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Abstract 

The horizontal water vapor transport (IVT) is one of the key variables connected to precipitation 

extremes and floods, especially in the mid-latitudinal countries, and represents a key link between 

water sources and sink regions. Because of its significant impacts, great efforts have been made to 

examine IVT and its projected changes in response to changes to the climate system, leveraging 

outputs from global climate models (GCMs). However, to gain more confidence in the projections, 

it is important to evaluate how well the GCMs can reproduce the historical past.  

Here, we assess how well ten GCMs archived in the Climate Model Intercomparison Project Phase 

5 can reproduce the spatial and temporal patterns of the mean and 85th percentile of the IVT 

distribution. Analyses are performed at the global scale using outputs at the six-hourly resolution, 

and four different reanalysis products as reference. We find that the results from the GCMs are in 

good agreement with the reanalyses in terms of the IVT climatology; however, the GCMs fail to 

capture the trends in IVT, with almost all the models showing a negative correlation with the 

reanalysis data for both the mean and the 85th percentile. We also extend our analyses to the daily 

time scale, reaching the same conclusions drawn for the six-hourly resolution. These results further 

highlight the need for a careful evaluation of the GCM outputs in reproducing the observed IVT 

distribution. 
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1. Introduction 

Water vapor is one of the most important variables in terms of climate feedback because of 

moist dynamics and radiative heating effects, and thus plays a crucial role in the earth’s climate 

system (e.g., Trenberth et al., 2005). Trenberth and Stepaniak (2003) argued that, irrespective of 

the weather system, water vapor serves as the primary source for precipitation across the globe, 

mainly by influencing the tropospheric diabatic heating structure and thereby adding latent heat to 

the system. As the climate warms, the water vapor in the atmosphere increases at a rate faster than 

the total precipitation amount (Vittal et al., 2016). Studies based on both observations and 

numerical simulations (e.g., Allen and Ingram, 2002; Kharin et al., 2007) estimated that the water 

vapor content in the atmosphere increases at a rate of 7%/K following the Clausius-Clapeyron 

relationship, primarily driven by the surface heat budget (e.g., Trenberth et al., 2003). This process 

results in changes in the dynamics of the precipitation characteristics by modifying its intensity, 

frequency and duration. Further, different studies have attributed significant increases in 

precipitation extremes to the abundant availability of water vapor in a warmer atmosphere (e.g., 

Allen and Ingram, 2002; Held and Soden, 2006; Muller et al., 2011). These changes in precipitation 

patterns ultimately lead to the observed severity of floods and droughts, and all the societal and 

economic impacts associated with these natural hazards. Thus, efforts towards improving our 

understanding of the dynamics of water vapor under warming conditions can provide information 

critical for our mitigation and adaptation strategies.  
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In addition to precipitation, water vapor and its transport are key ingredients for atmospheric 

rivers (ARs). These events play a crucial role in the meridional water vapor transport from the 

tropics to the midlatitudes (Zhu and Newell, 1998; Gimeno et al., 2014) and are usually 

characterized by high moisture content together with a strong low-level jet (e.g., Ralph et al., 

2004). ARs are often associated with heavy precipitation when they make landfall due to 

orographic lifting, especially in mid-latitude coastal regions such as the western United States, 

western Europe, and South America (e.g., Guan and Waliser 2015; Waliser and Guan 2015; Lavers 

and Villarini 2015; Espinoza et al., 2018). Although Dettinger (2013) reported that ARs play a 

significant role in alleviating the drought condition in the western United States, they are also 

responsible for severe riverine and coastal flooding (e.g., Barth et al. 2017; Khouakhi and Villarini, 

2016; Lavers et al., 2011), leading to devastating effects on the affected regions.  

Given the importance the water vapor has towards socio-economic welfare, different studies 

examined the changes in its characteristics in warming scenarios in terms of integrated water vapor 

transport (IVT), the key link between source and sink regions of moisture (Lavers et al., 2015), 

and ARs (characterized by the percentile rank of IVT). For example, Lavers et al. (2015) 

investigated the projected changes in IVT at the daily scale using 22 global circulation models 

(GCMs) for two emission scenarios. They found that in the more extreme emission scenario, the 

multimodal IVT mean increases by 30-40%, especially in the North Pacific and Atlantic regions 

due mainly to the availability of higher atmospheric water vapor content. Dettinger (2011) focused 

on the landfalling ARs in California using the outputs archived in the Coupled Model 
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Intercomparison Project Phase 3 (CMIP3) models and found an increase in the frequency of ARs 

of ~ 30% at the end of the 21st century. Warner et al. (2015) extended the work of Dettinger (2011) 

focusing on models from the Fifth Coupled Model Intercomparison Project (CMIP5) and the west 

coast of North America; they found a significant increase in the IVT extreme values and in the AR 

days of about 300%. Lavers et al. (2013) and Gao et al. (2016) also showed an increase in IVT and 

AR frequencies using CMIP5 models across western Europe. Among others, the climate model 

outputs were also extensively used by Pierce et al., (2013), Gao et al. (2015), Lavers et al. (2013) 

Shields and Kiehl (2016) and Ramos et al. (2016), showing an increase in IVT under future 

scenarios for regions such as the coast of California, Western Europe and North Atlantic.  

Understanding the behavior of water vapor transport in a changing climate represents one of 

the critical challenges in climate studies, as highlighted by numerous studies that address this issue 

(e.g., Creese and Washington, 2018; Tamoffo et al, 2019). It is also clear that the GCMs have 

indeed been playing a pivotal role in understanding the future changes in water vapor transport. 

However, given the existence of inherent uncertainties in the GCM outputs (e.g., Randall et al., 

2007), it is of the utmost importance to provide insights into the credibility of these models in 

simulating the historical spatio-temporal variations of IVT before moving forward with an 

assessment of their projected changes. There are limited observation/reanalysis-based studies 

related to the evaluation of integrated water vapor. Trenberth et al. (2005) compared two different 

reanalysis products to satellite-based dataset and found that the reanalysis products can overall 

capture the spatial and temporal patterns of water vapor. However, much less is known about how 
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well GCMs can reproduce the spatial and temporal patterns of IVT, especially at the sub-daily 

scale. Therefore, this study aims to comprehensively evaluate the spatial pattern and seasonal 

variations of IVT at the six-hourly and daily scales by leveraging multiple reanalysis products and 

CMIP5 outputs (Historical and Atmospheric Model Intercomparison Project (AMIP) simulations). 

We also examine how well the CMIP5 models can reproduce the temporal trends in different 

reanalyses data. These analyses will highlight the strength and weakness of the CMIP5 models, 

providing valuable insights towards the interpretation of projected changes in IVT.
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2. Data and Methods 

We use the water vapor transport from four atmospheric reanalysis data sets as references for 

the evaluation of the GCMs: 1) National Centers for Environmental Prediction (NCEP)/National 

Center for Atmospheric Research (NCAR) reanalysis project (NCEP-NCAR) (Kalnay et al., 

1996); 2) the Japan Meteorological Agency (JMA)’s Japanese 55 year Reanalysis (JRA-55) 

(Kobayashi et al., 2015); 3) European Centre for Medium-Range Weather Forecasts (ECMWF) 

reanalysis project (ERA-Interim) (Dee et al., 2011); 4) the National Aeronautics and Space 

Administration (NASA)’s Modern-Era Retrospective analysis for Research and Applications, 

version 2 (MERRA2) (Gelaro et al., 2017). All of the reanalyses have six-hour temporal resolution. 

In terms of climate models, we consider 15 CMIP5 models (10 historical and 5 AMIP simulations) 

with six-hourly outputs, as summarized in Table 1.  

To calculate the magnitude of IVT, we use specific humidity, and the meridional and zonal 

wind components from the surface (~1000 hPa) to 300 hPa pressure levels (e.g., Zhu and Newell, 

1998; Neiman et al., 2008; Lavers et al., 2012): 

𝐼𝐼𝐼𝐼𝐼𝐼 (𝑘𝑘𝑘𝑘 𝑚𝑚−1 𝑠𝑠−1)  = ��1
𝑔𝑔 ∫ 𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑300

1000 �
2

+ �1
𝑔𝑔 ∫ 𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑300

1000 �
2
 (1) 

where q is the specific humidity (kg/kg), u and v are the zonal and meridional wind components 

(m/s) respectively, g is the acceleration due to gravity (m/s2) and dp is the pressure level difference. 

We compare the spatio-temporal pattern of the mean and 85th percentile (i.e., used for the 

identification of ARs) of the IVT for four different seasons (DJF: December-January-February; 

MAM: March-April-May; JJA: June-July-August; SON: September-October-November). For 
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comparison purpose, we interpolate the reference reanalysis data to the respective 

GCMs/reanalysis resolutions. 

We evaluate the climatology and trends of IVT simulated by the climate models. We use the 

nonparametric Mann-Kendall test (Kendall, 1975) for estimating trends. Further, we use Taylor’s 

diagram (Taylor, 2001) to compare reanalysis and climate model simulations in representing the 

climatology and trends of IVT. The advantage of Taylor's diagram is that it can graphically 

compare correlation, standard deviation, and the root mean square errors (RMSE) of the datasets 

in one single diagram. 

 

3. Results and Discussion 

We start by evaluating the seasonal climatology of IVT based on the reanalyses data in terms 

of its mean and 85th percentile. Figure 1 shows the comparison of the climatology of mean IVT 

for the four reanalysis products from 1979-2015. For comparison purpose, we considered 

MERRA2 as the reference data in this case. Although each reanalysis data set is developed with 

distinct models, physical processes, and resolutions, all of them assimilate various radiosonde 

observations and satellite products using different assimilation techniques. We note that the 

radiance data from Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit 

(AMSU), or both is assimilated in MERRA2 (Gelaro et al., 2017). Because of this reason, Jiang et 

al. (2019) could notice that the spatio-temporal patterns of precipitable water vapor from MERRA2 

along with ERA-Interim product is able to follow the observations very closely. Therefore, we 
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select MERRA2 as the reference to compare other reanalysis products in our study. The present 

study also compares the reanalysis products in simulating the IVT for different seasons, because 

there are regions that exhibit a strong seasonality in terms of precipitation. For example, The U.S. 

West Coast receives the majority of its precipitation during the winter months (Warner et al. 2008), 

with the most extreme events that are driven by atmospheric rivers [ARs] (Ralph et al. 2005, 2006; 

Dettinger 2011; Warner et al. 2015). In European countries, the predominant links between 

precipitation extremes and ARs are found in SON and DJF, with many regions having more than 

40% of precipitation extremes caused by ARs (Lavers and Villarini, 2013). On the other hand, in 

the south Asian monsoon regions, the AR frequency largely occurs during DJF, JJA and SON, and 

it also drives precipitation extremes over these regions (Thapa et al., 2018). Depending on the 

seasons, the IVT storm track is prominently evident in the North Pacific and Atlantic regions. The 

poleward migration of the extratropical IVT storm track during the winter and summer seasons is 

also apparent. There is a region with high values of IVT along the East Asian coast during JJA, 

which is likely associated with tropical cyclone activity (Lavers et al., 2015). The mean fields also 

captured the high magnitude of IVT during the Indian monsoon region in JJA. Overall, the spatial 

pattern of IVT is quite similar to Lavers et al. (2015), even though our focus is on the six-hourly 

scale compared to their analyses performed at the daily scale. The right panels of Figure 1 show 

the comparisons of the reanalysis datasets, highlighting the capability of reanalyses data in 

capturing the spatial pattern of mean IVT, with high correlation and small RMSE values compared 

with MERRA2.  
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The midlatitude extratropical cyclones and ARs are usually associated with the high magnitude 

of IVT (Lavers et al., 2015), which is responsible for extreme precipitation and flooding. Here we 

focus on the 85th percentile of the IVT distribution because it has been used to identify ARs (Figure 

2; e.g., Lavers et al., 2012). Overall, the spatial patterns of the 85th percentile of the IVT distribution 

are similar to what found for the mean IVT (Figure 1). As with the mean fields, all the reanalysis 

products could represent the patterns of the 85th percentile of IVT (Figure 2, right panels). These 

findings are consistent with other studies (e.g., Lavers et al. 2015), and we would expect similar 

spatial patterns between mean and 85th percentile, with higher IVT values associated with the 

latter one. 

Up to this point, we have compared the results by the four reanalysis products in reproducing 

the spatial patterns of seasonal IVT, and found that they all provide similar answers, with 

NCEP/NCAR that slightly underperforms comparted to the other ones. NCEP/NCAR reanalysis 

uses neither AIRS nor AMSU (Jiang et al., 2019), leading to a relatively lower performance among 

the reanalysis data product used in the study. Now we move to the examination of how well the 

GCMs can reproduce the results by the reanalyses (Figure 3), using JRA-55. It is already shown 

from our analysis that both MERRA2 and JRA55 (Figure 1 and 2) had no significant differences 

in representing both spatio-temporal variation of IVT. The added advantage of JRA-55 dataset is 

that it covers a longer period and this is the reason we went with JRA-55 for further analysis. 

Overall, the models capture both the intensity and pattern of IVT quite well, as shown from the 

Taylor’s diagram (Figure 3) for all the seasons. Most of the models show a high correlation with 
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the JRA55’s mean IVT, along with smaller RMSE values and a similar standard deviation. We 

also performed similar analyses by considering the 85th percentile of the IVT distribution (Figure 

4); the models can capture the spatial pattern and intensity of IVT very well, similar to what 

observed for the mean IVT.  

The findings from our analyses at the 6-hourly scale are comparable to those at the daily scale 

by Lavers et al. (2015), which compared the multimodel historical mean obtained from 22 climate 

models with respect to ERA-Interim. However, they found some discrepancies, especially during 

JJA, with high IVT values particularly over the eastern equatorial Pacific region. This is consistent 

with Dai (2006), who highlighted the difficulties by most models in reproducing various climatic 

parameters over the eastern equatorial Pacific region. Despite these issues, the overall performance 

of the GCMs in capturing the climatology of the mean and 85th percentile of the IVT is generally 

very satisfactory. 

Although there is evidence that the GCMs are capable of capturing the climatology of IVT, 

whether these models are able to capture the overall trends in this quantity has received little 

attention in the literature. Given that we are working with the historical run and not the AMIP 

simulations, we would not expect the models to reproduce the year-to-year IVT values; however, 

it is reasonable to expect the models to be able to reproduce the overall trends in the reanalyses, 

and this is what we consider here. First, we estimate the patterns in IVT both for the mean and 85th 

percentile using the non-parametric Mann-Kendall test. Figure 5 shows the long-term trends in the 

seasonal mean IVT from 1958 to 2005 based on JRA55. Based on these results, there is a 
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significant increase in the average IVT in the equatorial Atlantic region and a decrease in the 

Northern Indian Ocean region for each of the four seasons; there is also an increasing trend in the 

southern equatorial region (0º to 30º S). The same conclusions are valid for the 85th percentile of 

the IVT distribution (Figure 6), similar to the responses of extreme precipitation to increased CO2 

concentration (Pfahl et al. 2017; Zhang et al. 2017). Supplementary Figures S1 and S2 show the 

comparison of the trend analysis for mean and 85th percentile of IVT for all the reanalyses for the 

common 1979-2015 period. The spatial patterns of the trends for the shorter period are similar to 

the longer one (compare the JRA55 results in Supplementary Figures S1-S2 and those in Figures 

5-6). Among the different reanalysis products, NCEP-NCAR is the one that tends to underperform 

with respect to the other ones, especially in the tropical regions.  

In addition to comparing the different reanalysis products, we now focus on the GCMs, 

summarizing their spatial patterns of the trends from 1958-2005 for the different seasons (Figure 

7 and 8, and Supplementary Figures S3-S10). Based on these results (Supplementary Figures S3-

S6), it is clear that, irrespective of seasons, the patterns of the trends in the GCMs do not match 

what we found using JRA55. More specifically, there are diametric opposite trends in some 

regions, especially in the tropics. We observe similar patterns for the 85th percentile 

(Supplementary Figures S7-S10). These visual assessments are further substantiated by the 

Taylor's diagram for the mean (Figure 7) and 85th percentile (Figure 8). Overall, the ten GCMs 

considered here were not able to satisfactorily capture the trend patterns, as documented by their 
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low values of correlation coefficient and large RMSE; this statement is valid regardless of the 

season.  

To examine whether these results can be rectified when using sea surface temperature and sea 

ice as boundary conditions, we also compare the performance of the AMIP simulations and 

reanalyses along with the models over the 1980-2005 period. In terms of spatial climatological 

patterns, there is a close agreement with the IVT from reanalyses, regardless of model, IVT 

quantity and season, with the AMIP runs that tend to perform better than the corresponding 

historical runs (Figures 3-4.) This good performance, however, does not transfer to the trends in 

IVT (Figures 7-8): the results from the AMIP runs do not improve over the historical simulations, 

indicating that there is still room for improvement in terms of the representation of the trends in 

IVT. With that said, it is worth highlighting that the tight agreement among reanalysis products in 

terms of spatial variability in IVT is not present in the trend results, pointing to the difficulties in 

reproducing its temporal variability even when observations are assimilated. A potential reason 

behind the limited capability of the GCMs in representing IVT trends may be due to their 

difficulties in capturing the dynamics of variables such as specific humidity, u and v components 

of winds. Supplementary Figures S11 and S12 show the climatology and trends in QU (i.e., 

vertically integrated specific humidity and u-wind component from the surface to the troposphere) 

and QV (i.e., vertically integrated specific humidity and v-wind component from surface to 

troposphere). Based on these results, the models can reproduce the climatology of QU and QV, 
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but fail to capture the spatial patterns of trends, leading to the abovementioned issues in the 

representation of IVT trends from climate models. 

As mentioned before, all the analyses are based on the six-hourly data. We have also examined 

how the results would change if we focused on the daily temporal resolution (Supplementary 

Figure S13). Though we notice a slight change in the values of the correlation coefficient, standard 

deviation, and RMSE, the overall results support the conclusions that were drawn with the data at 

the six-hourly temporal resolution. 

 

4. Conclusions 

The transport of water vapor represents the key ingredient in the identification of atmospheric 

rivers, which are phenomena that can cause extreme precipitation and flooding across large areas 

of the midlatitudes. As the climate warms, the availability of the water vapor is projected to 

increase, leading to an intensification of the atmospheric transport of moisture across the 

midlatitudes. Numerous studies linked the increased atmospheric transport of moisture to the 

flooding in regions such as western North America, South America, and Western Europe. Thus, it 

is of high importance to better understand current and future changes in this quantity to better 

mitigate and adapt to these extreme events.  

The goal of this study was to evaluate the performance of ten GCMs from CMIP5 in 

reproducing the historical spatial and temporal variability in IVT quantities (i.e., mean and 85th 
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percentile of the distribution) at the seasonal scale and across the globe. Our main findings can be 

summarized as follows: 

- We showed that the reanalysis and climate model outputs can capture very well the 

climatology of the IVT in terms of both mean and 85th percentile. This statement is valid 

regardless of the seasons and GCM experiments (i.e., historical and AMIP). 

- The good performance in reproducing the spatial patterns of IVT does not transfer to the 

analyses of its temporal variability. The GCMs show trend patterns that are very different 

from those by JRA55, regardless of the IVT quantity. This may be due to inability of the 

climate models in reproducing the trends in individual components, viz., specific humidity, 

zonal and meridional winds. 

- To examine the potential role of boundary conditions in explaining these findings, we 

analyzed the AMIP runs. Our results do not point to an improved performance when sea 

surface temperature and sea ice are provided as boundary conditions.  

- While the GCMs are not able to capture the trends in IVT, it is worth highlighting the 

difficulties by the reanalysis products as well. These findings suggest that capturing the 

trends in IVT still represents a significant challenge from a modeling perspective.  

- These statements are valid both at the six-hourly and daily time scales.  

Here we have focused on analyses at the global scale. However, future studies could focus on 

analyses at a more regional scale, with particular emphasis on those areas where IVT plays an 

important role in causing extreme precipitation. As shown by Espinoza et al. (2018), there are 
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discrepancies in the changes in AR frequency across different regions, with some models 

projecting a decreasing trend in the subtropical Pacific regions near western Pacific and North 

America. These disagreements may be due to shifts in storm tracks or subtropical jet streams (e.g., 

Hagos et al., 2016; Shields and Kiehl, 2016; Zhang and Villarini, 2018), which could not be well 

captured by the models. This issue has also been discussed by Gao et al. (2016), who highlighted 

the uncertainties in the projections of ARs along western North America and Western Europe, 

warranting more in‐depth understanding of the dynamics in these regions.  
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85th percentile IVT from 1979-2015 for the four different reanalysis products considered in the 
study. Further, it also contains the IVT trends in mean and 85th percentile for the climate models 
for different seasons. Finally, it contains the comparison of 6 hourly and daily IVT fields. 
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Table 1: Details on the datasets used in this study 

 
Model name Institution Runs Horizontal resolution 

(latitude/longitude) 

BNU-ESM 
College of Global Change and Earth System 

Science, Beijing Normal University 
Historical and 

AMIP 
64×128 

CanESM2 
Canadian Centre for Climate Modelling and 

Analysis 
Historical 

64×128 

CSIROMK3.6.0  
CSIRO in collaboration with the Queensland 

Climate Change Centre of Excellence 
Historical and 

AMIP 
96×192 

FGOALS-g2 
 

LASG, Institute of Atmospheric Physics, 

Chinese Academy of Sciences; and CESS, 

Tsinghua University 

Historical and 
AMIP 

60×128 

GFDL-CM3 
Geophysical Fluid Dynamics Laboratory 

(GFDL) 

Historical and 

AMIP 

90×144 

GFDL-ESM2G GFDL Historical 90×144 

GFDL-ESM2M GFDL Historical 90×144 

IPSL-CM5B-
LR 

Institut Pierre-Simon Laplace (IPSL) Historical 
96×96 

IPSL-CM5A-

LR 
 

IPSL 
Historical and 

AMIP 

96×96 

IPSL-CM5A-

MR 
IPSL Historical 

143×144 

ERA-Interim ECMWF - 256×512 

NCEP1 NCEP/NCAR - 72 × 143 

JRA55 JMA - 148× 288 

MERRA2 NASA GMAO - 361 × 540 
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