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Abstract 

Anthropogenic heat (AH) is an important input for the urban thermal environment. While 

reduction in AH during the Coronavirus disease 2019 (COVID-19) pandemic may have 

weakened urban heat islands (UHI), quantitative assessments on this are lacking. Here, a new 

AH estimation method based on a remote sensing surface energy balance (RS-SEB) without 

hysteresis from heat storage was proposed to clarify the effects of COVID-19 control 

measures on AH. To weaken the impact of shadows, a simple and novel calibration method 

was developed to estimate the SEB in multiple regions and periods. To overcome the 

hysteresis of AH caused by heat storage, RS-SEB was combined with an inventory-based 

model and thermal stability analysis framework. The resulting AH was consistent with the 

latest global AH dataset and had a much higher spatial resolution, providing objective and 

refined features of human activities during the pandemic. Our study of four Chinese 

megacities (Wuhan, Shanghai, Beijing, and Guangzhou) indicated that COVID-19 control 
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measures severely restricted human activities and notably reduced AH. The reduction was up 

to 50% in Wuhan during the lockdown in February, 2020 and gradually decreased after the 

lockdown was eased in April, 2020, similar to that in Shanghai during the Level 1 pandemic 

response. In contrast, AH was less reduced in Guangzhou during the same period and 

increased in Beijing owing to extended central heating use in winter. AH decreased more in 

urban centers and the change in AH varied in terms of urban land use between cities and 

periods. Although UHI changes during the COVID-19 pandemic cannot be entirely attributed 

to AH changes, the considerable reduction in AH is an important feature accompanying the 

weakening of the UHI.  

Key words: anthropogenic heat; COVID-19 control; surface energy balance; hysteresis 

from heat storage; urban thermal environment 

1. Introduction 

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory 

syndrome coronavirus triggered a global public health disaster in late December 2019 (Li et 

al., 2020; Zhou et al., 2021). Approximately 529 million confirmed cases and more than 

6,299,000 deaths were reported worldwide by June 6, 2022 (WHO, 2022). China was the first 

country hit by the virus and a strict lockdown was implemented on January 23, 2020 in 

Wuhan, where the pandemic first occurred, to curb the spread of the virus (Zhou et al., 2021). 

The Wuhan lockdown was the first in modern public health history in a megacity with a 

population of more than 10 million. China also raised the national public health response to 

the highest level of emergency, involving measures that suspended public transportation and 
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entertainment and restricted non-essential activities and production to minimize the 

movement and gathering of people (Tian et al., 2020; Wang et al., 2020; Wilder-Smith and 

Freedman, 2020). Such lockdown and control measures effectively prevented the spread of 

the virus and avoided further infections (Atalan, 2020; Tian et al., 2020). The COVID-19 

pandemic forced most countries to implement similar national control measures as China 

from March 2020 (Bar et al., 2021; Pal et al., 2021; Tosepu et al., 2020). Although the 

COVID-19 control measures caused a global economic recession (The World Bank, 2020), 

they also resulted in temporary improvements in regional ecology (Bauwens et al., 2020; Liu 

et al., 2022b). 

Transportation and industrial activities were considerably reduced during the lockdown 

and subsequent control measures, with a decrease in greenhouse gases, air pollutants, and 

aerosols, thus improving city air quality (He et al., 2020; Muhammad et al., 2020). Wang and 

Su (2020) observed lower concentrations of air pollutants (NO2, CO, SO2, and PM2.5) in 

China during this time, with this trend beginning in Wuhan and spreading across the country, 

being strongly associated with travel restrictions (Bao and Zhang, 2020). Similar 

improvements in air quality were observed in Europe, America, India, Korea, Japan, and 

Russia (Bar et al., 2021; Ju et al., 2021; Wang and Li, 2021). Decreased atmospheric pollution 

not only mitigates respiratory diseases (Nicola et al., 2020; Sannino et al., 2021) but also 

affects the urban surface and atmospheric radiation balance. Higher daytime surface 

temperatures were expected during the lockdown in some cities because of air quality 

optimization, which increases the incident solar radiation (Parida et al., 2021; Shepherd, 
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2022). Surprisingly, several studies indicated significant reductions in surface temperature and 

urban heat island (UHI) intensity in China (Liu et al., 2022b), Europe, the United States 

(Parida et al., 2021), Middle East (El Kenawy et al., 2021), and India (Nanda et al., 2021) 

during the pandemic controls. Most studies attributed the UHI weakening to anthropogenic 

heat (AH) reduction caused by limited human activities; however, this has not been confirmed 

through quantitative AH studies during the pandemic are lacking. Therefore, the intensity of 

AH and its spatial distribution changes are still unknown in this anomalous period (Pal et al., 

2021; Shepherd, 2022). Changes in the urban thermal environment are complicated, and 

various potential influencing factors should be clarified to analyze this process (Liao et al., 

2017; Meng et al., 2022; Zhou et al., 2014). The COVID-19 epidemic caused an 

unprecedented anomalous scenario for urban thermal environments and AH is key to 

interpreting the characteristics of UHI changes due to the pandemic control measures. 

AH is a source term in the urban energy balance and plays a vital role in urban climates 

(Nie et al., 2014; Zhou et al., 2012). Direct measurement of AH is challenging, but various 

estimation methods have been proposed, including the inventory-based method, surface 

energy balance (SEB) method, and building energy simulation (Grimmond, 1992; Sailor, 

2011). AH is defined differently by the various methods. The inventory-based method 

assumes that heat from energy consumption is instantaneously emitted into the atmosphere, 

ignoring the hysteresis in heat release (Kotthaus and Grimmond, 2012; Smith et al., 2009). In 

contrast, the SEB method assesses the AH transferred and absorbed through the building 

envelope and released into the atmosphere via turbulent heat fluxes, long-wave radiation, etc. 
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(Liu et al., 2022a). The AH of these two methods is similar on longer time scales but 

inconsistent on shorter, sub-daily scales (Offerle et al., 2005; Pigeon et al., 2007). The reason 

for these differences could be the large heat storage owing to the thermal inertia of building 

materials (Liu et al., 2022a; Oke et al., 1999). The net rate of change in heat storage (∆S) 

reflects the net absorption or release of energy, hereinafter as heat storage. Its role in urban 

areas is more notable than that in rural areas because of the differences in thermal properties, 

which is also an important factor contributing to UHI (Lindberg et al., 2020; Ramamurthy and 

Bou-Zeid, 2017). The non-negligible changes in heat storage caused by AH within urban 

areas (Grimmond and Oke, 1999; Yu et al., 2021) results in a hysteresis between AH 

emissions and urban temperature changes, which is contained in the residuals of the SEB. 

The remote-sensing surface energy balance (RS-SEB) model proposed by Kato and 

Yamaguchi (2005) for AH estimation is a classical method, but the urban center AH based on 

this method is generally lower than that of the inventory-based method (Wong et al., 2015; Yu 

et al., 2021; Zhou et al., 2012). A major reason for this underestimation is the hysteresis of 

heat storage, as mentioned previously. In addition, the decrease in land surface temperature 

and albedo owing to building shadow could contribute to the partial AH underestimation of 

RS-SEB (Yu et al., 2021). The AH estimated from the RS-SEB cannot directly reflect human 

activities and energy consumption in comparison with the inventory-based method (Allen et 

al., 2011; Dong et al., 2017), which has advanced considerably in recent years owing to 

machine learning and big data techniques (Liu et al., 2021b; Ming et al., 2022; Qian et al., 

2022; Xu et al., 2021). However, during COVID-19 control measures, the inventory-based 
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method was limited by insufficient data and empirical reliance, while RS-SEB could reflect 

the surface energy composition more objectively based on remote sensing images and 

meteorological conditions. Thus RS-SEB is a universal method for obtaining high-resolution 

AH (Yu et al., 2021), but the influence of ∆S needs to be avoided to more intuitively reflect 

AH changes induced by human activity anomalies during the COVID-19 pandemic. A 

combination of different AH estimation methods could be a potential solution (Chow et al., 

2014; Wang et al., 2022; Zheng and Weng, 2018). In addition, the reduction in air pollutants 

during the pandemic slightly enhanced the solar radiation reaching the surface, yet the UHI 

showed an anomalous decreasing trend in most areas. And from the perspective of the more 

sensitive AH during the COVID-19 lockdown, this anomalous scenario is an excellent 

opportunity to explore the impact of human activities on the urban thermal environment. 

This study focused on the period of the COVID-19 pandemic to 1) develop a 

high-resolution AH estimation method applicable to scenarios of various human activities, 2) 

explore the spatiotemporal characteristics of AH during COVID-19 control measures, and 3) 

investigate the association between AH and UHI during the lockdown. This study was 

conducted in four Chinese megacities (Beijing, Shanghai, Wuhan, and Guangzhou) before and 

after the pandemic. 

2. Study area and data set 

2.1. Study areas 

Wuhan, located in central China, is the capital of Hubei Province and has a population of 

over 12 million. As the first city to report COVID-19 cases, Wuhan adopted the strictest 
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lockdown measures on January 23, 2020 (Tian et al., 2020), involving the suspension of most 

socioeconomic activities and residential closures. After March 20, 2020, the city resumed 

work and production and the roadblocks that isolated Wuhan from the rest of the country were 

eased on April 8. Moreover, Beijing, Shanghai, and Guangzhou, three of China's most 

populous, largest, and powerful cities, also faced considerable impacts of the COVID-19 

pandemic in early 2020. Therefore, lockdowns similar but relatively more lenient to that in 

Wuhan were adopted. Work and production gradually resumed around February 9 in most 

areas except Hubei Province, but a long term Level 1 response to public health emergencies 

was maintained (National Health Commission of the People's Republic of China, 2020). 

These four megacities are typical cases of AH studies during the pandemic. Owing to 

limitations in RS image availability, only urban centers and cloud-free moments were used for 

this study (Fig. 1a).  

The development of the pandemic in these four cities is illustrated in Fig. 1b. Note that to 

distinguish the different lockdown stages, “lockdown” in the following text only refers to the 

strictest control measures taken in Wuhan and Hubei Province at the beginning of the 

pandemic. The pandemic control measures of other cities or other periods will be called “L1 

response”.  
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Fig. 1. (a) Study area locations and albedo; (b) COVID-19 incidences in the four cities in 

early 2020 and important time points for pandemic control. 

2.2. Data set 

Landsat-8 Collection 2 Level 2 and Level 1 cloud-free data covering multiple temporal 

phases for the study area, Tokyo, and Seoul, for a total of 32 scenes (Table A1), were 

provided by the United States Geological Survey (https://earthexplorer.usgs.gov). Level 2 

products included surface reflectance and surface temperature. For the not available part of 

Level 2 products, radiation calibration, atmospheric correction, and surface temperature 

retrieval were performed based on Level 1 products to obtain the corresponding data. 
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Landsat-8 data were used to calculate the SEB parameters and land cover classification. 

NASA digital elevation model (DEM) derived from the Shuttle Radar Topography Mission 

with a global 1 arc-second spacing (NASA JPL, 2020) was used to determine the surface 

altitude for calculating the relevant parameters. Finally, MOD11A1 daytime surface 

temperature data covering Wuhan were used to calculate the UHI intensity for the 

corresponding month, which was obtained from the LAADS website 

(https://ladsweb.nascom.nasa.gov). 

The meteorological data used for the SEB modeling included station observation data and 

the ERA5 hourly atmospheric reanalysis dataset corresponding to the time of satellite passing. 

Meteorological station data were hourly/sub-hourly observations from the National Centers 

for Environmental Information (NCEI GIS Team, 2021), including air temperature, wind 

speed, and dew-point temperature. ERA5 provides hourly space-continuous air temperature, 

wind speed, dew-point, and downwelling shortwave radiation at a spatial resolution of 31 km 

(Muñoz Sabater, 2019). The reanalysis data were corrected based on the average between the 

station data and reanalysis raster pixel values at the corresponding locations (Eq. (B.5)). Due 

to the absence of shortwave radiation observations, the reanalysis data were used directly, 

while relative humidity was estimated from air temperature and dew point. 

Energy consumption, socio-economic statistics, points of interest, road networks, 

night-lights, normalized vegetation index, and other multi-source data were used to construct 

the machine learning model based on the energy inventory method in Section 3.1. The data 

source and pre-processing were based on a previous study (Qian et al., 2022) where the data 
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closest to the moment of satellite passing were selected. In addition, population heat maps 

representing the spatial aggregation of the population at different times of the day of the four 

cities were obtained based on the Baidu Huiyan big data platform (https://huiyan.baidu.com) 

for the hourly details of the inventory-based AH. The details and sources of the data used in 

the inventory-based method can be found in Table A2. 

3. Methods 

Here, we developed a new AH estimation method with high-resolution (see the workflow 

in Fig. 2) and four sections:1) inventory-based AH estimation combined with machine 

learning, 2) initial RS-SEB model construction, 3) shadow calibration of the initial RS-SEB 

model, and 4) adjustment of the ∆S impact on the estimated AH of RS-SEB. The inputs and 

outputs for each workflow in the study and some of the key abbreviations appearing are 

described in Table 1. 
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Fig. 2. Workflow of the study method. Rn: Net radiation; H: Sensible heat flux; LE: Latent 

heat flux; G: Ground heat flux; AH: Anthropogenic heat flux; SAA: Solar altitude angle; ML: 

Machine learning. 
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Table 1. Overall workflow information. 

Workflow Input Key parameters Output 

Initial RS-SEB 

model 

Meteorological data, 

multispectral remote 

sensing data 

H: sensible heat flux. Rn: net 

radiation.  

G: Ground heat flux. LE: latent heat 

flux. 

LULC: land use and land cover. 

𝐀𝐇𝐒𝐄𝐁 

Inventory-based 

model 

Multi-source data 

(Table A2) 

𝒇𝒉−𝑩𝑻: hourly factor of building and 

transportation heat. 

𝒇𝒉−𝑰: hourly factor of industrial heat. 

𝐀𝐇𝐈𝐧𝐯 

Calibration for 

shadow 

AHSEB 

(H, Rn, G, LE), 

LULC 

𝑹𝒍−𝒉: the difference in H between 

low-rise and mid/high-rise buildings 

in percentage. 

𝑹𝑺𝑺
𝒅 : ideal percentage difference in the 

subsolar point assumption. 

SAA: Solar altitude angle. 

𝐀𝐇𝐧𝐬 

Adjustment for heat 

storage 

AHInv, AHns, 

LULC 

𝒓𝒂/𝒓𝒈: relative efficiency of energy 

dissipation by heat storage compared 

to sensible heat. 

 𝒄𝒊: adjustment factor of AH. 

𝝁𝒊: relative impact of ∆S on AH 

compared to H. 

𝑨𝑯∆𝑺
𝑮𝒓𝒊𝒅: the ∆S perturbation caused 

by AH in the sampled grid. 

AH 

3.1. Inventory-based AH estimation 

The inventory-based method assesses the heat directly generated by energy consumption 

without hysteresis from ∆S, which corresponds to the intensity of human activity within the 

city. Therefore, the results of this method can provide a reference for RS-SEB adjustments. 

The top-down inventory method is based on large-scale energy consumption, which is 

subsequently assigned to smaller spatiotemporal scales based on empirical laws (Allen et al., 

2011; Flanner, 2009; Jin et al., 2019; Lu et al., 2017). We proposed a coarse-resolution (500 m) 

AH model combined with energy inventory and machine learning (Qian et al., 2022). The 

model was based on multi-source data and machine learning algorithms, which not only 
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improve the efficiency of AH estimation but provide a more refined representation of the 

spatiotemporal characteristics of AH from different sources (building, transportation, 

industrial heat). More information can be found in the original paper (Qian et al., 2022). 

Meanwhile, to obtain a more accurate AH close to the moment of satellite passing and avoid 

reconstructing the multiple years model, we replaced the original data of the model with data 

corresponding to the study temporal phase and supplemented the AH of Beijing based on the 

original modeling process. The hourly AH was derived from the hourly profile factors and the 

monthly AH results obtained from the model, as shown in Eq.(1) – (3): 

𝐴𝐻𝐼𝑛𝑣
𝑚 = 𝑀𝑜𝑑𝑒𝑙𝐸(𝐼𝑛𝑝𝑢𝑡)#(1)  

𝐴𝐻𝐼𝑛𝑣
ℎ = 𝑓ℎ−𝐵𝑇 ∙ 𝐴𝐻𝐵𝑇

𝑚 + 𝑓ℎ−𝐼 ∙ 𝐴𝐻𝐼
𝑚#(2)  

𝑓ℎ−𝐵𝑇 =
𝑃𝑂𝑃ℎ𝑒𝑎𝑡ℎ

1
24⁄ ∑ 𝑃𝑂𝑃ℎ𝑒𝑎𝑡ℎ

23
0

#(3)  

where 𝐴𝐻𝐼𝑛𝑣
𝑚  is the monthly multi-source AH derived from the model (𝑀𝑜𝑑𝑒𝑙𝐸) based on the 

energy inventory method and machine learning proposed in the previous study (Qian et al., 

2022) and can be divided into monthly industrial heat 𝐴𝐻𝐼
𝑚 and building and transportation 

heat 𝐴𝐻𝐵𝑇
𝑚 ; 𝐴𝐻𝐼𝑛𝑣

ℎ  is the hourly mean anthropogenic heat for the time corresponding to the 

passage of Landsat 8; 𝑓ℎ−𝐼 (%) is the hourly factor of industrial heat based on previous 

studies (Liu et al., 2021b; Zheng and Weng, 2018); 𝑓ℎ−𝐵𝑇 (%) is the hourly factor estimated 

from the gridded hourly population heat value (𝑃𝑂𝑃ℎ𝑒𝑎𝑡ℎ), which depicts the distribution of 

people in the city in real-time based on the geographic location of cell phone users, which is 

one of the products of geographic big data and can effectively reflect the dynamic changes of 

the population (Lin et al., 2020). This study applied the hourly relative population heat values 
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for each grid to reflect the intra-day variation of human activity intensity (Eq. (3)), which 

provides a reasonable basis for the estimation of hourly profiles of building and transportation 

heat. 𝐴𝐻𝐼𝑛𝑣
ℎ  is the hourly average value of the satellite crossing moment, which can express 

the instantaneous value of the AH at that moment given that AH does not vary much within 

one hour (Dong et al., 2017; Liu et al., 2021b). 𝐴𝐻𝐼𝑛𝑣
ℎ  will be applied to the heat storage 

adjustment of the RS-SEB in Section 3.3.2.   

3.2.  Initial RS-SEB model  

AH was initially estimated for four Chinese megacities based on the classical RS-SEB 

model (Kato and Yamaguchi, 2005; Kato and Yamaguchi, 2007; Zhou et al., 2012). The basic 

assumption of this method is that AH contributes only to the sensible heat flux; therefore, the 

results obtained by this method are the increases in sensible heat due to AH: 

𝐴𝐻𝑆𝐸𝐵 = 𝐻 − (𝑅𝑛 − 𝐺 − 𝐿𝐸) = 𝐻 − 𝐻𝑛#(4)  

where  𝑅𝑛 is the net radiation, 𝐴𝐻 is the anthropogenic heat flux, 𝐻 is the sensible heat 

flux, 𝐻𝑛 is the sensible heat flux resulting from the radiative heat balance, and 𝐿𝐸 is the 

latent heat flux. In the case of no AH impact, the ground heat flux or conductive heat flux (G) 

is equivalent to the heat storage ∆S (Sun et al., 2017; Yu et al., 2021).  

However, all other terms in the RS-SEB except sensible heat are also perturbed by AH 

but to a lesser extent (Kato and Yamaguchi, 2005), so the assumption of the RS-SEB model is 

not valid in reality but is still a relatively reasonable simplification in dry surface conditions. 

One of the most notable problems arising from this simplification is AH underestimation due 

to stronger ∆S in the urban center (Liu et al., 2022a; Yu et al., 2021; Zhou et al., 2012). The 
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SEB equation considering the ∆S perturbation is as follows: 

𝑅𝑛 + 𝐴𝐻 = 𝐻 + 𝐿𝐸 + (𝐺 + 𝐴𝐻∆𝑆)#(5)  

where 𝐴𝐻∆𝑆 is the perturbation of ∆S caused by anthropogenic heat, meaning the hysteresis 

between temperature change and heat emission. If 𝐴𝐻∆𝑆 can be determined, then the value of 

AH can be calculated more accurately. However, currently, 𝐴𝐻𝑆𝐸𝐵 based on Eq. (4) cannot 

reflect the real heat generated by human activities owing to the hysteresis effect of ∆S, 

meaning that a part of the heat is stored during the day and released at night (Kato and 

Yamaguchi, 2007). Hysteresis can greatly interfere with the determination of AH during the 

COVID-19 pandemic, making it difficult to quantify variations in human activities under 

control measures. In addition, the overestimation of the temperature in shadowed areas may 

lead to an underestimation of H directly affecting the AH values and interfering with the 

adjustment of the ∆S impacts. Details of the initial RS-SEB modeling are shown in Appendix 

B. 

3.3.  AH adjustment of RS-SEB 

3.3.1. Calibration for shadows 

The surface temperature obtained from remote sensing is lower in shaded areas of 

medium/high-rise buildings (Kato and Yamaguchi, 2005), but coarse-resolution 

meteorological data cannot reflect air temperature decrease in shadowed areas, resulting in an 

underestimation of H in urban areas, eventually interfering with AH estimation. Here, a 

simple calibration procedure was established based on the idea that the building shadow 

interference decreases with an increasing solar altitude angle (SAA). The difference in the H 
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values between mid/high-rise and low-rise buildings at the image scale would change with the 

SAA under the assumption of no shadowing in low-rise buildings. The relative percentage of 

this difference (𝑅𝑙−ℎ) was calculated at the image scale, and an empirical relation was 

established with the SAA at the corresponding moment of the remote sensing image: 

𝐻𝑙𝑟  = 𝛿𝑆2
𝑙𝑟 𝐻𝑙𝑟

′  #(6)  

𝐻ℎ𝑟  = 𝛿𝑆1
ℎ𝑟𝛿𝑆2

ℎ𝑟𝐻ℎ𝑟
′ = 𝛿𝑆1

ℎ𝑟𝛽𝛿𝑆2
𝑙𝑟 𝐻ℎ𝑟

′  #(7)  

𝑅𝑙−ℎ =
𝐻𝑙𝑟 − 𝐻ℎ𝑟

𝐻𝑙𝑟
 =

(𝐻𝑙𝑟
′ − 𝛿𝑆1

ℎ𝑟𝛽𝐻ℎ𝑟
′ )

𝐻𝑙𝑟
′ #(8)  

where 𝐻𝑙𝑟 and 𝐻ℎ𝑟 are the mean values of sensible heat for low-rise and mid/high-rise 

buildings in the image respectively; 𝐻′ is the ideal sensible heat that is not perturbed by 

shadows; 𝛿𝑆1
ℎ𝑟 are shadow perturbation terms (%) of H in mid/high-rise buildings; 𝛿𝑆2

𝑙𝑟  and 

𝛿𝑆2
ℎ𝑟 are ∆S perturbation terms (%) caused by AH in low-rise and mid/high-rise buildings, 

respectively. 𝛽 = 𝛿𝑆2
ℎ𝑟/𝛿𝑆2

𝑙𝑟  is a constant value in this study (Appendix B), implying that the 

𝛿𝑆2
ℎ𝑟  characteristics were preserved without producing new perturbations when shadow 

calibration was applied to mid/high-rise buildings. Furthermore, 𝑅𝑙−ℎ can be expressed as a 

function associated with the SAA: 

𝑅𝑙−ℎ = 1 − (𝑓1(𝑆𝐴𝐴) + 𝜀1) ∗ 𝛽
𝐻ℎ𝑟

′

𝐻𝑙𝑟
′   = 𝑓2(𝑆𝐴𝐴) + 𝜀2#(9)  

where 𝜀 is the error term and the final function 𝑓2(𝑆𝐴𝐴) was fitted based on experiments 

in different regions and periods (Fig. 3). Although the coefficient of determination 𝑅2 was 

approximately 0.37, there was a significant negative linear correlation between 𝑅𝑙−ℎ and 

𝑆𝐴𝐴 (p<0.001) for calibrating the H of mid/high-rise buildings. 

𝑅𝑆𝑆
𝑑 = 𝑓2(1) +  𝜀2

𝑑#(10)  
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𝐻ℎ𝑟
𝑛𝑠 =

1

𝑛
∑ 𝑤𝑖(𝐻𝑙𝑟

𝑖 −𝐻𝑙𝑟
𝑖 𝑅𝑆𝑆

𝑑 )
𝑛

𝑖=1
#(11)  

𝐴𝐻ℎ𝑟
𝑛𝑠 = (𝐻ℎ𝑟

𝑛𝑠 + 𝐿𝐸 + 𝐺) − 𝑅𝑛#(12)  

Where 𝑅𝑆𝑆
𝑑  is the ideal percentage difference of sample image 𝑑  when the SAA 

(normalized) reaches a maximum of 1; 𝜀2
𝑑 is the error term unrelated to shadow impacts; 

𝐻ℎ𝑟
𝑛𝑠 is the calibrated mid/high-rise building sensible heat on a pixel scale (if the calibrated 

value is lower than the pre-calibration value, the initial value is maintained, representing the 

unshaded image pixels); 𝑤𝑖 is the inverse distance weight; 𝑛 is the nearest low-rise pixel 

number of the mid/high-rise building pixels; and 𝐴𝐻ℎ𝑟
𝑛𝑠  is the anthropogenic heat of 

mid/high-rise buildings after shadow calibration. The impact of shadow on H is a highly 

complex matter, which requires consideration of various factors, such as the building 

morphology, envelope structure, and shadow area separation, thus a more precise physical 

solution is a future focus to be addressed. At the same time, our method can be a more 

appropriate solution in case of insufficient experimental conditions. For instance, in the case 

of exploratory and comparative studies, such as the present study, which has less stringent 

requirements for absolute values, the great applicability of this method enables it to meet and 

support the AH studies with multiple scenarios. 
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Fig. 3. Regression of sensible heat percentage difference between mid/high-rise and low-rise 

buildings with solar altitude angle. 

3.3.2. Adjustment for heat storage  

The heat generated by energy consumption with human activities (AHInv) is regarded as a 

common definition of AH because of the extensive applications of inventory-based methods, 

while the low AHSEB  in urban centers is considered an underestimation (Kato and 

Yamaguchi, 2005; Yu et al., 2021). However, not all the heat generated by human activities is 

instantaneously released into the atmosphere. In addition to the turbulent sensible heat 

exchange, expressed as the temperature change, AH may also be dissipated by long-wave 

radiation, latent heat, and heat storage (∆S). In particular, ∆S has an important effect in urban 

built-up areas due to the thermal inertia of massive building materials (Grimmond and Oke, 

1999; Roberts et al., 2006), the main reason for the hysteresis in AH conduction under the dry 

surface assumption, which leads to the difference between AHInv and AHSEB (Liu et al., 
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2022a; Yu et al., 2021). Thus, AHSEB represents the increase in instantaneous sensible heat 

owing to AH, which is affected by the hysteresis of ∆S, while AHInv is the actual heat 

generated by human activities (Fig. 4a). The different representations of AH obtained by the 

two methods are reasonable in various scenarios.  

 
Fig. 4. (a) Differences in anthropogenic heat (AH) estimated by the inventory-based method 

and remote sensing surface energy balance (RS-SEB); (b) Adjustment of AH from RS-SEB 

based on coarse resolution AH from the inventory-based method, LULC represents land use 

and land cover for 𝑟𝑎/𝑟𝑔 calculation. 

In anomalous scenarios such as the COVID-19 pandemic lockdown or instances of war, 

the reliance on data and empirical laws reduces the applicability of inventory-based methods, 

and coupled with its coarse resolution, renders it unable to properly reflect anomalous AH 

features. Thus, we attempted to monitor AH changes during the pandemic using the RS-SEB 

model, which is more generalizable owing to lower data requirements. However, the 

hysteresis of AH release due to ∆S interferes with these results. We planned to determine the 

∆S  perturbations caused by anthropogenic heat ( AH∆S ) in normal scenarios using the 

hysteresis-free AHInv as a reference (Fig. 4b). This was followed by an adjustment of the 
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AHSEB (after shadow calibration) in combination with the relative efficiency of ∆S from the 

thermal stability analysis framework (Yu et al., 2021) and eventually extended to the 

anomalous scenario (Fig. 5). The thermal stability analysis framework based on the 

force-restore approach (Bateni and Entekhabi, 2012; Johnson et al., 1991) was used to 

quantify the relative efficiencies of the SEB components. Yu et al. (2021) proposed a stability 

analysis framework applied to AH perturbations to surface temperature: 

𝑑𝛿𝑇𝑠

𝑑𝜏
= − (1 +

𝑟𝑎

𝑟𝑜
+ 𝛽

𝛿𝑞

𝛾
+

𝑟𝑎

𝑟𝑔
) 𝛿𝑇𝑠 + 𝑄′#(13)  

where 𝛿𝑇𝑠  is the surface temperature perturbation (K) caused by AH; 𝜏  is the 

nondimensional time scale; 
𝑟𝑎

𝑟𝑜
, 𝛽

𝛿𝑞

𝛾
, and 

𝑟𝑎

𝑟𝑔
 represent the relative efficiency of energy 

dissipation by long-wave radiation, latent heat, and heat storage, respectively, compared to 

sensible heat; and 𝑄′ is the independent term of 𝛿𝑇𝑠. Here, 𝑟𝑔 represents the conductive 

heat resistance of the surface, depending on the thermal inertia of the material. More 

information on the framework and 𝑟𝑎/𝑟𝑔 calculations can be found in Appendix B. 𝑟𝑎/𝑟𝑔 

can be understood simply as the ∆S efficiency but it is difficult to apply directly to urban 

areas where ∆S is stronger and more complicated. Here, AHSEB was adjusted based on the 

relative values of 𝑟𝑎/𝑟𝑔 within the sampling grid corresponding to the AHInv as a reference. 

The adjustment scheme is illustrated as follows (Fig. 5): 

𝐴𝐻𝑖 = 𝐴𝐻𝑖
𝑛𝑠 + 𝑐𝑖[𝐴𝐻𝐼𝑛𝑣

̅̅ ̅̅ ̅̅ ̅̅ − (𝛼𝐻𝑅𝐴𝐻𝐻𝑅
𝑛𝑠̅̅ ̅̅ ̅̅ ̅ + 𝛼𝐿𝑅𝐴𝐻𝐿𝑅

̅̅ ̅̅ ̅̅ ̅ + 𝛼𝑅𝐴𝐻𝑅
̅̅ ̅̅ ̅̅ + 𝛼𝐼𝐴𝐻𝐼

̅̅ ̅̅ ̅)]𝐺𝑟𝑖𝑑 

= 𝐴𝐻𝑖
𝑛𝑠 + 𝑐𝑖𝐴𝐻∆𝑆

𝐺𝑟𝑖𝑑#(14)  

𝑐𝑖 = (
𝑟𝑎

𝑟𝑔
)

𝑖

/ ∑ ( 
𝑟𝑎

𝑟𝑔
)

𝑗

𝑛

𝑗=1

1

𝑛
#(15)  
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where 𝐴𝐻𝑖 is the adjusted anthropogenic heat of pixel 𝑖; 𝐴𝐻𝑖
𝑛𝑠 is the AHSEB after shadow 

calibration; 𝑐𝑖 is the adjustment factor of the corresponding pixel; 𝐺𝑟𝑖𝑑 is the sampling grid 

where pixel 𝑖  is located; n is the number of pixels in the grid; 𝐴𝐻𝐼𝑛𝑣
̅̅ ̅̅ ̅̅ ̅̅  is the mean 

anthropogenic heat of the inventory-based method in the grid; 𝐴𝐻𝐻𝑅
𝑛𝑠̅̅ ̅̅ ̅̅ ̅, 𝐴𝐻𝐿𝑅

̅̅ ̅̅ ̅̅ ̅, 𝐴𝐻𝑅
̅̅ ̅̅ ̅̅ , and 𝐴𝐻𝐼

̅̅ ̅̅ ̅ 

are mean AHSEB for mid/high-rise (shadow-calibrated), low-rise, roads, and factories in the 

grid, respectively; 𝛼 is the proportion (%) of the corresponding land cover types in the grid; 

and 𝐴𝐻∆𝑆
𝐺𝑟𝑖𝑑 represents the ∆S perturbation caused by AH in the sampled grid and the grid is 

not adjusted for 𝐴𝐻∆𝑆
𝐺𝑟𝑖𝑑 less than 0.  

To avoid disturbance of the AHSEB, the 𝐴𝐻∆𝑆
𝐺𝑟𝑖𝑑 and 𝑐𝑖 calculated in normal scenarios 

were not directly used in the anomalous scenarios. Considering the similarity of land cover 

and meteorological conditions between the corresponding images of the two scenarios, and 

the insensitivity of the dissipation efficiency of ∆S relative to sensible heat to climate 

differences (Bateni and Entekhabi, 2012; Yu et al., 2021), we believe that the relative impact 

of ∆S obtained in normal scenarios is still valid in anomalous scenarios that violate the 

general distribution law of AH (Grimmond and Oke, 1999). Therefore, AH adjustment during 

COVID-19 control was calculated based on Eqs.(16) and (17): 

𝐴𝐻𝑖_𝐶𝑂𝑉𝐼𝐷 = 𝐴𝐻𝑖_𝐶𝑂𝑉𝐼𝐷
𝑛𝑠 + 𝜇𝑖𝐻𝑖_𝐶𝑂𝑉𝐼𝐷

𝑛𝑠 #(16)  

𝜇𝑖 = [
𝑐𝑖𝐴𝐻∆𝑆

𝐺𝑟𝑖𝑑

𝐻𝑖
𝑛𝑠 ]𝑛𝑜𝑟𝑚𝑎𝑙#(17)  

where 𝐴𝐻𝑖_𝐶𝑂𝑉𝐼𝐷
𝑛𝑠  is the shadow calibrated AHSEB of pixel 𝑖 during COVID-19 pandemic 

control and 𝐴𝐻𝑖_𝐶𝑂𝑉𝐼𝐷 is the 𝐴𝐻𝑖_𝐶𝑂𝑉𝐼𝐷
𝑛𝑠  after the heat storage adjustment; 𝜇𝑖 is the impact 

of ∆S relative to H for the normal months corresponding to the time of the pandemic 
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scenario; 𝐻𝑖
𝑛𝑠 and 𝐻𝑖_𝐶𝑂𝑉𝐼𝐷

𝑛𝑠  are the sensible heat after shadow calibration in the same month 

during the normal scenario and COVID-19 pandemic control, respectively; and 𝑐𝑖 is the 

adjustment factor for the normal scenario of the corresponding month.  

 

Fig. 5. Schematic of AHSEB (after shadow calibration) adjustment scheme in a sampling grid. 

4. Results 

4.1. AH of RS-SEB before and after adjustment 

AHSEB and AHInv are similar in overall terms, but there are notable differences in spatial 

details. Similar to previous studies (Kato and Yamaguchi, 2005; Yu et al., 2021), the AHSEB 

showed various magnitudes of underestimation in urban centers of several cities, and the 

spatial distribution characteristics were considerably different from those of AHInv (Fig. A1 

and A2). We present a specific result of Wuhan as a case analysis (Fig. 6). AHInv shows 

more notable clustering characteristics than AHSEB, with high values concentrated in the 

urban center and gradually decreasing in the suburban areas. The high values of AHSEB were 

dispersed and notably lower than the values of AHInv in the urban center but the two 

methods were consistent in some suburban areas. The high intensity of energy consumption 

and strong heat storage in the urban center might contribute to the above differences, whereas 
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in other areas, although also affected by ∆S, the weaker intensity of human activities results 

in fewer AH differences. Thus, the adjustment for the ∆S impact was concentrated in central 

areas, whereas in some built-up areas far from the urban center, the AHSEB tended to be 

larger than the AHInv, which was more evident in the northern industrial areas of Shanghai 

and Guangzhou. This phenomenon might be caused by higher G values in suburban areas 

owing to the fixed estimation factor (cg) throughout the region (Oke et al., 2017; Yu et al., 

2021). In addition, owing to the coarse spatial resolution of the inventory-based model, the 

pixels contained some small impervious surfaces, and AHInv exhibited heat emission in 

non-built-up areas. Regarding the comparison of different temporal phases, the RS-SEB 

model and inventory-based method were consistent in AH intensity across seasons. There 

were more areas with abnormally low AHSEB values in spring than in winter, with more 

dramatic variations in the continuous space in spring. The stronger shadow impacts caused by 

higher temperatures and net radiation might be an important reason for the seasonal 

differences. Furthermore, AHSEB and AHInv were consistent in the general characteristics of 

the annual variations, such as the AH growth in normal scenarios from 2017 to 2019 in 

Wuhan and Guangzhou. It is the association and differences between the two methods that 

contributed to the combined adjustment.  

To ensure a reasonable representation of human activity intensity, the AHSEB was greatly 

enhanced in the urban center after the adjustment, showing significant central aggregation 

characteristics like the AHInv, as well as retaining the temporal information of AHSEB to 

help us explore the characteristics in anomalous scenarios. Its higher spatial resolution means 
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that it can express more detailed features. The AH of mid/high-rise buildings increased 

notably after the adjustment, as evidenced by the filling of the anomalous low AHSEB voids 

in the city center, resulting in more diverse AH values within the city. More importantly, the 

adjusted RS-SEB is more comparable to other studies and represents AH without hysteresis 

corresponding to the intensity of human activity, rather than the increase in sensible heat flux 

due to AH, as defined by the initial model (Kato and Yamaguchi, 2005), which provides a 

more convenient condition for validation of the results. 

 

Fig. 6. Anthropogenic heat (AH) of different methods for different periods in Wuhan. The 

dates representing the Level 1 response and lockdown are highlighted in red, with different 

saturations. 

4.2. AH variations during COVID-19 controls 

China adopted rapid emergency response and control measures at the beginning of the 
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pandemic to control the spread of COVID-19. As the first and most seriously affected city of 

the pandemic, the AH in Wuhan was considerably reduced during the February, 2020 

lockdown and did not completely recover after the lockdown was eased in April, 2020 (Zhou 

et al., 2021), but the results in December showed an increasing trend during normal scenarios 

(Fig. 6). This indicates that COVID-19 interrupted the healthy development trajectory of the 

city. A similar AH reduction occurred in Shanghai and Guangzhou during the L1 response in 

February, 2020 (Fig. 7), whereas the reduction was inconspicuous in Guangzhou. As an 

exception, the results of the adjusted AH in Beijing revealed an increase during the L1 

response in March 2020, which is contrary to the results of the AHInv (Fig. A1). In general, 

from the AH maps, compared to the notable enhancement or weak variation in normal 

scenarios, cities except Beijing have different magnitude of reduction in AH especially in the 

urban centers under the pandemic control. 
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Fig. 7. Estimated Anthropogenic heat (AH) using the adjusted remote sensing surface energy 

balance (RS-SEB) model for Shanghai (SH), Beijing (BJ), and Guangzhou (GZ). The dates 

representing the Level 1 response are highlighted. 

The numerical distribution mode of AH values for the same period between different years 

was similar under normal scenarios (Fig. 8). In winter, the AH numerical distribution was 

approximate to the normal distribution with a mean greater than 0 and a smaller standard 

deviation with relatively concentrated values, while in spring (Wuhan) and autumn 

(Guangzhou), the distribution of AH values was more dispersed. The AH of Beijing was 

considerably greater than that of other cities owing to the use of central heating, followed by 

Shanghai, which is comparable in urban scale to Beijing, while Guangzhou had the weakest 
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AH owing to a more comfortable climate in autumn and winter. In addition, AH increased in 

all four cities under normal scenarios but was weaker in Shanghai and Beijing. In contrast to 

the normal situation, during the COVID-19 control period, the distribution curve of AH 

values in all cities except Beijing moved leftward and the concentration of low values was 

more notable. These results reflect the general weakening of human activities throughout the 

urban area, which attenuated the spatial variability of AH values across the city. In particular, 

the largest AH reduction (average of 30 W/m2) occurred during the Wuhan lockdown, while 

the reductions during the L1 response in Shanghai (16 W/m2) and Wuhan (17 W/m2) were 

similar but approximately half of that experienced in Wuhan under strict lockdown (Fig. 8). 

All the reductions were significant (p<0.001). This pattern is consistent with the intensity of 

control measures in restricting human activities.  
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Fig. 8. Numerical distribution of Anthropogenic heat (AH) in four cities at different stages 

and the slope of change over the same period in different years. 

The spatial variation characteristics of AH resulting from COVID-19 control measures are 

shown at the block scale in Wuhan and Shanghai (Fig. 9), as the periods used for comparison 

in these two cities were typically less disturbed. Most areas of Wuhan exhibited significant 

reductions in AH during the lockdown, whereas in some areas around the urban center there 

was an increasing trend during the L1 response after the lockdown was eased. Furthermore, 

AH in the urban center increased as the reduction magnitude diminished as human activities 

recovered during the L1 response, presenting a trend of gradual recovery from suburban areas 
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to the center. A similar AH change characteristic appeared during the L1 response in Shanghai, 

but with a weaker reduction in the urban center, whereas the industrial areas in the north 

showed a more notable AH reduction. In combination with the essential urban land use 

categories (EULUC) (Gong et al., 2020), it is known that the mean AH reduction in the 

industrial and public service areas of Shanghai is 30%, while that in other areas is 

approximately 15% (Fig. 9d and A3). Further, residential areas had the smallest AH reduction 

due to the lower impact of pandemic control measures on human home activities, while 

industrial production, public facilities, and commercial activities were notably restricted and 

recovered more slowly than transportation facilities after the resumption of work. The AH of 

industrial areas in Wuhan was less affected (41%) compared to other EULUC during the 

lockdown, and the reduction of AH in other EULUC was approximately 50%, with the 

reduction of transportation and industrial facilities weakening to around 15% after the 

lockdown ended. However, human activities in commercial, residential, and public service 

areas were still greatly restricted (approximately 30% reduction), though there was a certain 

recovery. In summary, the restrictions on human activities during the Wuhan lockdown were 

much stronger than the ordinary control measures, and the AH reduction during the L1 

response in Wuhan and Shanghai was similar at about 20%, but the AH change characteristics 

varied for land use categories.  
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Fig. 9. (a)-(c) Anthropogenic heat (AH) changes at block scale due to COVID-19 controls in 

February and April in Wuhan, and February in Shanghai; (d) AH reduction in terms of 

essential urban land use categories at different control stages; radar values represent relative 

magnitude of the AH reduction. 

4.3. Relative and indirect validation 

The results of the initial RS-SEB calculations were validated. The absolute values of SEB 

components are difficult to compare directly owing to the lack of measurement conditions and 

the variability of the experimental location and time, but the ratio of heat fluxes to net 

radiation can be used for relative validation to reflect model stability and reasonableness 
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(Kato and Yamaguchi, 2007; Weng et al., 2014). Comparing the RS-SEB of this study with 

previous estimations and practical observations in the literature, we confirmed our results for 

different seasons and cities (Table A3). Specifically, H/Rn was larger in summer than in 

winter and increased with the percentage of impervious surface, while LE/Rn also peaked in 

summer but decreased with the percentage of impervious surface, which could be attributed to 

summer high temperatures and greater evapotranspiration from the vegetation surface. The 

exception was the larger H/Rn in Beijing winters, which was also observed in Hu et al. (2012), 

which may be due to the centralized heating use and weaker net radiation in northern China 

winters. The RS-SEB we performed was in accordance with the criteria of previous studies.  

The AH of the RS-SEB before and after adjustment were further validated using 

comparative validation based on correlation analysis, which is a common indirect validation 

method, due to the lack of actual AH measurement data (Firozjaei et al., 2020). The adjusted 

AH can be compared with recognized AH datasets, such as AH4GUC (Varquez et al., 2021) 

and PF-AHF (Jin et al., 2019), which are two recently proposed global AH datasets based on 

the idea of energy consumption but with a notably different construction process from the 

inventory-based method in this paper, which thus serve as good validation material. A 

significant (p < 0.001) correlation between the AH of RS-SEB and global AH datasets was 

found (Table 2), and the correlation of the adjusted results was markedly enhanced, indicating 

a stronger consistency between the adjusted AH and the common definition of AH at present. 

In addition, the adjusted AH had a more similar spatial distribution to the results of the model 

based on more refined data (Liu et al., 2021b; Sun et al., 2018), further demonstrating the 
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validity of the high-resolution AH estimation method proposed in this study, which can be 

applied to AH monitoring during the COVID-19 pandemic. 

Table 2. Correlation of the results of typical months in the general scenarios for this study 

before and after adjustment with the latest global AH dataset. Note that the AH4GUC contains 

hourly AH for each month in 2010, whereas the PF-AHF represents only the annual mean in 

2015. 

Area Date 

AH4GU

C (2010) 

PF-AHF 

(2015) 

Initial Adjusted Initial Adjusted 

Wuhan 

2017/02/16 0.49
***

 0.61
***

 0.23
***

 0.44
***

 

2017/12/17 0.45
***

 0.55
***

 0.3
***

 0.42
***

 

2018/04/08 0.44
***

 0.55
***

 0.28
***

 0.41
***

 

Shanghai 
2017/02/13 0.44

***
 0.64

***
 0.35

***
 0.56

***
 

2018/12/17 0.43
***

 0.64
***

 0.33
***

 0.54
***

 

Beijing 
2018/12/04 0.53

***
 0.72

***
 0.38

***
 0.52

***
 

2019/03/26 0.18
***

 0.7
***

 0.14
***

 0.52
***

 

Guangzhou 
2016/02/07 0.34

***
 0.6

***
 0.24

***
 0.5

***
 

2017/10/23 0.34
***

 0.58
***

 0.24
***

 0.49
***

 

5. Discussion 

5.1.  Impacts of pandemic control on AH 

The results demonstrated the considerable impact on urban human activities of the 

COVID-19 pandemic and its control measures, which reduced AH while hindering normal 

urban development, with the impact varying with the magnitude of the pandemic. The 

lockdown in Wuhan, where the pandemic first started, halted most of the city's functions and 

severely restricted people’s movements. After the pandemic spread, Wuhan resumed 

production activities and transportation to the outside world on April 8, 2020, while Shanghai 

and Guangzhou, which experienced less impact from the pandemic, resumed work on 
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February 9 after a short period of strict control. Thus, although the cities still maintained the 

L1 response in the time we studied, the AH reduction was much lower than that during the 

strict lockdown measures. Although the results suggest a lower AH reduction in Guangzhou, 

it could be due to the effect of the comparison periods. Considering the rapid increase of AH 

in the last two years (October, 2017 to October, 2019) and that the Guangzhou image 

(February 2, 2016) used for comparison with the AH during the COVID-19 pandemic 

coincided with the Chinese New Year's Eve holiday, the AH reduction in Guangzhou during 

the L1 response could be much more than indicated by the current results. In contrast, AH 

changes in Beijing under pandemic control showed weakening and enhancement on AHInv 

and AHSEB, respectively. Considering that the AHInv based on annual energy consumption 

and empirical patterns in general scenarios cannot accurately reflect the anomalous AH 

characteristics, the AHInv during the March 2020 pandemic may be unreliable. In addition, 

the original model of AHInv  did not consider central heating energy consumption. 

Specifically, the causes of the AH increase in Beijing in March 2020 may be the longer central 

building heating time (lasting until March 31, 2020) because of COVID-19 control measures, 

while in 2019 the central heating lasted only until March 15. Therefore, the AH increases in 

this period based on RS-SEB could be more realistic. It also indicates that the RS-SEB may 

be more objective and applicable in anomalous scenarios.  

The spatial and temporal characteristics of AH during the COVID-19 pandemic reflect 

differences in human activity restrictions owing to different control measures and recovery 

strategies. For example, despite most traffic activities in Wuhan being stopped during the 
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lockdown, traffic facilities were also the fastest to resume after the lockdown was released for 

the regular functioning of the city, while nonessential activities involving large human flows, 

such as public services and commerce, resumed slowly. And such characteristics varied 

among cities due to differences in policies and urban production requirements. Following the 

resumption of urban human activities, energy consumption and AH may recover or even 

exceed pre-pandemic levels (Wang and Su, 2020). Thus, the pandemic provides an excellent 

opportunity to confirm whether AH reduction will optimize the urban thermal environment 

and what spatiotemporal changes in AH are most beneficial, thus providing a theoretical basis 

for subsequent urban planning and energy use studies. 

5.2.  Relations between changes in UHI and AH 

Previously, due to the absence of AH data, it has been difficult to establish whether there 

was a relationship between the decrease in UHI and reduction in AH during the COVID-19 

control measures (Pal et al., 2021). This study provided some discussion of this issue and the 

relationship between UHI (Liu et al., 2022b) and the two main energy inputs for the 

corresponding months before and after the pandemic outbreak in Wuhan is shown in Fig. 10. 

In general, AH had a marked promoting effect on UHI, while there was a simultaneous 

negative correlation between Rn and UHI, with this negative correlation being stronger in 

winter. Similar trends have been found in previous studies (Hou et al., 2022; Memon et al., 

2009) and because the Rn differences between urban and rural areas are small, this negative 

correlation can be attributed to the difference in surface thermal properties. For example, 

urban surfaces with low albedo receive more radiation, but a higher heat capacity or thermal 
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conductivity makes the temperature change insignificant, which is also an important factor 

determining a weaker UHI during daytime in winter. When shortwave radiation is enhanced 

to summer intensity, the relative impacts of heat storage can be weakened, implying a positive 

relationship change between radiation and temperature, enhancing daytime UHI (Zheng et al., 

2021; Zhou et al., 2014), while the promotion effect of AH indicates its higher dissipation 

efficiency through sensible heat compared to Rn. During the lockdown, the lower AH had a 

steeper slope, implying that the UHI in this period was more sensitive to generally weakened 

AH and there was a greater spatial coherence between human activities and UHI intensity. 

However, the contribution of AH decreased slightly during the L1 response due to the spatial 

heterogeneity of the reduction or enhancement of AH within the city, thereby breaking the 

spatial coherence with the UHI (Fig. 9). It should be noted that such weak variations may also 

be natural fluctuations. The effect of Rn  weakened during both the lockdown and L1 

response, with the weakening closely related to the anomalous changes in AH or other factors 

because of the interactions among the UHI drivers (Hu et al., 2020). The driving mechanism 

of daytime UHI is complicated (Zhou et al., 2014); thus, there was no direct correlation 

between individual Rn and UHI but the positive effect of AH was notable. 
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Fig. 10. Urban heat islands (UHI) scatter plot with AH and Rn  in Wuhan for the 

corresponding months before and after the COVID-19 pandemic. 

The changes in AH and Rn with the weakening of the UHI during the pandemic were 

discussed to examine the reasons for the abnormal change in UHI (Fig. 11). The trends of AH 

and Rn were almost exactly opposite but Rn was slightly enhanced; however, in the same 

region, a single Rn enhancement at different moments should not lead to UHI reduction. 

Thus, the current UHI anomaly is the result of a combination of multiple factors, with the 

marked reduction in AH, as another important urban energy input, being the most direct 

reason. Although the linear or monotonic relationship between ∆AH and ∆UHI was weak, 

most of the AH reduction corresponded to a decrease in the UHI. The magnitudes of AH and 

Rn variability during the L1 response were smaller and more concentrated compared to the 

lockdown, but the range of UHI variability was greater. In addition to the stronger daytime 

UHI baseline in spring (Hou et al., 2022), the complexity of this during the warm season 

indicates that other factors may also play a role, such as meteorological conditions, urban 

morphology, water distribution, and vegetation activity (Liu et al., 2021a; Wang et al., 2021; 
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Zhou et al., 2014). The anomalous changes in UHI during the pandemic cannot be fully 

explained at present but the significant reduction in AH is an important feature accompanying 

the weakening of the UHI, indicating the potential optimization of the urban thermal 

environment by controlling AH sources. Analysis of the UHI driving forces involving finer 

AH inputs as an important direction for future research will provide a more scientific, 

theoretical basis for urban planning and energy utilization. 

 

Fig. 11. Anthropogenic heat (AH), Rn, and urban heat islands (UHI) changes in February 

(lockdown) and April (Level 1 response) in Wuhan compared to the periods before the 

pandemic. The red dashed ellipse contains 80% of the data. 
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5.3. Limitations and prospects 

This study focused on the AH variations in four Chinese megacities during the COVID-19 

pandemic in 2020, but uncertainties remained due to data availability limitations and the 

complexity of factors influencing AH. Limited by the coarse temporal resolution and cloud 

cover problems of Landsat, few images during the pandemic were available which led to 

uncertainties in the high-resolution AH results of this study. However, the climate conditions 

during the same months used for comparison differed little, thus its impacts might be small. 

Furthermore, the inventory-based model (Qian et al., 2022) in this study was established 

exactly on the impact factors of AH. In summary, based on the direct relationship between AH 

and human activities (Liu et al., 2022b; Shepherd, 2022), it remains reasonable to attribute the 

AH changes during the pandemic to abnormal human activity restrictions, but a more detailed 

analysis of AH variability factors should be conducted in subsequent studies. The precise 

validation of AH is one of the key issues that need to be urgently addressed. Although the 

current AH estimation methods have been validated and developed based on local site flux 

observations (Chow et al., 2014; Pigeon et al., 2007), more convincing experiments for 

specific cases are required. However, due to the rigorous experimental conditions required for 

accurate flux field measurements (Sailor, 2011), most AH-related studies, both RS-SEB and 

inventory methods, use indirect validation (Firozjaei et al., 2020; Varquez et al., 2021). We 

believe that numerical meteorological simulations incorporating AH inputs could be an 

important tool for effective and convenient AH assessment in the future. 

The spatial resolution of meteorological data should ideally match that of the remote 
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sensing data to achieve the highest accuracy and reliability of RS-SEB, but such data are 

hardly available due to the discontinuity and availability limitations of real meteorological 

stations. Therefore, this study followed the common assumption made in previous studies 

(Malbeteau et al., 2017; Weng et al., 2019; Yu et al., 2021) of using coarse-resolution data and 

station observations to represent meteorological conditions at the urban scale, which is based 

on the small variability and autocorrelation of general meteorological elements over a certain 

extension (Hubbard, 1994; Quinones et al., 2019). However, the neglect of spatial 

heterogeneity contributes to problems of scale mismatch. For example, the impacts of 

shadows on RS-SEB are caused by a mismatch between meteorological inputs and the 

high-resolution spatial details expressed by remote sensing (Kato and Yamaguchi, 2005; Yu et 

al., 2021). Although this study provided an approximate calibration for the shadow impacts, it 

is still challenging to fully clarify and resolve the issues associated with the scale mismatch. 

Apart from improvements in infrastructure and experimental equipment, this issue might be 

solved by data downscaling based on sophisticated numerical simulation models or deep 

learning algorithms, but effective examinations are lacking at present. 

6. Conclusion 

The reduction in urban AH due to COVID-19 controls might be an important reason for 

the decrease in UHI during this period and helps to clarify the AH variations during the 

pandemic for the interpretation and management of the urban thermal environment. To 

overcome the limitations of the initial RS-SEB model in AH representation owing to the 

impact of shadows and ∆S, this study proposed a high-resolution AH estimation method 
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without hysteresis by taking full advantage of the inventory-based method and RS-SEB model. 

The initial RS-SEB model had a notable underestimation of urban center AH compared to the 

results of the inventory-based method, which had a more dispersed distribution of high values 

and no obvious central aggregation characteristics. The results of the initial RS-SEB can be 

regarded as an increase in anthropogenic sensible heat influenced by ∆S, rather than AH in 

the general definition, and the effects of shadows cannot be ignored. The adjusted AH of 

RS-SEB was more correlated and consistent with the inventory-based AH datasets and had a 

much higher spatial resolution than the latter, which can thus represent more objective and 

finer human activities to apply to AH change monitoring during COVID-19 pandemic control 

measures.  

AH estimation in four Chinese megacities showed that the COVID-19 pandemic and its 

control measures greatly reduced AH, providing practical evidence for optimizing the urban 

thermal environment through heat emission control measures. The AH in Wuhan was reduced 

by more than 50% during the strict lockdown in February, 2020 and gradually recovered after 

lockdown measures were relaxed in April, 2020. The AH reduction during the L1 response in 

Shanghai and Wuhan was similar, approximately half of that during the lockdown. 

Guangzhou had a smaller AH reduction in the same stage, while Beijing showed an increase 

in AH due to the extension of the centralized heating time. In addition, there was considerable 

spatiotemporal heterogeneity in AH changes during the COVID-19 pandemic, with urban 

centers tending to have greater reductions. Moreover, AH changes varied among the different 

land-use categories affected by the severity of pandemic control measures. The anomalous 
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changes in the UHI during the pandemic cannot be fully explained at present but the notable 

reduction in AH is an important feature accompanying the weakening of the UHI. In addition, 

multiple drivers of the urban thermal environment, such as canopy structure, climate, and 

water distribution, should be further analyzed. 

The AH adjustment method proposed in this study is empirically oriented, with 

considerable potential for improvement. However, it promotes the integration of multiple 

methods for AH estimation and establishes a foundation for meeting the AH requirements of 

different scenarios. Furthermore, the exploration of AH and UHI in multiple scenarios will 

provide diverse examples of evidence for subsequent studies and contribute to a deeper 

understanding of the mechanisms driving the urban thermal environment to provide more 

scientific solutions. 
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List of Figure Captions 

Fig. 1. (a) Study area locations and albedo; (b) COVID-19 incidences in the four cities in 

early 2020 and important time points for pandemic control. 

Fig. 2. Workflow of the study method. Rn: Net radiation; H: Sensible heat flux; LE: Latent 

heat flux; G: Ground heat flux; AH: Anthropogenic heat flux; SAA: Solar altitude angle; ML: 

Machine learning. 

Fig. 3. Regression of sensible heat percentage difference between mid/high-rise and low-rise 

buildings with solar altitude angle. 

Fig. 4. (a) Differences in anthropogenic heat (AH) estimated by the inventory-based method 

and remote sensing surface energy balance (RS-SEB); (b) Adjustment of AH from RS-SEB 

based on coarse resolution AH from the inventory-based method, LULC represents land use 
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and land cover for 𝑟𝑎/𝑟𝑔 calculation. 

Fig. 5. Schematic of AHSEB (after shadow calibration) adjustment scheme in a sampling grid. 

Fig. 6. Anthropogenic heat (AH) of different methods for different periods in Wuhan. The 

dates representing the Level 1 response and lockdown are highlighted in red, with different 

saturations. 

Fig. 7. Estimated Anthropogenic heat (AH) using the adjusted remote sensing surface energy 

balance (RS-SEB) model for Shanghai (SH), Beijing (BJ), and Guangzhou (GZ). The dates 

representing the Level 1 response are highlighted. 

Fig. 8. Numerical distribution of Anthropogenic heat (AH) in four cities at different stages 

and the slope of change over the same period in different years. 

Fig. 9. (a)-(c) Anthropogenic heat (AH) changes at block scale due to COVID-19 controls in 

February and April in Wuhan, and February in Shanghai; (d) AH reduction in terms of 

essential urban land use categories at different control stages; radar values represent relative 

magnitude of the AH reduction. 

Fig. 10. Urban heat islands (UHI) scatter plot with AH and Rn  in Wuhan for the 

corresponding months before and after the COVID-19 pandemic. 

Fig. 11. Anthropogenic heat (AH), Rn, and urban heat islands (UHI) changes in February 

(lockdown) and April (Level 1 response) in Wuhan compared to the periods before the 

pandemic. The red dashed ellipse contains 80% of the data. 
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Highlights of the study 

 A high-resolution anthropogenic heat estimation method for special scenarios 

 A novel adjustment method was developed to estimate the surface energy balance 

 Practical evidence was provided for optimizing the urban thermal environment  

 COVID-19 pandemic and its control measures greatly reduced anthropogenic heat 
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