(here: key model features) are the most important to consider in order to predict 

observations (here: model type). This analysis confirmed the previous results and 

underlined that life history and behavior are the two most distinctive features between 

model types. These key features are strongly associated with one model type (more 

represented in this type compared to the others), in our case the structured model type 

for life-history and the agent-based type for behavior. 
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Figure 3 presents the proportion of models of each type including a different 

number of the six key-features we considered for our analyses (from 0 to 6). The 

range of number of features is higher for agent-based models (from 2 to 6), whereas 

the ranges for structured and unstructured models are lower (from 1 to 5 and from 0 to 

4, respectively). Moreover, most of the agent-based models include 5 features, which 

is more than structured (2 to 3) and unstructured (1) models. A straightforward but 

misleading conclusion would be that unstructured models are less complex than 

structured models, and that structured models are less complex than agent-based 

models. However, the number of features is not a proxy of model complexity, because 

some features can be more easily integrated in some model types than others. For 

instance, spatial heterogeneity and behavior can be more easily integrated in an agent-

based model compared to an unstructured model. Consequently, an agent-based 

model that integrates these two features is not necessarily more complex than an 

unstructured model that only integrates one of these features. Therefore, model 

complexity is not only a matter of how many key-features are included, but rather 

related with how those features are included (i.e., to the mathematical formulation of 

the features and to their interactions with the other modeled processes).  

DISCUSSION 

In the last two decades, there have been multiple initiatives to increase the use 

of mechanistic models in ERA (Forbes et al., 2019; Thorbek et al., 2010). Chipps and 

Wahl (2008) recommended focusing on model evaluation, fostering interactions 

between model developers and model users, and reducing uncertainty in modeling 

applications for guiding management. Model documentation and evaluation are now 

widely recognized as important components of any modeling exercises (Grimm et al., 
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2020, 2014; Schmolke et al., 2010b), and communication between regulators and 

modelers is strongly encouraged (Forbes et al., 2019).  

Many efforts have been made recently to promote the actual application of 

models as common practice in ERA, explicitly considering the perspective of risk 

assessors and managers. Raimondo et al. (2018) proposed a framework for developing 

and applying population models in regulatory decision making, expressly focusing on 

the regulators’ perspective. Their work aims at defining the needs of models in 

accordance with the objectives of the risk assessment. Schmolke et al. (2017b) 

developed a systematic approach to transparently develop population models. The 

authors built a detailed decision guide that takes into account the available knowledge 

and data, and that is intended to help model development. Although this work 

explicitly targets modelers, its result is a communicable conceptual model that 

summarizes the decisions taken by the modelers. The conceptual model provides an 

excellent starting point for consultation with risk assessors and regulators prior to 

model implementation, to involve all stakeholder groups and ensure buy-in. 

Our work builds on these earlier efforts and studies to assist risk assessors and 

managers in understanding the main types of population models, their advantages and 

limitations in association with specific ERA questions. Choosing the key features to 

represent in a model is part of the model development process and establishes the 

degree of complexity of the model. Decisions about model complexity depend on the 

model objectives, data availability, previous knowledge of the ecological system, and 

available resources (time, funding, etc.). The decision process related to considering 

key features, and deciding how they will be included in the model, leads to the 

creation of the conceptual model. The final conceptual model clearly states which 
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features have been taken into account and should be discussed and understood by all 

involved parties before moving to the next step, i.e. model implementation. The 

model type is decided in this implementation step. As we demonstrate in the current 

review, the model type defines the underlying formalism of the model that can be 

adapted and extended to include representation of the key features.  

Our work shows that the boundaries between the model types are sometimes 

blurred, since most key features can be included in unstructured, structured and agent-

based models. However, some features directly inform the choice of model type. 

Density dependence, stochasticity, energetics and, to a certain extent, spatial 

heterogeneity are easily included in the three model types. Structured models and 

ABMs are more suitable for representing external drivers and life-history traits. 

Finally, ABMs are best able to incorporate behavior, effects of varying exposures and 

spatial heterogeneity, if the latter influences many processes.  

As our overview shows, ABMs are the most flexible model type in terms of 

incorporating all key features in, if needed or possible, great detail. This comes to no 

surprise as unstructured and structured models aggregate information, which can limit 

how far the key features are taken into account. Still, the degree to which a key 

feature needs to be included, for example stochasticity or space, depends on the 

specific question and context. Furthermore, to include one or more of the key features 

in greater detail, ABMs need to be considerably more complex than the other two 

model types, which implies larger effort in terms of model building, parameterization, 

analysis, and application (Grimm, 1999). In practice, ABMs often would be “nice to 

have”, but constraints in data, time, or personnel can make it impossible to develop 

them in the time available. On the other hand, once an ABM including all key 
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features, in particular behavior and bioenergetics, has been developed and tested, it 

can cover a wide range of questions and be adopted to new cases and systems 

(Stillman et al., 2015).  

So far, the three model types discussed in this paper have been considered as 

exclusive alternatives, with clearly definable potentials and, in particular, limitations, 

as also shown by our analysis of previously published population models. Our work, 

coupled with systematic guidance on model development and implementation, 

prevents arbitrary model type selection, which can lead to ill-conceived statements 

concerning the relative merits of different modeling approaches for ERA (Bartell et 

al., 2003). 

Insights from multi-modeling 

The formalization and implementation of the conceptual model will depend on 

the model type chosen. As we show in our review, the formalizations of key features 

differ between model types. These formalizations come with advantages and 

disadvantages which may influence the model outputs (Meli et al., 2014). If the 

uncertainty about the model formalization is a concern for a particular ERA question, 

understanding and credibility of model results can be enhanced by a multi-modeling 

approach. Using a combined approach can add robustness to the conclusions drawn as 

well as highlight areas of uncertainty. 

Examples from the literature show how using a multi-modeling approach can 

provide more insights to understand natural systems and model capacities (DeAngelis 

et al., 1993; Meli et al., 2014; Pagel et al., 2008; Pfister and Stevens, 2003; Topping et 

al., 2005). These authors compare ABMs with unstructured or structured models, 

showing that results are similar under many circumstances. However, under certain 
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conditions, some factors can highly influence model outputs. For example, when 

using an ABM to model a population with positive temporal correlations in growth 

(i.e., individuals that grow faster than the mean one day, have a tendency to grow 

faster the following days), model outputs can diverge markedly from an unstructured 

model (DeAngelis et al., 1993). Similarly, population-level effects for different spatial 

distributions of a toxicant can be well represented by both ABMs and structured 

models in a homogeneous soil contamination scenario. However, predictions are not 

always consistent when contamination is heterogeneous, in particular if avoidance 

behavior and different food levels are included in the ABM (Meli et al., 2014). ABMs 

are therefore more suitable for risk assessment whenever fine-scale resolution, 

multiple stressors or particular behaviors clearly influence population dynamics (Meli 

et al., 2014).  

These results stress the crucial importance of understanding which processes 

have to be taken into account when developing a population model for ERA. If results 

of different models are not comparable, this points to different assumptions taken 

during model conceptualization or different formalizations of processes in model 

implementation. The corresponding assumptions and processes can be identified as 

important in the context of the ERA (Topping et al., 2005). Therefore, we advise the 

use of a multi-modeling approach in some circumstances, because it can increase 

confidence in model outputs to inform regulatory decisions. For example, developing 

two models can increase trust in models for which full validation in the field is 

impractical. However, we acknowledge that this approach is sometimes infeasible 

because of budget or time limitations. This highlights once more how important it is 

that modelers, regulators and risk assessors understand and communicate about the 
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whole modeling process, including the choice of the key features to represent, the 

model type to implement, and its assumptions.  

CONCLUSIONS 

In this review, we have provided an overview of the key features represented 

in population models relevant for ERA and a guide to understanding different model 

types, to clarify which insights can be gained by each of them. We have also analyzed 

how the key features have been used in published population models implemented as 

unstructured, structured (matrix), and agent- (individual-) based models. The review 

will help promote understanding of what the different model types are, how key 

features can be included in these model types, and how they drive the choice of model 

type. Our work joins the previous literature aimed at encouraging communication 

between regulators, risk assessors and modelers, and at ensuring the use of the best 

available science. It is meant to facilitate the efficient selection of population models 

for use in ERA, increase confidence in model conclusions, reduce subjectivity in 

model assessment, and enhance efforts in model evaluation.  

Figures 

Figure 1: Schematic representation of the three main model types. Each blue 

circle represents an individual and its radius the age, size or any other trait. The 

models represent the same wild population in three different ways. a) 

Unstructured models consider an average individual, without making any 

distinction among the organisms of the wild population. b) Structured models 

divide the population into classes (N1, N2, N3), in which different organisms of the 

same age/stage/size are averaged. c) ABMs represent each organism, taking into 
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account as much individual variability as considered relevant (for more 

information see the text). 
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Figure 2: Summary of the statistical analysis of the model database compiled by 

Forbes et al. (2016). Each panel presents the frequency of inclusion of key features (y-

axis, %) per model type (x-axis, Agent-based, Structured and Unstructured). The 

symbol (***) indicates the significance (p<0.05) of the Chi-square tests of 

independence. The different colors represent whether or not the feature was included. 
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Figure 3: Proportion of models including 0 to 6 features for each model type. 

Each panel presents the proportion (y-axis, from 0 to 1) of models including a 

finite number of key-features (x-axis, from 0 to 6) for each model type (Agent-

based in green, Structured in red, and Unstructured in blue). 

 

Table 1. Overview of key features to consider in the development and evaluation of 

population models for ERA. 
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population 

growth rate 

with 
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size due to 
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growth 

rate as 

function 

of 

population 

density. 

Usually 
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d by a 

logistic 

function 
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population 

or stage-

specific 

growth rate 

as function 

of 

population 

density 

(often 

logistic 

function) 

Include 

rules 

governing 

behavior of 

individuals 

such that 

density 

dependence 

emerges 

When 
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limitation is 

expected to 

influence 
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dynamics (i.e. 
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always) or 

populations 

are so small 

that Allee 

effects may 
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ty in biotic 

or abiotic 
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, each 
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patches by 

different 
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other 

structured 

population 
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continuous 

movement 

of each 

agent in 
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ns or using 
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variability is 

expected to 

have an 

important 

influence on 

organism 

behavior/fitne
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energetic 
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and 
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response to 
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from 

probability 

distributions 

and use 

probabilistic 

rules for 

how to 

proceed in 

each time 

step 

When it is 

important to 

quantify 

variation 

which is due 

to uncertainty 

in model 

outputs or 

provide 

probabilistic 

risk estimates 

Life-

history 

traits 

Events in 

the life of 

an 

organism 

related to 

birth, 

survival, 

growth, and 

reproductio

n 

Not 

represente

d  

Use lab or 

field data to 

derive 

transition 

rates or 

theoretical 

relationships 

to predict 

transitions 

from one 

life stage to 

the next  

Use lab or 

field data to 

estimate 

individual 

properties or 

processes or 

theoretical 

relationship

s 

When 

(toxicity) data 

are available 

for survival, 

growth, or 

reproduction 

but the goal is 

to protect 

populations  

Behavior An 

organism’s 

Combine 

unstructur

Implement 

separate 

Add agent 

behavior 

When 

organism 
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A
c

c
e

p
te

d
 A

r
ti

c
le

 
immediate 

response to 

physiologic

al and 

external 

biotic and 

abiotic 

factors 

ed models 

as 

submodels

, each 

representi

ng 

different 

behaviors  

submodels 

with 

different 

stage-

specific 

parameters 

submodels 

using rules, 

functional 

relationship

s or decision 

algorithms 

behavior is 

expected to 

have an 

important 

influence on 

chemical 

exposure or 

be influenced 

by chemical 

exposure 

Energetics Processes 

that involve 

energy 

intake, 

allocation, 

and 

expenditure 

(costs) 

Use 

theoretical 

or 

empirical 

equations 

to 

represent 

the 

change in 

biomass 

productio

n of a 

population 

Use 

theoretical 

or empirical 

equations to 

characterize 

each stage 

or age by its 

own 

energetics  

Use 

theoretical 

or empirical 

relationship

s to 

characterize 

energy gain 

and costs of 

each agent 

When 

understanding 

the metabolic 

basis of 

changes in 

life-history 

traits 

influencing 

population 

dynamics or 

exposure is 

important 

Integration 

of 

exposure 

and effects  

Comparison 

of expected 

exposure to 

a chemical 

in space 

and time 

with the 

effects 

expected to 

occur at 

that 

exposure 

level  

 

Represent 

exposure 

effects 

through 

parameter

s (e.g. 

mortality 

rate due to 

exposure) 

in the 

ODE, or 

in a 

system of 

ODEs that 

integrates 

variability 

in effects  

Adjust 

stage- or 

age-specific 

demographi

c variables 

to defined 

exposure 

scenarios  

Simulate 

different 

spatiotempo

ral 

exposure-

effect 

scenarios 

acting on 

each agent 

using theory 

or empirical 

data 

Always, as 

this is the 

central basis 

of ecological 

risk 

assessment of 

chemicals  

 

 




