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1 Abstract

2 Introduction: Metaproteomics is an established method to obtain a comprehensive taxonomic 

3 and functional view of microbial communities. After more than a decade, we are now able to 

4 describe the promise, reality, and perspectives of metaproteomics and provide useful information 

5 about the choice of method, applications, and potential improvement strategies. 

6 Areas covered: In this perspective, we will discuss current challenges of species and proteome 

7 coverage, and also highlight functional aspects of metaproteomics analysis of microbial 

8 communities with different levels of complexity. To do this, we re-analyzed data from microbial 

9 communities with low to high complexity (8, 72, 200 and >300 species). High species diversity 

10 leads to a reduced number of protein group identifications in a complex community, and thus the 

11 number of species resolved is underestimated. Ultimately, low abundance species remain 

12 undiscovered in complex communities. However, we observed that the main functional categories 

13 were better represented within complex microbiomes when compared to species coverage. 

14 Expert opinion: Our findings showed that even with low species coverage, metaproteomics has 

15 the potential to reveal habitat-specific functional features. Finally, we exploit this information to 

16 highlight future research avenues that are urgently needed to enhance our understanding of 

17 taxonomic composition and functions of complex microbiomes.

18
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19 Article highlights

20  We integrated four microbial community datasets to determine the effect of increasing 

21 community complexity on proteome, species and pathway coverage

22  The taxonomic resolution is reduced in microbial communities with increasing complexity 

23  The identification of low abundance proteins present in complex microbial communities is 

24 challenging

25  A unique strength of metaproteomics is the robust identification of habitat specific 

26 pathways, regardless of the underlying microbial community complexity

27
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29 1. Introduction – A decade of metaproteomics

30 In nature, bacteria rarely occur axenically but are rather found in microbial communities that 

31 exhibit complex interactions and niche formations [1]. Microbial communities not only play a 

32 primary role in global biogeochemical cycling to make our planet habitable [2] but also form 

33 complex interactions with other organisms that are crucial for the development and maintenance 

34 of health in animals [3] and humans [4]. To characterize microbial communities and identify how 

35 they can potentially affect the host or the environment, it is common to profile the taxonomy and 

36 functionality of such communities [5]. 

37 The characterization of microbial community structures from assessing taxonomic marker gene 

38 profiles has been a widely performed and accepted practice over the past decade of microbiome 

39 research [6]. For example, the hypervariable regions of the 16S ribosomal RNA (16S rRNA) gene 

40 are often used as a targeted gene marker [7]. Profiling using 16S rRNA gene sequencing has 

41 shown that reproducibility can be strongly biased because of factors such as the genomic DNA 

42 extraction method, PCR primer selection, sequencing read length and the sequencing platform 

43 used [8]. Moreover, this approach is limited to the determination of taxonomic distribution and is 

44 not generally suitable for analysis of the actual functions of the community [9]. To alleviate this, 

45 bioinformatics toolsets such as PICRUSt (phylogenetic investigation of communities by 

46 reconstruction of unobserved states) [10] and Piphillin (improved prediction of metagenomics 

47 content by direct inference from human microbiomes) [11] have been developed to provide 

48 functional predictions based on 16S rRNA gene data of a microbial community. In these methods, 

49 a pseudo-metagenome is constructed using the 16S rRNA gene profiling data by picking 

50 genomes from a database containing known and sequenced bacterial genomes [10]. This 

51 approach has the drawback that the genomes of many taxa identified in the 16S rRNA gene 

52 sequencing data have not yet been whole genome sequenced or are not yet fully annotated in 

53 the available databases. Therefore, for these cases, the closest phylogenetically-related 
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54 specimen is selected instead. To achieve a more realistic picture of the functional potential of a 

55 community, next-generation sequencing can be used to analyze the whole metagenome of 

56 microbial communities [12]. The cost of metagenomics is still high per sample when compared to 

57 16S rRNA gene profiling, but the associated costs are steadily decreasing and therefore 

58 metagenomics is being increasingly applied in microbiology studies [13]. 

59 Although the functional capacity of a given community can be investigated through analyzing the 

60 gene content, measuring the proteins as expression of genes is arguably more important for 

61 characterization of community functionality [14]. This has motivated subsequent studies to focus 

62 more on the proteome, since proteins are involved in metabolic processes and ultimately 

63 responsible for cellular functions wherefore proteomics has been established as an indispensable 

64 approach to study the complete protein inventory of a given species [15]. In 2004, this technique 

65 was applied to a microbial consortium for the first time and coined ‘metaproteomics’ by Wilmes 

66 and Bond [16, 17]. Currently, metaproteomics has developed into a widely practiced technique 

67 and offers the possibility of acquiring a comprehensive picture of the community structure and 

68 function. Moreover, it can be used to determine the microbial community interactions with external 

69 substrates or host metabolites [18]. However, it should be noted that analyzing a community via 

70 a combinatorial approach employing both metagenomics and metaproteomics can be even more 

71 successful for unraveling the composition of a given community [19]. This has been also shown 

72 in a recent study where a multi-omics approach was applied on a defined, evenly distributed mock 

73 microbial community [20]. Moreover, the increasing availability of metagenomes allows for the 

74 construction of smaller and more specific protein databases [21, 22] and therefore more accurate 

75 protein identifications.

76 Although the analysis of proteins present in a microbial community can provide information on the 

77 general functions performed by the consortium as a whole, it is also pivotal to determine which 

78 species are carrying out these functions and thus elucidate the active key players in the 

79 community [23]. To determine the cellular activity of a microbe in a community, specific activity 
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80 tests need to be applied. Targeted or untargeted metabolomics can assess the substrates and 

81 products of all metabolic enzymes, and therefore serve as a suitable approach to determine 

82 overall community activity [24]. Since metabolomics is very sensitive for present metabolites in a 

83 community, it can help to discover unknown metabolic functions as a supportive strategy for 

84 protein-based approaches [25]. Moreover, the inclusion of metabolic flux analysis can help to 

85 verify enriched functions identified in metaproteomics analysis [26]. However, this approach is 

86 limited by the rapid turnover of metabolites, which can lead to quenching of enzymatic reactions, 

87 and because metabolites are often not derived from the microbial community itself but rather from 

88 the host environment [27]. It is also challenging to determine the taxonomic origin of specific 

89 metabolites, unlike for proteins, of which the amino acid sequences can be traced back to the 

90 genomes of the microorganisms. Moreover, many of the cellular active proteins are structural 

91 proteins, regulatory factors, or proteins that interact with other proteins rather than catalyzing 

92 metabolic processes, which cannot be assessed by metabolomics [28]. In order to avoid the need 

93 for thousands of specific activity assays, the introduction of specific labelled substrates or 

94 nutrients into microbial communities and their subsequent incorporation into the biomass can 

95 determine species activity by methods such as protein-based stable isotope probing (protein-SIP) 

96 [29, 30] or protein-based stable isotope fingerprinting (protein-SIF) [31, 32]. 

97 The importance of metaproteomics in studying microbial communities has manifested during the 

98 last decade, as the number of publications utilizing the technique have increased about 8.9-fold 

99 (Figure S1). There has also been a consistent increase in the number of identified proteins (not 

100 peptide spectra matches, PSMs) each year. Particularly, there has been an exponential increase 

101 over the last four years, which is mainly due to the use of newer MS-instruments with higher 

102 resolution (Figure S2). Indeed, tandem mass spectrometry has been further developed to 

103 improve the accuracy and sensitivity of the instrument, and has become the principal high-

104 throughput technology in metaproteomics studies [33-35]. The obtained metaproteome coverage, 

105 i.e., the limiting factor for optimally characterizing a microbial community, is, amongst other 
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106 factors, directly linked to the speed and accuracy of the MS-technology. It is worthwhile to 

107 consider these recent technological developments in order to assess the actual power of data 

108 acquisition for metaproteomics analyses, and such recent technological advances are discussed 

109 in detail in a former study [36]. Although the technological status of the MS-instruments is a 

110 notable influencing factor for the success of protein identifications, here we will be focusing on 

111 the database and bioinformatics issues encountered when analyzing microbial communities with 

112 increasing complexity, which is one of the main challenges of metaproteomics studies. 

113 2. Metaproteomics for the characterization of complex communities

114 Since the analysis of proteomes complements other omics disciplines such as metagenomics, 

115 metatranscriptomics and metabolomics; metaproteomics has become a widely applied technique 

116 for building a comprehensive picture of the structure and functionality of microbial communities 

117 on a large scale [37]. Analyzing the metaproteome of a community has the unique strength, 

118 compared to other omics techniques, to characterize the covered metabolic pathways for the 

119 identification of habitat specific functions [38]. Further, in contrast to DNA based omics 

120 approaches, metaproteomics can also serve to characterize sequential variants of proteins 

121 resulting from splicing processes [39] or identify proteins altered in structure by additional post-

122 translational modifications (PTMs) [40]. The aims that can addressed by metaproteomics are (i) 

123 obtaining information on the taxonomic distribution of a microbial community, (ii) identifying 

124 relevant functions covered by the community, (iii) matching the identified key players to their 

125 respective covered functions and (iv) analyzing interactions between species present in a 

126 community [32]. 

127
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128 2.1 Challenge of metaproteomics - finding the suitable database

129 Although the use of metaproteomics is still a powerful approach to assign proteins on the 

130 taxonomic hierarchy and to understand the functional role of the present microbes, the 

131 methodology also involves some weaknesses. The common use of metaproteomics is to 

132 determine the structure of complex microbial communities in a wide range of environments. These 

133 natural environments harbor highly diverse microbes, of which many are unknown since they are 

134 uncultured and thus so far only rarely identified [41]. Moreover, assessing the entire diversity of a 

135 community is also challenging due to a high degree of nucleotide sequence diversities of the 

136 present microbes. As a result, sequence mutations and codon bias can lead to missing gene 

137 expressions and therefore numerous undetected proteins [42]. These factors consequently affect 

138 the completeness of the currently offered free and publicly available databases for 

139 metaproteomics. 

140 On the other hand, the non-specificity of the available databases for metaproteomics creates 

141 another challenge. The use of such large protein databases presents difficulties in distinguishing 

142 homologous species from each other since they share many protein sequence similarities, with 

143 sometimes only one or two different amino acids [43]. This complicates the annotation of identified 

144 proteins to the present species. To circumvent this bottleneck, it is recommended to include 

145 smaller and environment specific protein databases to increase the probability of achieving a high 

146 number of protein identifications and taxonomic resolution. Indeed, it was recently shown that the 

147 selected protein search database for protein identification affects taxonomic and functional 

148 annotation [44]. 

149 To address this weakness, metagenomic sequencing of the entire community is indispensable for 

150 building up a small and specific reference database, which is increasingly being performed but 

151 still remains prohibitive for standard studies due to high costs [32]. Therefore, a direct 

152 consequence of including environmentally unspecific databases is protein inference, i.e., the 
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153 sequence of an identified peptide is shared by several distinct proteins often originating from 

154 different species [45]. Thus, it is a widely practiced strategy to group redundant proteins into so 

155 called metaproteins. These metaproteins or protein groups contain proteins with similar amino 

156 acid sequence or shared peptide identifications wherefore the protein groups represent the basic 

157 unit for downstream analysis, since most metaproteomics studies are based on a peptide-centric 

158 approach [46]. Further typical limitations of metaproteomics include obtaining a high amount of 

159 protein biomass from natural samples, e.g., soil and groundwater. Unlike gene oligonucleotides, 

160 proteins cannot be amplified and therefore the sensitivity of mass spectrometry depends on the 

161 net extracted proteins [47]. Further, protein based analyses require high time efforts for sample 

162 fractionation, separation and high-depth LC-MS/MS analysis [32, 48, 49]. 

163

164 2.2 Objectives of metaproteomics 

165 Environments harbor microbial communities which are highly diverse and complex. Thus, 

166 proteome scientists have begun to focus more on the cultivation of simplified communities in in-

167 vitro bioreactor systems with the aim to reduce the complexity of naturally diverse communities. 

168 It allows the identification of central functions with high coverage. Such a simplified system was 

169 recently established for the human intestinal microbiota, to overcome the challenge of proteome 

170 coverage in a complex community [50]. 

171 To demonstrate the effect of increasing complexity of microbial communities, in combination with 

172 a large and environmentally unspecific database, on protein group identifications, we focused on 

173 three objectives which can be addressed by metaproteomics: (i) species coverage (i.e., protein 

174 groups assigned to species), which is fundamental for a comprehensive high-resolution 

175 taxonomic characterization (ii) proteome coverage (i.e., protein groups identified from a certain 

176 species), which is crucial for the investigation of the taxonomy and function of a community, and 

177 (iii) pathway coverage (i.e., protein groups annotated to metabolic pathways), which offers a 
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178 promising strategy for metaproteomics to reveal deeper insights into the function of a microbial 

179 community (Figure 1A). In order to realize this approach, we integrated four datasets from 

180 communities with increasing community complexity and focused only on bacteria (not fungi or 

181 viruses). The first dataset was derived from a simple consortium of eight bacterial strains used as 

182 a model system, the extended simplified human intestinal microbiota (SIHUMIx), which comprise 

183 of functionally important species from the dominant phyla in the human gut. We cultivated the 

184 eight species consortium in a bioreactor under controlled conditions covering the main functions 

185 of the intestinal tract in order to create a representative stable sub-community of the human 

186 intestinal microbiome [51, 52]. The second dataset was derived from a 72 species community 

187 representative of the human intestinal microbiome, which is of intermediate complexity [53]. This 

188 consortium was isolated from a human fecal sample by the Allen-Vercoe group in order to create 

189 a more comprehensive model ecosystem, and was cultured in a bioreactor under similar 

190 conditions as SIHUMIx. The third dataset was derived from samples of the intestinal colonic 

191 microbiota of mice, which is complex and consists of approximately 200 species. The final dataset 

192 came from a highly complex microbial community derived from a subsurface aquifer with an 

193 estimated >300 species [54] (Figure 1B). The microbiome datasets of differing complexity were 

194 generated according to a standardized metaproteomics workflow which is explained in 

195 supplement II and figure S3. In principle, it consists of three main phases: (i) sample preparation, 

196 where the proteins are extracted from the cells and tryptic digested into smaller peptides during 

197 sample preparation, (ii) data acquisition, where the peptide species are first separated by nano-

198 flow HPLC then individually analyzed by subsequent online ionization and MS/MS and (iii) 

199 bioinformatics data analysis, where the measured peptide spectra are matched against a protein 

200 database for identification and quantification (Figure 1C).
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201 3. Taxonomic resolution of increasingly complex communities

202 We were interested in examining how the number of species in a microbial community impacted 

203 the observed species coverage by metaproteomics. Our aim was to determine the effect of 

204 community complexity on (i) the efficiency of protein group identifications, (ii) the rate of protein 

205 group annotation at different taxonomic levels and (iii) the observed diversity of the community. 

206 Foremost, we found that increasing the number of species leads to a reduced number of protein 

207 group identifications (Figure 2A). This restricts the potential for a comprehensive examination of 

208 the structure of complex microbial communities. Consequently, we wanted to find out how many 

209 of the identified protein groups could be classified to each rank of the taxonomic hierarchy (Figure 

210 2B). This was accomplished for each protein group by determining the lowest common 

211 phylogenetic ancestor for the taxon of origin of all proteins in the protein group. We observed that 

212 the number of assignable protein groups decreased with (i) lowering levels of taxonomic hierarchy 

213 (kingdom to species) and (ii) increasing numbers of species. Thus, obtaining a high species 

214 coverage becomes increasingly challenging with growing complexity and hinders an exact 

215 reconstruction of the taxonomic composition of the community. This has led to the hypothesis that 

216 many microbes, especially from exotic habitats, remain undiscovered in complex ecosystems, 

217 which has been described as the “microbial dark matter” [55]. Because of this, we need better 

218 strategies to acquire valid information about the taxonomy of complex communities.

219 3.1 Low abundance species remain unexplored in complex communities

220 In the field of microbial ecology, it is quite common to perform diversity analyses, mostly described 

221 as alpha diversity, which serves as a proxy for the stability, productivity and migration of a 

222 community [56]. Alpha diversity consists of two basic parameters (i) species richness, a simple 

223 count of the microbial species present in a community and (ii) species evenness, the relative 

224 equality in the abundance of these microbial species. The species diversity of a community is 
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225 mostly represented by Shannon’s diversity index, which is based on the species number and 

226 abundance [56-59]. Here, the Shannon diversity indexes of the integrated microbiome data were 

227 calculated as the effective number of species in order to investigate if the diversity of the 

228 communities with differing complexity remained consistent, even with more stringent filtering 

229 criteria for identified species.

230 We binned our data utilizing three separate criteria for considering species presence, where 

231 species were identified by at least 1, 2 or 5 protein groups, respectively. The objective was to 

232 show the change of species richness and diversity under increasingly stringent criteria. The 

233 species richness and evenness decreased severely by several orders of magnitude for the 

234 complex communities after filtering the species identified by presence of at least 2 or 5 protein 

235 groups (Figure 2C, D). In contrast, the simplified intestinal microbiome only showed a marginal 

236 decrease of identified species under all criteria. Therefore, the majority of species in complex 

237 microbial communities were only identified by 1 protein group, which is in agreement with the 

238 observed low species coverage. However, it is accepted that the low abundance species are 

239 challenging to identify in complex communities, but this fact has rarely been empirically shown. 

240 One commonly applied method to assess rarity in microbial communities is rarefaction curve 

241 analysis [60] (Figure 2E, F). This technique allows a standardized comparison of the identified 

242 species number between different communities [61] and should be implemented also as a 

243 standard quality control measure in metaproteomics studies. In complex communities, a small 

244 number of peptide spectrum matches (PSMs) were identified for a multitude of species. This 

245 demonstrates that complex communities predominantly consist of many low abundance species 

246 [62]. Nevertheless, this phenomenon results in both a loss of taxonomic and functional 

247 information, since low abundance species can have a disproportionate role in maintaining 

248 community functionality [62]. Therefore, this “rare biosphere” is receiving greater attention, since 

249 these microbes can be involved in central biogeochemical cycles that drive ecosystem functioning 

250 [63].
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251 4. Functional profiling of microbial communities

252 Besides the taxonomic characterization of microbial communities, it is also of great importance to 

253 describe their functional traits [64]. Comprehensive functional analysis can provide information on 

254 biological processes, pathway regulations and descriptions of the active enzymes [38]. 

255 Additionally, functional profiling of the human or animal intestinal microbiome can reveal altered 

256 metabolisms in response to changed environmental factors and therefore support the 

257 identification of processes leading to clinical diseases [65]. In environmental studies, the 

258 functional characterization of microbiomes can elucidate the mechanism behind particular 

259 biogeochemical processes, nutrient cycling and decomposition of organic matter to describe 

260 ecosystem functioning [54, 66]. Moreover, the identified functions of a community can be traced 

261 back to the genomes from which the proteins were derived to determine which microbe within the 

262 community is responsible for which molecular function. The procedure for functional analysis is 

263 carried out by assigning the identified proteins to their respective functions through a functional 

264 identifier by matching the protein-coding sequence with public and hierarchical structured 

265 databases for functional annotations. Currently there are several of these databases available 

266 such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [67], evolutionary 

267 genealogy of genes: Non-supervised Orthologous Groups (EggNOG) database [68] and clusters 

268 of orthologous groups (COGs) database [69]. To search the protein sequences against the 

269 functional repository databases, we used the server based platform GhostKOALA, which is 

270 directly connected with the KEGG database to annotate KEGG orthology (KO) numbers to the 

271 proteins [70]. Therefore, we reanalyzed the integrated microbial data according to the exhibited 

272 functions, since the molecular function provides a biological relevance for the structure of 

273 microbial communities.

274 Here, we investigated the effect of increasing community complexity on the (i) rate of annotation 

275 of the identified protein groups to KEGG-functions and (ii) efficiency of pathway coverage. We 
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276 observed that community complexity had little impact on the percentage of identified protein 

277 groups which could be annotated to molecular functions (Figure 3A). This finding highlights that 

278 metaproteomics is still a useful tool for complex microbial community analysis to describe the 

279 ecosystem functioning performed by the entire community.

280 4.1 Pathway coverage and habitat specific functions

281 Cellular processes are conducted by interacting enzymes that can be grouped into biological 

282 pathways. These pathways are specific for distinct metabolisms and reveal the functions of a 

283 community [49]. To receive information on the depth of the underlying functionality, it is standard 

284 procedure to determine the pathway coverage and abundance of the functionally assigned protein 

285 groups. This is done by calculating the percentage of identified KEGG-annotated protein groups 

286 compared to the total number of proteins listed in the database for the KEGG pathway. In our 

287 analysis, we found that pathway coverages are reduced in communities with increasing 

288 complexity, although the number of proteins annotated to KEGG-functions was notably high, even 

289 in complex communities (Figure 3B). This is due to a decreased number of identified protein 

290 groups in complex communities, which leads to a decreased chance of successful pathway 

291 coverage.

292 The functional profiling of microbial communities is a unique feature of metaproteomics compared 

293 to other omics approaches Biochemical pathways are essential for mediating environmental 

294 stimuli, and thus it can be expected that microbiomes from different habitats generate distinctly 

295 abundant pathways according to their host environment [38]. The up or down-regulated pathways 

296 according to the host environment can be further analyzed on each taxonomic rank to determine 

297 which present species is performing which particular function. We found that a highly abundant 

298 pathway of subsurface environment microbiomes is involved in nitrogen metabolism. A further 

299 pathway was found with highly abundance for a gut related function of the simplified gut 

300 microbiome (Figure 3C). For instance, this can be used to find out which metabolic pathways are 
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301 responsible for the utilization of novel nutrients, stress response or amino acid biosynthesis [71]. 

302 However, this functional profiling of microbial communities is a unique feature of metaproteomics 

303 compared to other omics approaches. The trend in microbiome research is moving towards 

304 describing taxonomic distribution and elucidating functional networks, by determining the up or 

305 down-regulated pathways caused by stimuli and thereby constructing a comprehensive functional 

306 map of a community [72]. Therefore, we have provided an example of how metaproteomics yields 

307 insight into the overall functional reactions that describe the underlying environmental dynamics.

308 5. Reduced protein identifications of a single microbe present in complex 

309 communities

310 We were interested in determining how the number of identified protein groups for a single species 

311 changed with the increasing complexity of the microbial community. First, we selected the gram-

312 negative bacterium Escherichia coli, which was present in all four datasets, and calculated its 

313 proteome coverage in each community. We clearly observed that the number of identified E. coli 

314 proteins decreased with an increasing number of species per sample (about 40% in an 8 species 

315 community compared to <5% in >150 species community) (Figure 4A). This observation could 

316 result from the typical challenges of metaproteomics analyses, which include uneven species 

317 distributions, broad ranges of protein expression levels between microorganisms, and the large 

318 genetic heterogeneity within microbial communities. Second, we constructed an in-silico model to 

319 retrieve protein abundance information for the identified E. coli proteins within the four datasets 

320 using the protein abundance database PaxDB [73]. Following the same trend, low abundance 

321 proteins (<1 part per million, ppm) are difficult to identify in intermediate to complex microbiomes 

322 relatively to the PaxDB (Figure 4B). This result highlights that high abundance proteins are 

323 predominantly identified and thus more prominent in functional analysis while the low abundance 
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324 proteins are underrepresented, although these can have an important impact on bacterial 

325 metabolism [74].

326 Conclusion

327 This perspective highlights the challenges of species and proteome coverage in metaproteomics 

328 for microbial communities of high complexity. We observed a severe reduction of assigned 

329 species to identified protein groups, from 45% for the complex intestinal community down to 

330 19.4% for the highly complex environmental community. Furthermore, we identified a decrease 

331 of 85% for species richness and 96.5% for species evenness, by considering only species which 

332 are identified by at least two protein groups. In complex microbiomes, we observed that low 

333 abundance proteins are mostly undetected, and therefore potentially important cellular functions 

334 could be not identified. However, metaproteomics can analyze the functional traits of microbial 

335 communities as a whole. The functional assignment of protein groups was approximately 50% 

336 higher than the species coverage in complex microbiomes. Therefore, functional profiling of 

337 complex communities by metaproteomics is considered as a promising technique to investigate 

338 ecosystem functioning of environmental microbiomes.  

339 Expert opinion

340 We have discussed the current limitations of taxonomic profiling, and also outlined functional 

341 perspectives of metaproteomics analysis of microbial communities with different levels of 

342 complexity. To achieve a more comprehensive characterization of the taxonomic composition and 

343 function of complex communities in the future, strategies by which to address the challenges 

344 occurring in metaproteomics analyses are needed. First, the metagenome of uncultivated 
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345 microbes of environmental communities are constructed thus far only rarely, and therefore the 

346 employment of metaproteomics has mainly required the use of large and unspecific protein 

347 databases. The lack of comprehensive, specific databases mainly results in the reduction of 

348 taxonomic information yielded from complex communities [75]. It has been shown that the use of 

349 sample specific databases revealed a comprehensive peptide and protein identification in the 

350 context of clinical studies [75]. 

351 It was recently shown in a gut microbiome study that the parallel search against publicly large and 

352 comprehensive metagenome based databases yielded more complete information regarding 

353 taxonomy and function [43]. Second, for handling the limitations of the current technological 

354 setups and standard metaproteomics workflow, we suggest performing the taxonomic analysis at 

355 a higher rank, e.g., phylum level, even though this only provides a rough overview of the microbes 

356 present in a community. Third, to increase the taxonomic resolution even on the species level, 

357 the implementation of other techniques that would complement the current metaproteomics 

358 approach should be considered. A prominent strategy is a multi-omics approach, which combines 

359 metaproteomics with other omics disciplines to build a holistic picture of the analyzed microbial 

360 communities. Mostly, metaproteomics is simply combined with a parallel metagenomics or 

361 metabolomics approach of the same community to allow for a deeper insight into the structure 

362 and function of microbial communities [76]. Metagenomics can help to improve the taxonomic 

363 characterization and metabolomics to understand metabolic processes. Therefore, a recently 

364 evolved area of focus is metaproteogenomics, a strategy at the interface of metaproteomics and 

365 metagenomics, where a protein sequence database is generated based on metagenomic and 

366 metatranscriptomic information to increase the annotation of peptides that are currently not 

367 present in a particular reference databases [77]. This approach was constructed for rather small 

368 communities. A relatively recent study refined this strategy by building a metaproteogenomics 

369 pipeline, and then applied it to diverse microbial communities, which improved protein detection, 

370 false-positive identifications and functional profiling [78].  However, to specify the active microbes 
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371 of a community, the stable isotope probing (SIP) approach has been established [29]. The 

372 principle of this method relies upon the incorporation of stable isotope atoms, e.g., 13C or 15N, into 

373 the proteins of active microbes within a community, which enables a direct link to the functions of 

374 a microbial community compared to other stable isotope probing approaches, e.g., DNA/RNA-

375 SIP [79]. Since protein-SIP can be applied to communities of intermediate complexity, it is suitable 

376 for the analysis of the intestinal microbiota by delivering, e.g., 15N containing chow [80]. The same 

377 is assumingly also true for SIF [31]. In combination with protein-SIP, the species coverage can be 

378 improved by specific enrichment strategies, where certain proteins that are present in all bacterial 

379 phyla can be isolated and enriched. Exemplarily, streptavidin coated beads allow for the isolation 

380 of biotinylated proteins to reduce the overall complexity of protein mixtures for a deeper 

381 metaproteome measurement, which might lead to more valid taxonomic information at the species 

382 level [81]. Another strategy to increase the species coverage of complex microbial communities 

383 is to focus on certain areas of the environment. For example, in the case of the scientifically 

384 important intestinal microbiota, a relevant sub-localization would be the mucus layer [82]. Finally, 

385 besides the descriptive characterization of microbial communities in their natural state, it is 

386 becoming more important to determine the response of a complex community to environmental 

387 stimuli or toxins. For such research questions, it is recommended to focus on simplified 

388 communities or even pure cultures to maximize the chance of identifying a high number of proteins 

389 per microbe, which is imperative for effect-mechanism studies. The increase in number of protein 

390 identifications during the last ten years (Figure S2) suggests that other improvements, such as 

391 the strategies highlighted here, will be increasingly employed in the future. We summarized our 

392 findings according to species and proteome coverage in figure 5 to highlight the effect of 

393 community complexity on taxonomic analysis which is crucial for metaproteomics studies. 

394 Moreover, we hypothesized that applying these strategies, in particular including a suitable and 

395 environmental specific database, in combination with mass spectrometry improvements would 

396 result in a further increase of identifiable proteins and therefore might increase the species and 
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397 proteome coverage of several orders of magnitude even for highly complex communities. Our 

398 findings, especially if our recommended strategies for improving metaproteomics analyses are 

399 employed, reveal that metaproteomics is a highly useful research tool for improving our 

400 understanding of microbiomes.
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Figure 2: Taxonomic resolution of microbial communities. (A) Total number of identified

protein groups on species level. (B) Relative number of protein groups assigned to each

taxonomical level. (C) Species richness calculated by the count of different species for each

microbiome. Visualization of species identified with at least 1, 2 or 5 identified protein groups (pg).

(D) Species evenness is shown by the effective number of species (ENS) calculated by the

exponential shannon-index (SIHUMI; 1.43, Robogut; 2.41, GUT; 3.6, GW; 4.77). Depiction of ENS

for at least 1, 2 or 5 identified protein groups (pg). (E, F) Rarefaction curves for phylum and

species level of the integrated datasets.
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Figure 3: Functional profiling of microbial communities. (A) Relative number of protein

groups assigned to a KEGG-function. (B) Heatmap of top 12 relative abundant pathways and

the pathway coverage calculated by unique identified protein groups for a pathway. (C)

Selected pathways for gut and groundwater related microbiomes to show relative number of

identified protein groups (pathway abundances) of each taxonomical level.
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Figure 4: Proteome coverage of a single microbe present in complex communities. (A) absolute

number of identified proteins of E.coli in the different complex microbial communities. (B) relative number

of identified proteins (proteome coverage) of E.coli in the different complex microbial communities (C)

Abundance distribution of relative number of proteins compared to PaxDB of E.coli in communities with

increasing complexity. The protein abundance is calculated in parts per million (ppm). The red line

represents the edge of the low abundance range.
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Figure 5: Summary of challenges of species coverage 

(black) and proteome coverage (blue) with increasing 

number of species. Solid line represents the actual 

known range of species or proteome identifications. 

Dashed line represents the hypothetical increase of 

new identified species as a result of protein 

enrichment strategies. This hypothetical increase for 

the next five years is based on the technical 

improvements in mass spectrometry since the last 

decade. 
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Supplement I

Protein identifications during the last decade

Fig.S1: Number of publications during last decade of metaproteomics studies. Publications per 

year were found by PubMed with the keyword: “metaproteomics”.

Fig.S2: The mean value of the number of proteins per minute of gradient length of several 
publications (table S1) published in the given year found in PubMed with the 
keyword:”metaproteomics”. The publications were selected by providing following 
parameter: Respective environment, number of proteins, instrument, LC-gradient, search 
engine
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Supplement II

Material and Methods

MM1. Metaproteomics workflow and data analysis

A complete metaproteomics workflow of sample preparation, data acquisition and data analysis is 

shown in figure S3.

1.1 Sample preparation

Cell lysis and protein extraction

Cells were harvested and resuspended in 1-5 ml Lysis-buffer (0.29% NaCl, 0,01M Tris-HCl, 5mM EDTA, 

0.4% SDS) with 1 µl PMSF solution. The suspended cells were further lysed by bead-beating with 3 

cycles of FastPrep for 1 min. The lysate was then heated and mixed for 15 min. at 60°C in a 

Thermomixer. The cell debris were removed by centrifugation at 10 000 g for 10 min. at 4°C. The 

proteins were precipitated in 5 volumes of acetone with overnight incubation at -20°C (for the 

communities: SIHUMI, 8 spp.; Robogut, 72 spp.; Gut, 200 spp.). The protein extraction for the 

community Groundwater, >300 spp. was performed according to Starke et al., 2017.  The precipitated 

proteins were centrifuged at 15 000 g for 10 min. at 4°C. The pellet was evaporated using a SpeedVac 

for 5 min. The dry protein pellet was stored at -20°C. 

SDS-PAGE, proteolytic digestion, and peptide extraction

For SDS-PAGE we used 25 µg protein per sample, added 20 µl SDS loading buffer to each sample and 

incubated them for 5 min in a ThermoMixer at 95°C and 1400 rpm. After SDS-PAGE and staining with 

colloidal Coomassie brilliant blue (Merck, Darmstadt, Germany) overnight, the coloured gel bands 

containing all proteins was cut out and sliced into smaller gel pieces to increase accessibility to the 

protease and destained. In order to reduce the cysteine residuals, proteins in each band were modified 

with 10 mM Dithioerythritol (DTT) and 100 mM 2-iodacetamide (IAA) and incubated for 30 min. at 

room temperature. The alkylated proteins were proteolytically digested using 0.5 µg trypsin (Sigma-

Aldrich, St. Louis, USA) at 37°C, overnight. Digestion was stopped by adding 10 mM ammonium 

bicarbonate in 0.1% formic acid (FA). After peptide extraction using extraction buffer (50% acetonitrile 

and 5% formic acid) the samples were evaporated using the SpeedVac for 2h and stored at -20°C. The 

extracted peptides were desalted using ZipTip filter (Thermo Fischer Scientific, Waltham, USA) 

following the manufacturer’s instructions. Peptides were dissolved in 0.1% FA and injected into the 

liquid chromatography-mass spectrometer.
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1.2. Data acquisition

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)

Samples were analyzed using liquid chromatography (HPLC, Ultimate 3000 RSLCnano, Dionex/Thermo 

Fisher Scientific, Idstein, Germany) coupled via a TriVersa NanoMate (Advion, Ltd., Harlow, UK) source 

in LC chip coupling mode with an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific, 

Waltham, USA). Samples (5 µl) were first loaded for 5 min on the precolumn (µ-pre-column, Acclaim 

PepMap C18, 2 cm, Thermo Scientific) at 4% mobile phase B (80% acetonitrile in nanopure water with 

0.08% formic acid) and 96% mobile phase A (nanopure water with 0.1% formic acid) at a flow rate of 

300 nl/min and at 35°C. Then they were eluted from the analytical column (Acclaim PepMap C18 LC 

column, 25 cm, Thermo Scientific) over a 100-min linear gradient of mobile phase B (4%–50%). The MS 

was set on Top Speed for 3 s using the Orbitrap analyzer for MS and MS/MS scans with higher energy 

collision dissociation (HCD) fragmentation at normalized collision energy of 30%. MS scans were 

measured at a resolution of 120,000 in the scan range of 400–1,600 m/z. The MS ion count target was 

set to 4x105 at an injection time of 60 ms. Most intense peaks (charge state 2-7) were isolated for 

MS/MS scans by a quadrupole with an isolation window of 2 Da and were measured with a resolution 

of 15,000. The dynamic exclusion was set to 30 s with a +/-10 ppm tolerance. The automatic gain 

control target was set to 5x104 with an injection time of 150 ms

1.3 Data analysis

The acquired raw data were searched against the database: bacterial all DB (6.5 GB, >106 sequences), 

downloaded 2017 from Uniprot. The experimental acquired sequenced were matched against the in-

silico sequences of the database. We considered only proteins with a false-discovery rate of 1%. The 

identified proteins were filtered according the following criteria: (i) at least 2/3 replicates show an 

abundance value, (ii) proteins contain at least one unique peptide, (iii) non-bacterial proteins were 

removed, (iv) proteins assigned to only one protein group ID were considered. The proteins were than 

grouped into protein groups according to the lowest common ancestor (lca) for the different 

taxonomic ranks. Protein groups containing proteins which were not assigned to the same taxon were 

annotated to heterogeneous. The number of protein groups with a unique taxon were counted 

(without heterogeneous). The panels were created by R version 3.6.1 with the installed packages 

ggplot2, export, extrafont and readr.
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Fig.S3: Schematic of the metaproteomics workflow. Shown are the three main steps: sample 

preparation, data acquisition and data analysis.
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MM2. Proteome coverage of E.coli present in complex communities

In order to determine if the increasing complexity of the involved microbiomes influences the 

identifiable number of proteins, proteome coverage and abundance distribution of a single microbe, 

we integrated the datasets of the four microbiomes. The measured peptide sequences of each dataset 

was searched against an E.coli database (1.75 MB; 4306 Sequences). This leads to the identification of 

E.coli proteins present in the dataset. After filtering of the identified proteins (removing human 

proteins, proteins without abundance, proteins without at least one unique peptide), the protein 

accession numbers were searched against the PaxDB to (1) confirm the identification of E.coli proteins 

and (2) normalize the abundance according to the proteins of the PaxDB.

 

Fig.S4: Schematic of the data analysis workflow to calculate the protein identification of a 

single microbe (E.coli) present in increasingly complex microbial communities (shown in figure 

4).
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Supplement III

Terms and definitions

 Box S1: Definitions of often used terms in the manuscript
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