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Abstract 9 

Mechanistic simulation models are being increasingly used as tools to assist with animal health decision-10 

making in the cattle sector. We reviewed scientific literature for studies reporting age-structured cattle 11 

management models in application to infectious diseases. Our emphasis was on papers dedicated to support 12 

decision making in the field. In this systematic review we considered 1290 manuscripts and identified 76 13 

eligible studies. These are based on 52 individual models from 10 countries addressing 9 different pathogens. 14 

We provide an overview of these models and present in detail their theoretical foundations, design paradigms 15 

and incorporated processes. We propose a structure of the characteristics of cattle disease models using three 16 

main features: [1] biological processes, [2] farming-related processes and [3] pathogen-related processes. It 17 

would be of benefit if future cattle disease models were to follow this structure to facilitate science 18 

communication and to allow increased model transparency.   19 

Keywords 20 
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1. Introduction 22 

Contagious cattle diseases such as bovine viral diarrhoea or Johne´s disease are prevalent in many food-23 

producing countries worldwide (Garcia & Shalloo, 2015; Richter, Lebl, Baumgartner, & Obritzhauser, 2017). 24 

In countries where these and other diseases are present, the economic impact through direct (reduced milk 25 

yield, etc.) and indirect (vaccination campaigns etc.) financial losses can be substantial (Otte & Chilonda, 26 

2000). In response, government agencies and livestock industries in many countries have sought to develop 27 

and refine appropriate policy and management actions. The development of epidemiological models capable of 28 

representing the spread of infectious diseases in cattle populations is an effective tool for policy support and to 29 

assist with animal health decision-making (Singer, Salman, & Thulke, 2011). 30 

 31 
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It is well acknowledged that epidemiological models should always be designed according to the questions to 32 

be answered and be as complex or as simple as the objective requires (Garner & Hamilton, 2011). It is well 33 

recognised that different models could be developed for the same disease following the exact purpose of the 34 

modelling and the modellers capabilities (EFSA, 2009).  35 

Early epidemiological models introduced the SIR-based compartmental framework (Kermack & McKendrick, 36 

1927). Using this approach, each individual in a population is allocated to one of three infection states: 37 

susceptible (S), infected (I) or recovered (R), with transitions between these states describing the transmission 38 

process. However, recent advances in computational power and theoretical understanding have facilitated the 39 

development of more system-oriented, mechanistic models which describe dynamic systems by their 40 

mechanisms (Cabral, Valente, & Hartig, 2017). These models have been used to represent the spatio-temporal 41 

dynamics of infections in populations to support animal-health decision-making (Thulke, 2011). In the cattle 42 

sector, mechanistic modelling has become an important tool for policy support and enhanced decision-making. 43 

Although there has been ongoing development of mechanistic cattle disease models in recent decades, there is 44 

as yet no overview of the methods that have been used to represent cattle systems and associated processes in 45 

these models. To address this gap, we conducted a systematic literature review on mechanistic age-structured 46 

cattle disease models tailored to support management decisions.  47 

 48 

The goal of this study is to provide an overview of these models regarding their theoretical foundations, design 49 

paradigms and incorporated processes. In particular, we ask which  model elements are used in literature when 50 

cattle management was investigated for the purpose of disease related decision support. Thus, we consider 51 

models of minimum complexity to allow at least representation of age-related cattle management activities. We 52 

acknowledge the huge fundus of cattle disease management models on regional networks of farms, i.e. for  53 

Foot-and-mouth disease (FMD) (e.g. Boklund et al. (2013), Keeling et al. (2003) & Tildesley, Smith, & 54 

Keeling (2012) and Vector-borne diseases (VEC.-BORNE) (e.g. Gubbins et al. (2008) & Szmaragd et al. 55 

(2009)). However, these models are implemented at the herd scale without considering herd management 56 

processes and are therefore out of scope of this review.  57 

Our intention was not to judge these models based on their structure and complexity. Rather we were interested 58 

in providing a summary of the processes that were considered in the models and how these processes were 59 

modelled. Our objective resulted from the intention to design a cattle disease model using most recent state of 60 

art in the field of epidemiology.  61 

Results from this study may serve as a guide for future model development and contribute to good modelling 62 

practice. Our review differs from previous, disease-specific syntheses (Álvarez et al., 2014; Courtejoie, 63 
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Zanella, & Durand, 2018; Marcé et al., 2010; S. S. Nielsen et al., 2011; Viet, Fourichon, & Seegers, 2007) by 64 

providing a comprehensive picture of what has been achieved over approximately three decades of cattle 65 

disease modelling for decision support while addressing recommendations for the development and 66 

documentation of upcoming models. 67 

 68 

2. Materials & Methods 69 

2.1. Systematic Search Strategy 70 

Web of Science (WOS) databases were searched electronically on 26 July 2018, by applying a search strategy 71 

with four individual components (see Table 1). We linked inclusion terms within each component using the 72 

“OR” operator. Whole components were linked using “AND”. Whenever search terms appeared in the titles, 73 

abstracts or keywords, the articles were retrieved and subjected to further inclusion criteria. We used the 74 

wildcard character (asterisk *, Table 1) to include all context combinations of search terms guaranteeing 75 

maximum coverage of relevant papers.  76 

 77 

2.2. Inclusion & Exclusion of Papers 78 

Relevance screening was conducted on papers identified by the systematic search (Figure 1). In accordance 79 

with guidelines for systematic reviews and meta-analysis as proposed in the PRISMA statement, inclusion and 80 

exclusion of papers was undertaken using a multi-stage approach (Liberati et al., 2009). First, a relevance 81 

screening procedure was applied to the abstracts that had been identified through the search strategy as 82 

outlined in Table 1. Here, we retained those papers that applied or developed mechanistic models, which 83 

simulate infectious diseases in cattle populations in assistance of animal health decision-making. In a second 84 

step, a full text screening was conducted on all articles retained to this point. We applied an additional 85 

inclusion criterion to further refine the scope of this study, namely the retention of those papers in which the 86 

proposed models were at least age-structured. Models were classified as having an age structure if either the 87 

herd was grouped in age-related compartments (e.g. calves, heifers, cows) without tracking the age of 88 

individuals or if the age of individuals was explicitly modelled and animals could be grouped accordingly. 89 

Unstructured SIR models were not retained for further analysis. The motivation here was that models of 90 

interest must at least be usable to represent minimum farm management e.g. the handling of age groups. In a 91 

final step, the reference lists of the eligible papers were scanned for additional literature. For the sake of 92 

consistency, the screening process was conducted by a single researcher. External validation was approached 93 

by random inclusion testing based on expert input or a targeted literature search by the authors’ team. In order 94 
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to validate how comprehensive was the conduct of the data extraction process, the whole procedure was 95 

repeated twice. Extracted papers of both data extraction processes matched one by one. Only few classification 96 

details were refined according to what we found more appropriate. 97 

2.3. Information Extraction 98 

Data were extracted from eligible papers into a standardized Microsoft Access database, designed to document: 99 

[1] general model characteristics, [2] cattle related processes, [3] farming related processes and [4] disease 100 

transmission characteristics. Data analysis and visualization was conducted entirely in R (R Core Team, 2018). 101 

3. Results 102 

3.1. Screening Process 103 

Our search strategy identified 1290 publications (Figure 1). Abstract screening excluded 1118 papers, yielding 104 

172 articles for full text review. Through full text screening, a further 97 papers were excluded, most 105 

commonly because the model(s) lacked complexity with regard to the modelled age structure (e.g. excluding 106 

unstructured SIR models). Reference and citation searches identified one additional article for inclusion; 107 

therefore 76 papers were eligible for the systematic review. However, not all of these papers were proposing 108 

novel system models. In 24 of the 76 retrieved papers, earlier peer-reviewed models were applied (Figure 2B). 109 

Hence, the following data summarizes the characteristics of 52 individual cattle disease models (see Table 2) 110 

applied to multiple problems (Figure 2B). 111 

 112 

 113 

3.2. General Model Characteristics 114 

3.2.1. Overall Model Background 115 

Overall, age-structured disease models for cattle populations were developed for 10 countries but almost 80% 116 

of all models were calibrated for three countries, namely USA, UK and France (Figure 2A). USA took the lead 117 

in the international comparison regarding the number of developed models (16/52). No models originating 118 

from Australia, Africa or Asia (except Japan) were encountered. Surprisingly, no age-structured cattle disease 119 

models were developed for India, Brazil or China, even though these countries are home to more than 60% of 120 

the world´s cattle population (Gilbert et al., 2018).  121 

 122 

Nine different diseases/pathogens were the subject of the reviewed models (Figure 2B). Models simulating the 123 

spread of MAP and BVDV are the most frequent, collectively accounting for almost 70% of the reviewed 124 

models. bTB was the third most often modelled pathogen (6/52), followed by E. coli (4/52). Several other 125 
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diseases/pathogens have been considered less frequently by the reviewed models, including Salmonella, 126 

vector-borne diseases, BLV, brucellosis and mastitis. 127 

 128 

The publication of mechanistic age-structured cattle disease models has increased over the past 27 years 129 

(Figure 3C). Almost 70% of all reviewed models were published in the last 10 years. However, we did not 130 

encounter pathogen-specific differences between the reviewed models. 131 

 132 

3.2.2. Model purpose 133 

Based on recommendations from EFSA (2009), three general objectives were distinguished: [1] proof of 134 

model, [2] process understanding and [3] comparison of control or surveillance strategies. 17 of the 52 studies 135 

reported a model (i.e. [1] proof of model) without an application in the same paper (Figure 3A). Studies that 136 

focussed on calibration or parameterization were also assigned to this category. More frequently, the model 137 

purpose was improved understanding of a system´s complexity (23/52 i.e. [2]). In particular the question of 138 

how infection spreads was addressed in 14 studies. Least frequently (8/52), studies applied the presented model 139 

to assess the economic impact of pathogens/diseases. Twelve models were intended to undertake comparison 140 

of different strategies i.e. [3]. Of these, the majority (8/12) evaluated and compared different control strategies 141 

(e.g. test-and-cull vs. vaccination). Two further models (2/12) assisted with decision-making for the purpose of 142 

comparing the effectiveness of multiple post-eradication surveillance strategies (Fischer, Van Roermund, 143 

Hemerik, Van Asseldonk, & De Jong, 2005; Yamamoto, Tsutsui, Nishiguchi, & Kobayashi, 2008). The 144 

remaining two models (2/12) aimed at optimizing a single control strategy (R. L. Smith, Al-Mamun, & Gröhn, 145 

2017; Thulke et al., 2018).  146 

 147 

In this section we additionally considered 24 excluded model application papers in order to provide a 148 

comprehensive overview of model purposes. Papers that applied previously published models mainly focused 149 

on strategy comparison ([3] see Figure 3B). In five of these 24 papers, the authors sought to provide an 150 

improved understanding of relevant processes [2] through the application of mechanistic cattle disease models. 151 

 152 

 153 

3.2.2. Technical Model Characteristics 154 

The 52 models differed in relation to their technical characteristics. Almost one-third of all reviewed models 155 

were deterministic, meaning that outcomes are calculated according to the model equations and parameter 156 
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values, while excluding stochasticity (Table 3). The remaining two-thirds were stochastic, i.e. they include a 157 

certain degree of randomness.  158 

 159 

Model paradigms were 3-fold. Compartmental models, in which the population is divided into subgroups, with 160 

the assumption that every individual in the same compartment has the same characteristics, were the 161 

predominant model type among the reviewed models (33/52). More recently, beginning in 2004, individual-162 

based models (IBMs) have been developed (15/52), e.g. (Viet, Fourichon, Seegers, Jacob, & Guihenneuc-163 

Jouyaux, 2004). In IBMs (sometimes also referred to as agent-based models) each animal is represented 164 

explicitly, thereby allowing for an incorporation of complex patterns of interactions and individual 165 

heterogeneity. The application of IBMs requires sufficient computing capacity (Cabral et al., 2017). Hence, 166 

hybrid models (4/52), which overcome this problem by coupling compartmentalisation and IBMs have been 167 

developed (e.g. Damman et al., 2015). In the hybrid models, most often individual-based sub-models were 168 

integrated into a compartmental model basis.  169 

 170 

Three different spatial scales in which the models operate were encountered during the review process (Table 171 

3). 78% of all models included in the review were simulating cattle populations for a single herd. Nine models 172 

were found to be pseudo-regional (e.g. Courcoul & Ezanno, 2010). Models were termed as pseudo-regional if a 173 

meta-population of multiple animal populations were considered without taking into account real geographic 174 

information on their locations. In these models, spatial positioning was either determined using a random 175 

process or was not applied at all. Finally, two models simulated cattle populations at the regional scale, 176 

incorporating real spatial data, such as locations of farms, farm-to-farm movement by date and age cohort etc. 177 

(Thulke et al., 2018; Widgren et al., 2016). Similar proportions of models represented herds with open and 178 

closed trading statuses. 179 

 180 

Two-thirds of the included models provided complete documentation of their considered processes and related 181 

parameters (Table 3). We classified model documentation as complete when the information provided in the 182 

respective papers and supplementary material would facilitate reimplementation of the model. Accordingly, 183 

documentation of 16 models out of 52 were categorised as not complete. Two of the 52 model descriptions 184 

followed the ODD protocol (Robins et al., 2015; Thulke et al., 2018). The ODD (overview, design concepts, 185 

and details) protocol, proposed by Grimm et al. (2006), is a standardized scheme designed to produce a 186 

transparent and comprehensive model description following a generic structure.  187 

 188 
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3.3. Structuring Cattle Disease Models 189 

In the cattle disease models that were reviewed in this study, a herd was typically split into different cohorts, 190 

based on age or production status. Animals in these cohorts were described by state variables determining their 191 

common properties (sex, age, pregnancy status, disease status etc.). Sub-models addressed biological (ageing, 192 

mortality), farming-related (grouping, insemination, culling) or pathogen-related processes that altered the state 193 

variables according to the time steps in which the models operated. Based on the alteration of the state 194 

variables, animals e.g. grew or died, became pregnant and gave birth to a calf or suffered from infection. 195 

In the following sections the processes of the cattle disease models are structured according to the 196 

categorization biological, farming-related and pathogen-related. 197 

 198 

3.3.1. Biological Processes 199 

Several aspects of a bovine’s biological lifecycle were taken into account over the 27 years of modelling. The 200 

review identified seven different biological processes that were represented in at least one of the 52 models. An 201 

overview of these processes and their proportional consideration is shown in Figure 4A. Ageing and calving 202 

were simulated in all of the 52 reviewed models. Ageing was always modelled via the simulation steps: with 203 

each simulation step the age of the animals increased accordingly. Calving was instead either modelled 204 

explicitly by means of a calving rate or emerged from the pregnancy and/or fertility sub-model. The decision 205 

as to whether certain biological processes were included or not in the models related to the modelled pathogen 206 

(e.g. Figure 4B). Reproductive processes, such as fertility and pregnancy, were considered in more than 85% of 207 

models of BVDV, whereas only a few (20%) of the reviewed bTB models represented fertility and neglected 208 

pregnancy as the disease is not transmitted vertically. Other examples of pathogen-specific process selection 209 

can be read from the Supplementary Material. 210 

 211 

There were differences in how the same processes were implemented in different reviewed models. Generally, 212 

the biological processes were either implemented explicitly or emerged from other sub-models. Explicitly 213 

modelled processes were classified according to how they were implemented, which can either be deterministic 214 

(with interaction), stochastic (with interaction) or emergent. For example, fertility was sometimes simulated 215 

deterministically by means of a fertility rate. This rate determined the proportion of animals which would 216 

conceive given breeding as equal throughout all cattle, independent of age or group. Several models used 217 

multiple fertility rates depending on the management group (cow or heifer) or age cohort of the breeding 218 

animals which was classified as modelled deterministically with interaction. Other model variants included the 219 

effect of chance. Here the fertility rate parameter was interpreted as a central tendency and converted into a 220 
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stochastic event to become pregnant or not following breeding. Depending on the underlying model paradigm 221 

the probabilities were drawn either from binomial distributions (compartmental models) or from a Bernoulli 222 

distribution (individual-based models). As before, different fertility parameter values were assumed depending 223 

on an animal’s age or group membership categorising the model approach as stochastic with interaction. In 224 

some of the reviewed models processes that were not modelled explicitly were triggered by other processes. 225 

For instance, the change in physiological status from non-pregnant to pregnant was induced as a combined 226 

outcome of both the fertility sub-model and the farmer-related breeding sub-model. In this model solution, the 227 

event of getting pregnant (conception) was categorised as emergent (Grimm et al., 2006).  228 

 229 

To illustrate these, we developed a parallel coordinates plot (Figure 5) for the MAP models, indicating how 230 

physiological reproductive mechanisms were represented on the vertical axis. The plot indicates that the 231 

implementation of reproduction processes in models of MAP depended mainly on the underlying model 232 

paradigm. Compartmental models often neglected the reproductive processes or alternatively, summarized all 233 

the processes into one rate of calving. IBMs of MAP in contrast represented the reproductive processes of a 234 

cow with a higher degree of complexity. In these models, the implementation of fertility as an example often 235 

showed some degree of stochasticity and triggered other events such as conception and calving time.  236 

3.3.2. Farming-related Processes 237 

The review identified eight different farming-related processes that were represented in at least one of the 52 238 

models (see Figure 4C). In particular, grouping (the allocation of animals in cohorts) and culling appeared as 239 

important components of cattle disease models and were included in all of the reviewed models. Another 240 

component playing a vital role for disease transmission is whether cattle are indoors or outdoors. Nearly 25% 241 

of the models incorporated a change between indoor and outdoor rearing. To the same extent, calving or 242 

breeding windows imposed by the farmer were accounted for. Comparing the proportional consideration of 243 

processes between models of BVD and MAP, differences were apparent for the farming-related activities 244 

regarding breeding (Figure 4D). The remaining processes were considered almost identical. 245 

3.3.3. Pathogen-related Processes 246 

In all of the reviewed models, individuals or compartments were assigned to discrete health states and 247 

transitions between these states represented the infection, disease and recovery process. In the models we 248 

reviewed transmission happened via several modes and depended on the biological characteristics of the 249 

modelled disease. The epidemiological dynamics that have been used in the reviewed cattle disease models 250 
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represent three main modes of pathogen dissemination: direct contact transmission, vertical transmission and 251 

environmental transmission.   252 

 253 

3.3.3.1. Direct Transmission 254 

Direct transmission corresponds to all processes where the disease is transmitted from an infected host to a 255 

susceptible host by direct contact. A so-called force of infection is used to determine the number of newly 256 

infected animals per simulation step. Overall, three formulations of the force of infection were used in the 257 

reviewed models (see Table 4).  258 

 259 

Most often (in 37% of the models that accounted for direct transmission) a deterministic transmission model 260 

was used that calculates a transmission rate (calculation indicated in bold font), which is then used to derive the 261 

cohort rate of change (ΔI) at which susceptible animals (S) become infected. The way in which the 262 

transmission rate is calculated varied, depending on whether a frequency (βI/N) - or density (βI/1) - dependent 263 

transmission was assumed.  264 

 265 

In the density-dependent transmission model it is assumed that force of infection does equally increase with the 266 

amount of infectious cattle, independent of herd size. In frequency-dependent transmission models it is 267 

presumed that force of infection must not increase with the amount of infectious cattle if the proportion of 268 

infected is the same for differently sized farms. The latter is often used to represent limited contact number in 269 

short time compared to the assumed overall mixing in the former.  270 

 271 

The frequency- or density-dependent transmission rates are standardized to the time step in which the models 272 

operate and can each be converted into an individual probability. This is done by using the calculated rate in 273 

the following equation: Pinf = 1 – exp-(transmission rate). An individual probability is estimated and applied to each 274 

susceptible animal, which determines an individual’s chance of becoming. In 35% of the models that simulated 275 

direct transmission, this probability was used. 276 

 277 

The third way used to calculate the probability of a susceptible animal becoming infected was a Reed-Frost 278 

transmission model. In a Reed-Frost model, the probability of infection is expressed as one minus the 279 

probability of not being infected. The individual force of infection (see Table 4 second row; indicated in bold) 280 

describes the within-contact chance of becoming infected i.e. calculated as p = ks/N in the Reed-Frost model 281 

where k is the number of effective contacts made by an individual during one time period, s is the susceptibility 282 
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of the individual to acquire the disease and N the size of the population at risk of contact with the infective 283 

animals. 284 

3.3.3.2. Vertical Transmission 285 

For some diseases (in this review BVDV, MAP and VEC. - BORNE), congenital transmission from dam to 286 

calf in utero was considered. Commonly this is termed vertical transmission. If a pregnant dam is infected, 287 

various outcomes were modelled, including embryonic death, abortion, congenital defects, birth of an immune 288 

calf or birth of an infected calf, depending on the pathogen and other factors (Kendrick, 1971; Whittington & 289 

Windsor, 2009). Vertical pathogen transmission was represented in two thirds (35/52) of the reviewed models. 290 

Depending on the modelled disease, outcomes were determined either by the age of the foetus at the time of 291 

infection or more simply by the infectious state of the dam. Taking models of BVDV as an example, vertical 292 

transmission was modelled with two alternative approaches. For 9 of the 13 BVDV models, the pregnancy 293 

period was first split between two (Innocent, Morrison, Brownlie, & Gettinby, 1997) and nine (McCormick, 294 

Stott, Brülisauer, Vosough Ahmadi, & Gunn, 2010) different stages. Then, deterministic rates or probabilities 295 

are assigned to each of the different stages triggering the different possible consequences. In the remaining four 296 

BVDV models, the pregnancy period was not divided into different stages. In these models, the infection status 297 

of the calf was randomly allocated if susceptible dams become infected during pregnancy. 298 

 299 

In the MAP models, vertical transmission was modelled independent of the time of infection during gestation. 300 

In these models, the chance that a calf getting infected in utero solely depended on the infectious state of the 301 

dam. Depending on whether vertical transmission was modelled in a compartmental model or using an IBM, 302 

predefined rates or probabilities were used.  303 

3.3.3.3. Indirect Pathogen Transmission 304 

In addition to direct and vertical transmission, disease spread was modelled indirectly via several pathways. 305 

Here we use the term “indirect” transmission for all pathways that replace direct animal contacts and require 306 

the pathogen to persist in the intermediate environment for a certain period of time (for brevity, we subsume 307 

the one vector-borne example but appreciate this approach is debatable). Several types of indirect pathogen 308 

transmission were taken into account in the reviewed models, including pathogen transmission by contact with 309 

a contaminated object (e.g. boots, clothes, equipment or other fomites,), through the air by aerosols, through 310 

faeces in the calving area or ingestion of contaminated milk or colostrum. Here, it is worth mentioning that 311 

movement of animals between farm-sections and farms (e.g. animal purchase) is not to be equated with 312 
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indirect transmission. Rather, these animals have been infected in advance by one of the several transmission 313 

modes and are capable of infecting susceptible animals directly.   314 

 315 

The decision on whether or not to incorporate indirect pathogen transmission was associated with the 316 

biological characteristics of the modelled pathogen. In the studies reviewed, indirect pathogen transmission 317 

was simulated in models of MAP, E. coli, vector-borne diseases, Salmonella, bovine leukaemia virus and 318 

brucellosis. Generally, the different types of indirect transmission that were taken into account in the reviewed 319 

models can be summarized by two major groups: [1] environmental infection and [2] pseudo-vertical 320 

transmission. Environmental infection accounts for pathogen transmission by contact with contaminated 321 

objects, people or materials that routinely move around or between farms, through the air by aerosols or in 322 

some cases transmission across farm boundaries. The processes of infection via the environment were either 323 

modelled by including an unspecific term in the infection model, which depended on the number of infectious 324 

animals in other groups or neighbouring herds (Ezanno, Fourichon, Viet, & Seegers, 2007), or by explicitly 325 

modelling pathogen excretion into a local and/or global environment (Joanne Turner, Begon, Bowers, & 326 

French, 2003). Two papers study the impact of the indirect transmission function used on model predictions 327 

(Hoch et al. 2008; Ögren & Martin, 2002).  328 

 329 

Pseudo-vertical pathogen transmission refers to neonatal infection of the calf by its dam due to faeces in the 330 

calving area or the ingestion of contaminated milk or colostrum. Especially for models of MAP, pseudo-331 

vertical pathogen transmission played a recognised role in the transmission dynamics and is thus accounted for 332 

in 90% of the models.  333 

4 Discussion 334 

Over the last three decades, process-oriented mechanistic cattle disease models have been developed to assist 335 

with animal-health decision-making about control and surveillance planning. Within this study we provide an 336 

overview of the range of model solutions that have been applied, thereby providing insights into the breadth of 337 

mechanisms relevant to cattle disease modelling. 338 

 339 

This systematic review benefits from a comprehensive, strategic search routine and categorization of 340 

potentially relevant publications according to the PRISMA statement, a guideline for reporting systematic 341 

reviews. The complete repeat of our data gathering procedure confirmed that our data actually covers model 342 

candidates accessible by our search till the end date in July 2018. Limitations of this study are that we may not 343 
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have identified all potentially relevant publications e.g. by limiting to English language. However, this would 344 

only be a problem if the models we missed would present completely novel approaches for the development of 345 

decision-support cattle disease models. Additionally, models that tackle vector-borne diseases, often are 346 

developed for a large spatial scale and animals are represented by location instead age (Reiner et al., 2013). 347 

This could be the reason why models of vector-borne diseases are underrepresented in this review due to our 348 

minimum requirement of an age-structured representation. 349 

 350 

Our review protocol focussed studies published until end of July 2018. During the peer-review process the 351 

authors were said that eight other papers also eligible according to our criteria were published after the end of 352 

our study and could be mentioned. Therefore, we additionally list the following eight studies: Calsamiglia et al. 353 

(2018), Camanes et al. (2018), Gussmann et al. (2018), Iotti et al. (2019), Kirkeby et al. (2019), Qi et al. 354 

(2019),  Rossi et al. (2019) and Widgren et al. (2018). The authors were said that for example Camanes et al. 355 

(2018) is a new IBM MAP model at herd scale, Iotti et al. (2019) is a new BVDV model with an original way 356 

of accounting for herd specificities and Qi et al. (2019) is a new BVDV model at regional scale. 357 

 358 

The lessons learnt from this study were two-fold. First, we achieved our intended goal to assemble a structured 359 

overview of technicalities and principles of existing age-structured cattle disease models that assist with animal 360 

health decision making. Secondly, we identified a self-evident logic for structuring the ingredients of cattle 361 

disease models into biological, farming-related and pathogen-related processes. Even if this logic seems 362 

obvious it was not yet explored in literature. 363 

 364 

4.1. Good modelling practice 365 

Our initial objective, to provide an overview of world´s cattle disease models, was motivated by our 366 

impression of the variety of existing models. This intention was supported by the 52 different models that we 367 

encountered in this study, using a range of approaches in terms of mechanisms and processes to explicitly 368 

address diseases in cattle. The large number of different models caused us to question why there are so many 369 

different models and what makes them different from each other, while all addressing disease spread in cattle. 370 

Why didn´t we find one more or less unchanged model adapted for alternative diseases and infection 371 

scenarios? An answer to this question is included within our analysis and depicts the validity of several well 372 

acknowledged paradigms of good modelling practice. 373 

The degree of detail with which a model describes a system is determined by the peculiarities of the system 374 

itself. For instance, we recognised differences related to pathogen-specific modelling, meaning that only those 375 
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processes were taken into account which were considered important for the disease under investigation and the 376 

questions posed. A comparison of the proportional consideration of biological processes in models of BVDV 377 

and bTB revealed differences in the inclusion of the reproductive processes (fertility and pregnancy) of a cow. 378 

Whereas bTB models typically neglected these processes, nearly all BVDV models included the relevant 379 

processes. The apparent differences can be explained by the epidemiology of the diseases (see Ezanno, 380 

Fourichon, & Seegers (2008). For BVDV, prenatal infections are the main determinant for disease spread 381 

(Lanyon, Hill, Reichel, & Brownlie, 2014). For a certain window of pregnancy, in utero infection of the foetus 382 

results in the birth of persistently infected calves which are recognised as being the major source of BVDV 383 

spread. Thus, simulating reproductive processes in models of BVDV is fundamental to represent the disease 384 

adequately. In contrast, a representation of reproductive processes for bTB models is unnecessary and would 385 

add useless complexity as the disease is not transmitted vertically. 386 

A number of modelling studies state that IBMs were chosen due to their ability to represent complicated 387 

patterns and emergent phenomena. In this study, we wanted to determine whether authors of the models made 388 

use of the capabilities of IBMs and actually represented processes with a greater level of detail. Indeed this was 389 

the case, cattle disease modellers used the capabilities of IBMs and represented e.g. reproductive with a higher 390 

degree of complexity than compartmental models (Fig. 5).   391 

4.2. Structuring Cattle Disease Models 392 

The 52 models may have been more readily comparable if the authors of the cattle disease models had taken a 393 

more modular view in terms of the included processes. This leads us back to the second achievement of this 394 

study, the proposed structure. In this review, we structured the key characteristics of cattle disease models by 395 

these three main features: [1] biological processes, [2] farming-related processes and [3] pathogen-related 396 

processes. Biological processes comprise all natural biological processes of a bovine in the absence of human 397 

interaction (e.g. ageing, fertility). In contrast, farming-related processes reflect the farmers´ actions. These 398 

include all processes whereby the farmer impacts the natural life history of bovines (e.g. culling, grouping). 399 

The last category includes processes related to pathogens (e.g. pathogen transmission and disease course). 400 

During the review, we found a total of 18 elements/processes (7 biological + 8 farming-related + 3 pathogen-401 

related) that were accounted for while simulating the spread of infectious diseases in cattle (Figure 6). This 402 

proposed logic helped us to structure the mess that we observed, and facilitated the comparison of the models. 403 

We believe the added value of our structure is threefold as it may [1] improve transparent model reporting, [2] 404 

enhance conceptual model development and [3] simplify model implementation. Therefore, we propose that 405 

the elements of a cattle disease model are structured according to three main features: biological processes, 406 

farming-related processes and pathogen-related processes. We acknowledge that the listing in Figure 6 is only 407 
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temporary and may extend in future together with more complex problems addressed with cattle disease 408 

models. 409 

 410 

4.2.1 Model documentation 411 

In the reviewed cattle disease modelling publications, the emphasis has been on the interpretation and 412 

communication of model outcomes, while transparent and comprehensive model documentation was of 413 

secondary importance. Also the models that we have classified as fully documented were sometimes difficult 414 

to replicate from the published description and do not therefore fulfil the requirements of good modelling 415 

practice proposed by Schmolke, Thorbek, DeAngelis, & Grimm (2010). We corroborate the paradigm that 416 

standardizing model documentation would be a valuable starting point to implement good modelling practice. 417 

Therefore, we suggest structuring the documentation of cattle disease models according to our proposed 418 

classification of the included processes. We believe that such a harmonized model description would be 419 

accurate in a way that it raises readers’ expectations about what information should be expected and where it 420 

can be found. 421 

 422 

The structure proposed by us can be easily integrated into Grimm´s et al. (2006) ODD protocol. The ODD 423 

protocol is a standardized scheme designed to produce a transparent and comprehensive model description 424 

following a generic structure. It consists of seven elements: Purpose, State variables and scales, Process 425 

overview and scheduling, Design concepts, Initialization, Input, and Sub-models. In the sub-model section all 426 

implemented processes are presented and explained in detail. Here it is advisable to structure this section 427 

according to the key characteristics (biological, farming- and pathogen-related processes) of cattle disease 428 

models.  429 

 430 

4.2.2. Model implementation 431 

Most beneficially, we see the possible impact of our proposed structure on conceptual and participatory model 432 

development which is a hot topic in current project debates. The development of a decision-support model is 433 

always a participatory project in which the goal is for participants to co-develop the model (Voinov & 434 

Bousquet, 2010). Often, the diversity of participants is high and includes those with high levels of technical 435 

and mathematical expertise and those with other relevant experience e.g. in farming practices, disease control, 436 

or other fields. Nevertheless, all participants (including those with less numerical and technical skills) should 437 

be engaged in the development of the model, which presupposes high transparency and accessibility of the 438 
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included processes. We are convinced that high transparency will be achieved by deconstructing the system to 439 

be modelled into its basic elements, ergo into its biological, farming-related and pathogen-related processes. 440 

For the models we reviewed it seems that authors have not consequently broken down the system into its 441 

individual processes. A comparison of the proportional inclusion of farming-related processes between models 442 

of BVDV and MAP revealed differences in terms of the farmer-induced reproductive processes (Figure 4D). It 443 

is well recognized that both pathogens can be transmitted vertically, but in contrast to MAP the age of the 444 

foetus at time of infection is playing a vital role for BVDV transmission (Lanyon et al., 2014). Instead of 445 

considering these different system behaviours solely by a more detailed representation of the breeding-related 446 

biological processes (e.g. fertility and pregnancy) a considerable number of BVDV models have also 447 

represented farmer-induced reproductive processes with a high level of detail. Such an implementation implies 448 

that the farmer him/herself can influence the biology of the disease, which is not true in reality. A farmer will 449 

breed animals irrespective of the presence of a pathogen. The apparent mixing of processes in models of 450 

BVDV is not wrong per se, but it neglects the logical separation of system processes and thereby, hampers the 451 

transparency of a model.  452 

 453 

Deconstructing the ingredients of a cattle disease model at the stage of conceptual model development will also 454 

help with model implementation, especially if a modular programme structure is chosen. Such modules enforce 455 

logical boundaries between the components of a model and thereby improve maintainability (Bugliesi, Lamma, 456 

& Mello, 1994). Besides a higher flexibility in design, modularity offers other benefits such as augmentation 457 

(adding new solutions by merely plugging in a new module) and exclusion. For the development of decision-458 

support models, modularity is of high importance to overcome changing stakeholder demands (new control 459 

strategies etc.) and to make the implementation process more adaptive to change. This will become more easier 460 

by using our proposed structure. 461 

5 Conclusion 462 

Our review provided a comprehensive overview of the state of the art of age-structured cattle disease 463 

modelling. Although cattle disease models are gaining importance in decision support, no specific guideline 464 

exists for their development and documentation. The literature review supports structuring cattle (and likely 465 

other livestock) disease models by their key components: [1] biological processes, [2] farming-related 466 

processes and [3] pathogen-related processes. Approaching the complexity of a cattle disease model according 467 

to this structure is valuable for conceptual design, model implementation and transparent reporting. We are 468 
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convinced that these results can serve as a guide for future model development, reinforcing good scientific 469 

modelling practice conducted at the interface with decision support. 470 
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Figures & Tables (all figures are intended for colour reproduction in web and print, tables can be 759 
printed without colors) 760 

Table 1 Search strategy applied on 26th of July 2018 761 

Set Search string Resulting 

#1 

 

TS=(cattle) OR TS=(beef herd*) OR  
TS=(dairy herd*) 

161,045 

#2 TS=(model*) 6,966,517 

#3 TS=(control* program*) OR TS=(control* strategy*) OR TS=(contact structure*) 
OR TS=(transmis*) OR TS=(outbreak*) 

1,658,039 

#4 #3 AND #2 AND #1 2,630 

#5 TS=(decision* support*) OR TS=(evaluat* efficacy) OR TS=(hypothesis test*) 
OR TS=(herd dynamic*) OR TS=(herd management) OR TS=(scenario*) OR 
TS=(strategy*) OR TS=(decision* make*) 

2,672,635 

#6 #5 AND #4 1,290 

 762 

 763 

Figure 1 Adapted PRISMA flow diagram representing the selection process 764 

Table 2 Included models 765 

Author Pathogen Year Study area Cattle system Effect of 

chance 

Model paradigm Spatial scale 

Al-Mamun et al. (2016) MAP 2016 USA Dairy Stochastic Individual based Herd based 

Barbudo et al. (2008) BVDV 2008 UK Beef Stochastic Compartmental Herd based 

Beaunée et al. (2015) MAP 2015 France Dairy Stochastic Compartmental Pseudo-regional 

Bekara et al. (2014) bTB 2014 France Mixed Stochastic Compartmental Herd based 

Bennett et al. (2010) MAP 2010 UK Beef Deterministic Compartmental Herd based 

Brooks-Pollock et al. (2013) bTB 2013 UK Mixed Deterministic Compartmental Herd based 

Charron et al. (2011) VEC.-

BORNE 

2011 France Mixed Deterministic Compartmental Herd based 

Cho et al. (2012) MAP 2012 USA Dairy Deterministic Compartmental Herd based 

Collins & Morgan (1991) MAP 1991 USA Dairy Deterministic Compartmental Herd based 

Courcoul & Ezanno (2010) BVDV 2010 France Dairy Stochastic Compartmental Pseudo-regional 

Damman et al. (2015) BVDV 2015 France Beef Stochastic Hybrid Herd based 

Dorshorst et al. (2006)  MAP 2006 USA Dairy Deterministic Compartmental Herd based 

Ezanno et al. (2007) BVDV 2007 France Dairy Stochastic Compartmental Herd based 

Fischer et al. (2005) bTB 2005 Netherlands Dairy Stochastic Individual based Pseudo-regional 

Gates et al. (2014) BVDV 2014 UK Mixed Stochastic Individual based Pseudo-regional 

Gaucel et al. (2009) BVDV 2009 France Mixed Deterministic Compartmental Herd based 

Groenendaal et al. (2002) MAP 2002 Netherlands, USA Dairy Stochastic Compartmental Herd based 

Gunn et al. (2004) BVDV 2004 UK Beef Stochastic Compartmental Herd based 

Humphry et al. (2006) MAP 2006 UK Beef Stochastic Compartmental Herd based 

Innocent et al. (1997) BVDV 1997 UK Dairy Stochastic Compartmental Herd based 



24 
 

Kirkeby et al. (2016) MAP 2016 Denmark Dairy Stochastic Individual based Herd based 

Kirkeby et al. (2017)  MAP 2017 Denmark Dairy Stochastic Individual based Herd based 

Kudahl et al. (2007) MAP 2007 Denmark Dairy Stochastic Individual based Herd based 

Lu et al. (2013)  MAP 2013 USA Dairy Deterministic Compartmental Herd based 

Marcé et al. (2011) MAP 2011 France Dairy Stochastic Hybrid Herd based 

Massaro et al. (2013) MAP 2013 USA Dairy Deterministic Compartmental Herd based 

McCormick et al. (2010) BVDV 2010 UK Beef Stochastic Hybrid Herd based 

Mitchell et al. (2008) - A MAP 2008 USA Dairy Deterministic Compartmental Herd based 

Mitchell et al. (2008) - B MAP 2008 USA Dairy Deterministic Compartmental Herd based 

Mitchell et al. (2015) MAP 2015 USA Dairy Deterministic Compartmental Herd based 

Monti et al. (2007) BLV 2007 Argentina Dairy Stochastic Compartmental Herd based 

Moustakas & Evans (2015) bTB 2015 UK Mixed Deterministic Individual based Pseudo-regional 

Nielsen et al. (2012)  SALM. 2012 Denmark Dairy Stochastic Individual based Herd based 

Østergaard et al. (2005)  MAST. 2005 Denmark Dairy Stochastic Individual based Herd based 

Raboisson et al. (2014)  VEC.-

BORNE 

2014 France, UK Beef Deterministic Compartmental Pseudo-regional 

Robins et al. (2015) MAP 2015 USA Dairy Stochastic Individual based Herd based 

Sekiguchi et al. (2018) BVDV 2018 Japan Dairy Stochastic Individual based Pseudo-regional 

Smith et al. (2010) BVDV 2010 USA Beef Stochastic Compartmental Herd based 

Smith et al. (2014) bTB 2014 USA Beef Stochastic Compartmental Herd based 

Smith et al. (2015) MAP 2015 USA Dairy Deterministic Compartmental Herd based 

Smith et al. (2017) MAP 2017 USA Dairy Deterministic Compartmental Herd based 

Thulke et al. (2018) BVDV 2018 Ireland Mixed Stochastic Hybrid Regional 

Turner et al. (2003) E. COLI 2003 UK Dairy Deterministic Compartmental Herd based 

Turner et al. (2006) E. COLI 2006 UK Dairy Stochastic Compartmental Herd based 

Turner et al. (2008) E. COLI 2008 UK Dairy Stochastic Compartmental Herd based 

VanderWaal et al. (2017) bTB 2017 Uruguay Mixed Stochastic Compartmental Pseudo-regional 

Verteramo-Chiu et al. 

(2018) 

MAP 2018 USA Dairy Stochastic Individual based Herd based 

Viet et al. (2004) BVDV 2004 France Dairy Stochastic Individual based Herd based 

Widgren et al. (2016) E. COLI 2016 Sweden Mixed Stochastic Individual based Regional 

Xiao et al. (2005) SALM. 2005 UK Dairy Deterministic Compartmental Herd based 

Xiao et al. (2006) SALM. 2006 UK Dairy Stochastic Compartmental Herd based 

Yamamoto et al. (2008) BRUC. 2008 Japan Dairy Stochastic Individual based Pseudo-regional 

 766 

 767 

 768 
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Figure 2 General model characteristics. (A) Countries where cattle disease models have been developed (blue). (B) 769 
Number of papers (n = 76) and models (n = 52) per pathogen/disease. Mycobacterium avium subspecies 770 
paratuberculosis (MAP), bovine viral diarrhoea virus (BVDV), Escherichia coli (E. coli), Mycobacterium bovis (bTB), 771 
Salmonella (SALM.), Vector-borne diseases (VEC.-BORNE), Bovine Leukaemia Virus (BLV), Brucellosis (BRUC.), 772 
Mastitis (MAST.).   773 

 774 

 775 

Figure 3 Purpose of the models (A), purpose of the excluded papers where previous models had been applied (B) 776 
and model paradigm over time (C). 777 

Table 3 Technical elements of mechanistic cattle disease models. Most prevalent concepts (>60%) are indicated in 778 
bold. 779 

Technical characteristics  Number of models (%) 

Effect of chance Deterministic 17   (31%) 

 Stochastic 35   (69%) 

Model paradigm Compartmental 33   (63%) 

 Individual-based 15   (29%) 

 Hybrid 4   (8%) 

Cattle system Dairy 34   (67%) 

 Beef 9   (18%) 

 Mixed 9   (15%) 

Spatial scale Herd-based 41   (78%) 

 Pseudo-regional 9   (17%) 

 Regional 2   (5%) 

Trading status Open herd 26   (50%) 

 Closed herd 26   (50%) 

Model documentation Not complete 16   (31%) 

 Complete 34   (65%) 

 ODD protocol 2   (4%) 

 780 
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 781 

Figure 4 Biological and farming-related processes. Proportional consideration of: (A) biological cattle processes in 782 
all 52 models; (B) biological processes in BVDV (green) and bTB (yellow) models; (C) farming-related processes in 783 
all 52 models; (D) farming-related processes in BVD (green) and MAP (red) models. 784 

 785 

 786 

Figure 5 Parallel coordinates plot of all MAP models (n = 21). Each model is represented as a line highlighted in 787 
blue, green or yellow, indicating compartmental, hybrid or individual-based models, respectively.   788 

 789 

Table 4 Forms of the force of infection to represent direct pathogen transmission 790 

Transmission model Formula Prop. consideration 

Individual probability 
(Frequency | Density dependent) ܲ ൌ 1 െ ݔ݁

ି൬ࡵࢼሺ࢞ሻ∙	
ሻ࢞ሺࡵ
 ൰	|	ࡺ

 
 ூሺ௫ሻ =   Transmission coefficient for infectious state xߚ

	ሺ௫ሻ   =   Number of infected animals in state xܫ
ܰ     =   Number of all animals 

Individual probability 
(Reed-Frost) ܲ ൌ 1 െ ൬ െ

 ∙ ࢙
ࡺ

൰
ሻ࢞ሺࡵ

 
 

݇    =   Number of effective contacts 
 Susceptibility of each animal   =    ݏ
 ሺ௫ሻ =   Number of infected animals in state xܫ
ܰ   =   Number of all animals 

35% 

28% 
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Cohort rate of change ∆ܫ ~ ܵ ∙ ሻ࢞ሺࡵࢼ ∙
ሻ࢞ሺࡵ
ࡺ | 

 
 

ܵ      =   Number of susceptible animals 
 ூሺ௫ሻ =   Transmission coefficient for infectious state xߚ
 ሺ௫ሻ   =   Number of infected animals in state xܫ
ܰ     =   Number of all animal 

 791 

 792 

 793 

Figure 6 Processes considered in the 52 reviewed models.  794 
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