
This is the accepted manuscript version of the contribution published 
as: 

Wu, B.-W., Ma, J., Banzhaf, E., Meadows, M.E., Yu, Z.-W., Guo, F., Sengupta, D., Cai, X.-
X., Zhao, B. (2023): 
A first Chinese building height estimate at 10 m resolution (CNBH-10 m) using multi-source 
earth observations and machine learning 
Remote Sens. Environ. 291 , art. 113578

The publisher's version is available at: 

https://doi.org/10.1016/j.rse.2023.113578 

https://doi.org/10.1016/j.rse.2023.113578
https://doi.org/10.1016/j.rse.2023.113578


Remote Sens Environ FOR PEER REVIEW 

 1 

A first Chinese building height estimate at 10 m 1 

resolution (CNBH-10m) using multi-source earth 2 

observations and machine learning 3 

Wan-Ben Wua,b, Jun Maa, Ellen Banzhafb, Michael E. Meadowsc,d, Zhao-Wu Yue, 4 

Feng-Xiang Guob,f, Dhritiraj Senguptag, Xing-Xing Caia, Bin Zhaoa* 5 
a Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National 6 
Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, and Shanghai Institute of 7 
EcoChongming (SIEC), Fudan University, Shanghai, 200433, China (wbwu19@fudan.edu.cn; 8 
ma_jun@fudan.edu.cn; zhaobin@fudan.edu.cn; xxcai@fudan.edu.cn) 9 
b Department of Urban and Environmental Sociology, UFZ – Helmholtz Centre for Environmental Research, 10 
Leipzig 04318, Germany (ellen.banzhaf@ufz.de; fengxiang.guo@ufz.de) 11 
c School of Geographic and Ocean Sciences, Nanjing University, Nanjing, China 12 
d Department of Environmental & Geographical Science, University of Cape Town, Cape Town 7701, South 13 
Africa (michael.meadows@uct.ac.za) 14 
e Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China 15 
(zhaowuyu@fudan.edu.cn) 16 
f Faculty of Physics and Earth Sciences, Leipzig University, Leipzig 04109, Germany (fengxiang.guo@uni-17 
leipzig.de) 18 
g School of Geography and Environmental Science, University of Southampton, Southampton SO17, UK 19 
(d.sengupta@soton.ac.uk) 20 

Highlights: 21 

⚫ The first country-wide 10 m building height map for China  22 

⚫ Shading index is the most important variable in estimating building height  23 

⚫ High degree of building height accuracy with RMSE of 6.1 m 24 

  25 

mailto:wbwu19@fudan.edu.cn
mailto:ma_jun@fudan.edu.cn
mailto:zhaobin@fudan.edu.cn
mailto:xxcai@fudan.edu.cn
mailto:ellen.banzhaf@ufz.de
mailto:fengxiang.guo@ufz.de
mailto:michael.meadows@uct.ac.za
mailto:zhaowuyu@fudan.edu.cn
mailto:fengxiang.guo@uni-leipzig.de
mailto:fengxiang.guo@uni-leipzig.de
mailto:d.sengupta@soton.ac.uk


Remote Sens Environ FOR PEER REVIEW 

 2 

Abstract 26 

Building height is a crucial variable in the study of urban environments, regional 27 

climates, and human-environment interactions. However, high-resolution data on 28 

building height, especially at the national scale, are limited. Fortunately, high spatial-29 

temporal resolution earth observations, harnessed using a cloud-based platform, offer 30 

an opportunity to fill this gap. We describe an approach to estimate 2020 building height 31 

for China at 10 m spatial resolution based on all-weather earth observations (radar, 32 

optical, and night light images) using the Random Forest (RF) model. Results show that 33 

our building height simulation has a strong correlation with real observations at the 34 

national scale (RMSE of 6.1 m, MAE=5.2 m, R=0.77). The Combinational Shadow 35 

Index (CSI) is the most important contributor (15.1%) to building height simulation. 36 

Analysis of the distribution of building morphology reveals significant differences in 37 

building volume and average building height at the city scale across China. Macau has 38 

the tallest buildings (22.3 m) among Chinese cities, while Shanghai has the largest 39 

building volume (298.4 108 m3). The strong correlation between modelled building 40 

volume and socio-economic parameters indicates the potential application of building 41 

height products. The building height map developed in this study with a resolution of 42 

10 m is open access, provides insights into the 3D morphological characteristics of 43 

cities and serves as an important contribution to future urban studies in China. 44 

Keywords: Multi-Sensor; Machine learning; Urban morphology; Google Earth 45 

Engine; Building height 46 
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1. Introduction 48 

Accurate measurement of building height is essential for understanding the 49 

impacts of urbanization on the urban environment. Building height is correlated with 50 

urban energy use (Resch et al. 2016), greenhouse gas emissions (Borck 2016; 51 

Marconcini et al. 2020) and human wellbeing (Liang et al. 2020; Schug et al. 2021). 52 

Furthermore, it is a crucial variable in volumetric analysis (Sun et al. 2018), population 53 

mapping (Alahmadi et al. 2013) and living conditions such as per capita space 54 

availability (Ghosh et al. 2020). Building height also has a significant impact on urban 55 

climate (Xi et al. 2021), including urban heat islands effects (Huang and Wang 2019; 56 

Perini and Magliocco 2014; Wu et al. 2022), solar radiation (Cheng et al. 2020; 57 

Sorichetta et al. 2015) and wind speeds (Miao et al., 2009). Accurate mapping of 58 

building height is therefore an important basis in improving our understanding of urban 59 

processes. 60 

In recent decades, two-dimensional (2D) urban morphology, including urban 61 

boundaries, the extent of impervious surface, and human settlement footprints, have 62 

received considerable attention and resulted in many high-resolution and global 63 

products (Gong et al. 2020; Li et al. 2020b; Marconcini et al. 2020; Mertes et al. 2015). 64 

There are, however, relatively few studies or products available for three-dimensional 65 

(3D) urban structures, and most of these focus on particular cities with spatial resolution 66 

limited to 0.3-1km (Kedron et al. 2019; Li et al. 2020c; Yang and Zhao 2022; Zhang et 67 

al. 2018). Even scarcer are 3D high-resolution data for urban structures in large and 68 

connected areas (Zhu et al. 2019). 69 

Currently, open-source and freely available earth observations are widely used for 70 

3D mapping of urban morphology. For example, using Sentinel-1 backscatter data, Li 71 

et al. (2020c) modelled building height at 500 m spatial resolution for major cities in 72 

the US. Yang and Zhao (2022) presented a building height map for China at 1km-73 

spatial-resolution based on Sentinel-1 data and spatially-informed Gaussian process 74 
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regression. However, the accuracy and application of such models is constrained by the 75 

backward scattering coefficient which is influenced not only by building height but also 76 

by the surface characteristics of construction materials, the composition of land-cover 77 

surrounding the buildings, and by the roughness characteristics of buildings or trees 78 

(Koppel et al. 2017; Vreugdenhil et al. 2018). It is possible to address these limitations, 79 

Huang et al. (2022), developed a method to estimate building height for China based 80 

on the Advanced Land Observing Satellite (ALOS) World 3D-30 m (AW3D30) DSM 81 

(Huang et al. 2022). As illustrated by Frantz et al. (2021), who combined Sentinel-1A/B 82 

and Sentinel-2A/B time series data to construct a model of building height for the whole 83 

of Germany. However, China has a more complex urban 3D structure, greater degree 84 

of building heterogeneity, and a wider distribution of high-rise buildings (Li et al. 2020a) 85 

and accordingly the method requires further modification to produce a reliable estimate 86 

building height at the national scale. 87 

An accurate map of building height is a basic requirement to support urban 88 

environmental research and planning, the more so in China with its prolific and rapid 89 

scale of urbanization. To date, however, there is no high resolution (less than 30 m) 90 

map of building height on a national scale. In filling this research gap, this study aims 91 

to develop a first Chinese building height map at 10 m resolution (CNBH-10 m)  based 92 

on data from an open-source earth observation platform analysed using machine 93 

learning. The main research objectives of the study are as follows: 94 

(1) To construct high-resolution building height estimation models using data from 95 

multiple-source, multi-temporal, and multi-scale to accommodate complex urban 96 

structures at the national scale in China. 97 

(2) To evaluate the accuracy and generalizability of building height models in 98 

different regions of the country. 99 

(3) To explore the distribution of different building forms in China and the factors 100 

underlying this distribution. 101 
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2. Data Description 102 

2.1 Independent variables 103 

As summarized in Table 1, the independent variables used to estimate building 104 

height include radar data, optical data, night-time light data, population data, 105 

topographic data, and settlement distribution data. Each variable and preprocessing step 106 

is described in detail below. We did not filter the variables for further regression 107 

because the RF model is insensitive to multivariate linearity (Breiman 2001). 108 

2.1.1 Sentinel-1 109 

Sentinel-1 Ground Range Detected (GRD) scenes were used to estimate urban 110 

building height which provides data from a dual-polarization C-band Synthetic 111 

Aperture Radar (SAR) instrument. Sentinel-1 imageries are available at 10 m resolution 112 

and a short revisit time (6-12 days) (Dai et al. 2016). In this study, two polarization 113 

bands, VV and VH, and dual-polarization information derived VVH (Li et al. 2020c) 114 

were used for further building height estimation. All Sentinel-1 SAR GRD data are 115 

available on the GEE platform (Gorelick et al. 2017), and all the data on GEE were 116 

processed using Sentinel-1 Toolbox (Veci et al. 2014) to generate a calibrated, ortho-117 

corrected product. A total of 56,821 scenes of Sentinel-1 data were used in this study. 118 

Fig. 1a shows the total observations of Sentinel-1 data from 2019 to 2021. 119 

The dual-polarised information derived VVH was calculated as follows: 120 

𝑉𝑉𝐻 = VV ∗ 𝛾𝑉𝐻               ( 1. ) 121 

Where 𝛾 was set to 5 based on a former study (Li et al. 2020c). 122 

2.1.2 PALSAR 123 

Phased Array Type L-band Synthetic Aperture Radar (PALSAR) is an active 124 

microwave sensor which has a multi-polarization configuration, and is widely used for 125 

the estimation of vertical structure in vegetation. In this study, global 25 m PALSAR/ 126 
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PALSAR-2 yearly mosaic data from 2019 to 2021 were obtained from the GEE data 127 

catalog (Collection Snippet: "JAXA/ALOS/PALSAR/YEARLY/SAR"). To ensure 128 

high-quality data, the SAR images with the lowest response to surface moisture were 129 

prefer used for creating the annual product using the mean composite method (Shimada 130 

et al. 2014). 131 

2.1.3 Sentinel-2 132 

In this study, a total of 160,023 scenes of Sentinel-2 were utilized. The QA60 133 

bitmask band was used to mask out poor-quality observations caused by clouds (Bit 10) 134 

and cirrus clouds (Bit 11) (Ni et al. 2021) for each image. Fig. 1b shows the total number 135 

of cloud free observations of Sentinel-2 data during 2019 to 2021. In addition to 136 

Sentinel-2 bands, six other spectral indices were considered as independent variables, 137 

including Normalized Difference Vegetation Index (NDVI) (Pettorelli 2013; Tucker 138 

1979), Enhanced Vegetation Index (EVI) (Huete et al. 2002), Land Surface Water Index 139 

(LSWI) (Xiao et al. 2004), Modified Normalized Difference Water Index (MNDWI) 140 

(Xu 2006), Normalized Difference Built-up Index (NDBI) (Zha et al. 2003), and 141 

Combinational Shadow Index (CSI) (Sun et al. 2019). Equations used to calculate the 142 

indices are as follows: 143 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑟𝑒𝑑
              (2.) 144 

𝐸𝑉𝐼 =
2.5(𝜌𝑁𝐼𝑅−𝜌𝑟𝑒𝑑)

(𝜌𝑁𝐼𝑅+6𝜌𝑟𝑒𝑑−7.5𝜌𝑏𝑙𝑢𝑒+1)
   (3.) 145 

𝐿𝑆𝑊𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑠𝑤𝑖𝑟1

𝜌𝑁𝐼𝑅+𝜌𝑠𝑤𝑖𝑟1
              (4.) 146 

𝑀𝑁𝐷𝑊𝐼 =
𝜌𝑔𝑟𝑒𝑒𝑛−𝜌𝑠𝑤𝑖𝑟1

𝜌𝑔𝑟𝑒𝑒𝑛+𝜌𝑠𝑤𝑖𝑟1
             (5.) 147 

𝑁𝐷𝐵𝐼 =
𝜌𝑠𝑤𝑖𝑟1−𝜌𝑁𝐼𝑅

𝜌𝑠𝑤𝑖𝑟1+𝜌𝑁𝐼𝑅
              (6.) 148 

𝑆𝐸𝐼 =
(𝜌𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠+𝜌𝑤𝑎𝑡𝑒𝑟 𝑣𝑎𝑝𝑜𝑟)−(𝜌𝑔𝑟𝑒𝑒𝑛+𝜌𝑁𝐼𝑅)

(𝜌𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠+𝜌𝑤𝑎𝑡𝑒𝑟 𝑣𝑎𝑝𝑜𝑟)+(𝜌𝑔𝑟𝑒𝑒𝑛+𝜌𝑁𝐼𝑅)
         (7.) 149 
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𝐶𝑆𝐼 = {
𝑆𝐸𝐼 − 𝜌𝑁𝐼𝑅 , 𝑖𝑓 𝜌𝑁𝐼𝑅 ≥ 𝑁𝐷𝑊𝐼

𝑆𝐸𝐼 − 𝑁𝐷𝑊𝐼, 𝑒𝑙𝑠𝑒         
          (8.) 150 

where 𝜌𝑟𝑒𝑑 , 𝜌𝑔𝑟𝑒𝑒𝑛 , 𝜌𝑏𝑙𝑢𝑒 , 𝜌𝑁𝐼𝑅 , 𝜌𝑠𝑤𝑖𝑟1 , 𝜌𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠 , 𝜌𝑤𝑎𝑡𝑒𝑟 𝑣𝑎𝑝𝑜𝑟 are the surface 151 

reflectance of the red, green, blue, near infrared, shortwave infrared, aerosols and water 152 

vapor bands of the Sentinel-2 MSI sensor. 153 

2.1.4 LUOJIA night light image 154 

LUOJIA 1-01, a new nighttime light (NTL) data satellite launched by China in 2018, 155 

has a spatial resolution of 130 meters (Li et al. 2018). In this investigation, we utilized 156 

LUOJIA night light images from 2018 as input data to derive estimations of building 157 

heights. To improve the accuracy of NTL, we calculated the Vegetation Adjusted NTL 158 

Urban Index (VANUI) (Zhang et al. 2013) based on equation 9 to mitigate the 159 

oversaturation effect of NTL. 160 

𝑉𝐴𝑁𝑈𝐼 = (1 − NDVI) ∗ NTL            (9.) 161 

where NDVI is the annual mean NDVI derived from Landsat products in 2018 and 162 

NTL is the DN value of LUOJIA 1-01 NTL data. 163 

2.1.5 Settlement footprint 164 

The World Settlement Footprint (WSF) layer for 2019 is a global human settlement 165 

distribution product at a ground resolution of 10 m derived from Landsat-8 and 166 

Sentinel-1 data. In this study, the settlement coverage derived from WSF 2019 was 167 

extracted as an independent variable for building height estimation and was also used 168 

to mask the final CNBH-10m product to remove to remove non-built-up pixels. We 169 

chose WSF due to its superior ability to remove roads between buildings, as well as its 170 

high user accuracy and accuracy of area estimation compared to other datasets such as 171 

ESA WorldCover, ESRI Land Cover, and GHS-BUILT-S2 (Wang et al. 2022). Fig. 1c 172 

shows the distribution of WSF in 2019. 173 
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2.1.6 Other independent variables 174 

Considering the large extent of mainland China's latitude and longitude range, from 175 

73°33′E to 135°05′E and from 3°51′N to 53°33′N, we incorporated the potential impact 176 

of variations in solar elevation angle on the model in our selection of variables for 177 

building height inversion. We included building location (longitude and latitude) and 178 

topographic information (DEM and slope) as key variables, as these factors 179 

significantly affect the solar elevation angle. In addition, population size was 180 

considered as an independent variable. More detailed information on the data sets used 181 

here is presented in Table 1. All variables were resampled to 10 m using the nearest 182 

neighbor resampling method for building height modeling and estimation. 183 

2.2 Reference building height dataset 184 

The vector building footprint data, which incorporate the information relating to the 185 

number of floors for 62 cities in China for the year 2018 (Fig. 1d) were collected from 186 

Baidu map services (http://www.map.baidu.com). To obtain the building height for 187 

each building, the number of building floors was multiplied by 3 m (Tripathy et al. 2022; 188 

Wu et al. 2022). Liu et al. (2021) report an accuracy of 86.8%, with a mean height 189 

deviation of approx. 1 m, for this dataset. In order to acquire sample points of building 190 

footprint for further analysis, we used the method (equation 10) from Frantz et al. (2021) 191 

to convert the vector building height data of single buildings to 10 m spatial resolution 192 

grid data. In order to enhance the quality of samples and mitigate errors arising from 193 

incomplete building measurements, the analysis excluded samples within a 50-meter 194 

radius of the sampling point that exhibited a difference of more than 25% between the 195 

building footprint vector data and the WSF building distribution in terms of area. In this 196 

study, a total of 22,909 samples were used to train (70%) and validate (30%) the 197 

building height model. 198 

𝐵𝐻10𝑚 =
∑ 𝐻𝑝∗𝐴𝑝

𝑛
𝑝

∑ 𝐴𝑝
𝑛
𝑝

              199 

 (10.) 200 

http://www.map.baidu.com/
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where 𝐻𝑝  and 𝐴𝑝  represent the height and area of individual building patches, 201 

respectively, while ∑ 𝐴𝑝
𝑛
𝑝  denotes the total area of all building patches within the 202 

statistical area. 203 

 204 

Fig. 1 Study area and data availability. (a) number of Sentinel-1 observations from 2019 205 

to 2021; (b) number of cloud free Sentinel-2 observations from 2019 to 2021; (c) human 206 

settlement footprint of China in 2019; (d) reference building height data distribution 207 

(colored polygon).208 
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Table 1. Datasets used to estimate building height  209 

Code Products Variables Acquisition time Resolution Data Source Reference 

0 
Reference 
building height 

building height 2019 Vector http://www.map.baidu.com (Liu et al. 2021) 

1-3 Sentinel-1 VV; VH; VVH 2019-2021 10 m 
"COPERNICUS/S1_GRD" 
(Collection Snippet in GEE) 

(Torres et al. 
2012) 

4-5 PALSAR HH; HV 2019-2021 25 m 

"JAXA/ALOS/PALSAR/YEARL
Y/SAR" 

(Collection Snippet in GEE) 

(Shimada et al. 
2014) 

6-22 Sentinel-2 

Aerosols; Blue; Green; Red; 
NIR; Red Edge 1-4; SWIR 1; 
SWIR 2; NDVI; EVI; LSWI; 
MNDWI; NDBI; CSI 

2019-2021 10/20/60 m 
"COPERNICUS/S2_SR" 
(Collection Snippet in GEE) 

(Drusch et al. 
2012) 

23 LUOJIA 1-01 VANUI 2018 130 m http://www.hbeos.org.cn (Li et al. 2018) 

24 
World 
population 

Population 2020 100 m 
"WorldPop/GP/100 m/pop" 

(Collection Snippet in GEE) 

(Sorichetta et al. 
2015) 

25-26 SRTM DEM; Slope 2000 90 m https://srtm.csi.cgiar.org 
(Rodriguez et al. 
2006) 

27 WSF 2019 Settlement coverage 2019 10 m 
https://geoservice.dlr.de/web/map
s/eoc:wsf2019 

(Marconcini et 
al. 2020) 

28-29 Location Latitude; Longitude / 10 m / / 

 210 

http://www.map.baidu.com/
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
http://www.hbeos.org.cn/
https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop
https://srtm.csi.cgiar.org/
https://geoservice.dlr.de/web/maps/eoc:wsf2019
https://geoservice.dlr.de/web/maps/eoc:wsf2019
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3. Methodology 211 

Fig. 2 illustrates the workflow developed for the building height estimation based 212 

on multi-source, multi-temporal, all-weather earth observations. The approach consists 213 

of three main sections. First, the preprocessing of independent variables was conducted 214 

by combining multi-temporal, multi-spectral, multi-window, and multi-statistical 215 

methods. Second, the Random Forest (RF) model was used to construct and optimize 216 

the estimation model. Third, the validation of the simulations was referenced against 217 

real building height data. 218 

 219 

Fig. 2 Method overview of CNBH-10 m estimation 220 

3.1 Preparation of variables 221 

All Sentinel-1 and cloud free Sentinel-2 time series were temporally aggregated to 222 

enhance the richness of information. This processing step employed the spectral-223 

temporal variability approach (Frantz et al. 2021). We calculated the maximum, 224 

minimum, and standard deviation of the time series of Sentinel-1, Sentinel-2, and their 225 

derivatives variables for the three-year period from 2019 to 2021. To capture shadow 226 

features across different levels of building heights, we employed multi-window local 227 

statistics (Figure 3) that utilized both spectral features and radar data. We applied 228 
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maximum and mean statistical methods to circles with radii of 50 m, 100 m, 150 m, and 229 

200 m. 230 

 231 

Fig. 3 Method of multi-window statistics 232 

3.2 Building height model 233 

The RF regression model (Liaw and Wiener 2002) was used to estimate building 234 

height, where a total of 519 variables were set as predictors, and 22,909 samples were 235 

used as training samples. The number of trees (Ntree) and the number of features 236 

randomly selected to split each node (Mtry) are two crucial parameters of the RF model. 237 

Increasing Ntree can enhance the performance of random forests. Since the RF 238 

classifier is computationally efficient and non-overfitting, Ntree can be set to the 239 

highest feasible value (Guan et al. 2013). In most of the studies reviewed here, the Ntree 240 

value was set at 500, as the errors of the classification tree stabilize before this number 241 

is reached (Lawrence et al. 2006). When Mtry is small, the model's variance decreases, 242 

but the bias increases, as some critical features may be ignored. When Mtry is large, 243 

the variance of the model increases, but the bias decreases as the model considers more 244 

features. Previous research suggests using the square root of the number of variables as 245 

the value for Mtry (Gislason et al. 2006). Therefore, in this study, we set Ntree and 246 

Mtry to 600 and the square root of the number of variables, respectively. In order to 247 

understand the importance of different variables for the building height model, the 248 

relative importance of each variable was evaluated using the Mean Decrease in Gini 249 
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(MDG) method (Breiman 2001). For 2019, WSF data were used to define the settlement 250 

footprint of the CNBH-10 m map. The RF regression model was performed on the 251 

Google Earth Engine (GEE) platform (Gorelick et al. 2017). 252 

3.3 Accuracy assessment 253 

To assess the accuracy of the estimated building height, three indicators were 254 

calculated including R, Root Mean Square error (RMSE) and Mean Absolute Error 255 

(MAE) based on 30% of the reference samples. In this study, we evaluated the accuracy 256 

of the model using both the least squares (LS) regression model and the weighted least 257 

squares (WLS) regression model. The WLS model assigns weights to each building 258 

height category, with data points appearing more frequently in the height category 259 

having a lower weight, resulting in a more precise estimation of the slope of the 260 

regression line. 261 

𝑅 = √1 −
(𝑛−1) ∑ (𝐵𝐻𝑒𝑠𝑡,𝑖−𝐵𝐻𝑟𝑒𝑓,𝑖)2𝑛

𝑖=1

(𝑛−2) ∑ (𝐵𝐻𝑒𝑠𝑡,𝑖−𝐵𝐻𝑟𝑒𝑓,𝑖)2𝑛
𝑖=1

          (11.) 262 

𝑅𝑀𝑆𝐸 = √
∑ (𝐵𝐻𝑒𝑠𝑡,𝑖−𝐵𝐻𝑟𝑒𝑓,𝑖)2𝑛

𝑖=1

𝑛
           (12.) 263 

𝑀𝐴𝐸 =
∑ |𝐵𝐻𝑒𝑠𝑡,𝑖−𝐵𝐻𝑟𝑒𝑓,𝑖|𝑛

𝑖=1

n
            (13.) 264 

where n is the number of validation samples, 𝐵𝐻𝑒𝑠𝑡,𝑖 is the estimated building height 265 

value, and 𝐵𝐻𝑟𝑒𝑓,𝑖 is the reference building height value. 266 

4. Results 267 

4.1 Relative importance of variables  268 

Fig. 4 illustrates the relative importance of each independent variable in the 269 

building height estimation model. The cumulative relative importance (Fig. 4 a) 270 

indicates that the CSI makes the largest contribution (15.1%) to the estimation model, 271 

followed by VH (7.8%). Overall, the contribution of optical, radar, and other data to 272 

the building height estimation model is 76.6%, 18.2%, and 5.3%, respectively. 273 
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According to the average degree of importance of each independent variable (Fig. 4 b), 274 

building location (latitude, longitude, DEM, slope), and settlement density also 275 

contribute to the simulation, albeit less so. The importance of information gathered by 276 

windows of different sizes varies for building height models, as the relative importance 277 

of the 50 m, 100 m, 150 m, and 200 m scales are 34.2%, 32.5%, 22.4%, and 5.6%, 278 

respectively. To summarize, optical information exhibits the highest level of 279 

importance in combination with the most significant scales of 50 and 100 m. 280 

 281 

Fig. 4. (a) Cumulative and (b) average relative importance of each variable under 282 

various spatial-temporal fusion methods 283 

The results in Figure 5 show the progression of estimation accuracy as the number 284 

of variables increases. A total of 519 models were constructed by incrementally adding 285 

variables based on their relative importance, and the change in model accuracy was 286 

assessed as the number of independent variables increased. The results indicate that the 287 

inclusion of a certain number of variables significantly improves estimation accuracy, 288 

but that further increasing the number of variables eventually reachs a plateau at which 289 

accuracy can no longer be improved. Therefore, a balance between efficiency and high 290 
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estimation accuracy can be achieved by including a specific number (121 in this study) 291 

of variables in the model. 292 

 293 

Fig. 5. The relationship between the number of input variables and the R (blue line) 294 

and RMSE (red line) values of the estimation models. 295 

4.2 Accuracy assessment 296 

Figure 6 illustrates the relationship between reference and estimated building 297 

height. Our study confirms the remarkable generalizability of the RF-based building 298 

height model across various cities. Using the least squares regression model, the mean 299 

values of R, RMSE, and MAE were 0.7, 7.6 m, and 6 m, respectively. Meanwhile, the 300 

WLS regression models produced mean values of R, RMSE, and MAE at 0.7, 6.2 m, 301 

and 5.2 m, respectively. The three strongest correlations based on WLS regression 302 

models are obtained for the dataset in Nantong (R=0.87), Beijing (R=0.82) and 303 

Tangshan (R=0.8). Wuhu (4.1 m), Baoding (4.2 m), and Quanzhou (4.5 m) exhibit the 304 

smallest RMSE. The validation results for all samples exhibit a strong statistical 305 

relationship between the estimated and reference building heights (R=0.77 using both 306 

least squares regression and WLS regression models). In the least squares regression 307 

model, the model achieved an uncertainty (RMSE) of 7.4 m and MAE of 5.8 m, in the 308 

WLS regression model the RMSE was 6.1 m and MAE was 5.2 m. Figure 7 shows the 309 
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distribution of accuracy obtained from two evaluation models. Further results of the 310 

accuracy verification for individual cities can be found in the supplementary Figure S1 311 

and Table S1. 312 

 313 

Fig. 6. Building height validation based on building footprint data, (a) R, (b) RMSE, 314 

(c) MAE distribution for each city, and (d) validation results based on all the samples, 315 

white line: one-to-one, red line: ordinary least squares regression, green line: WLS 316 

regression, text in red: regression model, R value and RMSE of the ordinary least 317 

squares model, text in green: regression model, R value and RMSE of the WLS 318 

regression model. 319 
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 320 

Fig. 7. The violin plots illustrate the distribution of estimation accuracy for building 321 

heights based on validation samples from 62 cities. (a)-(c) represent the results of 322 

evaluation based on LS regression models, while (d)-(f) represent the results of 323 

evaluation based on WLS regression models. The boxplots inside each violin show the 324 

median, quartiles, and range of estimation accuracy. 325 

4.3 Spatial patterns of building height 326 

Figure 8 indicates the height distribution of buildings in China in 2020. The results 327 

reveal that megacities in eastern China. More specifically in the Yangtze River Basin 328 

and Delta, the Beijing-Tianjin-Hebei region and Guangzhou-Shenzhen-Hong Kong 329 

regions have the greatest concentrations of high-rise buildings. As would be expected, 330 

large and medium-sized urban centers also have signify taller buildings. 331 
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 332 

Fig. 8. Spatial distribution of building height in China (10 m spatial resolution), the 333 

dataset is freely available on Zenodo, and can be explored in the CNBH-10 m Explorer 334 

web app (https://wwanben1994.users.earthengine.app/view/cnbh10 mtest). 335 

The CNBH-10m product demonstrably provides accurate representations of 336 

building heights in several urban areas, as illustrated in Figure 9. A comparison with 337 

high-resolution satellite imagery reveals that the product performs well in estimating 338 

point, linear, and clustered arrangements of high-rise buildings and accurately reflects 339 

low buildings in older urban areas, such as the historic city of Beijing. 340 

https://wwanben1994.users.earthengine.app/view/cnbh10mtest
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 341 

Fig. 9. Sub-samples (10 m spatial resolution) of building height from Beijing, Shanghai, 342 

Guangzhou, Wuhan, Xi’an and Fuzhou. 343 

4.4 Regional distribution of building morphology 344 

Based on the CNBH 10 m product, the mean building height at city level (Figure 345 

10 a), the high-rise building area (Figure 10 b) and total building volume (Figure 10 c) 346 

are depicted for China. Macau (22.3 m) has the tallest, and Hong Kong (22.1 m) has 347 

the second tallest average building height. The larger metropolitan conurbations in 348 

China, i.e. Beijing, Shanghai, Guangzhou, and Shenzhen have mean building heights 349 

of 12.8 m, 18.0 m, 15.2 m, and 17.9 m, respectively. The distribution of the total area 350 
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of high-rise buildings (above 24 m) in each city shows that the Beijing-Tianjin-Hebei 351 

region and the Yangtze River Delta region have more high-rise buildings, among which 352 

Shanghai has the most with 209.79 km2, followed by Beijing (144.14 km2), Suzhou 353 

(110.99 km2) and Chongqing (106.29 km2). There is a marked difference between the 354 

distribution of accumulated building volume and average building height at city scale. 355 

Cities with greater mean building heights are located especially along the coast and in 356 

central and southwestern China, while the largest building volumes are found in the 357 

most densely populated cities, such as Shanghai (298.4 108 m3), Suzhou (266.8 108 m3) 358 

and Beijing (266.2 108 m3). 359 

 360 

Fig.10. (a) Mean building height (b) High-rise building area (>24 m) and (c) 361 

Accumulated building volume at city level 362 

4.5 The relationship between socio-economic parameters and building morphology 363 

Using cities as a statistical unit, we compared population and GDP with building 364 

morphology, including mean building height, high-rise building area and accumulated 365 

building volume (Figure 11). The results show that building height generally does not 366 

correlate well with population or GDP, although high-rise building area and building 367 

volume exhibits a strong correlation with two socio-economic parameters. This may be 368 

due to the fact that most of the tall buildings are commercial sites and not located in 369 

residential areas. Population figure actually exhibits the most significant correlation 370 

with the high-rise building area (R2=0.66, p-value<0.01) and building volume (R2=0.78, 371 

p-value<0.01), while GDP also have very strong correlations with these two parameters. 372 
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 373 

Fig. 11. Scatter plots of multiple socio-economic factors versus mean building height, 374 

high-rise building area and accumulated building volume at city scale. The total 375 

population, GDP was calculated in each city based on gridded population data 376 

(Sorichetta et al. 2015) and GDP product (Chen et al. 2022). 377 

5. Discussion 378 

5.1 The importance of independent variables on mapping building height 379 

The backscattering coefficient is considered to have a strong correlation with 380 

building height, as demonstrated in previous studies (Li et al. 2020c; Yang and Zhao 381 

2022). Accordingly, in this study we incorporate HH, HV polarization data from 382 

PALSAR to improve the accuracy of building height estimation. The complexity of 383 

urban morphology and urban building material differences introduces uncertainties if 384 

using only the backscatter coefficients for large scale and high resolution building 385 

height estimation. So in this study we also applied long time series optical data and 386 

explore application of the shading index. The results demonstrate that the backscatter 387 

coefficient and shading index are the most important variables in the building height 388 

estimation model. 389 

In considering the large scale and complex topography of this national-scale study, 390 

information on building location and topography, as well as longitude, latitude, and 391 
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DEM were used to show that taking account of the relative contributions of these 392 

variables to the building height model can improve the generalizability of large-scale 393 

building height estimation. When estimating large scale building heights in China, 394 

which is more heterogeneous than those in European countries, the multi-window 395 

statistical approach used in this study effectively accounts for the model variables, such 396 

as shadows for high-rise and low-rise building.  The study indicates that it is possible 397 

to improve the potential of building height estimation in such complex scenarios. 398 

5.2 High accuracy of the building height map 399 

In this study, we compared the estimated 10 m building height with existing sets of 400 

products, including 30 m (Huang et al. 2022), 500 m (Zhou et al. 2022), and 1000 m 401 

building heights (Li et al. 2020a). Figure 12 shows the distribution of building height 402 

observation data for six representative cities in China and compares the results across 403 

the four building heights. The results indicate that the 10 m building height product 404 

provides better detail and more accurately reflects the distribution pattern of building 405 

heights compared to other building height product. Furthermore, the 500 m and 1000 406 

m building height products fail to reflect building height information at the block scale, 407 

thereby demonstrating the superiority of our 10 m building height product. 408 
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 409 

Fig. 12. Comparison of CNBH-10 m maps with multi-scale building height products 410 

for six Chinese cities 411 

Additionally, we randomly selected 20,000 sample points and analyzed the 412 

correlation between the four sets of building height products (Figure 13). To ensure 413 

comparability of building height data across different resolutions, we resample the 414 
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higher resolution data using the bilinear interpolation method to match the spatial 415 

resolution of the lower resolution data. Our findings show that the 10 m building height 416 

product has a good correlation with the 30 m and 1000 m building height products, with 417 

R values of 0.69 and 0.71, and RMSE values of 5.8 m and 4.4 m, respectively. However, 418 

the findings of this study exhibit a low correlation with the 500 m building height 419 

product, with an R value of only 0.41 and an RMSE value of 12.8 m. This may be due 420 

to the inclusion, in the 500 m building height product, of information on nonbuilding 421 

surfaces such as streets and parking lots (Zhou et al. 2022). This inclusion also explains 422 

the poor correlation between the 500 m and the 30 m and 1000 m building height 423 

products. 424 

 425 

Fig. 13. Comparative analysis of multiple floor height products, white line: one-to-one, 426 

red line: ordinary least squares regression, green line: WLS regression, text in red: 427 

regression model, R value and RMSE of the ordinary least squares model, text in green: 428 

regression model, R value and RMSE of the WLS regression model. 429 
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5.3 Implications and uncertainties 430 

Compared with the lower resolution building height products of previous studies 431 

(Li et al. 2020a; Li et al. 2020c; Yang and Zhao 2022), the 10 m spatial resolution 432 

building height data presented here demonstrates the feasibility of fine-grained urban 433 

3D morphological characterization. Moreover, CNBH-10 m products provide 434 

potentially important baseline data with a wide range of applications, such as studies of 435 

urban microclimate. For example, previous researchers have indicated that the building 436 

complexity and the mixture of building types can influence urban ventilation and 437 

energy balance, and thus have effect on urban heat accumulation and release (Chun and 438 

Guldmann 2014). CNBH-10 m also has great potential in research on urban morphology. 439 

Specifically, there are numerous studies on the impact of urban expansion and urban 440 

2D landscape patterns on urban ecology and the environment (Li et al. 2011; McDonald 441 

et al. 2020). However, the discontinuity and high economic cost of urban 3D data 442 

collection have made it difficult to quantify these impacts in cities. Together with the 443 

3D building morphology metrics proposed in previous studies (Guo et al. 2021; Wu et 444 

al. 2017), CNBH10 m has great potential to fill this gap. 445 

Despite these promising results, several limitations of the methodology need to be 446 

acknowledged. Due to the complex 3D structure and high degree of heterogeneity of 447 

cities, there are several uncertainties in the estimation of building height and these need 448 

to be carefully taken into account when applying the methodology. For example, 449 

additional shadows caused by trees and overpasses between buildings may affect the 450 

estimation of building height, future efforts to mitigate these uncertainties can be 451 

pursued through the utilization of multi-angle remote sensing techniques or the 452 

acquisition of higher-resolution satellite imagery (Kadhim and Mourshed 2017; Liu et 453 

al. 2020; Tripathy et al. 2022). The data resampling method used in the study may also 454 

have an impact on the results of the building height estimation. Here, the WSF dataset 455 

was used as the base map for building distribution, and a masking process was applied 456 

to the final CNBH-10m product. The accuracy of the base map has a significant 457 
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influence on the accuracy of the building height product, especially for the building 458 

volume estimation. Future research could explore the combination of multiple building 459 

distribution products, such as GHS-BUILT-S2 (Corbane et al. 2021), to improve the 460 

accuracy. Due to the use of a pixel-based method for estimating building height, the 461 

final results of building height estimation exhibited some noise. Moreover, the multi-462 

window approach used for processing input variables resulted in some smoothing 463 

effects in the building height products. To enhance the accuracy of building height 464 

estimation, future studies may consider utilizing object-based methods or employing 465 

post-processing techniques on building height products, in conjunction with more 466 

precise building boundaries such as vector boundaries of individual buildings 467 

(Milojevic-Dupont et al. 2023). The use of three-year remote sensing imagery for 468 

building height inversion in this study may also introduce uncertainties in the results 469 

due to rapid urban development in China. Moreover, due to computational limitations 470 

and mapping efficiency, this study only used the RF model for building height 471 

estimation and comparison, while further refinements may be achieved through deep 472 

learning methods. Although nighttime lighting and population data are also used as 473 

variables for building height estimation in the study, they do not contribute well to the 474 

building height estimation model, which is likely due to the low spatial resolution of 475 

these data.. 476 

6. Conclusion 477 

This study demonstrates the potential of using earth observation data for national-478 

scale building height estimation and establishes a high degree of accuracy of simulated 479 

building height based on RF regression modeling. Specifically, a total of 519 different 480 

feature variables were derived from earth observation data collected in all-weather 481 

conditions, and building heights were analyzed based on multitemporal, multispectral, 482 

and multiscale geospatial big data. The shading index, the backscattering coefficient, 483 

and the location of the building are the most significant contributors to the China-wide 484 

building height estimation model which has the potential for universality, 485 
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transferability and reliability in terms of accuracy. Estimated and observed building 486 

heights exhibit R, RMSE and MAE values of 0.77, 6.1 m and 5.2 m respectively. In 487 

summary, the method and outputs indicate the potential of multi-source, multi-time, 488 

multi-window algorithms and cloud-based computing platforms for large-scale, refined 489 

building height mapping. The CNBH-10 m product can be applied to a wide range of 490 

urban process studies, such as urban climate, energy consumption and population 491 

estimates. The CNBH-10 m product is fully open source and freely available 492 

(https://zenodo.org/record/7064268#.YxtVAuxBz0p). 493 
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