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Abstract8

In the context of geotechnical and geological barriers, a thorough analysis of uncertainty and

sensitivity is a crucial aspect of any physics-based performance assessment. While experimental

data are scarce in actual waste repositories, large-scale experiments in underground research labo-

ratories (URLs) provide such data that can be used to not only qualify THMC process models but

also uncertainty assessment methodologies. In this paper, we adopt a Design of Experiments (DoE)-

based history matching workflow – an approach popular in the oil and gas industry – and scrutinize

its applicability for multiphysical analyses of nuclear waste disposal-related processes using syn-

thetic experimental data. Based on an analytical solution of a coupled thermo-hydro-mechanical

(THM) problem of a heat source embedded in a fluid-saturated porous medium mimicking a dis-

posal cell in an argillaceous host formation, we discuss the adaptability of the workflow as a way

to address parameter and model uncertainties for barrier integrity assessment. We thereby put

particular focus on the relative importance of providing defined input parameter distributions for

quantities generally afflicted with epistemic uncertainty and the constraints imposed by experi-

mental (URL) or monitoring (repository) data. We found that once constraining data is available,

the particular a priori distribution plays only a minor role for the outcome, such that we can

conclude that the often unknown distributions can be substituted by uniform priors under such

conditions. However, detailed knowledge of parameter distributions can increase the efficiency of

the workflow significantly. We conclude that the presented workflow is particularly suitable for

performing uncertainty quantification and sensitivity analysis for geotechnical applications where

monitoring or other experimental data are available, as it allows us to deal with models of great

complexity, epistemic uncertainty and it incorporates canonically to use of measured data in order

1



to reduce uncertainty.
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1. Introduction16

One of the objectives in the design of nuclear waste repositories is to provide solutions that are17

robust and simple in the sense that their future evolution can be subjected to predictive analyses18

based on the current physical understanding of the involved processes. Nevertheless, in conjunction19

with the large spatial and temporal scales relevant to system evolution, any predictive analysis of20

thermo-hydro-mechanical processes around radioactive waste repositories retains a considerable de-21

gree of uncertainty. Safety regulations, therefore, require implementors to address this uncertainty22

at different levels.23

The focus of this contribution is uncertainty quantification for the use in performance assess-24

ment of radioactive waste repositories and their components, which remains a thoroughly challeng-25

ing task. Commonly, one distinguishes between uncertainty analysis/quantification and sensitivity26

analysis. The former is related to the determination of the overall uncertainty of a model system27

in terms of its input, whereas the latter refers to evaluating the relative contribution of each input28

(cf. e.g., [1]) to this uncertainty. Both aspects are naturally linked and addressed in this work.29

Dependent on the host rock in which nuclear waste is to be emplaced, different thermo-hydro-30

mechanical-chemical (THMC) processes need to be analyzed that might influence the transport of31

radionuclides in the geological disposal system [2, 3, 4]. In a repository for high-level waste, some32

of the most significant effects during the post-closure phase are triggered by the waste packages’33

decay heat, causing major changes in the physical properties of the host-rock in the near-field and34

driving the system away from its former equilibrium state.35
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Many other disturbances to the natural state are caused by the excavation itself and dominate36

the early stages of a repository evolution. The excavation-induced changes of the HM boundary37

conditions and chemical equilibria in the near-field also represent initial conditions for the post-38

closure phase. Such effects are neglected here. A detailed overview and description of processes39

that play an important role can be found elsewhere [5, 3, 4].40

J. C. Helton [6] provided a general overview of different uncertainty and sensitivity analysis41

techniques applicable to a broad set of problems. Most of the outlined techniques remain perti-42

nent, while some new methods emerged (e.g., SSFEM [7, 8, 9], random set theory [10, 8], or new43

approaches to address global sensitivity [11, 12]) or existing methods have been developed further44

since the early nineties (response-surface methods [13, 14] and Monte-Carlo methods [15]). The45

choice of a particular method depends—aside from conceptual aspects—to a large extent on the46

specific problem, its complexity, and the available computing power.47

Indeed, when performing distribution sampling, the resulting response distributions will heavily48

depend on the a priori distributions of the input variables. In the context of studying radioactive49

waste disposal, this might be crucial. Commonly, we distinguish between aleatory and epistemic50

uncertainty. Whereas aleatory uncertainty is due to a random process or a stochastic variability51

of a phenomenon, epistemic uncertainty represents insufficient knowledge about a parameter (cf.52

e.g., [16]). Here, we are dealing mostly with epistemic uncertainty because most parameters vary53

intricately in space and time, meaning that it would be, in most cases, an onerous task to precisely54

measure them. It is a matter of on-going debate, whether it is possible in all cases to adequately55

describe these kinds of uncertainties in terms of classical probability theory [17, 18, 10, 19].56

In our work, by model error, we are referring to structural discrepancies coming from a lack of57

knowledge of the underlying physics for the problem at hand. This also emphasizes the need to58

validate a computer model (this includes not only the governing equations and numerics but also59

the geometry, scales that need to be considered, and also its boundaries). In order to judge the60

practical significance of a validation, the model’s uncertainty needs to be quantified. Therefore, an61

approach to uncertainty quantification that incorporates experimental data that can be directly62

compared to model predictions would be very appealing. Aside from parameter uncertainties and63

model inadequacy, other sources of uncertainties constitute numerical inaccuracies and observation64

errors that are not tackled by our investigation as they can be subsumed by the others or are of65
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low relevance in most cases.66

The software employed for performance assessment and coupled process simulations of geotech-67

nical and geological barriers in repositories in various host rocks has undergone significant develop-68

ment over the past decades both in terms of physical representation and computational efficiency69

[20, 21, 22, 23, 24]. This development, however, has been largely disconnected from the develop-70

ments in the UQ [25, 26] community, and very few links exist [27]. Thus, while improvements in71

hardware and software over the past decade have provided us with modeling tools that enable the72

modeling of radioactive waste repository sites in increasing detail, a direct Monte-Carlo approach73

would still pose enormous demands in terms of computing power and time. Response surface,74

proxy, or surrogate model approaches are one avenue for keeping the analyses tractable.75

While in past discussions of parameter and model uncertainties in radioactive waste repositories,76

the focus has been mainly on transport phenomena [28, 16, 6, 29], a future challenge remains to put77

the entire coupled system (i.e. THMC processes) with all its relevant uncertainties under scrutiny78

as only a few stochastic case studies exist to the present day [30, 31, 32].79

Data to calibrate and validate models against require a monitoring program to be installed80

as part of repository construction. For nuclear waste disposal research, it discloses another im-81

portant application area: model development and validation using large-scale in-situ experiments82

in underground research laboratories cannot merely be about chasing the ’best match’. Instead, a83

meaningful model development and validation endeavour needs to take both experimental and mod-84

eling uncertainty into account. Global sensitivity analysis (GSA) and uncertainty quantification85

(UQ) can help not only in obtaining a better physical understanding but also in the identification86

of meaningful target validation corridors for modelers to aim at.87

This article focuses on the applicability of the DoE-based history matching workflow to the88

multiphysical modeling of radioactive waste repository sites and components. In lieu of validating89

the approach based on ongoing in-situ experiments and envisioning the implementation of a certain90

monitoring phase of a future repository, our objective is to calibrate the THM model against91

continuously monitored in-situ data and subsequently to perform a probabilistic predictive analysis,92

i.e., a forecast. To pave the way for such analyses, this paper evaluates the workflow based on93

synthetic experimental data.94
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2. The underlying multiphysical (THM) problem95

The DoE-based history matching workflow is applied to a coupled thermo-hydro-mechanical

(THM) model of a heat source embedded in an isotropic fluid-saturated porous medium. Although

clay-rock typically exhibits thermal, hydraulic, and mechanical anisotropy, this was ignored for the

purposes of this study, which used synthetic experimental data derived from an isotropic model.

The same workflow, as described below, can be applied to more general settings without the

need of further changes. The model can be formulated in terms of the three primary variables

temperature, pore pressure, and displacement in the balance equations of mass, momentum, and

energy complemented by the constitutive relationships of the fluid and solid phases as well as

their interaction in the context of porous-media mechanics [33, 34]. As the heat source causes an

increase in local temperatures, solids and fluids expand, creating pore pressure and effective stress

variations. The emerging pressure gradient causes the fluid to flow away from the heat source,

resulting thereby in a dissipation of the pore pressure in a thermally induced consolidation process.

The corresponding equations of the linear problem can be written in terms of a thermal, hydraulic

and mechanical part that are coupled to each other. The thermal part is described in terms of the

energy balance equation which reads (for a brief nomenclature, see Tab. 1)

mṪ + ρwcwT, ivi − (KT, i), i = qT (1)

where qT is a heat source per unit volume and, m (volumetric heat capacity), K (heat conductivity)

and vi (Darcy velocity) are given as

m = ϕρwcw + (1− ϕ) ρscs (2)

K = ϕKw + (1− ϕ)Ks (3)

vi = −ks
µ

(p, i − ρwgi) (4)

The the mass balance equation describes the hydraulic part including couplings and is given by

βṗ− auṪ + αBu̇i, i + vi, i = qH (5)

where qH is the source term for the fluid while au is given as

au = ϕaw + (1− ϕ) as (6)
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The mechanical part can be derived from the momentum balance equations and reads

σij, j + ρgi = 0 (7)

where ρ = ϕρw + (1− ϕ)ρs and σij is the total stress which is given by

σij = σ′
ij − αBpδij (8)

where δij refers to Kronecker delta and σ′
ij is the effective stress tensor which is given as

σ′
ij = Cijkl

(
ϵkl −

1

3
a′∆Tδkl

)
(9)

Where Cijkl and ϵkl are the stiffness and strain tensors, respectively. For isotropic case, the above

equation can be rewritten as

σ′
ij = 2Gϵij + λϵkkδij − b′∆Tδij (10)

where

b′ =

(
λ+

2G

3

)
a′. (11)

This specific problem can be solved analytically under few simplifying assumptions. The so-96

lution and its comparison with a corresponding numerical model can be found elsewhere [35, 36].97

The model can be understood as a simplified version of a single disposal cell filled with radioactive98

material and emitting decay heat emplaced in an underground repository in a low-permeability99

host rock such as clay rock. In our workflow, the analytical model (further denoted as AM) is used100

on the one hand for the generation of synthetic experimental data, and on the other for the major101

part of the system analysis, i.e., for proxy generation (the kriging proxy model is further referred102

to as PM) as well as for history match selection/parameter identification.103

In order to demonstrate the role of the forecast, i.e. a predictive analysis, in the workflow, we104

increased the power of the heat-flux in a step-wise manner, as done in actual heater experiments105

[37]. As a consequence, the resulting forecast response curves are non-trivial and predict behavior106

that goes beyond the calibration domain of the model. As the analytical solution is not capable107

of reflecting this change in heat power, the forecast uses the finite element method instead (the108

numerical model is further denoted as NM in the text). For this purpose, a two-dimensional model109

domain with axial symmetry representing a half-space of the spherically symmetric problem was110
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Figure 1: Mesh used for the numerical model with the applied boundary conditions.

created. Alongside the inner symmetry boundaries, the axis-normal displacements are set to zero,111

while at the outer boundaries the pore pressure is required to vanish1, and the temperature is fixed112

to its initial value (293.15 K) along the outer boundaries. The mesh together with a summary of113

the applied boundary conditions is depicted in Fig. 1.114

Further computational details are given in [36]. In Tab. 1, we present a list of parameters along115

with their lower and upper limits that will be used in the uncertainty and sensitivity analyses. The116

corresponding probability density functions are displayed in Fig. 1 of the electronic supplementary117

information (SI).118

3. History matching (HM) and uncertainty quantification (UQ)119

3.1. General workflow120

The applied approach, known as experimental design (DoE)-based history matching, is closely121

related to the above-mentioned response-surface methods and Monte-Carlo sampling and has been122

applied to production forecasts in the oil and gas industry [13, 38]. To the best of our knowledge it123

has not been applied to problems in radioactive waste management. This is likely because usually,124

there is no historical data to match and most of the analyses are purely predictive. However,125

underground research laboratories (URLs) provide experimental data sets that allow us to explore126

1We depart from vanishing initial stresses and pore pressures due to the linearity in the constitutive models used.
Stresses and pore pressures thus represent increments rather than absolute values.
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Table 1: Used bounds of material parameters for the analytical (AM) and numerical model (NM). More details given
in Tab. 1, SI.

Parameter symbol low best high unit
Young’s modulus E 2.1 · 109 2.7 · 109 3.5 · 109 Pa
Poisson’s ratio ν 0.28 0.33 0.38 -
Vol. thermal expansion
coefficient of the solid as = a′ 1.5 · 10−6 4.2 · 10−6 1 · 10−5 K−1

Vol. thermal expansion
coefficient of water aw 1.695 · 10−4 3.98 · 10−4 5.63 · 10−4 K−1

Porosity ϕ 0.14 0.183 0.247 -
Water density ρw 979.4736 991.46 998.767 kgm−3

Solid grain density ρs 2700.0 2768.5 2872.0 kgm−3

Specific isobaric heat
capacity of water cw 3941.38 4065.12 4167.71 J kg−1K−1

Specific isobaric heat
capacity of the solid cs 760.0 860.0 960.0 J kg−1K−1

Heat conductivity
of water Kw 0.592015 0.63122 0.657 Wm−1K−1

Heat conductivity
of the solid Ks 1.0 1.7 3.1 Wm−1K−1

Dynamic viscosity
of water µ 4.237 · 10−4 0.000633 0.0011 Pa s
Intrinsic permeability ks 2 · 10−20 3 · 10−20 2 · 10−19 m2

Initial temperature T0 292.15 293.15 294.15 K

this avenue. Therefore, an “ansatz” containing the parallel analysis of modeling and experimental127

data is the ideal choice, as it allows us to link model calibration with the analysis of parameter128

uncertainties. The applied approach is very closely linked to Bayesian history matching [39].129

However, in contrast to the latter, the posterior function is taken from filtering the response of130

the direct sampled priors, whereas Bayesian approaches typically use a likelihood function (derived131

from the history-match error) to obtain Markov Chain Monte Carlo estimates.132

Aside from the URL perspective, repository concepts including monitoring activities at least133

for the early post-closure phase constitute a potential basis for analyses incorporating history134

matching. Thus, if deemed suitable, this workflow can be of potential relevance for the design and135

monitoring of future repository systems.136

Note in passing, that similar considerations apply to other geotechnologies.137

Following the steps as presented by [38], we want to highlight some features that appear par-138

ticularly interesting for the class of problems at hand as summed up in the previous section:139
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Figure 2: Schematic sketch of the workflow.

– history matching canonically incorporates experimental data enabling us to calibrate the140

numerical model141

– the use of proxy models for the history match error allows for direct Monte-Carlo sampling142

with a statistically sufficient number of samples while keeping the computational burden143

manageable144

– initial parameter screening prior to proxy building makes it possible to neglect insignificant145

parameters146

– in contrast to many other more specialized uncertainty quantification methods in finite ele-147

ment modeling, it is generally applicable to non-linear and coupled problems148

In Fig. 2, we present a sketch in which we transferred the workflow to our purposes of uncertainty149

quantification and sensitivity analysis.150

1. The first step is devoted to problem framing. In order to assess the applicability of this151

approach to coupled THM models while keeping the computational burden minimal, we152

employ an analytical solution that retains most of the essential primary THM couplings for153

the model evaluations as well as for synthetic data generation. Another issue we want to154

address in this paper is the sensitivity of this methodology to particular input parameter155

distributions given only lower and upper bounds. Therefore, all parameters that are assumed156

to carry uncertainty are assigned to two different kinds of input distributions. We assume157

distribution types found for the Meuse/Haute Marne URL site (France; [40]), and compare158
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the results to data gathered based on uniform priors for all parameters. As we are dealing159

mostly with parameter uncertainties of the epistemic type, we are seeking to identify a method160

that is robust in terms of prior parameter distribution assumptions.161

2. In the second step, based on response quantities of interest, history match error metrics are162

defined.163

3. In the third step, we take the THM model and subject it to two different kinds of screening164

designs (one-variable-at-a-time and Placket-Burman) to obtain some initial understanding of165

sensitivity.166

4. Consequently, a proxy is built based on space-filling Latin-hypercube sampling. However,167

before proceeding to real applications, we need to evaluate the size of the sampling space168

required and estimate the resulting computational effort.169

5. After checking essential quality measures, we use the proxy to perform a Monte-Carlo sam-170

pling on the entire uncertainty space.171

6. During the history matching step, only results are selected that follow observed (in our case,172

synthetic) experimental data.173

7. In an attempt to account for proxy errors, the filtered parameter sets are used to conduct174

real model runs, that should support the agreement between the experimental and modeling175

results.176

8. The history-matched parameter sets are used for forecasts. As the idea of our test case is177

to mimic a real-world experiment, we change the source term by increasing the power of the178

heat source for the forecast. Since the analytical solution is not capable of describing this179

change, we used a corresponding verified numerical models to conduct the forecast.180

9. The uncertainty quantification in terms of percentiles of predefined performance or observa-181

tion measures can then be done based on a forecast.182

10. Finally, we present results from a global sensitivity analysis in terms of Sobol’s indices that183

are based on the proxy estimate in order to identify the main factors contributing to the184

observed uncertainty. This is done both for prior and posterior distributions of input factors.185

3.2. Workflow implementation: synthetic experimental data186

The synthetic experimental data was created using a random seed selecting a set of input187

parameter values uniformly within the lower and upper bounds of each input parameter (Tab. 1)188
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by evaluating the analytical model (AM). The data was gathered from a data sheet describing189

the characteristics of the Opalinus Clay at the Mt. Terri site in Switzerland [41]. The generated190

time-dependent response curves were varied with additional white noise (see Fig. 3).191

3.3. Workflow implementation: parameter input for analysis192

For system analysis, the same data with their corresponding input distributions were used193

(Tab. 1 and SI Tab. 1). The functional forms for the input parameter distributions were taken194

from a description of the DECOVALEX 2019 Task E specifications [42, 40]. Additionally, we also195

performed an analysis based on the same input limits but using only uniform input distributions196

to study the significance of the functional form of the input distributions. The water-related pa-197

rameters aw, ρw, Kw, cw, and µ are relatively precisely known for given temperature and pressure.198

However, as they are assumed to be constant in the analytical model (AM), we treat them here as199

independent random variables with min/max values according to the temperature interval spanned200

by Tmin = 290 K and Tmax = 380 K. As a matter of fact, such a treatment expands the uncer-201

tainty space beyond the necessary scope as the underlying relation is known to be deterministic.202

Nevertheless, as we are are performing also a sensitivity analysis, it gives us also an insight into203

which parameters can be regarded as constant due to their low sensitivity and for which parame-204

ters we have to consider their deterministic relationship. In this study, we focused on five response205

quantities namely temperature, pressure, displacement, and radial as well as circumferential stress206

evaluated at an arbitrarily chosen observation point (P = (0.5m, 0.0)) and compared to the cor-207

responding (synthetic) experimental data obtained as time series at the same location. In this208

publication, we subject our investigation to a single observation point only, because of spherical209

symmetry (i.e. the problem has only one effective spatial dimension) and the fact that both, the210

synthetic experimental data as well as the history match-model (AM/NM) are of the same origin,211

i.e., the information obtained at a single location should be enough to perform a sufficient history212

match.213

3.4. Workflow implementation: Design of Experiments (DoE)214

In the applied workflow, methods of experimental design (DoE) are used to reduce the num-215

ber of degrees of freedom in order to build a proxy model (PM) that can be used efficiently for216

Monte-Carlo sampling and history matching. The degree of a possible agreement between experi-217

mental and modeling (time-series) data permits the quantification of model uncertainties, whereas218
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the probabilistic analysis of the forecasted history matched model (NM) allows for uncertainty219

quantification of model and parameter uncertainties combined. The relative significance of dif-220

ferent input factors on the model output is investigated by means of a global sensitivity analysis221

based on the proxy model (PM) with particular reference to the history match error. The PM was222

built based on the space-filling Latin-Hypercube design. For the purpose of an initial parameter223

screening, the parameter space was sampled using a (folded) Placket-Burman design [43] and a224

One-Variable-at-A-Time (OVAT) design at the domain bounds and around the ’best’ values. This225

procedure is often referred to as local sensitivity analysis.226

3.5. Workflow implementation: used software and libraries227

The entire workflow was implemented in Python using the pyDOE22 library for the experimen-228

tal designs, GPy [44] for the proxy modeling of the history match error and SALib3 for the global229

sensitivity analysis (GSA). The entire workflow is wrapped around the multiphysics simulator230

OpenGeoSys4 [24, 45] and thereby ready for use with configurations of much greater complexity.231

3.6. Problem Framing232

The system under scrutiny is a greatly simplified model of a single canister of radioactive233

waste described by a point heat source in an infinite homogeneous isotropic porous fluid-saturated234

medium, as described in Section 2. In this case study, we analyzed the scalar quantities T and235

p as well as the ur component of the displacement vector and the σrr and σφφ components of236

the stress tensor. As stated earlier, the response is only measured at one location, so we decided,237

therefore, to include both stress components as derived quantities in order to make the model238

sufficiently complex. The corresponding history match error metrics are then defined for each239

response quantity by240

eHM =

√√√√ 1

n

n∑
i=1

(dobsi − dsimi )2. (12)

241

Here, n is the number of data/observation points in time, but also space, meaning that one242

error metric can, in principle, also be comprised of several observation locations. Under certain243

2https://pypi.org/project/pyDOE2/
3https://salib.readthedocs.io/
4https://www.opengeosys.org/
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(experimental) conditions, it might be useful to introduce an additional weighting factor for the244

data points. As we have only one observation point in this study, the sum is over a number of 2000245

time steps (∆t = 5000 s) used here for the synthetic data generation as well as for (NM -)modeling.246

dobsi corresponds to an observed datum, whereas the dsimi corresponds to the simulated data. In247

this study, dobsi are synthetic experimental data, as described in the previous section.248

4. Results249

4.1. Sensitivity Screening250

A local sensitivity analysis is conducted to get a first idea about the model (AM), i.e., its overall251

variability, its heavy hitters, and also any non-significant input parameters to be omitted during252

proxy building. We strive for a smaller number of inputs as they should result in better proxy253

quality if keeping the number of overall training samples fixed. Alternatively, seen from another254

perspective, we might be able to reduce the number of training samples resulting in a comparable255

proxy quality when having fewer inputs, i.e., a smaller uncertainty space. To serve this purpose,256

the size of the screening design should be taken much smaller compared to the runs needed for257

proxy training. More precisely, the required effort to neglect inputs should relate to a probable258

gain in time or proxy quality.259

In this study, we start with a One-Variable-at-A-Time (OVAT) design to get a first insight and260

to create tornado plots (i.e., horizontal bar charts). The OVAT design was conducted in two ways.261

Both commence from a run with all parameters set to their baseline (referred to as ’best’ in Tab. 1).262

The first type is intended to cover the entire parameter range, so changes in the response variables263

(eHM) were obtained by changing the input parameters one at a time to their defined extreme264

values (’low’/’high’ values in Tab. 1). In the second type of OVAT design, the changes around the265

baseline were reduced to a fraction of 100 and re-scaled afterward, i.e., the response was multiplied266

again by a factor of 100 to be comparable with the former design. However, the result of the latter267

type is more akin to a local sensitivity (tangent in the baseline), while the former evaluates the268

model (AM) at its actual extremes (secant). Additionally, we introduced a dummy parameter that269

is defined in the interval [−1, 1] to obtain a clearer picture for distinguishing between significant270

and insignificant effects, which becomes important when applying statistical significance tests.271

In Fig. 4 we show the tornado plots of the aforementioned types of OVAT designs for the272

pressure-related error metric eHM
p . The tornado plots of the remaining response variables are273
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Figure 3: Synthetic experimental response curves over the entire history match time span of 106 s (about 11 d) at
Point P = (0.5m, 0.0).
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Figure 4: Tornado plots of the pore pressure history match error (Pa) at point P = (0.5m, 0.0, 0.0).
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presented in Fig. 2-5 of the SI. Combining the information from all response variables, we can274

identify some parameters that have no or only a marginal impact (concerning the defined intervals)275

on the response variables. With a predefined triviality/significance margin of five percent, we find276

that ρw, ρs, cw, Kw, and T0 have only a small impact on all response variables, i.e., can be neglected277

later for proxy building.278

The symmetry of the narrow band screening is due to the local perturbation of the base value279

and the subsequent re-scaling. Assymmetric effects due to a non-linear influence of model parame-280

ters or due to assymetric ’high’/’low’ values are only visible in the bounds screening variant of the281

tornado plots (Fig. 4). We also see that shifts in ranking occur due to the strong impact of the282

actual parameter variability on its associated sensitivity, an effect that is not captured by a local283

tangent.284

It is essential to mention that the presented OVAT design has several drawbacks. One is that

the system is probed only locally at a fixed position around the intermediate values. The second

is that we do not test interactions between variables. To obtain more accurate results, we applied

a folded Plackett-Burman design to screen the main effects as suggested in [38]. The sensitivity

screening is then done employing a t-test on the regression coefficients using linear regression of a

linear model (LRM)5:

eHM = β0 +
k∑

i=1

βixi + ϵ. (13)

If studying also two-way (or higher) interactions, different designs need to be employed. Suitable285

experimental designs might be D-optimal and fractional-factorial designs keeping in mind that the286

minimum number of runs is given by the number of unknown coefficients of the regression equation.287

288

While the Pareto chart in Fig. 5 shows a very similar behavior qualitatively as the tornado plot289

(Fig. 4), it appears as if only one parameter reached the critical t-value, i.e., can be considered as290

significant. However, a closer look at the coefficient of determination, and the F-statistics revealed291

that the sampling is not sufficient to exclude insignificant parameters because interaction terms292

were sampled but not included in the linear regression model (LRM).293

As mentioned above, it is possible to switch to larger designs and also to account for interactions.294

5For more on t-test and hypothesis testing in the context of regression analysis cf. Regression Analysis by Example
[46].
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Figure 5: Pareto charts based on regression of a linear model for eHM
p . Analysis of t values was conducted using a

folded Placket-Burman design (left) and latin-hypercube sampling (right) of the model domain (400 samples). The
vertical line corresponds to the critical t-value for a significance level of p = 0.05.

As we are conducting this initial sensitivity screening for achieving gains in proxy performance,295

we require to stay well below one order of magnitude of the space-filling design we later use for296

proxy-building – otherwise the reduction of the uncertainty space would not pay off. However,297

we need to perform a space-filling design like Latin hypercube sampling (LHS) of the order of298

several hundred runs either way. Therefore, we can use the conducted design for proxy-building to299

perform an additional sensitivity screening in order to confirm our results so far. Using an ordinary300

LHS design with a size of 400 sampling points, we applied the t-test as presented above using a301

linear model (LRM) accounting only for main effects. Contrary to Placket-Burman screening, the302

F-statistics support the claim of a significant influence of the linear fitting in general. Very much303

in agreement with the results from the OVAT screening, we find that ρw, ρs, Kw and cw to have t-304

values below tcrit (p ≤ 0.05) for all response error metrics, i.e. can be regarded as non-influential for305

all response parameters based on their given bounds of variation. When comparing both diagrams306

(Fig. 4 and Fig. 5, respectively), we find that the order of sensitivity of most parameters changes,307

which comes from different contributions of certain parameters at different locations when using308

a space-filling design. Another point, we want to stress here, is that in all cases, the dummy309

parameter ranks above other parameters while staying well below the critical t-value, which gives310

us confidence that those parameters do not have a significant impact on the model AM. The fact311

that the t-value is not precisely zero is not a surprise as we are trying to fit a linear model (LRM)312

with a manageable amount of samples. Even though using a space-filling design, we might overlook313
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some effects that come from, e.g., a smiley face pattern or effects that stem from interactions of314

input parameters. However, at this stage only a preliminary screening is intended and a more315

thorough sensitivity analysis will be conducted later using the proxy (PM) and sampling-based316

methods that also provide much better coverage of the uncertainty space [29, 12] and that allow a317

better quantification of relative effects.318

4.2. Proxy Building319

For proxy building, as stated in the previous paragraph, a space-filling design like Latin hyper-320

cube sampling (LHS) needs to be employed. As proxies, typical choices are polynomial, splines,321

kriging, or neural networks. A very suitable choice for our purpose is Gaussian process regression322

(often referred to as kriging in the geosciences) as every training point can be recovered precisely323

by the proxy, so it is thereby expected to provide better accuracy compared to parametric proxies.324

Comparisons for different types of proxies can be found elsewhere [38, 47]. At this stage, we take325

all parameters with assigned uncertainty with us, as we want to study what kind of influence the326

omission of some of them will have on the proxy quality. The proxy was built based on 50, 100,327

150, ..., 400 training samples plus 200 testing samples of a space-filling Latin-hypercube design328

to observe the convergence behavior of the coefficient of determination in order to determine a329

required number of training samples.330

In Fig. 6(c), we plotted the time needed to build and apply the proxy to the testing samples,331

together with the R2 (Fig. 6(a)) and RMSE quality measures (Fig. 6(b)) for eHM
p over a varying332

number of training samples. Different curves correspond to different classes of a priori input dis-333

tributions (non-uniform vs. uniform assumptions) and different sets of omitted input parameters.334

What we see at first glance for the proxy quality measures, is that the R2/RMSE values improve335

quite strongly between 50 and 200 training samples, while changes tend to converge for higher336

numbers. Keeping in mind that for each training and testing sample, a full run of the typically337

very costly NM -model is required, the search for a sample number compromising between accu-338

racy and computational effort becomes obvious. Therefore, one would prefer the application of339

a sequential sampling strategy [48] and stop increasing the number of training samples when a340

justifiable R2/RMSE value is reached.341

As can also be seen from the plots, we can clearly distinguish between uniform and non-uniform342

parameter distributions, although the differences vanish for a higher number of sampling points.343
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Figure 6: Performance of the eHM
p kriging proxy for a varying number of input parameters and training samples.
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Figure 7: Residuals of the eHM
T error metric based on 100 and 400 training samples.

This means, with respect to proxy quality, that the drawback of not knowing the exact distribution344

can be compensated by choosing the size of the Latin-hypercube design big enough. On the other345

hand, no clear trend is visible for the omission of non-influential parameters. Indeed, the difference346

between uniform and non-uniform parameter distributions is somewhat expected, as in the uniform347

case, a greater parameter space is covered, leading to a lower sampling density on the average.348

The not-shown response quantities also confirm these trends (see Fig. 8-9 SI for further details).349

Similar to the quality measures, the time required for proxy building and testing is also not very350

sensitive to parameter omission. As R2 and RMSE give us a rough sense of the proxy quality, we351

also had a look at how the residuals are, in fact, distributed (Fig. 7). The residuals are plotted352

versus their associated proxy estimates for 100 and 400 training samples. Both plots show only353

slight heteroscedastic behavior, mainly an increasing variance for a higher proxy estimate. While354

greater heteroscedasticity could pose a real problem, slight heteroscedasticity is often unavoidable.355

Another important measure of proxy quality is whether the proxy preserves essential mathematical356

and physical properties. One such property of the history match error is that it is strictly positive.357

In Fig. 8 one sees that a small fraction, especially for smaller sample sizes, does not fulfill this358

criterion. However, for the σrr- proxy built using 400 training samples only a fraction of < 10−3359
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Figure 8: Kernel density estimate of the eHM
σrr

proxy error metric and their histogram of differences to 400 samples
reference based on 200, 000 MC samples.

is negative, keeping in mind that the expectation value of eHM
σrr

is ≈ 105 Pa. To conclude our360

analysis, a sample number of 400 without omitting any input seems to be a reasonable choice for361

our further investigation as no significant improvement could be achieved by either increasing the362

sample numbers or omitting sets of marginally influential parameters.363

4.3. Monte-Carlo Sampling and history match Filtering364

Based on the choice of the previous paragraph, the proxy model (PM) is ready for Monte-Carlo365

sampling. 200,000 Monte-Carlo samples are drawn from the prior ’non-uniform’ and ’uniform’366

distributions and evaluated for each proxy error metric.367

For testing purposes, we applied three increasingly strict filter criteria (Tab. 2) to the sampling368

results and analyzed the output (Fig. 9) as well as the corresponding history-matched input param-369

eter distributions (Figs. 10 and 11) for non-uniform and all uniform priors. Thereby, we selected370

only samples that satisfied the history match criteria for all variables simultaneously. Whereas371

blue corresponds to the prior distributions, orange, green, and red denote the different conditions372

as defined in Tab 2. All histograms are re-scaled after filtering in order to be visible in the figures.373

Taking first a look at Fig. 9, we see that except for the temperature, all history match curves374

are lying between values around zero and the cut-off condition smaller than the prior histogram375

reaching its maximum. The temperature-’anomaly’ can be explained by the fact that the range376

of possible solutions is comparable to the noise of the synthetic experimental curve (cf. Fig. 3).377
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Therefore, the history match error is very much affected by the noise, which also leads to the shift378

of around 0.5K in the histogram. Comparing the results to the data obtained from uniform prior379

distributions, we see that the posterior distributions seem to behave very similarly. In other words,380

if the prior uncertainty space is much bigger than the space obtained by the filter, then the exact381

forms of the prior parameter distributions become irrelevant when sampled appropriately. Another382

more subtle point is that the condition to satisfy all criteria simultaneously leads to a significant383

reduction of the number of matched curves compared to the histogram’s area that would remain384

after application of the individual quantity’s criterion alone.385

variable test cond. 1 test cond. 2 test cond. 3 final cond. RMSE unit
eHM
T < 3 2.5 2.0 2.0 1.5 · 10−3 K
eHM
p < 1.5 · 105 1.0 · 105 0.5 · 105 0.3 · 105 0.5 · 105 Pa

eHM
ur

< 1.5 · 10−5 1.0 · 10−5 0.5 · 10−5 0.3 · 10−5 0.5 · 10−5 m
eHM
σrr

< 1.5 · 105 1.0 · 105 0.5 · 105 0.3 · 105 0.35 · 105 Pa
eHM
σφφ

< 1.5 · 105 1.0 · 105 0.5 · 105 0.3 · 105 0.35 · 105 Pa

Table 2: History match filtering conditions for all response parameters. The testing conditions were used to investigate
the effect of varying filter sizes using the AM-model. The final condition together with the PM-RMSE is used to
demonstrate the workflow functionality including model runs for history match and forecast(AM/NM).

In a second step, we analyzed the input parameter combinations that were used to generate the386

response proxies that survived the history match filtering (’filtered priors’). For each parameter387

and filter condition, the corresponding distributions are depicted in Figs. 10 and 11. Here, we see388

that for some parameters like E, the filter does not seem to have any impact on the distributions,389

whereas for others (like Ks, as, k or µ) the filter seems to restrict the domain of definition. Indeed,390

the latter parameters were shown to be heavy hitters in sensitivity screening. For these parameters,391

we also see a better agreement between the input used to generate the experimental data and the392

posterior distribution with the tightest criterion. Parameters that retain their distributions after393

filtering were found to be less influential, which is very much in agreement with what one would394

assume. It is also worth noting that the posterior distributions found for all uniform priors agree395

very well with the ones for non-uniform priors for the influential parameters. This gives rise to396

the conclusion that the exact form of the prior distributions is not very relevant for the history397

match results. Another thing that attracts our attention is that, for k and µ, we find a kind of398

multimodal behavior after history matching that we see, especially for non-uniform priors. This399

behavior, as well as the fact that the sampling maxima of the tightest match criteria do not400
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coincide with the input of the synthetic model (AM) run, we attribute to parameter interactions401

that cannot be disregarded. In general, the history matching workflow is also quite suitable to serve402

as an alternative to optimization algorithms for the purpose of parameter estimation. However,403

the latter discussed behavior also makes clear that the reverse problem of parameter estimation404

of such a highly non-linear model is ill-posed. For further analysis of parameter interactions, we405

allude to the global sensitivity analysis.406

The impact of different prior distributions as well as the effect of different filter sizes on the

direct values of the response functions are also investigated using the AM -model. For this analysis,

we used the last time step of the history match and calculated the corresponding CDFs based on the

testing filters defined in the previous section. The cumulative distribution functions (CDF) were

evaluated at point P = (0.5m, 0.0, 0.0) and time t = 5 · 106 s. In Fig. 12, the CDFs were presented

based on prior distributions before and after applying the three different filter conditions. For all

three conditions and all response functions, we find that the co-domain is significantly reduced, and

we are able to give percentiles for each quantity from which we can select representative models.

One major property that such a workflow needs to satisfy in order to demonstrate its robustness is

that its results should not depend too much on arbitrarily chosen values. While it is quite obvious,

that the filter size might have a greater impact on p10 and p90 percentiles, we assume, that this

influence tends to be rather small for the p50 percentile. To assess the validity of this assumption,

we calculated the relative change of the p50 value for each filter with respect to no filter as follows:

pX =
|Xfilter

p50 −Xno filter
p50 |

Xno filter
p50

(14)

The corresponding values are given in Tab. 3. Here, we see that for non-uniform priors, the p50407

value varies up to six percent, while the relative changes for all uniform priors are all systematically408

greater and amount up to 9 percent for the displacement. However, it is not obvious that the409

expectation for all uniform priors is subject to greater fluctuations in all cases, nor does our410

example prove that we get more reliable results for non-uniform priors. While these changes can411

be regarded here as quite small, they might matter in some cases and remind us that the choice of412

the filter size is somehow subjective, and it necessitates a more thorough analysis when discussing413

concrete safety functions.414

After having obtained an overview, we are able to define the actual history match criteria415

with which we will perform real model runs (AM/NM) and consequently, the forecast. To define416
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Figure 9: Distributions of the history match error responses for non-uniform (left) and all uniform priors (right) and
the filter conditions listed in Tab. 2.

these conditions, one has to take also into consideration that several error sources should also417

have an impact on the defined confidence interval. Most important (i) is the (AM/NM) model418

error (e.g., heterogeneities or other processes that have to be taken into account), (ii) followed419

by the proxy error and (iii) last but not least, the sampling error. As the model error cannot be420

precisely determined, the choice of the history match thresholds coming from this contribution is421
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Figure 10: Parameter estimation for a selection of input quantities from Monte-Carlo sampling and after history
match filtering for non-uniform (left) and all uniform (right) priors with the filter conditions listed in Tab. 2. The
black line marks the input parameter for the creation of the synthetic experimental data.

somehow subjective. For our problem case, the criteria are given by the fifth column in Tab 2 (final422

conditions). Additionally, the proxy error was taken into account by incorporating the RMSE (sixth423

column, Tab 2) twice into the definition of the threshold [38]. One more technical criterion is that424

we need a sufficient number of surviving models after the intersection of all error metric thresholds425
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Figure 11: Parameter estimation for a selection of input quantities from Monte-Carlo sampling and after history
match filtering for non-uniform (left) and all uniform (right) priors with the filter conditions listed in Tab. 2. The
black line marks the input parameter for the creation of the synthetic experimental data.
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Figure 12: Cumulative distribution functions of the last history match time step obtained from Monte-Carlo sampling
and after applying the testing history match conditions, see Tab. 2.
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Table 3: Relative p50 values for all three testing filters with respect to the p50 value obtained from Monte-Carlo
sampling.

pT pp pux

non- non- non-
uniform uniform uniform uniform uniform uniform

crit0 0.006866 0.003734 0.632036 0.266558 0.514512 0.251206
crit1 0.006673 0.004797 0.641845 0.286974 0.518569 0.315963
crit2 0.007089 0.006498 0.655329 0.319417 0.577460 0.340364

to perform a statistical analysis afterwards if probabilities are to be attached to the outcome. With426

the matched criteria, ’full’ model (AM) runs were conducted again, to check whether the proxy427

estimates and history match criteria are in sufficient agreement with our assumptions and our428

conception of the history match (Fig. 13).429

4.4. Forecast430

Analogous to the (AM)-model runs of the history match, we repeated the same calculation431

this time with an equivalent numerical model (NM) with a subsequent forecast time (1 · 106 s −432

−5 · 106 s). From 1 · 106 s to 1.1 · 106 s the power of the heat source is linearly increased from433

300W to 600W and kept constant until the end of the run. The corresponding stress response434

over the entire simulation time is presented in Fig. 13. The changes due to the altered source435

term conditions are clearly visible and can be confirmed or rejected a posteriori by experiments436

or monitoring data. In case of a rejection, the model would require further adaptations. In this437

study, we assume for simplicity that the chosen observation quantities are somewhat representative438

of the safety functions to be monitored. The corresponding CDFs of the last forecast step, yield439

analogous results as shown in Fig. 12 and are not subject to further analysis in this study.440

4.5. Proxy-Based Global Sensitivity Analysis441

Now that model uncertainty has been investigated, it is of practical interest to attribute this442

uncertainty to individual parameters or their combinations. In other words, one would like to443

understand how variations of the model input affect the history match error of the response func-444

tions. For that purpose, we analyzed the PM in terms of Sobol’s indices by using their Monte-Carlo445

estimates.446

For this purpose, we sampled the input space between their min and max values using the447

sampling scheme of Saltelli [29]. First and second-order indices were calculated using their Monte-448
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Figure 13: σrr as function of time at point P = (0.5m, 0.0, 0.0). a) Curves from AM-model satisfying all history
match criteria. b) σrr results obtained from numerical model (NM) for the same parameter set including forecast
with modified source term. In both cases the experimental curve is given in blue in background.

Carlo estimates. For all response parameters, we used a sampling size of 10, 000, which was shown449

to be sufficient for the width of the 0.95 confidence interval to be well below 0.025 for all indices450

(cf. Fig. 10 SI).451

All in all, the global sensitivity analysis for our five error metric proxies provides a clear picture452

of the influence of single parameters on the model output. The results for both first- and second-453

order indices are given in Fig. 14. For the second-order indices, we present only values that exceed454

the error margin of 0.025. The bounds for the posterior analysis were estimated by the extreme455

values found during parameter estimation after applying the final filter condition (cf. Fig. 10456

and Fig. 11). One general trend that attracts our attention is that more parameters become457

influential after applying the filter condition. Whereas the thermal conductivity Ks overwhelmingly458

dominates the influence on the temperature, after filtering, also other factors become important459

on the temperature. The analysis of the main effects is very much in agreement with the findings460

during parameter screening (Sec. 4.1). There, we found that ρw, ρs, Kw, cw are non-influential461

and can be neglected for uncertainty analysis. The analysis also confirms the findings of Sec. 4.3:462

heavy hitters like Ks, k, or aw changed their behavior after filtering. Looking at the second-order463

indices also reveals that the shift for Ks and the ’multimodal’ behavior, we found for k, µ or aw464

can be very much attributed to interaction effects between different parameters. At this point,465

it is important to note again that due to the challenges the analytical solution poses in terms of466
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Figure 14: Sobol indices based on prior assumptions (left) and posterior (right) bounds. The upper graphs contain
only indices of first order effects, while the lower contain second order interactions. For the second order terms, only
combinations with effects greater than 0.025 are shown.

constant parameter input, we treated all of the water-related constants as uncertain themselves.467

From the GSA we can also conclude that we can treat ρw, Kw, and cw as constants, while the468

functional dependence of µ and aw seems to be relevant for further analysis utilizing finite element469

software.470

5. Conclusions471

In our work, we scrutinized the applicability of the Design of Experiments (DoE)-based assisted472

history matching for uncertainty quantification in linear coupled thermo-hydro-mechanical models.473

In our manuscript, we used an analytical model of a simplified geotechnical problem in the form474

of a disposal cell containing heat-emitting radioactive waste emplaced in an isotropic fluid-saturated475

medium under realistic parameter conditions.476
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As these parameters often cannot be described in terms of a known probability distribution477

function (PDF), we compared PDFs based on expert opinion with a case of all uniform input478

parameter distributions. The most important findings of the presented work are:479

• While in order to find a good history match, the filtered response must be covered by a480

valid input parameter range, it was shown in the present study that the exact form of the481

input parameter distribution becomes less critical. The result that the determining factors482

are the filtering conditions instead of the input parameter distribution makes the approach483

particularly interesting for our purpose in dealing with epistemic uncertainties as precise484

distribution forms are not known for the entire system.485

• It was found that a detailed exploration of input parameter distributions before modeling is486

beneficial in reducing the uncertainty space and improving the proxy quality. At the same487

time, precise knowledge of all parameters is not required in order to obtain good history488

matched results. However, this comes at a cost in computing time as a broader sampling489

might be required.490

• One disadvantage of the workflow, at first sight, is the somehow subjective choice of the491

history match filtering conditions. As we could show, the filter size can have an effect on492

the stochastic outcome (like percentiles), which can be crucial. The filter size describes the493

effect of uncertainty reduction due to the agreement of model output with experimental data.494

Therefore, care should be taken in quantifying these discrepancies for defining the history495

match thresholds. In case of doubt, one should assume them to be less tight. However, this496

is also part of a more general problem when dealing with the quantification of uncertainties497

that are of epistemic origin and involve model predictions: The meaning of exact numerical498

values is often overrated, and the usage of rigorous mathematical concepts often obscures the499

fact that the underlying problem eludes an exact quantification.500

• As the history matching procedure reduces the uncertainty space significantly, it also affects501

the sensitivity, i.e. the relative ranking of input parameters. Therefore, conclusions drawn502

regarding sensitivity analyses prior to an experiment may have to be re-evaluated after (more)503

experimental data has become available.504

In our manuscript, we showed that the workflow is particularly suitable for uncertainty quantifi-505
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cation, sensitivity analysis, and model validation in geotechnical applications like radioactive waste506

repositories. However, before turning directly to real-world applications, the conceptual validity507

and computational feasibility of even more complex models incorporating non-linear phenomena508

(e.g. equations of state, material behavior) and spatial heterogeneities need to be demonstrated.509
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