This is the preprint of the contribution published as:

Toepel, J., Karande, R., Bühler, B., Bühler, K., Schmid, A. (2023):

Photosynthesis driven continuous hydrogen production by diazotrophic cyanobacteria in high cell density capillary photobiofilm reactors *Bioresour. Technol.* **373**, art. 128703

The publisher's version is available at:

http://dx.doi.org/10.1016/j.biortech.2023.128703

1	
1	

2	Photosynthesis driven continuous hydrogen production by
3	diazotrophic cyanobacteria in high cell density capillary photobiofilm
4	reactors
5	Journal: Bioresource Technology
6	Authors: Jörg Toepel, Rohan Karande, Bruno Bühler, Katja Bühler and Andreas
7	Schmid
8	Department Solar Materials; Helmholtz Center for Environmental Research Leipzig
9	Permoser Strasse 15
10	04315 Leipzig
11	Germany
12	Corresponding author: Jörg Toepel
13	Joerg.toepel@ufz.de
14	
15	
16	
17	
18	
19	
20	

22 Abstract

23 Hydrogen (H₂) is a promising fuel in the context of climate neutral energy carriers and 24 photosynthesis-driven H₂-production is an interesting option relying mainly on sunlight 25 and water as resources. However, this approach depends on suitable biocatalysts and 26 innovative photobioreactor designs to maximize cell performance and H₂ titers. 27 Cyanobacteria were used as biocatalysts in capillary biofilm photobioreactors (CBRs). 28 We show that biofilm formation/stability depend on light and CO₂ availabilityH₂ 29 production rates correlate with these parameters but differ between Anabaena and 30 *Nostoc.* We demonstrate that high light and corresponding O₂ levels influence biofilm 31 stability in CBR. By adjusting these parameters, biofilm formation/stability could be 32 enhanced, and H₂ formation was stable for weeks. Final biocatalyst titers reached up 33 to 100 g l⁻¹ for *N. punctiforme* ATCC29133 NHM5 and *Anabaena* sp. PCC7120 AMC 414. H₂ production rates were up to 300 μ mol H₂ I⁻¹ h⁻¹ and 3 μ mol H₂ g_{cdw}⁻¹ h⁻¹ in 34 35 biofilms.

36 Keywords:

- 37 Photosynthesis driven hydrogen production
- 38 Capillary biofilm photobioreactors
- 39 Cyanobacteria

40

42 Introduction

43 Molecular hydrogen (H₂) is an important energy carrier for a future, non-fossil energy landscape. Different concepts for sustainable H₂ production have been described 44 45 (Bühler et al., 2021). The main focus is currently on water electrolysis driven by 46 renewable energy derived, e.g., from wind or sun. However, electrolysis depends on 47 nobel metal catalysts with limited availability. Photosynthesis-driven H₂ production is 48 potentially carbon-neutral, relying on sunlight, abundant salts, and water as major 49 resources for biocatalyst operation (Khetkorn et al., 2017; Tiwari & Pandey, 2012). 50 Since several decades, researchers work on wiring H₂ production to the photosynthetic 51 apparatus of cyanobacteria or green algae performing oxygenic photosynthesis 52 (Krishnan et al., 2018; Martin & Frymier, 2017). Nitrogenases and hydrogenases are 53 the most promising enzymes to make use of photosynthesis-derived reduction equivalents for H₂ formation (Bothe, 2016). However, the pronounced O₂ sensitivity of 54 55 most of these enzymes hamper biotechnological applications, especially when applied 56 in phototrophs performing oxygenic photosynthesis. Current approaches for H₂ 57 production involve either the (temporary) establishment of anaerobic conditions or the 58 use of diazotrophic cyanobacteria forming heterocysts as anaerobic reaction 59 compartments for operating O₂-sensitive enzymes. Yet, both approaches suffer from 60 an indirect and thus inefficient coupling of H₂ formation to photosynthesis. The 61 advantage of diazotrophic cyanobacteria is their independence of cost-intensive 62 nitrogen source feeding. This may enable low production costs and could also provide 63 valuable biomass with high N content for other applications like animal feed or 64 fertilizers (Pathak et al., 2018).

Conventional photobioreactor systems are often limited in productivity by low
biomass concentrations due to illumination efficiency, gas mass transfer (especially

67 low carbon availability), product removal, nutrient supply, and relatively high 68 operation costs (Posten, 2009). These features typically result in slow cell growth, 69 low cell densities, and short process times with narrow production windows and low 70 productivities (Fernandes et al., 2015; Fu et al., 2019; Hariskos & Posten, 2014; 71 Johnson et al., 2018; Kirnev et al., 2020). New cultivation concepts to achieve high, 72 stable, and potentially scalable productivities for the phototrophic production of 73 biomass, chemicals, and fuels involve, e.g., cell retention / immobilization in 74 membrane photobioreactors or biofilm photobioreactors (Bähr et al., 2016; ; Li et al., 75 2019; Podola et al., 2017; Schultze et al., 2015). In addition, several studies 76 demonstrated that artificial or natural biofilms enable enhanced and prolonged 77 biomass production and product formation (Schultze et al., 2015; Zhang et al., 2017). 78 However, artificial cell immobilization is limited by the stability of encapsulated cells 79 (Homburg et al., 2019; Vorndran & Lindberg, 2016). Capillary photobiofilm reactors, 80 CBRs, based on natural biofilm formation, were reported as a promising solution, as 81 previously shown for photosynthesis-driven oxyfunctionalization of cyclohexane to 82 cyclohexanol (Hoschek et al., 2019). The capillary biofilm reactor concept set a 83 benchmark regarding achievable biomass concentration (up to 58 g_{cdw} L⁻¹) and productivity for selective C-H hydroxylation (up to 3.76 g cyclohexanol m⁻² day⁻¹) 84 85 applying recombinant Synechocystis sp. PCC 6803 cells as biocatalysts. Recently, the application was extended to other cyanobacteria, demonstrating the potential and 86 87 importance of a photo- and heterotrophic co-cultivation and the possibility to use 88 diazotrophic cyanobacteria with nitrogen free media (Bozan et al., 2022) for the 89 production of H₂. Several studies showed that additional factors define H₂ production, 90 namely biofilm thickness and biofilm structure (Liao et al., 2015), which in turn are 91 influenced by surface properties of the capillaries and can be tuned by applying 92 special coatings (Li et al., 2017). Capillary biofilm bioreactors have also been applied

to concepts based on dark fermentation (Renaudie et al., 2021) and combined
approaches of dark fermentation and photo- H₂ production (Cheng et al., 2022).

95 Here, the suitability of CBRs for continuous H₂ production with diazotrophic 96 cyanobacteria was investigated. Up to date, the highest productivities for H₂ formation 97 in light and thus in the presence of photosynthetic water oxidation are reported for 98 diazotrophic filamentous cyanobacteria. These microbes produce H₂ as a side product 99 during N₂ fixation in heterocysts. In the natural system, the energy in the produced H₂ 100 is metabolically recycled via an uptake hydrogenase. In the two model strains 101 employed in this study, the respective uptake hydrogenases have been deleted, 102 although Anabaena sp. PCC 7120 still contains a bidirectional hydrogenase. However, 103 it was shown that H₂ production is typically not impaired by this enzyme (Masukawa et 104 al., 2002).

105 The productivity of the CBR reactor regarding H₂ formation was quantified. Importantly, 106 the impact of parameters like light intensity and O₂ concentration on biofilm 107 development and stability as well as H₂ productivity was investigated. Two filamentous, 108 diazotrophic cyanobacteria, Nostoc punctiforme ATCC 29133 NHM5 and Anabaena 109 sp. PCC 7120 AMC 414 lacking H₂ uptake hydrogenases showed high H₂ production 110 rates in continuous capillary photobioreactors. This study highlights future strain and 111 reactor engineering targets paving the way for efficient photosynthesis-driven H₂ 112 production using biocatalysts based on biofilm forming cyanobacteria.

113 Material and Methods

114 Strains & shake flask cultivation

115 The two uptake hydrogenase-deficient filamentous diazotrophic cyanobacterial strains, 116 Nostoc punctiforme ATCC 29133 NHM5 ($\Delta hupL$), hereafter called NHM5, and

117 Anabaena sp. PCC 7120 AMC 414 ($\Delta xisC$, recombinase), hereafter named AMC 414, 118 and the corresponding wild type strains were investigated (see the list of strains used 119 in this study, Table 1). All strains were cultivated in BG-11 medium (buffered 10 mM 120 HEPES; pH 7.2)(with nitrate) (Lindberg et al., 2002) at 30°C under continuous white 121 light (25 µmol photons m⁻² s⁻¹) in Erlenmeyer flasks in a multitron shaker (Infors, 122 Bottmingen, Switzerland) prior to inoculation in CBRs, as described previously (Figure 123 1) (Heuschkel et al., 2019b; Hoschek et al., 2019). Pseudomonas taiwanensis VLB 124 120 was cultivated as described previously and mixed in a defined ratio prior to biofilm 125 inoculation and cultivation (Bozan et al., 2022).

126 (

Capillary biofilm reactor operation

127 Polystyrene capillaries (25 cm length, 3 mm inner diameter, 1.76 ml) were used as 128 bioreactor units. The capillary diameter was intentionally selected to obtain a high 129 surface area to volume ratio (1333 m² m⁻³) and low light penetration depth. In addition, 130 the described aqueous-air slug flow enables Taylor flow conditions beneficial for 131 maximizing the mass transfer of heat, nutrients and gaseous compounds. As shown 132 previously, (Hoschek et al, 2019), these conditions stabilize biofilm thickness, prevent 133 congestion and prevent limiting mass transfer of nutrients and gases. Polystyrene was 134 selected as material, to minimize diffusion-related H₂ loss. Defined mixtures of P. 135 taiwanensis VLB 120 and the cyanobacterial strains were inoculated as described for 136 initial biofilm formation (Hoschek et al., 2019). Operating the CBRs in a segmented 137 flow regime (Figure 1), BG-11 medium and air were applied at an equal flow rate of 52 138 µl min⁻¹ using a peristatic pump (Ismatec, Wertheim, Germany) under continuous 139 illumination at room temperature (air-conditioned to 25°C). H₂ production was induced 140 by switching to diazotrophic conditions (applying nitrogen-free BG-11₀ medium). 141 Keeping the gas flow constant, the gas composition was varied, reducing the O₂

142 concentration by replacing air with argon or nitrogen via a gas-tight balloon filled with 143 the respective gas and connected to the airflow line. The gas composition in the CBRs 144 was measured as described below. The biofilm dry weight was determined at the end 145 of the experiments as described previously (Hoschek et al., 2019). Light was applied 146 with a LED light system (Cell Deg, Berlin, Germany) at intensities ranging from 25 to 147 150 µmol photons m⁻² s⁻¹. It is important to note that the LED provided blue (460 nm) 148 and red light (660 and 680 nm), being photosynthetically more effective than white 149 light. Sodium bicarbonate (Sigma-Aldrich) was added to the media (0-20 mM) as a 150 carbon source.

 H_2 – quantification / analysis

152 Custom-made bubble traps were connected to the outlet of the cultivation unit for H₂ 153 and O₂ guantification. The bubble trap system (1 ml total volume) was flushed with air 154 after every sampling of the gas phase (5 ml). A gas-tight syringe (Hamilton, Reno, NV) 155 was inserted into the bubble trap, and 100 µL gas phase were withdrawn and manually 156 injected into a gas chromatograph (Thermo scientific, Trace1310 equipped with a TG 157 Bond MIsieve 5A column with 0.32 mm inner diameter and 0.20 µm film thickness). 158 The thermal conductivity detector and the oven were adjusted to 100 and 75°C, 159 respectively. Gas concentrations were calculated based on calibration curves 160 determined with defined gas mixtures. Volumetric and biomass specific H₂ production 161 rates were calculated based on the percentage of H₂ in the gas phase, the flow rate, 162 and the biomass in the capillaries.

H₂ production by all strains was additionally determined for cell suspensions in closed
vials. Cells were cultivated in BG-11 medium as described above. H₂ production was
induced by transferring the cells into BG-11₀ medium. To this end, cells harvested by
centrifugation (4000g, room temperature) were washed twice with BG-11₀ medium

167 followed by resuspension in the same medium. Upon continued incubation in 168 Erlenmeyer flasks, cell suspension samples (5 mL) were taken 24, 48, and 72 h after 169 the transfer to BG-11₀ medium, transferred into sealed GC vials (Thermo Scientific), 170 supplied with 10 mM sodium bicarbonate, and incubated for 24 h at 30°C under 171 continuous light (50 µmol photons m⁻² s⁻¹) to quantify H₂ production. H₂ formation rates 172 were determined by GC analysis of the gas phase as described above.

173 Results and discussion

174 H₂ production in planktonic cultures

H₂ production of all strains (Nostoc punctiforme ATCC 29133 WT, Nostoc punctiforme 175 176 ATCC 29133 NHM5, Anabaena sp. PCC 7120 WT, Anabaena sp. PCC 7120 AMC 177 414) was first tested in planktonic cultures. Cell suspensions in BG-11₀ (5 ml) were 178 incubated in a multitron cultivation chamber (Infors) in closed 20 ml GC vials (Thermo 179 Scientific) under illumination (25 µmol photons m⁻² s⁻¹). H₂ formation rates were 180 determined 24, 48, and 72 h after transition into nitrogen-free BG-110 medium. Samples 181 taken at these time points were incubated in sealed vials, and H_2 accumulation was 182 analyzed (see materials and methods section for details). For NHM5, high activities 183 were measured after 24 h indicating heterocyst development, whereas this was found 184 to take 48 h in the case of AMC 414. The hydrogenase-deficient strains showed 5 185 times higher biomass specific H₂ formation rates compared to the corresponding wild 186 type (WT) strains. NHM5 showed the highest specific H₂ formation rate (15 µmol H₂ 187 g_{cdw}^{-1} h⁻¹, with an average rate of 12±3,5 µmol H₂ g_{cdw}^{-1} h⁻¹rates measured for samples taken after 24, 48, and 72 h). For AMC 414, this highest rate was 12 µmol H₂ g_{cdw}⁻¹ h⁻ 188 189 ¹, 48 h after nitrogen deprivation (average: 8 ± 4 µmol H₂ g_{cdw}⁻¹ h⁻¹). Assuming that Chl 190 a accounts for 1% of the cell dry weight (Zavrel et al., 2019), these rates translate into 191 1.5 and 1.2 μ mol H₂ (mg Chl a)⁻¹ h⁻¹, respectively.

192 H₂ production in capillary biofilm photobioreactors

193 Biofilm development of N. punctiforme ATCC 29133, Anabaena sp. PCC 7120, and 194 their respective hydrogenase-deficient mutants was analyzed in capillary biofilm 195 photobioreactors (CBRs) as a first step towards biofilm-based H₂ production. Co-196 cultivation with *P. taiwanensis* VLB120 has been reported to promote biofilm formation 197 with the cyanobacterial strains Synechocystis sp. PCC 6803 (Heuschkel et al., 2019b; 198 Hoschek et al., 2019) and Tolypotrix sp. PCC 7712 (Bozan et al., 2022). Similarly, only 199 very poor or no biofilm formation was detected for monoseptic CBR cultures of NHM5, 200 AMC 414, and respective wildtype strains, whereas good biofilm growth was obtained 201 upon co-cultivation with *P. taiwanensis* VLB120 (data not shown). Thereby, no addition 202 of an organic carbon source was necessary. Uptake hydrogenase deletion strains and 203 respective WT strains showed identical growth behaviors. Biofilm formation was 204 slightly enhanced in terms of surface coverage upon nitrogen deprivation resulting in 205 biomass concentrations of 8-10 g_{cdw} l⁻¹. The optimal initial cell ratio of cyanobacteria 206 and heterotrophic partner was determined to be 1:1, enabling optimal biofilm formation 207 and minimal biofilm detachment. It is important to note that the heterotrophic cells are 208 mainly needed for initial biofilm formation. The final fraction of *Pseudomonas* cells in 209 the biofilm is very low, especially, when no organic carbon and energy source is added 210 (Heuschkel et al. 2019a, Bozan et al. 2022), like in the process reported here. 211 Therefore, cyanobacterial cells are the main species in the biofilm in the final stadium. 212 Neither *N. punctiforme* WT nor *Anabaena* WT produced H₂ during CBR cultivations, 213 whereas the respective H_2 uptake-deficient strains in co-culture with *P. taiwanensis* 214 VLB120 showed H₂ production. It is important to note that the determined biomass 215 consists of both species in all biofilm experiments, whereas the heterotrophic cells 216 were present in low amounts, see also Bozan et al. (2022). Average H₂ production 217 rates amounted to 72 \pm 22 (NHM5) and 150 \pm 47 μ mol H₂ I⁻¹ h⁻¹ (AMC 414) for 14 days

(Figure 2). However, the daily H₂ formation rates varied significantly, and biofilms remained patchy in terms of surface coverage (see supplemental material). Remarkably, these rates correspond to similar specific rates as measured for suspended cells, for which, however, H₂ formation rates may not have been constant in the analyzed 24 h time range.

223 The poor surface coverage in the first CBR experiments indicated that growth and H₂ 224 production were limited. So, what parameters are basically determining growth, biofilm 225 formation and the H₂ formation rate? After initial biofilm formation, sodium bicarbonate 226 supply (10 mM) to the BG-11₀ medium was tested and indeed improved biofilm 227 formation and H₂ production (Figure 3 (I)). Both uptake hydrogenase-deficient strains 228 showed enhanced growth and surface coverage, which, however, was still lower than 229 described for Synechocystis sp. PCC 6803 (Hoschek et al., 2019). H₂ formation rates 230 with both strains increased in the beginning and were then stable for several days with 231 300 μ mol H₂ I⁻¹ h⁻¹ for NHM5 and 75 μ mol H₂ I⁻¹ h⁻¹ for AMC 414. NHM5 produced 4 232 times more H₂ compared to AMC 414 and to conditions without carbonate, whereas 233 AMC 414 produced only half the amount of H₂ compared to conditions without 234 carbonate. To test whether H₂ production is still limited by carbon availability, the 235 sodium bicarbonate concentration was increased to 20 mM (Figure 3 (II)). However, 236 biofilm stability with NHM5 was impaired and detachment events occurred. H₂ 237 production with NHM5 dropped to 150 µmol H₂ I⁻¹ h⁻¹. For AMC 414, a slight increase 238 in H₂ production was observed (up to 100 µmol H₂ I⁻¹ h⁻¹). Reestablishing a NaHCO₃ 239 concentration of 10 mM in the medium inflow and increasing the light intensity from 25 240 to 75 µmol photons m⁻² s⁻¹ led to enhanced biofilm formation, i.e., the establishment of 241 dark green biofilms covering the whole capillary (Figure 3 (III)). Especially AMC 414 242 showed an increased H₂ production with up to 150-200 μ mol H₂ I⁻¹ h⁻¹, to a comparable

243 level as obtained with NHM5. After 70 days a reduced H₂ production was measured 244 for both strains and to avoid flush-outs the experiment was stopped. Most likely, the 245 elevated light and CO₂ availability caused an increase in O₂, and a reduction in cell 246 fitness, leading to a biofilm instability. This is supported by experiments with reduced 247 O_2 concentrations (Figure 4), showing that reduction of O_2 can increase biofilm stability 248 and H_2 production. In total, both investigated uptake hydrogenase-deficient strains 249 produced H₂ under all conditions for 70 days in continuous culture mode with biofilm-250 mediated biomass retention (Figure 3). In these reaction setups, the maximal H_2 formation rate amounted to 300 μ mol H₂ I⁻¹ h⁻¹ and an average rate of 250 μ mol H₂ I⁻¹ 251 252 h⁻¹ was obtained for both strains under respective optimal conditions. The final biomass density with up to 100 g_{cdw} l⁻¹ is one of the highest biomass concentrations achieved in 253 254 a photobioreactor so far and the specific H₂ production rates calculated for the last time 255 interval averaged between 2-4 µmol H₂ g_{cdw}⁻¹ h⁻¹. The biomass concentration in the 256 capillaries is highly dynamic, depending on the cultivation conditions. Thus, specific 257 rates in the earlier stages in the experiments shown in Figure 3, when cell 258 concentrations were lower (in the range between 10 to 100 g_{CDW} L⁻¹), can be assumed 259 to have been higher. As a consequence, the given specific activity range of 2-4 µmol $H_2 q_{cdw}^{-1} h^{-1}$ constitutes a lower boundary. 260

The possibility to utilize diazotrophic cyanobacteria in CBRs for H₂ production and possible hurdles to be overcome for sustainable photosynthesis-driven H₂ production was investigated. Previously, it has been shown that CBRs can be utilized to cultivate a range of cyanobacteria, including dioazotrophic cyanobacteria. Especially *Tolypotrix* sp. PCC 7712 showed high potential to be applied in CBRs (Bozan et al., 2022). However, genetic accessibility, e.g., to knock out uptake hydrogenases, favors other strains like *Nostoc punctiforme* ATCC 29133 NHM5 (Δ hupL) and *Anabaena* sp. PCC

268 7120 AMC 414 ($\Delta xisC$, recombinase). In good accordance with Bozan et al. (2022), 269 the experiments show that biofilm formation with these strains profits from the presence 270 of a heterotrophic biofilm building strain like *P. taiwanensis*. Further, biofilm formation 271 was significantly better in nitrogen free- as compared to normal BG-11 medium.

272 Furthermore, it was shown that light and elevated carbon availability improved biofilm 273 formation and, associated with it, H₂ production. Several studies demonstrated that 274 both strains produce H₂ in flask and bioreactor experiments under batch cultivation 275 conditions (Lindberg et al., 2002, Lindblad et al., 2002, Masukawa et al., 2002, Avilan 276 et a., 2018). The time range, in which H₂ is produced could be significantly extended 277 to 70 days with improved cultivation conditions. It was possible to produce H₂ 278 continuously over weeks. Previous studies showed short production phases of 279 maximally 30 days (Kosourov et al., 2014; Touloupakis et al., 2016) under batch 280 conditions. Ethylene, also a gaseous product, was recently produced in a similar 281 biofilm-based approach for 38 days (Vajravel et al., 2020). In accordance with the 282 presented results, the authors could also demonstrate that product formation depends 283 on light and carbon availability.

284 The biomass concentrations reached in the CBRs are among the highest reported for 285 cyanobacteria in bioreactors. Compared to conventional photobioreactors with 286 biomass densities up to 20 g_{cdw} l⁻¹ (Bähr et al., 2016) and other biofilm photobioreactor 287 designs (up to 60 g_{cdw} l⁻¹, Wang et al., 2017), the reported CBR setup enabled the 288 highest biomass concentration (100 g_{cdw} l⁻¹) reported so far for phototrophic 289 microorganisms. One the other hand, with a different purpose, i.e., production of 290 biomass, value-added products therein, or waste water treatment, only porous 291 substrate-based photobioreactors (PSBRs) showed a higher biomass production up to 300 g_{cdw} l⁻¹ (Podola et al., 2017). Yet, in PSBRs, biofilms are not in direct contact with 292

cultivation liquid, and normalizing biomass amounts produced to the cultivation liquid
volume is complex, with productivities and economics for biomass harvest rather to be
calculated relative to the area as g dry mass per m² and day (Li et al., 2019). In addition,
efficient applications of PSBRs for extracellular chemical or biofuel products are not
reported and seem to be challenging, due to product evaporation, mass transfer, and
biofilm ageing. This is especially the case for gaseous products.

Biofilm formation and H₂ production is light dependent

300 The experiment shown in Figure 3 indicated a significant influence of the light intensity 301 on H₂ formation and surface coverage of biofilms of cyanobacteria in consortia with 302 Pseudomonads. Thus, the light dependency of H₂ formation by NHM5 and AMC 414 303 was analyzed further. The CBRs were operated as described above with air segments 304 in a slug flow mode. Cultivation and H₂ formation were tested at five different light 305 intensities (50, 75, 100, 125, and 150 μ mol photons m⁻² s⁻¹) with 10 mM NaHCO₃ in 306 the medium. Each light intensity was applied for five days and the corresponding H₂ 307 formation rates were determined (Figure 4 A+B). For NHM5-based biofilms, volumetric H_2 formation rates increased with the light intensity up to 125 photons m⁻² s⁻¹ to a 308 maximum of 75 μ mol H₂ I⁻¹ h⁻¹. It is important to note that volumetric production rates 309 310 were lower compared to the long-term experiments, since final biomass concentrations 311 were lower (between 30-50 g_{CDW} l⁻¹). A further increase in light intensity led to reduced 312 H₂ formation accompanied by increasing O₂ concentrations. At high light intensities, 313 cells and biofilm fragments detached from the capillaries, were flushed out, and 314 consequently H₂ production stopped (data not shown). It is important to note that 315 biofilms recovered in a few days inside the capillaries after the light intensity was reduced again to 50 µmol photons m⁻² s⁻¹. Also, AMC 414 biofilms showed increased 316 317 H₂ production with increasing light intensity. Production rates increased from 35 to 75

 μ mol H₂ I⁻¹ h⁻¹ at 150 μ mol photons m⁻² s⁻¹. At high light intensity, biofilm detachment 318 319 was observed as for NHM5. Previously, David et al., 2015 estimated light attenuation 320 within a cyanobacterial biofilm. Theoretically, for a light intensity of 150 µmol photons m⁻² s⁻¹ and a light attenuation coefficient of 9 mm⁻¹, a maximal biofilm thickness of 250 321 322 µm can be achieved. It is not clear, how far light can penetrate into biofilm. In natural 323 microbial mats, cyanobacterial layers can reach several mm. This indicates, that there 324 is enough light available also in deeper layers. Furthermore, there are reports on 325 Synechocystis, which hypothesize cells acting as a kind of micro-lens, transporting 326 light from one end of the cell to the other and thereby guide it to deeper levels of 327 biofilms (Schuergers et al 2016). In our experiments, light was supplied only from the 328 top, but the capillary surface was covered completely (also the bottom part) indicating, 329 that in this range enough light is available to allow complete surface coverage of the 330 capillary.

331 Besides H₂, O₂ was monitored, as elevated O₂ concentrations are known to impair cell 332 vitality and nitrogenase activity (Zhao et al., 2007). Air segments contained 20.9% O₂ 333 at the inflow. During cultivation at low light intensities, O2 concentrations were constant 334 between 18-20% after 10 min of residence time, whereas high light intensities led to 335 O_2 levels up to 23.5% in the gas phase. It is important to note that gas diffusion though 336 the tubes cannot be excluded. The high light in combination with elevated O₂ 337 concentrations and the risk of ROS formation might contribute to the destabilization 338 and final detachment of the biofilm at higher light intensities.

To further elucidate the correlation of elevated O_2 concentrations and biofilm detachment, N_2 and Argon instead of air have been applied to the CBRs in segmented flow mode at a constant illumination of 100 µmol photons m⁻² s⁻¹ (Figure 4 C+D). The overall O_2 concentration in the CBR was thus lowered and only 15 – 20 % of O_2 was

343 measured in the gas phase at the outlet of the different set-ups. It is important to note 344 that no completely anaerobic and N₂-depreviated conditions were established as the 345 medium feed was air-saturated and gas diffusion though the tubes cannot be excluded. 346 The changed gas stream stabilized the biofilms in the CBRs and no biofilm 347 detachments were observed, indicating that increased O₂ concentrations at elevated 348 light intensities promoted biofilm detachment. In the case of AMC 414, H₂ production 349 rates slightly decreased upon replacement of air with N₂ or argon. However, NHM5 350 showed a 50% increase in H₂ production when supplied with argon. It is important to 351 note that argon was expected to increase H₂ formation, as this has been found before 352 in short term experiments (Wilson et al., 2021), but would result in a limited N₂ fixation. 353 Here, a sufficient N₂ supply was assured via the medium feed. GC measurements 354 showed a decrease to 40% at the outflow, instead of 80% N₂ in air.

The results demonstrated that light and CO₂ availability are main factors determining H₂ production rates in diazotrophic cyanobacteria, since H₂ production is directly linked to growth in these cells. Also, other nutrients influence H₂ production, but their direct effects on H₂ production are still unclear (Howe et al., 2020; Lindberg et al., 2004).

359 Another important factor in CBRs is the gas supply. Under slug flow conditions based 360 on air segments, the O₂ concentrations in CBRs are typically close to that in air or 361 slightly above. However, high photosynthetic rates induced by high light and elevated 362 CO_2 availabilities are accompanied by elevated O_2 production. As a result of the light 363 stress accompanied by high O_2 levels and most likely ROS (reactive oxygen species) 364 formation biofilm stability is affected. Several studies showed similar results 365 (Heuschkel et al., 2020; Hoschek et al., 2019). Elevated O₂ concentrations can 366 promote ROS production, which may result in biofilm detachment (Heuschkel et al., 367 2020). For effective bioprocessing with phototrophs in biofilms, measures are needed

368 to remove O₂ efficiently, either by utilizing oxygen free gas segments or by means of 369 oxygen consuming heterotrophic cells (Heuschkel et al., 2020). Since the focus of the 370 study was set to determine photosynthesis-driven H₂ production, any organic carbon 371 source for heterotrophs was omitted. Exchange of the air segments with N₂ or Argon 372 reduced O₂ concentrations in the biofilms/capillaries (below 20%) and stabilized H₂ 373 production or even lead to a 50% increase in hydrogen production as shown for NHM5. 374 The capillary photobioreactor in combination with segmented flow, allows long-term H₂ 375 production and opens the door towards product removal since gaseous H₂ can be 376 extracted from the reaction environment via the air segments, considering appropriate 377 measures to avoid diffusional losses of this highly diffusive gas.

In this study, it was shown that light and CO₂ are limiting factors regarding H₂
production (Figure 4), as increased light intensity increases H₂ production. However,
the upper limits for PBRs in terms of light intensity have to be determined in the future.

381 Recent studies determined additional factors influencing H₂ production, e.g. biofilm 382 thickness, and methods were reported, e.g. fiber optics, to measure and manipulate 383 thickness (Zhong et al., 2014). In our study the biofilm thickness was controlled by 384 the segmented flow, allowing the development of a stable and dense biofilms, see 385 also (Bozan et al., 2022). Finally, new sensors and methods to manipulate light 386 penetration, to measure H₂ production online in biofilms (Chen et al., 2019; Guo et 387 al., 2011; Li et al., 2017) are designed and could help to determine heterogeneities in 388 biofilms regarding H₂ production and this knowledge can help to improve biofilm 389 development and finally H₂ production.

Comparison with H₂ formation rates reported in literature showed that rates
 determined in this study under continuous biofilm cultivation conditions are lower (~3
 µmol H₂ g_{cdw}⁻¹ h⁻¹, but varying with applied biofilm density) than in suspended batch

cultures (~15 µmol H₂ g_{cdw}⁻¹ h⁻¹) and compared to literature (50-100 µmol H₂ g_{cdw}⁻¹ h⁻¹) 393 394 ¹). Yet, such batch cultures show a high nitrogenase activity only during the 395 exponential growth phase (Lichtl et al., 1997). However, the biofilm co-cultures 396 showed activity for H₂ formation for several weeks. It has to be pointed out, that one 397 has to differentiate between low and high biofilm densities, the first show a higher 398 activity and the second lower rates, pointing towards more maintenance activity in 399 high-density biofilms and low growth. Likewise, novel and advanced methods will 400 help to determine growth rates in combination with H₂ production rates in a 401 temporally and spatially resolved way (Chen et al., 2019; Guo et al., 2011; Li et al., 402 2017). Additionally, it is challenging to compare H₂ formation rates directly since rates 403 calculated from short-term assays do not always reflect actual product formation 404 rates achievable in the longer term. Importantly, one has to consider H₂ loss by 405 diffusion through the capillaries, as indicated by the experiments with argon and 406 nitrogen.

407 The continuous H₂ production for weeks in the capillary photobioreactors with both 408 cyanobacterial strains indicates that nitrogenases are active in diazotrophs and 409 cyanobacteria cells retain their activity over a long time. However, the activity in high 410 cell density biofilms was lower, pointing towards low growth and probably maintenance 411 activity. Diazotrophic cyanobacteria can be utilized to provide a stable anaerobic 412 environment inside a heterocyst cell. Such strains are ideal models for developing 413 technical processes for photosynthesis-driven H₂ production. Furthermore, carbon and 414 nitrogen fixation can be combined with the process of H₂ production thus avoiding 415 additional nitrogen sources in cultivation media. Finally, a (dynamic) heterogeneity of 416 the ratios of different microbial species in catalytic biofilms might be of importance for 417 the productivity of H₂ production and will be subject to future studies.

440

419 Suitability of CBRs in the industrial use for H₂ production

420 Capillary units are used as standard tools in continuous industrial processes for the 421 separation or production of matter up to scales of many thousands of tons or m³ per 422 year. One principle of increasing product volumes (scaling) of these microreactors is 423 the numbering up of individual reactor units (Dong et al., 2021). Assuming a theoretical 424 numbering up of the reaction units used in the CBR setup based on a monolayer of 425 capillaries next to each other on a total flat area of 100 m * 100 m (1 ha) without 426 considering the actual design or geometry of the final unit: Scale-up of the biofilm 427 photobioreactor (CBR) to 100 m² would in theory yield about 10 kg dry biomass, 428 considering a flat single-layer setup with about 13200 reaction units of the CBR setup 429 (25 cm length, 3 mm outer diameter, 1 ml volume). In the present study, mature biofilms 430 with 100 g_{cdw} l⁻¹ produced on average 3 µmol H₂ g_{cdw}⁻¹ h⁻¹. Considering 1000 h sunshine 431 a^{-1} as a rough average estimation for Germany, this would correspond to 6 kg H₂ to be 432 produced in an area of 1 hectare in one year. Assuming the same basic reaction setup 433 with a different biocatalyst for H₂ production based on a hydrogenase with a turnover number of 100 s⁻¹ instead of the nitrogenase (1 s⁻¹) for H₂ formation might already 434 435 reach an impressive range for small-scale technical applications. Furthermore, three-436 dimensional constructions instead of monolayer designs, e.g., artificial, leaf-like, or 437 vertical structures, can be expected to significantly enhance the productivity per area. 438 Together with the specific biocatalyst activity, several other factors are critical for 439 efficient biotechnological applications, i.e., light penetration, achieved cell densities,

441 presented here, showed that capillary photobioreactors enable continuous production

energy costs for mixing and cooling, and efficient product recovery. The approach

formats and very high cell densities. Reduction of the O₂ concentration was essential

443 to ensure biofilm stability. Utilizing artificial gas mixtures reduced O₂ under what can 444 be considered as a critical level. Thus, controlling gas concentrations is crucial for 445 technical applications. Argon atmosphere increases H₂ production by a factor of 4 446 compared to N₂ fixing conditions (Lindblad et al., 2002). This, however, is not feasible 447 in the long term, since nitrogen fixation is essential for cell survival. In conclusion, 448 beneficial effects regarding biofilm formation and H_2 production could be obtained by 449 manipulating the gas composition of the air segments. In combination with an optimal 450 light and carbon provision, an improved and stable H₂ production in CBRs was 451 achieved in continuous mode over weeks with high biomass concentrations. Other 452 critical factors to be addressed in the future include medium demands, temperature 453 effects, and gas diffusion through capillary materials. Overall, designing catalysts with 454 high activity and realizing scalability are now the major challenges to be addressed.

455 Conclusion

456 The results demonstrated the principal feasibility of CBRs to produce gaseous 457 products like H_2 . This opens the door for future application, especially H_2 production 458 based on hydrogenases in phototrophic organisms. CBRs can now be utilized to 459 investigate essential parameters regulating biofilm development, structure, stability, 460 and scale-up efficiencies. However, several factors still limit technical application, 461 especially medium recycling and methods for gas separation. As the final production 462 process will occur under natural conditions, also the effects of day/night cycles, 463 temperature variations, etc., have to be investigated. Nevertheless, CBRs allow the 464 photosynthesis driven production of a gaseous product in a continuous mode, with a 465 highly active biomass.

466 E-supplementary data for this work can be found in e-version of this paper online.

467 Acknowledgement

468 We are grateful for discussions with Jens Appel inspiring our work on uptake 469 hydrogenase deficient strains of Anabena sp. and Nostoc sp.. We thank Pia Lindberg 470 for providing the strains. We acknowledge the use of the facilities of the Centre for 471 Biocatalysis (MiKat) at the Helmholtz Centre for Environmental Research, which is 472 supported by European Regional Development Funds (EFRE, Europe funds Saxony). 473 Rohan Karande was funded by the Federal Ministry for Economic Affairs and Energy 474 (BMWi, STARK program, project number 46SKD023X) and is co-financed by the 475 Saxon state parliament (SMWK).

476 References

- Avilan, L., Roumezi, B., Risoul, V., Bernard, C.S., Kpebe, A., Belhadjhassine,
 M., Rousset, M., Brugna, M., Latifi, A. 2018. Phototrophic hydrogen production
 from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the
 cyanobacterium *Nostoc* PCC 7120. *Appl Microbiol Biotechnol*, **102**(13), 5775 5783.
- 482
- 483 2. Bähr, L., Wüstenberg, A., Ehwald, R. 2016. Two-tier vessel for
 484 photoautotrophic high-density cultures. *J Appl Phycol*, **28**(2), 783-793.
- 485
- 3. Bothe, H. 2016. The potential use of cyanobacteria for the conversion of solar
 light to molecular hydrogen as a new energy source. *New Biotechnology*, 33,
 \$51-\$52.
- 489

490	4.	Bozan, M., Schmid, A., Bühler, K. 2022a. Evaluation of self-sustaining
491		cyanobacterial biofilms for technical applications. Biofilm, 4, 100073.
492		
493	5.	Bühler, K., Bühler, B., Klähn, S., Krömer, J.O., Dusny, C., Schmid, A. 2021.
494		Biocatalytic production of white hydrogen from water using cyanobacteria. in:
495		Photosynthesis: Biotechnological Applications with Microalgae, (Ed.) R.
496		Matthias, De Gruyter, pp. 279-306.
497		
498		
499	6.	Chen, M., Xin, X., Liu, H., Wu, Y., Zhong, N., Chang, H. 2019. Monitoring
500		biohydrogen production and metabolic heat in biofilms by fiber bragg grating
501		sensors. Analytical Chemistry, 91(12), 7842-7849.
502		
503 504	7.	Cheng, D., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Bui, X.T., Wei,
505		W., Ni, B., Varjani, S., Hoang, N.B. 2022. Enhanced photo-fermentative
506		biohydrogen production from biowastes: An overview. Bioresource
507		<i>Technology</i> , 357 , 127341.
508		
509	8.	David, C., Bühler, K., Schmid, A. 2015. Stabilization of single species
510		Synechocystis biofilms by cultivation under segmented flow. Journal of
511		Industrial Microbiology and Biotechnology, 42 (7), 1083-1089.
512		
513		

514	9. Dong, Z., Wen, Z., Zhao, F., Kuhn, S., Noël, T. 2021. Scale-up of micro- and
515	milli-reactors: An overview of strategies, design principles and applications.
516	Chemical Engineering Science: X, 10 , 100097.
517	
518	10. Fernandes, B.D., Mota, A., Teixeira, J.A., Vicente, A.A. 2015. Continuous
519	cultivation of photosynthetic microorganisms: Approaches, applications and
520	future trends. Biotechnol Adv, 33(6 Pt 2), 1228-45.
521	
522	11.Fu, J., Huang, Y., Liao, Q., Xia, A., Fu, Q., Zhu, X. 2019. Photo-bioreactor
523	design for microalgae: A review from the aspect of CO2 transfer and
524	conversion. Bioresour Technol, 292, 121947.
525	
526	12.Guo, CL., Zhu, X., Liao, Q., Wang, YZ., Chen, R., Lee, DJ. 2011.
527	Enhancement of photo-hydrogen production in a biofilm photobioreactor using
528	optical fiber with additional rough surface. Bioresource Technology, 102(18),
529	8507-8513.
530	
531	13. Hariskos, I., Posten, C. 2014. Biorefinery of microalgae - opportunities and
532	constraints for different production scenarios. <i>Biotechnol J</i> , 9 (6), 739-52.
533	
534	14. Heuschkel, I., Dagini, R., Karande, R., Bühler, K. 2020. The impact of glass
535	material on growth and biocatalytic performance of mixed-species biofilms in

536	capillary reactors for continuous cyclohexanol production. Front Bioeng
537	Biotechnol, 8 , 588729.
538	
539	15. Heuschkel, I., Hoschek, A., Schmid, A., Buühler, B., Karande, R., Bühler, K.
540	2019b. Mixed-trophies biofilm cultivation in capillary reactors. MethodsX, 6,
541	1822-1831.
542	
543	16. Homburg, S.V., Kruse, O., Patel, A.V. 2019. Growth and photosynthetic
544	activity of Chlamydomonas reinhardtii entrapped in lens-shaped silica
545	hydrogels. <i>J Biotechnol</i> , 302 , 58-66.
546	
547	17. Hoschek, A., Heuschkel, I., Schmid, A., Bühler, B., Karande, R., Bühler, K.
548	2019. Mixed-species biofilms for high-cell-density application of Synechocystis
549	sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to
550	cyclohexanol. <i>Bioresour Technol</i> , 282 , 171-178.
551	
552	18. Howe, C., Becker, D., Steinweg, C., Posten, C., Stensjö, K. 2020. Iron
553	limitation – A perspective on a growth-restricted cultivation strategy for a H_2
554	production system using the diazotrophic cyanobacterium Nostoc PCC 7120
555	ΔhupW. <i>Bioresour Technol Rep</i> , 11 , 100508.
556	

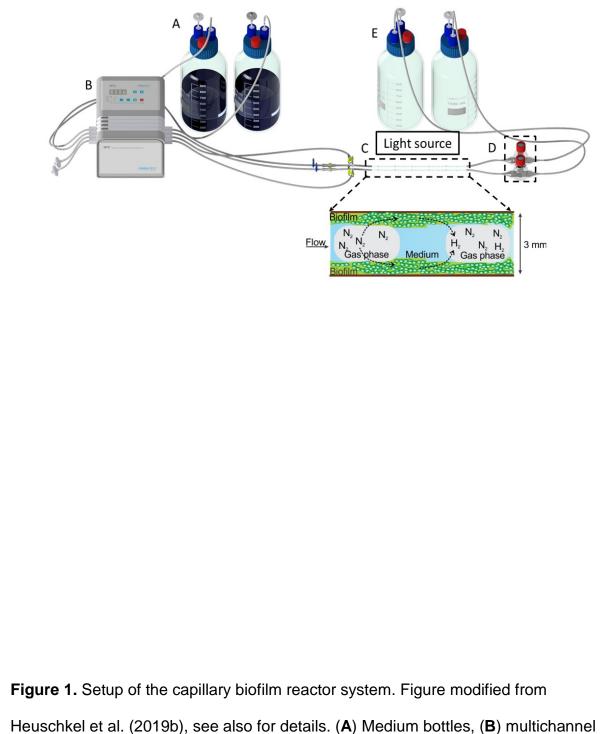
558	19. Johnson, T.J., Katuwal, S., Anderson, G.A., Gu, L., Zhou, R., Gibbons, W.R.
559	2018. Photobioreactor cultivation strategies for microalgae and cyanobacteria.
560	Biotechnol Prog, 34 (4), 811-827.
561	
562	20. Karande, R., Debor, L., Salamanca, D., Bogdahn, F., Engesser, K.H., Bühler,
563	K., Schmid, A. 2016. Continuous cyclohexane oxidation to cyclohexanol using
564	a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in
565	recombinant P. taiwanensis VLB120 biofilms. Biotechnol Bioeng, 113(1), 52-
566	61.
567	
568	
569	21. Khetkorn, W., Rastogi, R.P., Incharoensakdi, A., Lindblad, P., Madamwar, D.,
570	Pandey, A., Larroche, C. 2017. Microalgal hydrogen production - A review.
571	Bioresour Technol, 243 , 1194-1206.
572	
573	22.Kirnev, P.C.S., Carvalho, J.C., Vandenberghe, L.P.S., Karp, S.G., Soccol,
574	C.R. 2020. Technological mapping and trends in photobioreactors for the
575	production of microalgae. World J Microbiol Biotechnol, 36(3), 42.
576	
577	23.Kosourov, S., Leino, H., Murukesan, G., Lynch, F., Sivonen, K., Tsygankov,
578	A.A., Aro, E.M., Allahverdiyeva, Y. 2014. Hydrogen photoproduction by
579	immobilized N_2 -fixing cyanobacteria: understanding the role of the uptake

580 hydrogenase in the long-term process. *Appl Environ Microbiol*, **80**(18), 5807581 17.

583	24. Krishnan, A., Qian, X., Ananyev, G., Lun, D.S., Dismukes, G.C. 2018.
584	Rewiring of cyanobacterial metabolism for hydrogen production: Synthetic
585	biology approaches and challenges. in: Synthetic Biology of Cyanobacteria,
586	(Eds.) W. Zhang, X. Song, Springer Singapore. Singapore, pp. 171-213.
587	
588	
589	25.Li, T., Podola, B., Schultze, L.K.P., Melkonian, M. 2019. Design scenario
590	analysis for porous substrate photobioreactor assemblies. J Appl Phycol,
591	31 (3), 1623-1636.
592	
593	
594	26. Li, Y., Zhong, N., Liao, Q., Fu, Q., Huang, Y., Zhu, X., Li, Q. 2017. A
595	biomaterial doped with LaB6 nanoparticles as photothermal media for
596	enhancing biofilm growth and hydrogen production in photosynthetic bacteria.
597	International Journal of Hydrogen Energy, 42 (9), 5793-5803.
598	
599	27. Liao, Q., Zhong, N., Zhu, X., Huang, Y., Chen, R. 2015. Enhancement of
600	hydrogen production by optimization of biofilm growth in a photobioreactor.
601	International Journal of Hydrogen Energy, 40 (14), 4741-4751.
602	

603	28. Lichtl, R.R., Bazin, M.J., Hall, D.O. 1997. The biotechnology of hydrogen
604	production by Nostoc flagelliforme grown under chemostat conditions. Appl
605	Microb Biotech, 47 (6), 701-707.
606	
607	29. Lindberg, P., Lindblad, P., Cournac, L. 2004. Gas exchange in the filamentous
608	cyanobacterium Nostoc punctiforme strain ATCC 29133 and its hydrogenase-
609	deficient mutant strain NHM5. Appl Environ Microbiol, 70(4), 2137-45.
610	
611	30.Lindberg, P., Schutz, K., Happe, T., Lindblad, P. 2002. A hydrogen-producing,
612	hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133. Int J
613	Hydrog Energy, 27 (11-12), 1291-1296.
614	
615	31. Lindblad, P., Christensson, K., Lindberg, P., Fedorov, A., Pinto, F., Tsygankov,
616	A. 2002. Photoproduction of H_2 by wildtype <i>Anabaena</i> sp. PCC 7120 and a
617	hydrogen uptake deficient mutant: from laboratory experiments to outdoor
618	culture. Int J Hydrog Energy, 27 (11-12), 1271-1281.
619	
620	32. Martin, B.A., Frymier, P.D. 2017. A review of hydrogen production by
621	photosynthetic organisms using whole-cell and cell-free systems. Appl
622	Biochem Biotechnol, 183 (2), 503-519.
623	
624	33. Masukawa, H., Mochimaru, M., Sakurai, H. 2002. Disruption of the uptake
625	hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to

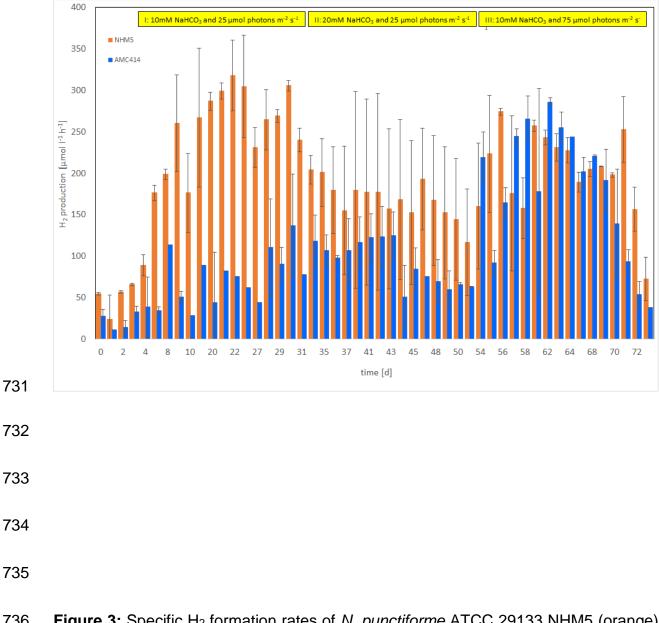
626	enhanced photobiological hydrogen production by the nitrogen-fixing
627	cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol, 58(5),
628	618-24.
629	
630	34. Nyberg, M., Heidorn, T., Lindblad, P. 2015. Hydrogen production by the
631	engineered cyanobacterial strain <i>Nostoc</i> PCC 7120 ∆hupW examined in a flat
632	panel photobioreactor system. J Biotechnol, 215, 35-43.
633	
634	35. Pathak, J., Rajneesh, Maurya, P.K., Singh, S.P., Häder, DP., Sinha, R.P.
635	2018. Cyanobacterial farming for environment friendly sustainable agriculture
636	practices: Innovations and perspectives. Front Environ Sci, 6.
637	
638	36. Podola, B., Li, T., Melkonian, M. 2017. Porous substrate bioreactors: A
639	paradigm shift in microalgal biotechnology? Trends Biotechnol, 35(2), 121-
640	132.
641	
642	37. Posten, C. 2009. Design principles of photo-bioreactors for cultivation of
643	microalgae. Engineering in Life Sciences, 9(3), 165-177.
644	
645	38. Renaudie, M., Dumas, C., Vuilleumier, S., Ernst, B. 2021. Biohydrogen
646	production in a continuous liquid/gas hollow fiber membrane bioreactor:
647	Efficient retention of hydrogen producing bacteria via granule and biofilm
648	formation. Bioresource Technology, 319, 124203.


649	
650	
651	39. Schuergers, N., Lenn, T., Kampmann, R., Meissner, M.V., Esteves, T.,
652	Temerinac-Ott, M., Korvink, J.G., Lowe, A.R., Mullineaux, C.W., Wilde, A.
653	2016. Cyanobacteria use micro-optics to sense light direction. <i>eLife</i> , 5 ,
654	e12620.
655	
656	40. Schultze, L.K.P., Simon, MV., Li, T., Langenbach, D., Podola, B., Melkonian,
657	M. 2015. High light and carbon dioxide optimize surface productivity in a Twin-
658	Layer biofilm photobioreactor. Algal Research, 8, 37-44.
659	
660	
661	41. Tiwari, A., Pandey, A. 2012. Cyanobacterial hydrogen production - A step
662	towards clean environment. Int J Hydrog Energy, 37(1), 139-150.
663	
664	42. Touloupakis, E., Rontogiannis, G., Benavides, A.M.S., Cicchi, B., Ghanotakis,
665	D.F., Torzillo, G. 2016. Hydrogen production by immobilized Synechocystis sp
666	PCC 6803. Int J Hydrog Energy, 41 (34), 15181-15186.
667	
668	43. Vajravel, S., Sirin, S., Kosourov, S., Allahverdiyeva, Y. 2020. Towards
669	sustainable ethylene production with cyanobacterial artificial biofilms. Green
670	Chemistry, 22 (19), 6404-6414.

672	44. Vorndran, E., Lindberg, P. 2016. In situ-immobilization of two model
673	cyanobacterial strains in ceramic structures: A new biohybrid material for
674	photobioreactor applications. J Biotechnol, 223, 1-5.
675	
676	45. Wang, J.F., Liu, W., Liu, T.Z. 2017. Biofilm based attached cultivation
677	technology for microalgal biorefineries-A review. Bioresour Technol, 244,
678	1245-1253.
679	
680	46. Wilson, S.T., Caffin, M., White, A.E., Karl, D.M. 2021. Evaluation of argon-
681	induced hydrogen production as a method to measure nitrogen fixation by
682	cyanobacteria. J Phycol, 57(3), 863-873.
683	
684	
685	47. Zavrel, T., Faizi, M., Loureiro, C., Poschmann, G., Stuhler, K., Sinetova, M.,
686	Zorina, A., Steuer, R., Cerveny, J. 2019. Quantitative insights into the
687	cyanobacterial cell economy. <i>Elife</i> , 8 .
688	
689	48. Zhang, H., Chen, G., Zhang, Q., Lee, D.J., Zhang, Z., Li, Y., Li, P., Hu, J., Yan,
690	B. 2017. Photosynthetic hydrogen production by alginate immobilized bacterial
691	consortium. Bioresour Technol, 236, 44-48.
692	


693	49. Zhao, W., Guo, Q., Zhao, J. 2007. A membrane-associated Mn-superoxide
694	dismutase protects the photosynthetic apparatus and nitrogenase from
695	oxidative damage in the cyanobacterium Anabaena sp. PCC 7120. Plant and
696	Cell Physiology, 48 (4), 563-572.
697	
698	50. Zhong, N., Liao, Q., Zhu, X., Chen, R. 2014. A fiber-optic sensor for accurately
699	monitoring biofilm growth in a hydrogen production photobioreactor. Analytical
700	Chemistry, 86 (8), 3994-4001.

Table 1: Microbial strains used in this study


		1
Strain	Characteristics	
Nostoc punctiforme	Nitrogen fixing filamentous	(Lindberg et al., 2002)
ATCC 29133	cyanobacterium	
Nostoc punctiforme	Uptake hydrogenase	(Lindberg et al., 2002)
	optatio Hydrogonaeo	
ATCC 29133 NHM5	knockout of ATCC 29133	
	(A bund)	
	(∆hupL)	
A		
Anabaena sp. PCC 7120	Nitrogen fixing filamentous	(Lindblad et al., 2002b)
	cyanobacterium	
Anabaena sp. PCC 7120	Uptake hydrogenase	(Lindblad et al., 2002b)
AMC 414	knockout of PCC 7120	
	$(\Delta x i s C, recombinase)$	
	(,,	
Pseudomonas	Biofilm forming strain	(Karande et al., 2016)
taiwanensis		
V/I P120		
VLB120		

- Heuschkel et al. (2019b), see also for details. (A) Medium bottles, (B) multichannel
- 715 peristaltic pump, (C) cultivation unit, (D) bubble trap, (E) waste reservoir. The insert
- 716 depicts a biofilm capillary operated in segmented flow.

Figure 2: Specific H₂ formation rates of uptake hydrogenase-deficient *N. punctiforme* ATCC 29133 NHM5, *Anabaena* sp. PCC 7120 AMC 414, and respective wildtype strains in capillary photobioreactors. Plotted are the average H₂ production rates in μ mol H₂ l⁻¹h⁻¹ as measured daily for 14 days in biological duplicates. Biofilms were cultivated as mixed species cultures (with *P. taiwanensis* VLB 120) in 1 ml capillaries under continuous illumination (25 µmol photons m⁻² s⁻¹) under constant BG-11₀ medium and air flow rates of 52 µl min⁻¹, each.

Figure 3: Specific H₂ formation rates of *N. punctiforme* ATCC 29133 NHM5 (orange) and *Anabaena* PCC 7120 AMC 414 (blue) in capillary photobioreactors. Biofilms were cultivated in 1 ml capillaries with 10 mM NaHCO₃ in BG-11₀ medium and 25 µmol photons m⁻² s⁻¹ (time window I), 20 mM NaHCO₃ and 25 µmol photons m⁻² s⁻¹ (II), and 10 mM NaHCO₃ and 75 µmol photons m⁻² s⁻¹ (III) for 75 days under a constant medium / air flow of 52 µl min⁻¹. Experiments were performed in duplicates, and H₂ concentrations were measured daily as described in Materials & Methods.

745 Figure 4: H₂ formation of *N. punctiforme* ATCC 29133 NHM5 (A, C, orange) and 746 Anabaena PCC 7120 AMC 414 (B, D, blue) in biofilm photobioreactors given as 747 volumetric rates in dependency of the incident light (A, B) and the applied gas phase 748 (C, D). A+B: Biofilms were cultivated in 1 ml capillaries at light intensities of 50-150 749 µmol photons m⁻² s⁻¹ in BG-11₀ with 10 mM NaHCO₃ under a constant medium and air 750 flow rate of 52 µl min⁻¹, each. Light conditions were kept constant for 7 days, and 751 experiments were performed as biological duplicates. H₂ and O₂ formation were 752 determined daily, and production rates are given as mean values determined on 5 753 consecutive days after an adaptation phase of 2 days. C+D: Biofilms were cultivated in 1 ml capillaries under constant illumination of 100 µmol photons m⁻² s⁻¹ in BG-110 754 755 medium with 10 mM NaHCO₃. Different gases were provided via the gas segments 756 (Air, N₂, and Argon), and conditions were kept constant for 5 days. H₂ and O₂ formation 757 were measured daily. Experiments were performed in biological duplicates and 758 production rates are shown as mean values.