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A B S T R A C T

Forests are an important component in the earth system. They cover nearly one third
of the land surface, store about as much carbon as the entire atmosphere and host
more than half of the planet’s biodiversity. Forests provide ecosystem services such
as climate regulation and water cycling and they supply resources. However, forests
are increasingly at risk worldwide, due to anthropogenic deforestation, degradation
and climate change. Concepts for counteracting this development require abilities to
monitor forests and predict possible future developments. Given the vast size of forest
cover along with the variety of forest types, field measurements and experiments
alone cannot provide the solution for this task. Remote sensing and forest modeling
enable a broader and deeper understanding of the processes that shape our planet’s
forests.

Remote sensing from airborne and spaceborne platforms can provide detailed mea-
surements of forest attributes ranging from landscape to global scale. The challenge is
to interpret the measurements in an appropriate way and derive biophysical proper-
ties. This requires a good understanding of the interaction between radiation and the
vegetation. Forest models are tools that synthesize our knowledge about processes,
such as tree growth, competition, disturbances and mortality. They allow simulation
experiments which go beyond the spatial and temporal scales of field experiments.

In this thesis, several major challenges in forest ecology and remote sensing were
addressed. The main variable of interest was forest biomass, as it is the most important
variable for forest carbon mapping and for understanding the role of vegetation in the
global carbon cycle. For the purpose of biomass estimation, remote sensing derived
canopy height and structure measurements were combined with field data, forest
simulations and remote sensing simulations. The goals were: 1) to integrate remote
sensing measurements into a forest model; 2) to understand the effects of spatial scale
and disturbances on biomass estimation using a variety of remote sensing metrics;
3) to develop approaches for quantifying biomass changes over time with remote
sensing and 4) to overcome differences among forest types by considering several
structural aspects in the biomass estimation function.

In the first study, a light detection and ranging (lidar) simulator was developed
and integrated in the forest model FORMIND. The model was parameterized for the
tropical rainforest on Barro Colorado Island (BCI, Panama). The output of the lidar
simulator was validated against real airborne lidar data from BCI. Undisturbed and
disturbed forests were simulated with FORMIND to identify the most well suited lidar
metric for biomass estimation. The objective hereby was to achieve a low normalized
root mean squared error (nRMSE) over the entire range of forest structures caused by
disturbances and succession. Results identified the mean top-of-canopy height (TCH)
as the best lidar-derived predictor. The accuracy strongly depended on spatial scale
and relative errors < 10% could be achieved if the spatial resolution of the produced
biomass map was ≥ 100 m and the spatial resolution of the remote sensing input was
≤ 10 m. These results could provide guidance for biomass mapping efforts.

In the second study, forest simulations were used to explore approaches for esti-
mating changes in forest biomass over time based on observed changes in canopy
height. In an ideal situation, remote sensing provides measurements of canopy height
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above ground which allows the estimation of biomass stocks and changes. However,
this requires sensors which are able to detect canopy surface and terrain elevation,
and some sensors can only detect the surface (e.g., X-band radar). In such cases,
biomass change has to be estimated from height change using a direct relationship.
Unfortunately, such a relationship is not constant for forests in different successional
stages, which can lead to considerable biases in the estimates of biomass change. A
solution to this problem was found, where missing information of canopy height
was compensated by integrating metrics of canopy texture. Applying this improved
approach enables estimations of biomass losses and gains after disturbances at 1-
ha resolution. In mature forests with very small changes in height and biomass all
tested approaches have limited capabilities, as was revealed by an application using
TanDEM-X derived canopy height from BCI.

In the third study, a general biomass estimation function, which links remote
sensing-derived structure metrics to forest biomass, was developed. General in this
context means that it can be applied in different forest types and different biomes. For
this purpose a set of predictor metrics was explored, with each predictor representing
one of the following structural aspects: mean canopy height, maximal possible canopy
height, maximal possible stand density, vertical canopy structure and wood density.
The derived general equation resulted in almost equally accurate biomass estimates
across the five considered sites (nRMSE = 12.4%, R2 = 0.74) as site-specific equations
(nRMSE = 11.7%, R2 = 0.77). The contributions of the predictors provide a better
understanding of the variability in the height-to-biomass relationship observed across
forest types.

The thesis has laid foundations for a close link between remote sensing, forest
modeling and forest inventories. Several ongoing projects carry this further, by 1) dis-
entangling and quantifying the uncertainty in biomass remote sensing, 2) trying to
predict forest productivity based on structure and 3) detecting single trees from lidar
to be used as forest model input. These methods can in the future lead to an inte-
grated forest monitoring and information system, which assimilates remote sensing
measurements and produces predictions about forest development. Such tools are
urgently needed to reduce the risks forests are facing worldwide.
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Z U S A M M E N FA S S U N G

Wälder sind ein wichtiger Bestandteil des Systems Erde. Sie bedecken fast ein Drittel
der Landoberfläche, speichern etwa so viel Kohlenstoff wie die gesamte Atmosphäre
und beherbergen mehr als die Hälfte der biologischen Vielfalt des Planeten. Wälder
bieten Ökosystemdienstleistungen wie die Regulierung von Klima und Wasserkreis-
läufen und liefern Ressourcen. Allerdings sind Wälder weltweit zunehmend gefährdet
durch anthropogene Abholzung, Degradierung und den Klimawandel. Konzepte zur
Bekämpfung dieser Entwicklung erfordern die Fähigkeit, Wälder zu monitoren und
mögliche zukünftige Entwicklungen vorherzusagen. Angesichts der riesigen Waldflä-
chen und der Vielfalt der Waldtypen können Feldmessungen und Experimente allein
keine Lösungen für diese Aufgaben bieten. Fernerkundung und Waldmodellierung er-
möglichen ein breiteres und tieferes Verständnis der Prozesse, die die Wälder unseres
Planeten prägen.

Die Fernerkundung von Flugzeugen oder Satelliten aus kann detaillierte Messungen
von Waldeigenschaften liefern um diese für ganze Landschaften bis hin zum globalen
Maßstab zu kartieren. Die Herausforderung besteht darin, die Messungen richtig zu
interpretieren und biophysikalische Eigenschaften abzuleiten. Dies erfordert ein gutes
Verständnis der Wechselwirkung zwischen Strahlung und Vegetation. Waldmodelle
sind Werkzeuge, die unser Wissen über Prozesse wie Baumwachstum, Konkurrenz,
Störungen und Mortalität bündeln. Sie ermöglichen Simulationsexperimente, die über
die räumlichen und zeitlichen Skalen von Feldexperimenten hinausgehen.

In dieser Arbeit wurden mehrere große Herausforderungen in der Waldökologie und
Fernerkundung behandelt. Die wichtigste Variable von Interesse war die Waldbiomas-
se, da sie die zentrale Variable für die Kohlenstoffkartierung und für das Verständnis
der Rolle der Vegetation im globalen Kohlenstoffkreislauf darstellt. Zum Zwecke der
Biomasseabschätzung wurden aus der Fernerkundung abgeleitete Waldhöhen- und
Strukturmessungen mit Felddaten, Waldsimulationen und Fernerkundungssimula-
tionen kombiniert. Ziele waren: 1) die Integration von Fernerkundungsmessungen in
ein Waldmodell; 2) die Auswirkungen von räumlicher Skala und Störungsereignissen
auf die Biomasseschätzung für eine Vielzahl von Fernerkundungsmetriken zu verste-
hen; 3) die Entwicklung von Ansätzen zur Quantifizierung von Biomasseänderungen
über die Zeit mittels Fernerkundung und 4) die Überwindung von Unterschieden
zwischen Waldtypen durch Berücksichtigung mehrerer struktureller Aspekte in der
Biomasseschätzfunktion.

In der ersten Studie wurde ein Simulator für das Fernerkundungsverfahren ’Light
Detection And Ranging’ (Lidar) entwickelt und in das Waldmodell FORMIND inte-
griert. Das Modell wurde für den tropischen Regenwald auf Barro Colorado Island
(BCI, Panama) parametrisiert. Die Ergebnisse des Lidarsimulators wurden mit realen
Lidardaten von BCI verglichen. Ungestörte und gestörte Wälder wurden mit FOR-
MIND simuliert, um die am besten geeignete Lidarmetrik für die Biomasseschätzung
zu identifizieren. Ziel war es dabei einen niedrigen Schätzfehler (normalized Root
Mean Squared Error = nRMSE) über den gesamten Bereich der durch Störungen und
Sukzessionen entstandenen Waldstrukturen zu erreichen. Die Ergebnisse identifizier-
ten die mittlere Top-of-Canopy-Höhe (TCH) als den besten aus Lidar abgeleiteten
Prädiktor. Die Genauigkeit hing stark von der räumlichen Skala ab und relative Feh-
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ler < 10% konnten erreicht werden, wenn die räumliche Auflösung der erzeugten
Biomassekarte ≥ 100 m und die räumliche Auflösung der Fernerkundungsdaten
≤ 10 m betrug. Diese Ergebnisse könnten als Orientierungshilfe für die Kartierung
von Biomasse dienen.

In der zweiten Studie wurden Waldsimulationen verwendet, um Ansätze zur Ab-
schätzung von Veränderungen der Waldbiomasse im Zeitverlauf basierend auf be-
obachteten Veränderungen der Waldhöhe zu untersuchen. Im Idealfall liefert die
Fernerkundung Messungen der Baumkronenhöhe über dem Boden, die eine Abschät-
zung der Biomassebestände und -veränderungen ermöglichen. Dies erfordert jedoch
Sensoren, die in der Lage sind, die Waldoberflächenhöhe und die Geländehöhe zu
erfassen, und einige Sensoren können nur die Oberfläche erfassen (z.B. X-Band-Radar).
In solchen Fällen muss die Biomassenänderung aus der Höhenänderung in direkter
Beziehung abgeschätzt werden. Leider ist ein solcher Zusammenhang bei Wäldern in
verschiedenen Sukzessionsphasen nicht konstant, was zu erheblichen Verfälschungen
bei den Schätzungen der Biomassenänderungen führen kann. Eine Lösung für dieses
Problem wurde gefunden, indem fehlende Information über die Waldhöhe durch
die Integration von Metriken über die Waldoberflächentextur kompensiert wurde.
Die Anwendung dieses verbesserten Ansatzes ermöglicht die Abschätzung von Bio-
masseverlusten und -gewinnen nach Störungsereignissen mit einer Auflösung von
1 ha. In alten Wäldern mit sehr geringen Höhen- und Biomassenänderungen stoßen
alle getesteten Ansätze an ihre Grenzen, wie eine Anwendung mit aus TanDEM-X
abgeleiteten Waldhöhen auf BCI gezeigt hat.

In der dritten Studie wurde eine allgemeine Biomasseschätzfunktion entwickelt,
welche aus der Fernerkundung abgeleitete Strukturmetriken mit der Waldbiomasse
verknüpft. Allgemein bedeutet in diesem Zusammenhang, dass die Funktion in ver-
schiedenen Waldtypen und Biomen eingesetzt werden kann. Zu diesem Zweck wurde
eine Reihe von Prädiktormetriken untersucht, wobei jeder Prädiktor einen der folgen-
den strukturellen Aspekte darstellt: mittlere Waldhöhe, maximal mögliche Waldhöhe,
maximal mögliche Bestandsdichte, vertikale Waldstruktur und Holzdichte. Die abge-
leitete allgemeine Gleichung führte zu fast ebenso genauen Biomasseschätzungen über
die fünf betrachteten Standorte (nRMSE = 12,4%, R2 = 0,74) wie standortspezifische
Gleichungen (nRMSE = 11,7%, R2 = 0,77). Die Beiträge der Prädiktoren liefern ein
besseres Verständnis für die Unterschiede in der Höhen-Biomasse-Beziehung, welche
sich für verschiedene Waldtypen beobachten lassen.

Die Arbeit hat die Grundlage für eine enge Verbindung zwischen Fernerkundung,
Waldmodellierung und Waldinventuren geschaffen. Mehrere laufende Projekte führen
das fort, indem sie 1) die Unsicherheit bei der Biomassefernerkundung auflösen und
quantifizieren, 2) versuchen, die Waldproduktivität auf der Grundlage der Struktur
vorherzusagen und 3) einzelne Bäume aus Lidardaten erkennen, die als Input für
das Waldmodell verwendet werden. Diese Methoden können in Zukunft zu einem
integrierten Waldmonitoring- und Informationssystem führen, das Fernerkundungs-
messungen assimiliert und Vorhersagen über die Waldentwicklung liefert. Solche
Instrumente sind dringend erforderlich, um die Risiken zu reduzieren, denen die
Wälder weltweit ausgesetzt sind.
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1.1 the role of forests in the earth system

1.1.1 Background

Forests are often called the green lungs of our planet earth. Through the process of
photosynthesis they assimilate carbon dioxide and produce oxygen. This fact makes
forests indispensable for human existence. This thesis is concerned with improving
our understanding of the role forests play in the earth system by investigating how we
can measure key attributes of forests, in particular biomass, in a spatially continuous
way for quantifying the ecosystem services provided by forests worldwide.

With an extent of around 41 million square kilometers forests are a dominant
land cover type, covering 28% of the global landmass and 8% of the earth surface
(Hansen et al., 2013). The exact numbers depend on how forests are defined. A
frequently used definition is the one by the United Nations Food and Agriculture
Organization (FAO) which defines them as land areas of at least 0.5 ha size with a
minimum tree crown cover of 10% and a minimum tree height at maturity of 5 m
(Chazdon et al., 2016). Forests provide numerous ecosystem functions and services,
such as carbon sequestration, air filtering, water storage and cycling, cloud formation
via evapotranspiration, soil protection, wildlife habitat, resource supply as well as
recreational and cultural services (Ninan and Inoue, 2013). More than half of the earth’s
plant and animal species are found in tropical forests (Thomas and Baltzer, 2002).
Many people’s livelihoods directly depend on forests with up to 1.2 billion people
being smallholder farmers using agroforestry practices, up to 350 million belonging to
forest-dwelling indigenous peoples and up to 140 million people working in forest-
based enterprises (Chao, 2012). Within the global economy, the forest sector generates
annual revenue of ~600 billion USD, which corresponds to 0.8% of the world’s gross
domestic product (FAO, 2015).

Figure 1.1: Latitudinal and altitudinal ranges of the different forest types with some
dominant tree genera (Miehe et al., 2007).

The geographic distribution of vegetation types or biomes is determined by tem-
perature and precipitation (Whittaker, 1970). In different climatic zones different forest
types have evolved. A total of 60,065 tree species have been scientifically described,
representing around 20% of all known plant species (Beech et al., 2017). Of those
tree species 96% reside in the tropical, 3.7% in the temperate and 0.3% in the boreal
climate zone (Fine and Ree, 2006). In particular tropical forests harbor a large number
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of plant and animal species, partly with high degrees of endemism, which makes
them hotspots of biodiversity (Myers et al., 2000). At the margins of their distribu-
tion, forests can persist under harsh climatic conditions and occur at all latitudes
between 72° N (Larix gmelinii) and 55° S (Nothofagus antarctica) and in altitudes as high
as 4,900 m in the Himalayas (Juniperus tibetica) and 4,810 m in the Andes (Polylepis
tarapacana; Figure 1.1; Hoch and Körner, 2005; Miehe et al., 2007).

Figure 1.2: Stocks and fluxes in the global carbon cycle in Pg (equal to Gt). Red numbers
highlight the anthropogenic contributions (IPCC, 2013).

Forests are crucial in climate regulation. In low latitudes they contribute to cooling
mainly through atmospheric CO2 uptake and evapotranspiration. In high latitudes
they have a net warming effect due to their low albedo compared to unforested land,
in particular under snow covered conditions (Bonan, 2008). Although it is clear that
forests are a major compartment in the global carbon cycle, their carbon content is
quite uncertain and has so far been estimated indirectly as the residual of the other
compartments (Houghton et al., 2009; Houghton et al., 2018). The fifth assessment
report of the Intergovernmental Panel on Climate Change (IPCC) states the range
of estimates for the global vegetation carbon pool as 450 to 650 Gt. For comparison,
the global soil carbon pool is estimated to be between 1,500 and 2,400 Gt plus an
additional permafrost carbon pool of around 1,700 Gt. The atmospheric carbon pool
was at 589 Gt in the preindustrial age and now holds an additional 240 Gt from
anthropogenic emissions, leading to a total of 829 Gt. Currently, annual emissions

3



introduction

from fossil fuel burning are at 7.8 Gt yr-1 compared to 1.1 Gt yr-1 caused by land use
change (predominantly deforestation). Parts of these emissions are taken up by the
oceans (2.3 Gt yr-1) and land vegetation (2.6 Gt yr-1), such that the net atmospheric
carbon increase is at about 4 Gt yr-1 (Figure 1.2; IPCC, 2013; Le Quéré et al., 2016).
The mechanisms behind the terrestrial net carbon sink are only partly understood
and a matter of current research and debate. Factors contributing to the sink are long
term forest recovery from past disturbances and harvesting as well as afforestation
and reforestation programs, but also climate change, CO2 fertilization and nitrogen
deposition may play a role (Pan et al., 2011; Houghton et al., 2018).

1.1.2 Threats to Forests

Humans have used forests as a timber resource supply for centuries. Overexploitation
resulting in regional deforestation has led to collapses of various civilizations in
human history (Diamond, 2005). Timber shortage has, however, also incentivized the
development of forest management practices in several parts of the world, which
led to the concept of sustainability in 18th century Germany (Carlowitz, 1713) and
ultimately to modern-day forestry. Nevertheless, forest loss is a pervasive problem
of the 21st century with global implications. Since the middle of the 20th century
tropical regions have undergone massive deforestation with annual deforestation rates
of several percent in certain countries (Whitmore, 1990). According to satellite-based
analyses, the tropics have lost 0.5% of forest cover annually throughout the 1990s
(Achard et al., 2002) and 2000s (Hansen et al., 2013) with partly decreasing and partly
increasing rates at regional level. Additionally, each year 0.2% of the area was affected
by degradation (e.g., due to selective logging). On the other hand, regrowing forests
on abandoned land amounted to 0.08% per year (Achard et al., 2002).

Drivers behind changes in forest cover are manifold. The ultimate causes of defor-
estation are population pressure, poor governance and trade liberalization (Laurance,
1999). They lead to conversion of forest areas into agricultural or urban land and free
them to logging for timber extraction. Also natural disasters such as wildfires, wind
throws or insect outbreaks contribute to forest loss. Not all losses of forest cover result
in permanent deforestation. A recent study identified four main drivers of forest cover
change, each of which accounted for ~25% of the global total (Curtis et al., 2018). The
dominant drivers differ across geographical regions (Figure 1.3): Commodity driven
deforestation, i.e., the conversion into agricultural land to produce products for the
global market, is responsible for much of tropical forest loss in South America (mainly
cattle ranging, soybean and sugarcane plantations) and Southeast Asia (mainly oil
palm plantations). It is the most severe form of forest loss, as it causes a permanent
change of land use, while all other major drivers cause temporary losses which are
later followed by forest recovery. Much of Africa and Central America are subject to
shifting agriculture, which is acting at small spatial scales (~1 ha). In the temperate
forest regions across all continents forest management is the major source of forest
cover change. In the boreal forest regions of North America and Siberia wildfires are
the dominant driver.

Besides deforestation, forest degradation is a severe problem. Degradation refers
to declines in ecosystem service provision (e.g., biodiversity, carbon stocks), while
the forest area stays constant (Sasaki and Putz, 2009). Degradation can be caused by
selective logging activities and by forest fragmentation resulting from expansions
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Figure 1.3: Global map of the main drivers of forest cover loss (Curtis et al., 2018).

of roads, crop lands and settlements. In the Brazilian Amazon carbon emissions due
to selective logging have been estimated to be at 60% of the ones from deforestation
(Asner, 2009). In tropical forests, tree mortality rates are elevated near the forest edges
compared to the forest interior, which may cause fragmentation-induced carbon losses
at about 31% of the losses due to deforestation (Brinck et al., 2017).

Apart from threats arising directly from human activities, climate change is posing
an additional threat to forest ecosystems. As forests are a key component in the global
climate system, their responses to climate change may trigger complex feedbacks
which are difficult to predict. For the Amazon region, climate simulations using
general circulation models have predicted an average temperature increase of 3.3 °C
for the 21st century and an intensification of dry seasons (Malhi et al., 2008). This will
probably increase the risk of droughts and fires and decrease cloud formation. The
resilience of forests to altered climate regimes is uncertain. In the worst case, altered
climate could lead to large scale forest dieback (Rammig et al., 2010). This could turn
terrestrial carbon sinks into sources, which would be an irreversible tipping point for
climate change (Lenton et al., 2008). In other regions of the world forests might profit
from altered climate regimes.

Different measures for reducing deforestation and thereby also mitigating additional
greenhouse gas emissions have been put into effect. Since 1990, the proportion of
global land area with a protection status has almost doubled and is currently at 15%.
For forests the proportion of protected areas is even 20% (Juffe-Bignoli et al., 2014).
Certification schemes such as the Forest Stewardship Council (FSC), the Programme
for the Endorsement of Forest Certification Schemes (PEFC) or Rainforest Alliance
certify forest products produced according to sustainable forest management standards
(Auld et al., 2008). With increasing awareness on the consumers’ side these labels
aim to promote the transition towards a more sustainable forest use. Since 2000, the
area of certified forests has grown by a factor 30 such that today more than 10%
of the global forest area is either FSC or PEFC certified. Still, certification is mostly
restricted to boreal and temperate regions, accounting for 90% of certified forest
area (MacDicken et al., 2015). To fight tropical deforestation, the United Nations
Framework Convention on Climate Change (UNFCCC) has created a framework
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for the Reduction of Emissions from Deforestation and forest Degradation and the
role of conservation, sustainable management of forests and enhancement of forest
carbon stocks in developing countries (REDD+). It is designed to provide financial
incentives for countries that can report avoided emissions due to avoided deforestation
compared to a predefined baseline scenario (Gibbs et al., 2007). To ensure the proper
implementation of these protection mechanisms regular monitoring, reporting and
verification (MRV) are required, which can be achieved, e.g., by combining field
inventory plot networks with remote sensing (De Sy et al., 2012).

1.2 forest measurement in the field

1.2.1 Forest Inventory

Forest inventories are used to characterize forests and quantify different attributes.
Many countries conduct systematic forest inventories at the national level to estimate
their forest resources. Additionally, scientists have established research plots targeted
towards different objectives. There exist more than 3 million vegetation plots world-
wide (Global Index of Vegetation-Plot Databases1; Dengler et al., 2011) and single
studies based on nearly half a million forest plots have become possible (Crowther
et al., 2015). Depending on the specific purposes the designs of forest inventories can
vary tremendously.

The most common tree attribute to be measured is the stem diameter at breast
height (DBH). The reasons for conducting measurements at breast height, which is
defined as 1.3 m above ground, are, firstly, practical considerations and, secondly, the
fact, that tree stems tend to develop irregularities (e.g., buttresses) near ground for
static support. The cross sectional area of the stem at breast height is called basal area
of the tree. Summing the basal areas of all individual trees in a forest stand leads to
stand basal area, i.e., the cross sectional area of all trees in the stand at 1.3 m height.
Stand basal area is a simple aggregated statistic to characterize stand density with a
single number. More information on the stand’s size and age structure is contained in
its stem diameter distribution (Taubert et al., 2013).

Apart from DBH, inventories may also record the species of the tree, the spatial
position of the stem foot within the plot, the tree top height (commonly estimated with
laser range finders) and crown attributes, such as crown width and crown base height.
Additionally, plants of other life forms, such as palms, bushes, bamboo, shrubs, ferns,
lianas and epiphytes, may be included. Inventories can be classified according to their
sampling design into angle-count sampling (Bitterlich, 1952), nested sampling and
complete enumeration. In angle-count sampling, trees are recorded by an observer
turning 360° around a center point and including only trees that exceed a certain
apparent size (viewing angle) from the viewing point. This results in small trees being
recorded only in close proximity to the center point, while large trees are also recorded
at larger distances from the center point. As there are usually many more small than
large trees, this method reduces the sampling effort. Alternatively, a nested plot design
can be used, where the smaller tree size classes are only sampled in subplots of the
entire plot area. Complete enumeration on the other hand requires the recording of
all trees (above a fixed minimum size threshold of, e.g., 1, 5 or 10 cm) in the entire
plot area. Commonly, plot areas have either circular or rectangular shape.

1 www.givd.info; accessed on August 29th 2018
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National forest inventories have the objective to quantify standing timber resources
(and productivity through repeated inventories) representatively to allow accurate
upscaling for entire countries. Thus, their design usually involves many small plots
(~500 m2, often angle-count sampling) distributed on a regular grid across the country
(e.g., the 47,000 plots of the German national forest inventory; Bundeswaldinventur;
Thünen-Institut, 2012). Such plots are less well suited for studying ecological pro-
cesses in forests. Hence, forest ecologists have established long term observation plots
covering large areas of many hectares (megaplots of 25 to 50 ha), where complete enu-
meration censuses take place at regular time intervals. To facilitate site comparisons
and synthesis collaborative networks have formed, which bundle the data from indi-
vidual sites and also provide guidelines and protocols for the inventories. Examples for
such networks are the ForestGEO network coordinated by the Smithsonian Institution
(Anderson-Teixeira et al., 2015) and the ForestPlots network (Lopez-Gonzalez et al.,
2011).

1.2.2 Forest Biomass

The products derived from inventories go beyond the variables that can directly be
measured in field plots. Forest aboveground biomass and closely related variables,
such as harvestable timber volume and aboveground carbon density, are of interest in
commercial and scientific applications. The only way to directly measure aboveground
biomass of a forest is destructive sampling, i.e., all trees need to be cut and weighted.
The common non-destructive approach, however, is to calculate aboveground biomass
using established allometric equations (Chave et al., 2014). These equations have
been derived from harvested trees and describe the relationships between DBH and
tree height, crown size, stem volume and biomass. In recent years, terrestrial laser
scanning has gained popularity as a method to collect volumetric information of trees
and whole inventory plots in a non-destructive manner (Calders et al., 2015).

To convert volume into biomass knowledge about wood density (wood specific
gravity) is required. As wood densities of trees are species-specific, large databases
have been compiled (Chave et al., 2009). Wood densities can vary over more than
an order of magnitude – from 0.1 t m-3 for Balsa wood (Ochroma pyramidale) to
1.39 t m-3 for Ébano wood (Caesalpinia sclerocarpa) – with a median of 0.6 t m-3 across
all species. Chemically, wood is mainly composed of three biopolymers: cellulose
(~45%), hemicellulose (~25%) and lignin (~25%). The remainder consists of volatile
organic compounds (~5%) such as fatty acids, sugars, resin acids, waxes and terpenes.
The carbon content of wood lies in a range of 44 to 51% (Elias and Potvin, 2003;
Thomas and Malczewski, 2007) and 0.48 or 0.5 are the most common factors used to
convert forest aboveground biomass into aboveground carbon density.

The term forest biomass commonly refers to the aboveground woody dry biomass
of living trees. Belowground biomass (roots) is estimated in a non-destructive way by
its relation to aboveground biomass. The non-woody part of aboveground biomass (fo-
liage) is rather small and rarely quantified explicitly. Dead wood (coarse woody debris)
can reach large proportions of living biomass. It is related to the latter via turnover
rates (mortality, decomposition), which are site-specific and climate-dependent. Anal-
yses of a large number of tropical forest plots in the ForC database (Anderson-Teixeira
et al., 2016) show that on average the total living forest biomass consists of ~81%
aboveground woody biomass, ~16% root biomass and ~3% foliage biomass. The
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Figure 1.4: Carbon stocks and fluxes []tC ha-1] of major compartments in
an average tropical rainforest according to the ForC database
(Anderson-Teixeira et al., 2016). Abbreviations: A = above-
ground, B = belowground, EE = ecosystem exchange, G = gross,
N = net, PP = primary productivity, R = respiration

additional dead wood pool reaches ~11% of the living biomass (Figure 1.4 showing
typical forest carbon stocks and also fluxes).

All plot-based inventories have in common that they are only samples of a much
larger population of forest area. Forest landscapes usually show structural variability,
due to tree mortality, environmental conditions and disturbance dynamics. Inventories
alone cannot provide spatially continuous maps and always bear the risk of providing
biased estimates of attributes, which are not representative for the surrounding
landscape (Marvin et al., 2014). Remote sensing is, therefore, used more and more to
map various forest attributes in space.

8



1.3 forest remote sensing

1.3 forest remote sensing

1.3.1 Remote Sensing Technology

Remote sensing refers to the acquisition of information about objects without making
physical contact. This is achieved by recording reflected radiation in the electromag-
netic spectrum. The origins of remote sensing go back to military observations, but
also civilian applications have a long tradition in particular the use of aerial imagery
in forestry. With the development of earth observation satellites the field of remote
sensing has grown rapidly over the past decades. Remote sensing products are nowa-
days used in basically all scientific disciplines with a geospatial context (Campbell
and Wynne, 2011).

Remote sensing techniques can be differentiated by sensor platforms and sensor
types. Both have influence on the spatial scale of the collected data. Spatial scale here
refers to a) spatial resolution (grain or pixel size), i.e., the area which is represented
by a single digital number in the resulting image, and b) spatial extent (image size
or swath width), i.e., the total area covered by a single image. There are three main
platform types: 1) airborne, 2) spaceborne and 3) unmanned aerial vehicles (UAV).
Airborne systems, i.e., sensors carried by airplanes or helicopters, have the longest
tradition. They are used for mapping at regional scales with resolutions usually
ranging from cm to m scale and extends ranging from 100-m to km scale. Spaceborne
systems may be carried by satellites or mounted on the international space station
(ISS) and are built for acquisitions at global scale. Their resolutions may reach sub-m
scale but are more commonly in the 10-m to 50-km scale and extents of single images
can reach hundreds of km. For spaceborne systems also the temporal resolution is an
important parameter. Temporal resolution refers to the revisiting interval, i.e., how
frequently a particular point in space is observed by the sensor. There is always a
tradeoff between spatial and temporal resolution. UAV may refer to multicopters or
fixed-wing drones, which are used for mapping at local scales. UAV-based sensors
can collect very detailed data at cm resolution for limited extents of a few hectares.
With regard to costs, the total costs for a single campaign increase from UAV through
airborne campaigns to spaceborne missions. However, regarding cost efficiency the
costs per area sampled are usually the lowest for spaceborne data (0 - 13 e km-2),
with many products of publicly funded missions being available for free, and increase
through airborne (30 - 200 e km-2) to UAV data (720 e km-2; Ørka and Hauglin, 2016).

1.3.2 Passive Sensors

Sensor types can be classified into passive and active sensors. Passive sensors record
radiation originating from the sun and being reflected from objects on the ground.
Optical passive sensor systems typically collect data in the visible (VIS, λ = 400 -
700 nm) and infrared (IR, λ = 700 nm - 1000 µm) regions of the electromagnetic
spectrum (Figure 1.5 and Table 1.1). There also exist passive microwave sensors
(λ = 1 mm - 1 m). Optical passive sensors are further split into multispectral and
hyperspectral sensors (Pettorelli et al., 2014). Multispectral sensors collect data in
a small number (3 to 15) of bands, which only cover parts of the full reflectance
spectrum (e.g., satellites Landsat, Roy et al., 2014, and Sentinel-2, Drusch et al., 2012).
Hyperspectral sensors collect data in a large number (commonly > 200) of narrow
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Figure 1.5: Wavelengths and frequencies of different remote sensing sensor types
(Moreira, 2015).

bands, which cover the reflectance spectrum continuously (e.g., EnMAP mission,
Guanter et al., 2015). As the amount of energy reflected from an area is limited, there
is a tradeoff between spatial and spectral resolution. Many sensors additionally have a
panchromatic channel that records reflectance across a broad bandwidth and therefore
provides higher spatial resolution than the individual band channels. Multispectral
satellites provide data in a wide range of scales. The Moderate-resolution Imaging
Spectroradiometer (MODIS) provides data at coarse spatial (250 - 1000 m) but high
temporal (2 days) resolution (Justice et al., 2002). Medium resolution satellites such
as Landsat-8 (Roy et al., 2014) and Sentinel-2 (Drusch et al., 2012) acquire data at 10 -
30 m pixel resolution but intervals between cloud-free scenes of the same point on
earth are in the weeks to months range (depending on the regional climate). High
resolution satellites (e.g., IKONOS, Quickbird, RapidEye, SPOT, WorldView) belong
to commercial enterprises. They can provide data at spatial resolutions of 0.5 - 5 m on
demand. Passive optical sensors are the most common sensors on airborne and UAV
platforms, including ordinary digital cameras.

1.3.3 Active Sensors: Synthetic Aperture Radar

Active sensors actively emit signals and record the reflection of their own emissions. In
the case of radio detection and ranging (radar), the signal is in the radio wavelengths
(0.8 - 100 cm). In the case of light detection and ranging (lidar) the signal is in the
VIS or NIR range. The common technology to acquire remote sensing imagery with
radar sensors is called synthetic aperture radar (SAR). To achieve high resolution
images with pixels in the m range by using radio waves in the cm range at observation
distances in the km range, the required antenna length along track, called aperture,
would have to be very large (hundreds of meters). SAR solves this problem by
combining several acquisitions with a small physical antenna (aperture in the m
range), which are taken along track, to create a synthetic aperture in the 100-m range.
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Table 1.1: Wavelength ranges of the different regions and bands in the electromagnetic
spectrum.

Region Band Wavelengths

Ultraviolet (UV) UV 10-400 nm

Visible (VIS)

Violet 400-450 nm

Blue 450-495 nm

Green 495-570 nm

Yellow 570-590 nm

Orange 590-620 nm

Red 620-700 nm

Infrared (IR)

Near (NIR) 700 nm-1.5 µm

Shortwave (SWIR) 1.5-3 µm

Midwave (MWIR) 3-8 µm

Longwave/Thermal (LWIR/TIR) 8-15 µm

Far (FIR) 15-1000 µm

Radio/Microwaves

Ka 0.8-1.1 cm

K 1.1-1.7 cm

Ku 1.7-2.4 cm

X 2.4-3.8 cm

C 3.8-7.5 cm

S 7.5-15 cm

L 15-30 cm

P 30-100 cm

SAR measurements can be decomposed into information on a) backscatter intensity
and b) the phase of the wave (Moreira et al., 2013).

Backscatter intensity refers to the relative amount of energy emitted by the system,
which is scattered back in the sensor direction after interacting with the objects on
the ground (scatterers). Phase refers to the precise position of the received signal
within one wave cycle compared to the emitted signal. SAR polarimetry operates
with filters, such that only horizontally (H) or vertically (V) polarized waves are
emitted or received, respectively. Polarimetric channels are obtained by combining
different filter orientations for emission and reception (HH, VV, HV, VH). Based on
their structure, different ground surfaces show different backscatter behavior in the
different polarimetric channels, which allows a classification of land cover types (Lee
et al., 2001). The phase information is used in the field of SAR interferometry (InSAR)
to construct interferograms. Interferograms visualize phase differences between two
acquisitions, either from a pair of satellites in so called bistatic configuration (i.e.,
located at a certain distance from each other, called spatial baseline) or the same
satellite at two points in time (temporal baseline; Bamler & Hartl, 1998). This enables
the derivation of terrain information at cm precision, which is used to produce digital
elevation models (DEM) and to quantify tectonic deformations caused by earth quakes,
e.g., using the TanDEM-X satellites (Krieger et al., 2007).
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SAR systems can operate at different wavelengths and different letters of the
alphabet are used for specific bands within the spectrum (Table 1.1). Waves are
scattered mainly by objects of sizes similar to the wavelength. Hence, in forests,
backscatter at X-band (e.g., 3 cm) is mostly caused by foliage and small twigs, at
L-band (e.g., 27 cm) by branches and at P-band (e.g., 70 cm) by tree trunks and the
ground (Treuhaft et al., 2004). A particular problem with interferometric applications
in the context of vegetation is that leafs and branches are constantly moving due
to weather influences. Hence, the phase difference between successive acquisitions
at two points in time is disturbed (temporal decorrelation). Therefore, a bistatic
configuration is of advantage, in which two receiver antennas separated by a spatial
baseline capture the same signal simultaneously (e.g., TanDEM-X). Such a constellation
enables interferometric derivation of vegetation height and by combining polarimetric
and interferometric data (PolInSAR) the derivation of vertical vegetation structure
(Cloude and Papathanassiou, 1998; Kugler et al., 2014). If multiple acquisitions with
different baselines are combined for 3D reconstruction, this is called SAR tomography
(Reigber and Moreira, 2000).

1.3.4 Active Sensors: Lidar

Lidar remote sensing follows a different principle and enables a more direct retrieval
of 3D information, compared to SAR. A lidar sensor emits a short laser pulse and
measures the time between emission and reception of the reflected signal. Half of
this two-way travel time multiplied by the speed of light (~3·108 m s-1) results in the
distance between sensor and reflecting object. Together with the exact GNSS position
and orientation of the sensor at time of emission, the 3D position of the reflecting
surface can be calculated. Especially in vegetated areas, not all energy of the pulse is
reflected from a single point. The area where the laser hits the land surface (footprint)
may contain several reflecting objects (leafs, branches, tree trunks, ground) at different
distances, which all contribute to the reflected signal (Figure 1.6; Lefsky et al., 2002a).
So-called full-waveform lidar systems record the returned energy as a function of
time. Discrete return lidar systems only record peaks in the returned energy, and
the number of recorded returns per pulse varies among different sensor systems
(e.g., only first return, only last return or multiple returns). Lidar systems are further
differentiated into small-footprint systems (diameters of 0.1 - 1 m) and large-footprint
systems (diameters of 5 - 100 m). Typical products of large-footprint full-waveform
lidar systems are vertical canopy profiles. Typical products of small-footprint discrete
return lidar systems are 3D point clouds (Wulder et al., 2012).

Important large-footprint lidar systems in vegetation remote sensing are the Scan-
ning Lidar Imager of Canopies by Echo Recovery (SLICER; airborne with 10-m
footprint; Blair et al., 1994; Lefsky et al., 1999), the Land, Vegetation and Ice Sensor
(LVIS; airborne with 25-m footprint; Blair et al., 1999; Dubayah et al., 2010) and the
Geoscience Laser Altimeter System (GLAS with 65-m footprint) aboard the Ice, Cloud,
and land Elevation Satellite (ICESat; Schutz et al., 2005; Los et al., 2012). The Global
Ecosystem Dynamics Investigation (GEDI) mission is planned to launch in late 2018
and will consist of a 25-m footprint lidar mounted on the international space sta-
tion (Stavros et al., 2017). Well known small-footprint lidar systems are the Airborne
Taxonomic Mapping System (AToMS) aboard the Carnegie Airborne Observatory 2
(CAO-2; Asner et al., 2012c), and NASA Goddard’s Lidar, Hyperspectral and Thermal
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airborne imager (G-LiHT; Cook et al., 2013), both of which allow simultaneous lidar
and hyperspectral data acquisitions. Apart from these experimental, scientific systems,
there are many commercially operated airborne lidar systems worldwide, which are,
e.g., commissioned by state authorities for land surveying. Emerging fields in lidar
remote sensing are UAV-borne systems, as sensors are becoming more lightweight
(Guo et al., 2017), and multispectral systems, which bear lasers in several spectral
bands (Wichmann et al., 2015).

1.3.5 Remote Sensing Products about Forests

The most widely known products derived from remote sensing are land cover maps.
Such maps are usually created by applying classification algorithms on the spectral in-
formation at pixel level. However, there are a multitude of different options within this
general framework, leading to many different products claiming to map the same land
cover type. In the case of forest, as mentioned earlier, the precise definition of forest
matters and thus products providing relative canopy cover as a continuous number
rather than a discrete class are preferred. Such products allow for the application of
tree cover thresholds which match the different forest definitions, respectively. Global
datasets of this kind are the MODIS vegetation continuous field (VCF) (Hansen et al.,
2002) and more fine scale Landsat-based derivatives (Hansen et al., 2013; Sexton et al.,
2013). They are regularly updated and used in various countries to track deforestation
over time (Hansen et al., 2016). They also serve as a foundation for analyzing patterns
of forest fragmentation (Taubert et al., 2018). Recently, the first SAR-based (TanDEM-X)
global forest cover map has been published (Martone et al., 2018).

Figure 1.6: Lidar signal generation for one laser beam
that hits a tree on multiple branches and the
ground (Lindberg and Holmgren, 2017).
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Vegetation indices are another common type of product. The idea behind vegetation
indices is to combine the spectral information of the different bands in a way such
that vegetated areas can be easily discriminated from non-vegetated areas. The most
widely used vegetation index is the normalized difference vegetation index (NDVI;
Rouse et al., 1974), which is defined as the difference between NIR and red divided
by the sum of NIR and red band. It makes use of the fact that, plants, in contrast
to soil and rock, show high reflectance in the NIR and high absorptance in the red
band. Many other vegetation indices using different mathematical combinations and
different bands have been suggested in the literature (Bannari et al., 1995). They
serve to monitor the health status of vegetation and detect, e.g., stress caused by
droughts or infestations. They are also often used to estimate important biophysical
parameters such as leaf area index (LAI), i.e., the one-sided leaf area per unit ground
area [m2 m-2], and the fraction of absorbed photosynthetic active radiation (FAPAR;
Myneni et al., 1997).

The water content in vegetation can be estimated based on passive microwave radi-
ation emitted by soils. This emission has to pass the vegetation which is covering the
soil and based on the transmission the so called vegetation optical depth (VOD) can
be derived (Liu et al., 2011). VOD can serve in drought stress monitoring (Anderegg
et al., 2018).

A further step is the delineation of biophysical and biochemical plant traits. Here,
based on the spectral information the chemical composition of leafs is estimated.
For this purpose commonly spectral libraries are used, which contain many refer-
ence spectra and associated chemical leaf composition values obtained in laboratory
measurements. With such an approach concentrations of, e.g., nitrogen, phosphorus,
chlorophyll a and b and carotenoids can be derived from hyperspectral remote sensing
data (Asner and Martin, 2009). This information can further be used to monitor stress
and forest health, classify forest types, quantify functional diversity or even identify
tree species (Jetz et al., 2016; Lausch et al., 2016).

Tree species identification using remote sensing is a difficult task. Best results have
so far been achieved in relatively species poor forests of the boreal or temperate zones
(Immitzer et al., 2012). While different functional groups, e.g., conifers and broadleafs,
show different characteristics in their reflectance spectra, many species within those
groups are hard to distinguish based on the limited available spectral information.
In deciduous forests the phenology across the year (leaf flushing, flowering, autumn
coloring, senescence) can provide additional features to distinguish species (Fassnacht
et al., 2016). In hyperdiverse tropical forests with small phenological changes current
technology cannot provide taxonomic information at species level. However, the
diversity of spectral traits and functional types can serve as an indicator for taxonomic
diversity (Jetz et al., 2016; Asner et al., 2017).

Individual tree crown delineation (ITCD) is an area that has gained much atten-
tion in recent years. While most remote sensing products are area-based products,
meaning they represent aggregated values for a certain mapping unit, ITCD allows
the derivation of object-based, i.e., tree-based attributes (Coomes et al., 2017). Mostly
3D data from small footprint lidar systems is used to identify single trees (Lindberg
and Holmgren, 2017), but algorithms also exist for passive optical imagery (Jing
et al., 2012). Obtained products include tree numbers (stand density), tree heights,
crown diameters, crown shapes and more. The incorporation of ITCD information
can provide tree-based versions of many of the discussed and commonly area-based
remote sensing products (e.g, species identification, biomass).
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With the goal of monitoring global change, the Global Climate Observation Sys-
tem (GCOS) has defined a list of essential climate variables (ECV; Hollmann et al.,
2013) and correspondingly the Group on Earth Observations Biodiversity Observa-
tion Network (GEOBON) has defined a list of essential biodiversity variables (EBV;
Pereira et al., 2013). These variables have been suggested for continuous monitoring
in space and time, which requires remote sensing approaches (Pettorelli et al., 2016).
Several of the variables in both lists are directly related to vegetation, such as leaf
area index, fraction of absorbed photosynthetic active radiation, forest structure and
forest biomass. In the following, the possibilities of how to estimate the latter two with
remote sensing will be presented.

1.3.6 Remote Sensing of Forest Structure

Canopy height can be obtained in various ways. Lidar is certainly the most straight
forward technology for canopy height measurements, providing direct information
on the position of canopy elements and the ground. However, also optical and SAR
imagery may allow the extraction of forest height. Several fine resolution optical
images showing a scene from different viewing angles can be combined to derive 3D
information via photogrammetry. SAR imagery collected in a bistatic configuration
can be processed to derive 3D information via interferometry or PolInSAR (Figure 1.7).
Depending on the data source this 3D information may be in the form of discrete
point clouds or continuous profiles of backscatter intensity across vertical canopy
layers. One problem with such data is that the signal is increasingly attenuated when
traveling through the canopy and this attenuation depends on a number of factors,
such as signal wavelength, viewing geometry, leaf angle distribution and moisture.
Hence, comparing remote sensing products of vertical canopy structure derived from
different sensor systems or just different acquisition settings can be challenging.

The most important and also most robust remote sensing products to analyze
canopy height are gridded digital elevation models (DEM). There are several types
of DEMs relevant for vegetation mapping (Morsdorf et al., 2008): The elevation of
the upper vegetation surface is accessible in digital surface models (DSM) and the
underlying ground elevation in digital terrain models (DTM; Aryal et al., 2017). Pixel
values in DSMs and DTMs represent elevation above a geographic coordinate reference
ellipsoid. If DTM elevation is subtracted from DSM elevation a terrain-normalized
digital surface model (nDSM) is obtained, where pixel values represent height above
ground. If buildings and other man-made constructions are masked out and only
vegetation pixels are retained the nDSM is commonly referred to as a canopy height
model (CHM). An important condition for any attempt to estimate vegetation height
is that accurate information about terrain elevation is available. Thus, either the remote
sensing data itself has to contain a strong enough ground signal, as commonly the
case for lidar and long-wave SAR, or a DTM from another data source (lidar) has to
be combined with the DSMs derived from, e.g., photogrammetry or short-wave SAR
(Kugler et al., 2014). Obtaining precise terrain elevations is particularly problematic
in areas with steep slopes, where, e.g., the ground signal of large-footprint lidar
is smeared over the whole elevation gradient in the footprint (Chen, 2010) and in
very densely vegetated areas where the signal can hardly reach the ground and
interpolation over large areas with missing ground information is necessary.
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Figure 1.7: Active remote sensing techniques (lidar and SAR) for canopy height
measurements. The point cloud of Barro Colorado Island was normalized
with the underlying digital terrain model so that it represents vegetation
height over ground.

The simplest way to quantify forest height is the maximum tree height. It can
be extracted from remote sensing and inventory data. However, it only depends on
the height of the one single largest tree in the stand and does not tell much about
the height structure of the rest of the stand. Hence, average canopy height is more
informative than maximum canopy height, albeit less easy to define. A simple way
to calculate average canopy height from measured tree heights in inventories is the
arithmetic mean. However, in a naturally regenerating stand there are usually many
more small than large trees, but large trees have larger crown projection areas and
contribute more to the stand’s canopy surface. Foresters have long been accounting for
this fact, by using a size-weighted mean tree height to describe the canopy height of a
stand. This mean height of all trees weighted by each tree’s basal area is commonly
referred to as Lorey’s height in forestry (Lorey, 1878).

In the remote sensing case it is implicit that large trees with large crowns contribute
more to the distribution of the signal than small trees with small crowns. Hence, the
mean height of a vertical remote sensing signal is related to field-based Lorey’s height.
There are different terms for the mean canopy height in the literature, depending
on how exactly the remote sensing data was processed. Vertical canopy profiles
may either represent vertical energy distribution or simply the count of points of a
discrete point cloud per height bin. In either case a weighted mean height can be
calculated using the profile values (energy or point count) as weighting variable. This
is usually referred to as mean canopy height or mean canopy profile height (MCH;
Equation 2.2 on page 32; Lefsky et al., 2002b). If the data is not yet aggregated to
a vertical profile the calculation of MCH is even simpler: For a terrain-normalized
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3D point cloud MCH is simply the mean height of all points (Figure 1.8). Instead of
MCH, sometimes also the quadratic mean (QMCH; Equation 2.3 on page 32) or the
median (e.g., HOME, for height of median energy) are used (Drake et al., 2002; Lefsky
et al., 2002b). As mentioned earlier, the vertical signal distribution may be strongly
influenced by acquisition parameters. This problem can be avoided by using only the
rather robust information on canopy surface height, i.e., basing calculations on the
CHM distribution instead of the full vertical profile. The mean height of all pixels in a
CHM is often called mean top-of-canopy height (TCH; Figure 1.8; Equation 2.4 on
page 32; Asner and Mascaro, 2014). Correspondingly, also the quadratic mean (QTCH)
or median height of the CHM can be derived. Often a set of several height quantiles
of the vertical (full profile or CHM) distribution is calculated, which are frequently
named by the acronym RH for relative height followed by the number of the specific
percentile (e.g., RH10, RH20, etc., with RH50 being the median height and RH100
being the maximum signal height corresponding to the maximum tree height in the
considered area; Dubayah et al., 2010). Less common is the alternative, where instead
of height percentiles the signal density percentages in a priori defined height strata
are quantified (Hudak et al., 2012).

The most common application of a canopy density metric is the one where only
two height bins are considered: the lower one being defined as canopy gaps and the
upper one as canopy cover. In this way gap fraction and fractional canopy cover can
be quantified. Their relative proportions vary from sparse to dense stands but also
depending on the height threshold that marks the border between gap and canopy
(Meyer et al., 2018). The vertical heterogeneity of the canopy can be quantified with
metrics that describe the shape of the vertical signal distribution. Common metrics are
standard deviation, coefficient of variation, Gini index, Shannon index, skewness and
kurtosis (Bouvier et al., 2015). These metrics measure whether the tree crowns in a
stand are rather concentrated in one or distributed over several layers and whether the
canopy is denser at the high or low end. Lidar profiles can also be used to reconstruct
vertical foliage profiles (VFP, i.e., leaf area density estimates in each height layer) by
inverting the light extinction in the canopy (Equation 4.4 on page 72; MacArthur and
Horn, 1969; Harding et al., 2001; Tang et al., 2012).

1.3.7 Remote Sensing of Forest Biomass

Forest biomass cannot be derived directly from remote sensing. At the center of
biomass estimation algorithms there is always a statistical relationship between field-
estimated biomass in ground-truth plots and remote sensing metrics derived over
these plots. Data from all the mentioned sensor types (passive optical, radar and lidar)
have been employed for biomass estimation (Fassnacht et al., 2014; Lu et al., 2014).
Clear relationships between optical reflectance or vegetation indices and biomass can
only be observed in areas of sparse vegetation. Such relationships show saturation
over closed canopies, which is commonly the case at biomass stocks around 100 to
150 t ha-1 (Lu et al., 2012). With SAR-data there are basically two ways of biomass
estimation (Santoro and Cartus, 2018): One approach is to link SAR backscatter
intensities to biomass. Such relationships only work well with long wave SAR (L-band)
and saturate in a biomass range at around 200 t ha-1. The other approach is using
InSAR or PolInSAR to derive canopy height and relate this height to biomass.
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Figure 1.8: Lidar point clouds (1 ha, terrain normalized) of a temperate (a) and a tropical (b)
forest and different aggregation steps. A 2D raster representation of the highest
returns in a certain pixel resolution (e.g., 1 m × 1 m) is called canopy height model
(CHM, c+d). The count of points in each height bin (e.g., 1 m) is called point cloud
profile (e) and the mean height of all points is called mean canopy height (MCH).
The count of CHM pixels in each height bin (e.g., 1 m) is called CHM profile (f)
and the mean height of all pixels is called mean top-of-canopy height (TCH).

Using canopy height (from lidar, SAR or photogrammetry) is the most frequently
applied approach for biomass estimation today, as it does not suffer from the saturation
problems observed with other methods (Zolkos et al., 2013). Various combinations of
the different canopy height metrics have been used in different studies (Chen, 2013).
It is still a subject of ongoing research which metrics work best at which spatial scales
and how the relationships differ under different conditions (e.g., disturbance regimes,
forest types). Those questions are a main subject of this thesis. The estimation approach
for biomass from forest height and structure metrics can be transferred to many other
inventory variables such as basal area, quadratic mean stem diameter, timber volume
or tree density (Næsset, 2002). With repeated acquisitions this methodology can be
used to quantify changes over time (Cao et al., 2016).

In recent years there have been first attempts to map forest biomass at global scale
(Saatchi et al., 2011, Baccini et al., 2012; Avitabile et al., 2016). The largest problem
with wall-to-wall biomass maps is that there is no wall-to-wall canopy height data
available. Spaceborne lidar sensors (ICESat GLAS, GEDI) can only provide point
samples of canopy height with large unsampled areas in between. Spaceborne SAR
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systems are either not bistatic, making InSAR canopy height retrieval impossible,
or have too short wavelengths (TanDEM-X) for a separation of canopy and terrain
height. Hence, all global biomass maps so far have used a three-stage approach
consisting of the following steps: 1) Field-based biomass is linked to canopy height
measurements from ICESat GLAS at footprint locations that coincide with ground-
truth plots. 2) Predictions of biomass based on this first relationship are done for
all footprint locations of ICESat GLAS. These predicted biomass values are then
linked to surrogate variables which are available wall-to-wall (e.g., passive optical
reflectance, SAR backscatter intensity, climate and topography layers). 3) Wall-to-wall
predictions of biomass are made based on the second relationship. However, this
second relationship suffers from the saturation problems described earlier. Hence,
uncertainties in the derived biomass maps are large and at regional scale the existing
maps differ strongly from each other (Mitchard et al., 2013). A similar three-stage
approach is behind the high resolution biomass maps published at national and
subnational level (Columbia, Hawaii, Panama, Peru; Asner et al., 2011; Asner et al.,
2012a; Asner et al., 2014), where airborne lidar data was only collected over transects
across the countries and wall-to-wall predictions are based on surrogate variables.

The scientific community is working on the development of methods for large
scale wall-to-wall canopy height measurements for biomass mapping and monitor-
ing. This involves data fusion, i.e., the synergistic combination of datasets, and the
development of new target-tailored future missions. A promising example for fusion
is the combination of TanDEM-X data with the upcoming spaceborne lidar GEDI (Qi
and Dubayah, 2016), which will be sampling much more densely than the previous
ICESat GLAS. A powerful new mission concept is Tandem-L, a bistatic long-wave
SAR satellite system, which will provide wall-to-wall measurements of vertical forest
structure and terrain height at high spatial and temporal resolution (Moreira et al.,
2015).

1.4 forest modeling

1.4.1 Forest Models

Models are simplified representations of reality. By reducing the complexity of nature
to the essential processes of interest, ecological models help us to synthesize and test
ecological theory for a better understanding of the environment. They can be used
to conduct simulation experiments on how ecosystems may behave under different
scenarios and allow predictions for future trajectories. In particular, forest ecology and
management often rely on process-based forest models. Field experiments in forestry
can take decades and centuries, due to the long time scales at which forests grow.
Hence, in forest science, models are often the only way for conducting experiments
and analyzing results within the lifetime of a single researcher (Pretzsch, 2009).

Since the beginning of forest science (Carlowitz, 1713), foresters have tried to predict
timber growth into the future. Relationships derived from long term observations
have led to yield tables, which were the first simple forest models (Moser Jr, 1980).
However, yield tables are purely empirical and can only be applied to stands of
relatively simple compositions (e.g., even-aged plantations with a single or a few
species), under a fixed set of growing condition. They are unsuited for forests with
a mixed-age and diverse species composition and cannot account for environmental
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changes. To be able to predict the development of forests with more complex structures
and under variable conditions a variety of forest models have been developed in the
second half of the 20th century. The increase in computational capacity has facilitated
this development over the recent decades (Shugart et al., 2018).

Forest models can be broadly categorized into three main types (Huth, 1999):
1) Whole stand models are focused on aggregated state variables, such as total timber
volume or biomass. 2) Size class models are able to simulate the development of the
stem size distribution over time (Kohyama, 1992). Mathematically, both model types
can be formulated as sets of partial differential equations. 3) Single tree models are
individual based models (IBM), which simulate recruitment, competition, growth
and mortality at the individual tree level (Shugart, 1984; Bugmann, 2001). Apart from
this classification based on the level of detail, models can also be broadly catego-
rized along a gradient from purely empirical to rather process-oriented. Empirical
models rely more on statistical relationships derived from field measurements, while
process-oriented models try to incorporate underlying physiological processes. The
difference can be illustrated by considering the simulation of annual stem diameter
increment: An empirical approach would be to model diameter increment as a direct
function of current stem diameter and a competition-based reduction factor. A process-
oriented approach would be to derive diameter increment from a photosynthesis- and
respiration-driven biomass balance (Huth, 1999).

The strength of single tree models lies in the structural realism, i.e., their output
(and input if simulations are initialized with an existing stand) has the same structure
and level of detail as forest inventory data. This design allows the explicit modeling
of processes that act at the individual level (Grimm and Berger, 2016). IBMs, however,
have certain caveats: Their complexity often requires a large number of parameters
which makes it difficult to constrain the models. Furthermore, simulations can require
long processing times, depending on the number of considered processes, the number
of species and the simulation time step (Shugart et al., 2018).

A strategy to reduce processing time is to avoid modeling the pairwise interaction
of trees explicitly. Instead competition among trees is modeled in an aggregated way
by assuming that a tree affects all its neighboring trees within a certain area (patch)
in the same way. Thus, within such a patch the trees do not have explicit positions
in space. Their crowns can be imagined as discs or cylinders in a certain height that
extend over the entire patch. Competition and thus succession is modeled within each
patch independently of the neighboring patches. The first model following this idea
was JABOWA (Botkin et al., 1972) and many modifications of the original idea have
led to a whole model family which have been called gap models (Shugart Jr and West,
1980). The name refers to the size of the patches, which corresponds to the size of a
typical tree fall gap. Since then, more than one hundred different gap models have
been developed, all of which differ slightly with regard to considered processes and
fields of application. At least 12 of them have been used continuously over the past
decades with each having more than one hundred scientific citations (Shugart et al.,
2018).

Forest gap model concepts are currently being integrated in dynamic global veg-
etation models (DGVM) for analyses of atmosphere vegetation feedbacks in earth
system models (Fisher et al., 2018). DGVMs have traditionally used very simple repre-
sentations of vegetation, based on few plant functional types (PFT) and single layer
canopies (Sitch et al., 2003). By incorporating individual based submodules vegetation
demography and the resulting structure can be represented more accurately (Moor-
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croft et al., 2001). Modern computer clusters meanwhile even allow direct applications
of forest gap models at continental scale using regionalized drivers (Rödig et al.,
2017b). Constraining such large scale applications of models often relies on remote
sensing products. But this is just one of multiple synergies that arise from linking
remote sensing with forest models (Shugart et al., 2015).

1.4.2 Linking Forest Models and Remote Sensing

Forest models are increasingly used in combination with remote sensing data for
various purposes. There are at least four different motivations behind linking re-
mote sensing and ecological models with each other (Plummer, 2000): 1) model
parameterization and initialization (provision of functional relationships and start-
ing conditions), 2) model validation (comparison against empirical data), 3) model
calibration (iterative improvement of the model based on comparisons between output
and empirical data, also referred to as assimilation, constraining, tuning or updat-
ing) and 4) remote sensing interpretation and understanding (inversion of remotely
sensed signal into biophysical variables). Usually, a combination of several of these
aspects plays a role. The link can either be achieved by empirical parametric regres-
sion, by non-parametric statistical approaches (machine learning) or by physically
based inversions using radiative transfer models or look-up tables (Verrelst et al.,
2018). Radiative transfer models are mathematical descriptions of the scattering of
radiation considering canopy and ground surface parameters. They allow the forward
simulation of synthetic remote sensing products based on ecosystem model output,
which can then be compared to real-world remote sensing products (Jacquemoud et al.,
2009; Kuusk, 2018). The ecosystem model output serves as synthetic ground-truth
data (e.g., synthetic inventory tables in case of a forest model).

Earliest applications that combined remote sensing products with ecosystem models
already tried to extract "invisible" variables from remote sensing by correlating NDVI
to process model-derived estimates of photosynthesis and net primary productivity
(NPP; Running and Nemani, 1988). In later applications, structural forest parameters
have served to initialize forest simulations across landscapes, either using SAR-derived
biomass (Ranson et al., 2001) or lidar-derived canopy height (Hurtt et al., 2004) as the
linking variables. Falkowski et al. (2010) used machine learning to impute sample point
inventory data with wall-to-wall lidar data to parameterize and initialize a forest model
at individual tree-level and landscape scale. In the context of better understanding and
interpreting remote sensing variables, synthetic ground-truth and synthetic remote
sensing data have been used to explore possibilities for estimating biomass and other
stand variables. Studies addressed the effects of sampling, measurement scale and
geolocation errors (Hurtt et al., 2010; Köhler and Huth, 2010; Frazer et al., 2011).

1.4.3 The Model FORMIND

FORMIND is an individual-based and process-oriented forest gap model designed to
simulate the dynamics of species-rich forests (Köhler and Huth, 1998; Fischer et al.,
2016). The model simulates the processes of establishment, growth, competition and
mortality of trees on a regular grid of patches with the dimensions of a typical treefall
gap (20 m × 20 m). Within each patch the trees do not have explicit spatial positions,
following the gap model concept. By combining many patches, large forest areas up
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to hundreds of hectares can be simulated. Tree species with similar ecological traits
are aggregated into plant functional types (PFT) to facilitate parameterization for
diverse forests and reduce computation time. The PFTs may, e.g., represent different
successional types (from pioneers to climax species) or size classes (from understory
to emergent species).

Figure 1.9: Flowchart of the main processes simulated in the individual-based forest model
FORMIND. The core processes are represented by blue boxes. Optional processes
and inputs are represented by grey boxes (e.g., climate dependence, disturbance
regimes, full ecosystem carbon balance). The grouping of species into plant func-
tional types (PFT) is indicated by the colored trees.

In each simulated time step, the following main processes take place (Figure 1.9):
1) Establishment: Seeds are distributed over the forest area. If light conditions are
suitable, new saplings can establish and compete for light and space in the patch.
2) Competition: The main driving factor of the model is light. Radiation intensity
within each patch decreases from the top to the ground according to a light extinction
function. The light extinction depends on the combined vertical leaf area profile of all
trees in the patch. The productivity of each tree is determined by the available light in
its height layer. 3) Growth of each tree is dependent on its gross primary productivity
(GPP), respiration and PFT-specific physiological and allometric parameters. 4) Mor-
tality: Trees die stochastically according to a PFT-specific mortality rate. If a tree falls,
it can damage neighboring trees in adjacent patches. Optionally, tree-density-, size- or
growth-rate-dependent mortality can be activated.

Besides these core processes, FORMIND has the following optional features: 5) En-
vironmental limitations: Forest dynamics can be influenced by climatic variables,
like precipitation and temperature. 6) Disturbances such as fires, landslides, logging
and fragmentation can be simulated. 7) Carbon cycle: Gross primary production,
respiration and net primary production are calculated for each individual tree. Based
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on this the carbon balance for a whole forest can be derived, including soil respiration
and net ecosystem productivity.

FORMIND has been used for more than 20 years to study different aspects related
to forest management, disturbance regimes and climate change. Currently, 26 different
parameterizations are being maintained (November 2018), including published, site-
specific versions for Brazil (Groeneveld et al., 2009; Dantas de Paula et al., 2015),
Ecuador (Dislich et al., 2009; Paulick et al., 2017), Ethiopia (Hiltner et al., 2016),
French Guiana (Hiltner et al., 2018), Germany (Bohn et al., 2014; Rödig et al., 2017a),
Madagascar (Fischer et al., 2014; Armstrong et al., 2018), Malaysia (Köhler and Huth,
1998; Huth et al., 2004), Panama (Kazmierczak et al., 2014; Knapp et al., 2018a),
Tanzania (Fischer et al., 2015; Fischer et al., 2018), Venezuela (Kammesheidt et al.,
2001), as well as two large-scale versions for the tropical rainforests of the Amazon
basin (Rödig et al., 2017b) and temperate forests of Central Europe (Bohn et al., 2017),
and a grassland version (GRASSMIND), which transfers the gap model concept to
herbaceous plant communities (Taubert et al., 2012). The detailed model description
was published with Fischer et al. (2016) and can also be found on www.formind.org.

1.5 objectives of this thesis

The main objective of this thesis was to improve our understanding of remote sensing
of forest structure for the estimation of biomass. To this end, analyses of empirical
data (remote sensing and field inventories) were combined with process-oriented
modeling. The work addresses the three aspects of 1) biomass stocks, 2) biomass
change and 3) variability among forest types, each of which is the focus of one of the
three following chapters.

In Chapter 2 about remote sensing of biomass stocks, a lidar simulation model
was developed and integrated into the forest model FORMIND. The model was
parameterized for a tropical rainforest in Panama using field inventory and airborne
lidar data from the Barro Colorado Island (BCI) megaplot site. The objectives of
the study were: 1) Establishing a lidar simulation model that is able to produce
synthetic lidar-like data for dynamic forest model output. 2) Testing a wide variety
of lidar metrics for their ability to predict biomass of a tropical rainforest at various
spatial scales. 3) Investigating the influence of disturbances on the lidar-to-biomass
relationships. This chapter was published in the journal Remote Sensing of Environment
(Knapp et al., 2018a).

In Chapter 3 about remote sensing of biomass change, different approaches (direct
and indirect) for estimating biomass change over time from canopy height change
were compared. Again, BCI served as a test site and canopy height models derived
from FORMIND simulations and from the TanDEM-X satellites were analyzed to
answer the following questions: 1) How can aboveground biomass change be estimated
from canopy height change, if the goal is to cover the full range of tropical forest
succession including disturbed forests? 2) Under which conditions does each of the
different approaches work best? 3) Can canopy texture information improve estimates
of biomass change in the absence of canopy height information? This chapter was
published in the journal Remote Sensing (Knapp et al., 2018b).

In Chapter 4 about variability among forest types in the relationships between
canopy height metrics and biomass, data from five megaplot sites representing dif-
ferent continents and biomes was brought together. For each site, a set of metrics
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was computed from lidar data, with each metric characterizing a different aspect of
forest structure. The goals of the study were: 1) Finding a generic approach for basal
area and aboveground biomass estimation that can be applied across all sites without
causing prediction bias at any individual site. 2) Investigating the contributions of the
different structural attributes in the estimation functions. This chapter is ready for
submission to the journal Remote Sensing of Environment.
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2.1 abstract

Light detection and ranging (lidar) is currently the state-of-the-art remote sensing
technology for measuring the 3D structures of forests. Studies have shown that various
lidar-derived metrics can be used to predict forest attributes, such as aboveground
biomass. However, finding out which metric works best at which scale and under
which conditions requires extensive field inventories as ground-truth data. The goal of
our study was to overcome the limitations of inventory data by complementing field-
derived data with virtual forest stands from a dynamic forest model. The simulated
stands were used to compare 29 different lidar metrics for their utility as predictors
of tropical forest biomass at different spatial scales. We used the process-based forest
model FORMIND, developed a lidar simulation model, based on the Beer-Lambert law
of light extinction, and applied it to a tropical forest in Panama. Simulation scenarios
comprised undisturbed primary forests and stands exposed to logging and fire distur-
bance regimes, resulting in mosaics of different successional stages, totaling 3.7 million
trees on 4,200 ha. The simulated forest was sampled with the lidar model. Several lidar
metrics, in particular height metrics, showed good correlations with forest biomass,
even for disturbed forest. Estimation errors (nRMSE) increased with decreasing spatial
scale from < 10% (200-m scale) to > 30% (20-m scale) for the best metrics. At the often
used 1-ha scale, the top-of-canopy height obtained from canopy height models with
fine to relatively coarse pixel resolutions (1 to 10 m) yielded the most accurate biomass
predictions, with nRMSE < 6% for undisturbed and nRMSE < 9% for disturbed forests.
This study represents the first time dynamic modeling of a tropical forest has been
combined with lidar remote sensing to systematically investigate lidar-to-biomass
relationships for varying lidar metrics, scales and disturbance states. In the future,
this approach can be used to explore the potential of remote sensing of other forest
attributes, e.g., carbon dynamics, and other remote sensing systems, e.g., spaceborne
lidar and radar.

2.2 introduction

Due to their important role in the global carbon cycle and ongoing deforestation
and degradation, tropical forests are of particular interest to biomass remote sensing.
Tropical forest carbon accounting and monitoring of deforestation are important tasks
in the context of REDD+ and global climate modeling. In recent years, remote sensing
has led to considerable improvements in this field (Gibbs et al., 2007; De Sy et al.,
2012; Pan et al., 2013). Airborne small-footprint lidar (light detection and ranging)
is currently the state-of-the-art technology for measuring the 3D structure of forests
(Lefsky et al., 2002a; Wulder et al., 2012; Mascaro et al., 2014). Various lidar metrics
correlate well with different forest attributes. In particular, lidar-derived height metrics
have commonly been used to predict forest aboveground biomass (AGB) and carbon
density (ACD) (Drake et al., 2002; Asner et al., 2009; Dubayah et al., 2010; Jubanski
et al., 2013; Asner and Mascaro, 2014). The major challenges in biomass estimation
based on lidar data are that 1) the calibration of the prediction functions relies on
field data that must be collected manually in inventory plots; and 2) there are many
different metrics available using different spatial scales, and the task is to find the
combination that provides accurate AGB predictions.

26



2.2 introduction

In inventory plots, tree diameters at breast height (DBH) are typically measured,
from which AGB is calculated via known allometric equations (e.g., Chave et al., 2005;
Chave et al., 2014; Chen, 2015). Lidar data are acquired for the same inventory plots
to build regression models between lidar-based structure metrics and ground-based
AGB. A wide range of metrics can be calculated from lidar data. To date, no standard
approach for AGB estimation from lidar has been established and different studies
have applied different metrics (Chen, 2013; Lu et al., 2014). Several publications have
compared metrics among each other for different forest types (e.g., Lefsky et al., 1999;
Lefsky et al., 2002b; Dubayah et al., 2010; Jubanski et al., 2013). However, there has not
been a comparison of a wide range of metrics on a single tropical forest dataset. Lidar
metrics can generally be divided into metrics which are based on the full 3D point
cloud of lidar returns and metrics which are based on canopy height models (CHM),
i.e., the rasterized canopy surfaces which are derived from the uppermost returns
of the point clouds (Chen, 2013). The full 3D point cloud contains more information
about the vertical canopy structure than the corresponding CHM. On the other hand,
the vertical distribution of lidar returns also depends on technical properties of the
specific sensor, making point-cloud-based metrics less robust and comparable between
different studies than CHM-based metrics (Næsset, 2009; Asner and Mascaro, 2014).
Many commonly used metrics can be calculated based on both types of data. Those
metrics include mean heights (Lefsky et al., 2002b; Asner and Mascaro, 2014), relative
height quantiles (the heights below which a certain percentage of returns or pixels
falls; Patenaude et al., 2004; Dubayah et al., 2010; Meyer et al., 2013), and metrics of
heterogeneity such as the standard deviation of heights or the Shannon diversity index
of the height profiles (Stark et al., 2012). Other metrics, such as the ratio of above
ground returns to total returns or fractional canopy cover above a certain height, that
can be derived either from point clouds or CHMs describe relative vegetation cover.

An important aspect of AGB prediction from remote sensing is spatial resolution.
Resolution means, first, spatial resolution of the remote sensing data from which
different metrics are calculated and, second, the spatial resolution of the output map,
i.e., the grain size of the units for which the metrics are calculated to produce an
AGB prediction. The resolution of the data is determined by the sensor’s technical
specifications and the capacities to store and process data. The resolution of the
mapping units is influenced by the desired estimation accuracy and the desired spatial
detail of the mapped product. Köhler and Huth (2010), Mascaro et al. (2011b) and Chen
et al. (2016) showed how errors in AGB estimations from mean lidar heights decreased
with increasing grain sizes and that a grain of approximately 1 ha is required to
achieve errors of < 10%.

Fitting any of the described lidar metrics to measured AGB relies on field inventory
data. Forest inventory plots are limited in number, size and structural variety. The
collection of inventory data is costly and laborious and most studies in the past
made use of tens to a few hundred plots (Fassnacht et al., 2014). Those plots are
often located in old growth forests. Hence, available data sets might not cover the
full structural complexity of forests over their entire successional range (noteworthy
exceptions are, e.g., Dubayah et al., 2010; Poorter et al., 2016). For lidar-to-AGB-
calibration, a broad range of different forest succession states that cover the range of
all possible AGB stocks and associated forest structures is preferable. To overcome this
limitation, we propose a new approach in which we complement in situ measurements
with simulated forest stands (Figure 2.1). We used an individual-based forest model
(FORMIND, Fischer et al., 2016) to simulate a large virtual inventory dataset, covering
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the full range of succession stages by including forest disturbances in the simulations.
The model was parameterized to represent the well-studied lowland tropical rainforest
of Barro Colorado Island, Panama (Condit et al., 2001; Kazmierczak et al., 2014). We
developed a lidar model to sample lidar data of simulated forest stands.

The research goals of this study were 1) to establish a lidar simulation model that is
able to produce synthetic lidar-like data for dynamic forest model output; 2) to test a
wide variety of lidar metrics for their ability to predict AGB of a tropical rainforest
at various spatial scales; and 3) to investigate the influence of disturbances on the
lidar-to-biomass relationships.

Figure 2.1: Workflow of the study. Reference data from field inventories and an airborne lidar
campaign were used to parameterize and calibrate a forest model and a lidar model.
With the models, large quantities of simulated inventory and simulated lidar data
were generated, allowing for a systematic analysis of lidar-to-biomass relationships
under different disturbance regimes and for various spatial scales.

2.3 materials and methods

2.3.1 Study Area

The study focused on the tropical forest on Barro Colorado Island (BCI), Panama
(9.15° N, 79.85° W). BCI is a 15 km2 island located in Lake Gatun, an artificial water
body created by the construction of the Panama Canal (Condit et al., 2001). It is
covered with semi-deciduous tropical lowland rainforest. The minimum forest age
is estimated to range from 300 to 1,500 years (Bohlman and O’Brien, 2006; Meyer
et al., 2013; Lobo and Dalling, 2014). The climate is characterized by average daily
maximum and minimum temperatures of 30.8 and 23.4 °C and an annual precipitation
sum of approximately 2,600 mm, with a dry season from January to April (Condit
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et al., 2001). A 50-ha rainforest observation plot is located on the central plateau of the
island, with terrain altitudes varying between 120 and 160 m above sea level (Lobo and
Dalling, 2014). Since the establishment of the plot in the early 1980s, each tree in the
1000 m × 500 m area with a DBH ≥ 1 cm has been measured during censuses in five
year intervals (Condit, 1998; Hubbell et al., 1999; Hubbell et al., 2005). Estimates of the
mean canopy height are 24.6 ± 8.2 m, and those of the mean AGB are 281 ± 20 t ha-1

(Chave et al., 2003).

2.3.2 Lidar Data

An airborne discrete point cloud lidar dataset was collected on BCI in August 2009
with a multi-pulse scanning laser altimeter (Optech ALTM Gemini system; BLOM
Sistemas Geoespaciales SLU, Madrid, Spain, Lobo and Dalling, 2014). The terrain
elevation was subtracted from the point cloud to obtain the relative height above
ground. Point densities ranged from 0 to 60 m-2 with a median of 10 m-2 and a
5th-percentile of 4 m-2. To avoid locally varying point densities, caused by flight swath
overlaps, the point clouds were thinned by random subsampling of 4 returns in each
square meter. A 1-m resolution canopy height model (CHM) was derived from the
highest returns in each square meter. Data processing was performed using LAStools
(Isenburg, 2011) and R (R Development Core Team, 2014).

2.3.3 Lidar Model Description

The purpose of the lidar model is the simulation of a lidar scan of a given forest stand.
More specifically, it generates point clouds of discrete returns as usually produced
by small-footprint lidar systems. As input, a tree list has to be provided. The list can
either be real forest inventory data or data generated by a forest model (Figure 2.2a).
The basic elements of the model are trees, lidar pulses and lidar returns. Trees are
characterized by their position (X- and Y-coordinate), height, crown length, crown
radius, crown shape and leaf area index (LAI). The model operates in a 3D space
represented by an array of cuboid voxels. Each vertical column of voxels represents
one modeled lidar pulse. Lidar returns are points in 3D space, characterized by their
X-, Y- and Z-coordinates.

From the tree list, a voxel representation of the entire forest is created. Thus, voxels
that could potentially produce a lidar return, because they belong to a tree crown
or the ground, are distinguished from empty space voxels. The voxel forest is then
scanned with a virtual lidar. The simulation follows a probabilistic approach. Instead
of explicitly simulating the branches and foliage and their interaction with laser beams
within the tree crowns, the model assumes that the tree crown space is a homogeneous,
turbid medium filled with a certain leaf area density (LAD). The probability of having
a lidar return from a certain point decreases as the distance the laser beam has to
travel through the medium before reaching the point increases. This relationship is
analogous to the Beer-Lambert light-extinction law (Campbell and Norman, 2012).
Thus, the probability for a lidar return P for each tree and ground voxel (Figure 2.2c)
can be calculated as a function of cumulative leaf area index LAI above the voxel
(Figure 2.2b).

P(LAI) = P0 · e−k·LAI (2.1)
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Figure 2.2: Principle of the lidar model. Inputs to the workflow can either be forest model
output or field inventory data. The pictures on the right side show intermediate
products: a) Visualization of a forest stand; b) voxel representation with colors
indicating the cumulative leaf area index; c) voxel representation with colors
indicating the probability of containing a lidar return; d) simulated lidar point
cloud with colors indicating height above ground.

P0 in Equation 2.1 represents the probability of obtaining a return from the very
upper voxel, where the laser beam hits a tree or the ground for the first time. The
parameter k is the exponential extinction coefficient, which determines how fast the
return probability decreases after entering the crown space. The decision regarding
whether each voxel will contain a return is taken stochastically, based on the calculated
return probability. Ultimately, this leads to a discrete point cloud (Figure 2.2d). The
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voxel resolution was set to 0.5 m × 0.5 m along the horizontal direction and 1 m along
the vertical direction. The parameters P0 and k were calibrated such that simulated
point cloud profiles derived for subareas of the 50-ha inventory data set matched the
airborne lidar profiles of those subareas (details see Appendix A.1.1). The resulting
value for k = 0.2 can be confirmed by literature (Campbell and Norman, 2012; Jones,
2013). For P0 we found 0.2 to be a good value, leading to simulated point densities
that were similar to the airborne reference point cloud. P0 being smaller than 1 can be
interpreted by the heterogeneity of leafs, branches and empty space within the tree
crown. This means that a laser beam entering the idealized cylindrical tree crown does
not necessarily trigger a return in the first voxel.

2.3.4 Forest Model Description

FORMIND belongs to the group of forest gap models (Botkin et al., 1972; Shugart,
1984; Bugmann, 2001). As such, the model simulates the processes of establishment,
growth, competition and mortality of trees on spatial patches with the dimensions of
a typical treefall gap (20 m × 20 m). By combining many patches, large forest areas of
hundreds of hectares can be simulated. FORMIND is an individual-based model (IBM)
in which the individuals represent trees that belong to different plant functional types
(PFTs). One PFT may contain several species with similar ecological traits. FORMIND
has been applied to many tropical forest sites and has proven capable of accurately
reproducing patterns observed in these complex ecosystems (Fischer et al., 2016). The
individual-based model architecture allows for the inclusion of disturbances such
as logging or forest fires in a structurally realistic way. A detailed description of
FORMIND including the modules for logging and fire disturbance can be found in
Fischer et al. (2016). The supplements contain descriptions of the parameterization
of the lidar model and the forest model (Table A.1). Before using the forest model
output for remote sensing analyses, the structural validity of the simulated old growth
stands was confirmed by visually comparing biomass stocks (Figure A.1) and stem
size distributions (Figure A.2) of all PFTs to the values obtained from the inventory
data.

2.3.5 Simulation Experiment

Using FORMIND, we simulated the development of a 16 ha (400 m × 400 m) area of
the BCI forest over several thousand years and stored the results at 20-yr intervals. The
simulations were repeated with different disturbance regimes. The first run comprised
2,000 yr without any external disturbance, simulating only natural gap dynamics. In
the second run, forest fires were introduced as a source of spatially heterogeneous
disturbance to clear parts of the area regularly and enable natural succession and
regrowth. Fire occurrence was drawn from a Poisson distribution such that the mean
interval between two fire events was 25 yr. Fire size at each fire event was drawn
from an exponential distribution, such that on average 50% of the total area was
affected. More information on the fire module used is provided in Fischer (2013) and
Fischer et al. (2016). The third scenario included selective logging. At a logging cycle
of 99 yr, all trees with DBH > 30 cm were felled and removed. More information on
the logging module used is provided in Huth et al. (2004). For all three runs, the first
200 yr were discarded as spin-up. For each of the remaining simulation years, a virtual
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lidar campaign using the lidar model was conducted. The disturbance frequencies
and intensities were not intended to represent realistic disturbances scenarios in the
study region. The intention was to sample many stands at each stage along the full
successional range, using the disturbance modules to regularly set the forest back to
an early stage. The selective logging acts on the whole area, while the fires move in
a spatially explicit way through the simulated area, causing mosaics of unaffected
forest next to cleared areas where succession starts over. Such patchy landscapes are
typical for many forest regions, although the reasons for the structures may be as
diverse as clear cuts, wind blowdowns, fires or natural areas without vegetation, e.g.,
grasslands or water bodies. Thus, these simulations produce landscapes that can be
used as general examples of heterogeneous landscapes.

2.3.6 Lidar-based Biomass Prediction

We analyzed forest plots measuring 20, 33, 50, 100 or 200 m (side length). At each
spatial scale, a range of 29 different lidar metrics (Table 2.1) were tested for their
suitability as single predictors of AGB. Metrics were either derived from point clouds
(PC) or canopy height models (CHM). CHMs were constructed from point clouds by
rasterizing the highest lidar returns in each pixel of a given pixel size. Point-cloud-
based metrics comprised the mean canopy profile height (MCH), which is the mean
height of all lidar returns, and the quadratic mean canopy profile height (QMCH),
where high returns receive a larger weighting than low returns. For a given point
cloud profile pPC that consists of lidar return counts at height bins hi, MCH and
QMCH can be calculated from Equations 2.2 and 2.3, respectively.

MCH =

imax

∑
i=1

(pPC,i · hi)

imax

∑
i=1

pPC,i

(2.2)

QMCH =

√√√√√√√√
imax

∑
i=1

(pPC,i · h2
i )

imax

∑
i=1

pPC,i

(2.3)

where pPC, i is the lidar return count in height bin hi. A metric similar to MCH
can be derived from the vertical CHM profile instead of the point cloud profile. This
metric corresponds to the mean of all pixel values of the CHM, and is commonly
referred to as the mean top-of-canopy height (TCH, Equation 2.4).

TCH =

imax

∑
i=1

(pCHM,i · hi)

imax

∑
i=1

pCHM,i

(2.4)

A CHM can be derived from a point cloud at variable pixel resolutions, by taking
the height of the highest return that falls into each pixel. Thus, TCH always depends
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on the pixel size used. We calculated TCH from CHMs with pixel side lengths of
1, 5, 10, 20, 33, 50 and 100 m. Note that, once the pixel size equals the plot size for
which AGB is calculated, TCH is equal to the maximal height in the plot, which is also
referred to as Hmax or RH100 in the literature. Another method for measuring forest
height from lidar data is by using relative height quantiles of either the point cloud or
the CHM. These quantiles represent the heights below which a certain percentage of
the returns or CHM pixels fall. We calculated RH25, RH50 and RH75 for the point
clouds and 1-m resolution CHMs.

Other metrics, however, capture the vertical heterogeneity of the forest. Those
metrics include the standard deviation (SD) of heights (point-cloud- or CHM-based),
the coefficient of variation (CV, Equations 2.5 and 2.6), the skewness of the vertical
point cloud profile (Equation 2.7, where N is the total number of points and hi is the
height of each point i), the Shannon Index (Equation 2.8, where imax is the number of
height layers and pi is the count of points in the layer i) as a measure of entropy of the
profile and the P:H ratio (Equation 2.9, where imax is the number of height layers, pi is
the count of points in the layer i and hi is height of layer i), which describes the height
of the densest part of the point cloud (peak in the profile) relative to the maximal
height (Marvin et al., 2014).

CVPC =
SDPC

MCH
(2.5)

CVCHM =
SDCHM

TCH
(2.6)

Skewness =
1
N

·
N

∑
i=1

(
hi − MCH

SDPC
)3 (2.7)

Shannon Index = −
N

∑
i=1

pi · ln(pi) (2.8)

P : H ratio =

h( max
iε[1,imax ]

(pi))

max
iε[1,imax ]

(hi)
(2.9)

Furthermore, we calculated vegetation density metrics. Based on the point clouds,
the count of aboveground returns divided by either the count of ground returns
NAGR/NGR or the count of total returns NAGR/NTR was calculated. Based on the
CHMs, the fractional canopy cover (FCC) was derived by defining different height
thresholds below which a CHM-pixel was considered a canopy gap. We calculated
FCC0, FCC10 and FCC20 using the forest floor, 10 m and 20 m as height thresholds,
respectively.

Each lidar metric LM was fit to the dependent variable AGB using a power law
model (Equation 2.10) and maximum likelihood estimation in R.

AGB = a · LMb (2.10)
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Table 2.1: List of the lidar metrics and the underlying data (PC = point cloud, CHM = canopy
height model). CHM usually refers to 1-m resolution rasters, except for TCH where
various resolutions were tested.

Lidar metric Description Data

MCH Mean canopy profile height PC

QMCH Quadratic mean canopy profile height PC

TCH Mean top-of-canopy height (at variable CHM pixel
resolutions), e.g., TCH5 is based on 5-m pixels

CHM

RH Relative height quantile, e.g., RH50 is the 50-
percentile of heights

PC or CHM

SD Standard deviation of heights PC or CHM

CV Coefficient of variation of heights (normalized SD) PC or CHM

Skewness Skewness of the vertical profile PC

Shannon Index Entropy of the vertical profile PC

P:H ratio Relative height of the peak in the vertical profile PC

NAGR/NGR Ratio of aboveground returns to ground returns PC

NAGR/NTR Ratio of aboveground returns to total returns PC

FCC Fractional canopy cover, e.g., FCC10 is the relative
share of pixels higher than 10 m

CHM

If possible, such relationships were derived for plots with side lengths of 20, 33, 50,
100 and 200 m. Relationships could not be derived in cases where pixel size exceeded
plot size or where the maximum likelihood estimation did not provide a parameter b
different from zero. The AGB-prediction accuracy for the different power law functions
was quantified as the normalized root mean square error (nRMSE) [%]. The measure
was calculated as the RMSE of n AGB predictions against n observations, normalized
by the mean observed AGB (Equation 2.11).

nRMSE =

√√√√√ n
∑

i=1
(predAGBi − obsAGBi)2

n
· 1

mean(obsAGB)
(2.11)

The power law parameters and additional statistics (mean, RMSE, bias, R2, slope
and intercept of linear fits between predictions and observations) for all metrics, scales
and datasets (672 models) can be found in the digital supplementary materials of
Knapp et al. (2018a) in Table A.2.

2.4 results

2.4.1 Forest and Lidar Simulation Results

The forest simulations could reproduce AGB succession over time for the four PFTs.
An overshoot of total AGB around a forest age of 100 yr was observed (Figure A.1).
The duration of the primary succession and the biomass overshoot are consistent with
observations by Mascaro et al. (2012). Furthermore, the stem size distributions for
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all four PFTs matched well between the model and reference data (Figure A.2). The
AGB distributions of reference data and undisturbed and disturbed FORMIND runs
can be found in Figure 2.3, and for the undisturbed case, the simulated distributions
are in good agreement with previously reported distributions based on field data
(Chave et al., 2003). At all scales the range of AGB in undisturbed simulations was
smaller than the observed range of AGB in the field reference data. In the disturbance
scenarios, the range of AGB values increased. At the small 20 m × 20 m scale, the real
forest contained extremely high local AGB values (max. 2,022 t ha-1) caused by single
large trees. Such extreme values were not reached in the simulations.

Figure 2.3: Relative test frequency distributions of aboveground biomass (AGB). Columns
represent the BCI field data (50 ha) and output of FORMIND simulations from
different disturbance scenarios (1,400 ha each). Rows represent different spatial
resolutions. Notice the different axis scaling in each row.

Using the lidar simulation approach, synthetic lidar data were generated for the
simulated forest stands. Lidar simulation outputs, such as the vertical point cloud
profile (Figure 2.4) and CHMs, closely resembled their airborne equivalents. In Ap-
pendix A.1.4 we present how alternative assumptions about the tree geometry affect
the simulated lidar profiles and metrics (Figures A.15 to A.18).

2.4.2 Biomass Prediction from Top-of-Canopy Height

Based on the simulated stands, we analyzed 4,200 ha of forest (3.7 million trees with
DBH ≥ 3 cm) with respect to the relationships between forest height (TCH) and
biomass (AGB). We generated undisturbed (1,400 ha), fire-disturbed (1,400 ha) and
logging-disturbed (1,400 ha) stands. Figure 2.5 shows the relationships observed for
different plot sizes (20 to 100 m) assuming a fine resolution (pixel size = 1 m). The
disturbed stands (fire and logging were pooled) cover a wider range of TCH and
AGB values than the undisturbed stands. The fitted relationships for undisturbed
and disturbed forest stands are similar. The scattering around the regression lines
decreases with increasing plot size. If we decrease the pixel resolution from 1 to 10 m
(Figure 2.6), we observe a change in the TCH-to-AGB relationship. Curves become
flatter because averaging over lidar point height maxima in 10 m × 10 m pixels
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Figure 2.4: Vertical lidar profiles of a) the 9 ha in the southwestern corner of the BCI megaplot,
airborne and simulated based on inventory data; b) the same for the 9 ha in the
northeastern corner of the BCI megaplot; and c) the simulated lidar profile of 16 ha
simulated forest in FORMIND in the old growth stage (age 500 yr). Dashed lines
mark the mean canopy profile height (MCH), and ’×’ symbols mark the ground
return peaks.

leads to higher TCH-values than averaging over the lidar point height maxima in all
1 m × 1 m pixels. Thus, the coarser the pixel resolution is, the higher the TCH value for
a given stand becomes. For the 1-m and the 10-m pixel resolution, we observe similar
relations for disturbed and undisturbed forests, respectively. More extensive analyses
and graphics that consider the BCI reference data and treat the different disturbance
regimes separately can be found in Appendix A.2.2 (Figure A.4 and following).

The general trends were that the nRMSE of the TCH-based AGB predictions in-
creased with decreasing plot size and with increasing pixel size (Figure 2.7). The
prediction accuracy at each scale was better for the undisturbed forest dataset than for
the disturbed forest dataset, indicated by generally lower nRMSE for each plot size
and pixel size combination for the undisturbed forest as compared to the disturbed
forest (Figure 2.7). For the disturbed dataset and large plot sizes (100 and 200 m),
we observed slightly better prediction accuracies at medium pixel resolutions (5 and
10 m) than at fine pixel resolutions (1 and 2 m). The analysis shows that to achieve,
a plot-level biomass estimation error < 10%, plot sizes of ≥ 100 m are required. At
such plot sizes, any pixel size would be sufficient to predict AGB for undisturbed
forests with the desired accuracy, but for disturbed forests, the errors exceed 10% and
increase strongly at pixel sizes ≥ 20 m.

2.4.3 Biomass Prediction based on Various Lidar Metrics

In addition to TCH, we analyzed 21 other metrics concerning their capability to predict
biomass using power law equations. For this analysis, we no longer distinguished
between the different disturbance regimes and pooled all forest stands. Figure 2.8
shows nRMSE values for all lidar metrics, for which it was possible to fit a power
law model, at the plot scales of 100 and 20 m. From left to right, the metrics are
sorted by increasing nRMSE at the 100-m plot size. The figure shows that the best ten
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Figure 2.5: Aboveground biomass (AGB) as a function of top-of-canopy height (TCH) from
1-m pixel resolution (CHM) for different plot sizes. All data was derived from
FORMIND and lidar simulations. 1) The first row demonstrates the sampling
approach. Shown is a scene of 9 ha simulated forest with different stages of
succession. The following rows show the TCH-to-AGB relationship with each
record representing one 20-m, 50-m or 100-m plot, respectively, for 2) 1,400 ha of
undisturbed simulated forest (green), 3) 1,400 ha of fire-disturbed and 1,400 ha of
regularly logged simulated forest (red) and 4) the curves of the best power law fits.

metrics are all measures of forest height. Vegetation density metrics (e.g., NAGR/NGR

and FCC) and vertical heterogeneity metrics (e.g., SD and Shannon Index) were less
accurate AGB predictors than height metrics. The best predictions at large plot scales
were achieved by TCH (10 m) and TCH (5 m), whereas at small plot scales RH75,
MCH, QMCH and TCH (1 m) were the most accurate predictors. We could not find
any relationship between AGB and CV of height, profile skewness or P:H ratio. The
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Figure 2.6: Aboveground biomass (AGB) as a function of top-of-canopy height (TCH) from
10-m pixel resolution (CHM) for different plot sizes. All data was derived from
FORMIND and lidar simulations. 1) The first row demonstrates the sampling
approach. Shown is a scene of 9 ha simulated forest with different stages of
succession. The following rows show the TCH-to-AGB relationship with each
record representing one 20-m, 50-m or 100-m plot, respectively, for 2) 1,400 ha of
undisturbed simulated forest (green), 3) 1,400 ha of fire-disturbed and 1,400 ha of
regularly logged simulated forest (red) and 4) the curves of the best power law fits.

Shannon Index of the profiles only showed a relationship with AGB for plot sizes
≥ 50 m. Scatter plots of a selection of metrics against AGB can be found in Figure A.12,
nRMSE values for all metrics at all plot scales are displayed in Figure A.13 and detailed
statistics and the coefficients of all fit power laws are listed in Table A.2.
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Figure 2.7: Normalized root mean square errors (nRMSE) [%] of power law models that
describe the relationship between aboveground biomass (AGB) and top-of-canopy
height (TCH) at different plot scales and different pixel resolutions for undisturbed
and disturbed simulated forest. For pixel sizes of 1 and 10 m, the decrease in
nRMSE with increasing plot size is shown on the right side.

2.5 discussion

This study demonstrated a new approach for simulating 3D lidar point clouds of
forest stands and for investigating structural lidar metrics for their relationship with
AGB of a tropical forest using forest simulations. We explored the accuracy of AGB
predictions based on various lidar metrics, spatial scales and considering undisturbed
and disturbed forest plots.

2.5.1 Lidar Simulations

Unlike other lidar simulation approaches that use detailed radiative transfer theory
(Sun and Ranson, 2000; Ni-Meister et al., 2001; Kotchenova et al., 2003; Goodwin
et al., 2007) or explicit 3D models of trees and ray tracing (Disney et al., 2010; Endo
et al., 2012), our method requires only a minimal parameter set to efficiently com-
pute synthetic lidar point clouds for large areas. Under simple assumptions, e.g.,
one DBH-to-height and DBH-to-crown-diameter allometry, a constant crown length
proportion, cylindrical crowns shapes and a homogeneous leaf area density within
crowns, the lidar model was able to reproduce the vertical lidar profiles of different
9-ha subplots within the 50-ha BCI megaplot to an overlap of 87%. An extinction factor
kNIR of approximately 0.2 was suggested by empirical measurements (Jones, 2013)
and theoretical considerations (Campbell and Norman, 2012; Tang et al., 2012) and
could be confirmed by our inverse modeling tests.
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Figure 2.8: Normalized root mean square errors (nRMSE) [%] of power law models that
describe the relationship between aboveground biomass (AGB) and various lidar
metrics (for explanations of the abbreviations, please refer to the main text and
Table 2.1) at plot scales of 100 and 20 m, respectively. From left to right, the
metrics are sorted by increasing nRMSE at the 100-m plot size. Whether certain
metrics were derived from point clouds (PC) or from canopy-height-models (CHM)
is indicated in brackets. This analysis was based on pooled (undisturbed and
disturbed) simulated forest data and lidar simulations. Missing bars indicate that
no power law model could be fit at the 20-m plot size.

Airborne and simulated profiles for the 9-ha subplots matched well in general. They
diverged most in the upper canopy, where the DBH-to-height allometry led to an
overestimation of high trees. Frequencies of ground returns of simulated profiles were
approximately 25% lower than for the airborne data, which could be adjusted by
choosing another lidar return probability P0 for ground voxels. Because the exact size
of the ground return peak does not affect most of the lidar metrics, we did not treat
ground voxels differently than canopy voxels in this study. It should also be noted that
simulated lidar profiles (inventory- and FORMIND-based) contain only returns from
trees and ground. Non-woody vegetation such as shrubs and lianas may contribute to
the airborne lidar profiles, particularly near ground, whereas they are absent in the
simulations.

2.5.2 Biomass Prediction from Lidar Height

For the simulated BCI lidar dataset, TCH at various pixel resolutions performed better
than any other lidar metric for biomass predictions. The lowest AGB prediction errors
(< 10%) were found for large mapping units (plot sizes of 100 and 200 m) with TCH
derived from CHMs with pixel sizes of 5 to 20 m. For the smaller mapping units of
50 m, 33 m and 20 m, the minimal achievable errors from any metric were 15%, 23%
and 33%, respectively. At those scales, the high pixel resolution TCH, RH75 or point-
cloud-based MCH and QMCH led to slightly smaller errors than TCH of medium
pixel resolution. The finding that medium pixel resolution CHMs are sufficient to
make highly accurate AGB predictions at the 1-ha scale is encouraging for spaceborne
biomass mapping efforts on the global scale. The generation of high-resolution infor-
mation (e.g., pixel size of 1 m) requires airborne laser scanning campaigns, whereas
medium resolutions can be derived from satellites. The synthetic aperture radar
satellite system TanDEM-X can provide forest heights closely correlated to TCH at
a resolution of 10 m (referred to as H100 in the radar literature; Kugler et al., 2014;
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Lee and Fatoyinbo, 2015). Future sensors, such as GEDI1 and Tandem-L2, will provide
data of similar horizontal resolution (20 to 50 m) and improved vertical resolution.
Thus, TCH as well as MCH and RH75 of the vertical profiles are promising metrics for
estimating AGB using these sensors. The analysis also showed that sensors that only
provide maximum height at the coarse resolution of 100 m lead to AGB estimation
errors of > 25%. It appears highly plausible that CHMs with pixels sizes around 10 m
corresponding to the dimensions of the objects of interest, namely crowns of medium
to large trees, which contribute most to the total AGB, are a good data source for
AGB inference. High-resolution data such as 1-m pixel CHMs or the full point cloud
have the advantage of providing detailed information on crown architecture and small
gaps, but this information might only be additional noise in the signal for stand level
AGB and may not be necessary for large-scale mapping.

2.5.3 The Role of Structure Metrics

Metrics of vertical heterogeneity (e.g., standard deviation or Shannon Index) and
vegetation density (e.g., NAGR/NGR or FCC) showed weaker relationships with AGB
than most of the height metrics. Hence, these metrics might not be the optimal choice
as single AGB predictors. However, considering vegetation structure in addition to
mean height could potentially improve AGB estimations. Several approaches have been
suggested to improve power-law-based lidar-to-AGB models by considering additional
predictors. These predictors include horizontal and vertical structure indices (Tello
et al., 2015) and texture metrics of the CHM (Abdullahi et al., 2016). Finally, when
thinking beyond AGB stock prediction and towards the study of forest dynamics
and disturbances based on remote sensing, structural metrics may become very
important. The Shannon Index of the lidar profile has been previously associated with
productivity and mortality (Stark et al., 2012), and gap fraction and size distribution
may provide information about disturbances (Lobo and Dalling, 2014).

2.5.4 Prediction Errors

For all tested lidar metrics, we observed the tendency for the prediction errors to
decrease with increasing plot scale. This pattern has been reported and quantified
previously for MCH (Asner et al., 2010; Mascaro et al., 2011b), QMCH (Chen et al.,
2016) and TCH (Köhler and Huth, 2010; Asner and Mascaro, 2014) and in general for
the situation in which remote sensing footprints and ground plot extents do not fully
match (Réjou-Méchain et al., 2014). In our analysis, the spatial locations and extents of
ground plots and remote sensing data matched perfectly, because they were based on
simulations. Also there was no displacement of crowns from stem locations. Thus, our
dataset is free of geolocation errors and the observed residuals in the lidar-to-AGB
relationships can be attributed to the following sources of uncertainty: 1) the highly
clumped biomass distribution on the ground, i.e., the majority of biomass is localized
in tree trunks at specific positions with empty space in between, whereas remote
sensing signals capture the tree crowns, which are spread around the trunk positions;
2) edge effects of overhanging tree crowns with trunk positions and thus biomass
being located outside the focal plot area; 3) the general variability among trees with

1 http://science.nasa.gov/missions/gedi/
2 https://www.tandem-l.de/
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respect to their geometries and wood densities; and 4) the undergrowth vegetation
that is obscured by the upper canopy and not detected by the remote sensing sensor.
The error caused by 1) should decrease with increasing plot size due to the decrease
in biomass variability (Figure 2.3) and the decreasing influence of single large trees.
The error caused by 2) should decrease with increasing core area to edge length ratio.
The error caused by 3) should decrease because differences at the individual tree level
average out with increasing plot size. Only errors caused by 4) can be expected to
be scale-independent. Using a crown-distributed instead of a stem-localized biomass
distribution as ground truth has been shown to reduce estimation errors (Mascaro
et al., 2011b). However, the actual biomass distribution in a forest is expected to be
closer to being stem-localized than (uniformly) crown-distributed. Thus, reducing
errors by assuming crown-distributed biomass does not necessarily lead to more
accurate biomass maps. Our modeling approach may allow future studies to gain a
closer look at the contributions of the separate error sources by switching them off
one at a time. Different lidar metrics showed different changes in errors across scales:
e.g., in moving from large to small plots, the errors of TCH20, TCH33 and the Shannon
Index increased much faster than for other metrics with similar errors at the 200-m
scale (Figure 2.8 and A.13). For the Shannon Index, the relationship with AGB was
entirely lost at scales smaller than 50 m.

2.5.5 Linking Remote Sensing with Dynamic Forest Models

Despite the great potential of the proposed approach, relatively few studies have linked
remote sensing and forest modeling. Applications include model initialization (Ranson
et al., 2001; Hurtt et al., 2004), model parameterization (Falkowski et al., 2010), remote
sensing calibration (Köhler and Huth, 2010; Palace et al., 2015), error quantification
(Hurtt et al., 2010; Frazer et al., 2011) and the understanding of large-scale ecosystem
patterns and processes (Shugart et al., 2015). Our study is the first to demonstrate
how remote sensing simulations combined with a dynamic forest model can provide
remote sensing metrics over the full range of disturbance-induced successional stages,
which is particularly useful for tropical forests where available field data is limited.
The lidar-to-AGB relationships can differ between disturbance types because one type
(e.g., fire) might cause mosaics of surviving trees and bare ground, whereas another
type (e.g., selective logging) might cause a height degradation throughout the entire
study area. Horizontal heterogeneities, such as those caused by fires, are particularly
problematic when lidar metrics are aggregated over larger areas. Thus, the disturbance
regime of a region and the presence of the described phenomena should be taken into
account when deciding which metric and resolution to choose for biomass mapping.
Modeling can be one way to explore these effects in greater detail.

An important condition for combining a forest model and remote sensing is the
structural realism of the model in the relevant aspects. Overall, our model was able to
reproduce forest attributes and literature values well. Previous studies on BCI that
linked AGB at the 1-ha scale to MCH derived from airborne lidar scans reported
RMSE values of 17 tCarbon ha-1 (Mascaro et al., 2011a) and 28.9 tAGB ha-1 (Meyer et
al., 2013) in agreement with the value of 27.1 tAGB ha-1 we obtained for the pooled
simulated dataset (Table A.2). A noteworthy deviation between the simulation data
and reference data was that for comparable AGB values the simulated TCH was higher
than the airborne TCH, particularly at the upper end of the AGB and TCH ranges
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(described in detail in Appendix A.1.3). We believe that this deviation was primarily
caused by the simple tree geometries used in the forest model. Using only one general
DBH-to-height allometry for all trees might be suboptimal if the aim is to reproduce
the natural height heterogeneity of the upper canopy at all scales. In our simulations,
too many trees reached the maximum possible height of 55 m, which is an exceptional
height on BCI observed for only one tree in the airborne lidar CHM. Hurtt et al. (2004)
encountered a similar problem with large trees. In their case, model-derived canopy
heights were restrained to a maximum, whereas observed lidar heights exceeded
that limit. Therefore, one potential improvement for future model parameterizations
would be to consider asymptotic instead of power law DBH-to-height allometries and
allow for a certain plasticity of modeled heights and crown diameters. The sensitivity
analysis about model assumptions showed that the alternative scenario using an
asymptotic tree height allometry led to slight increases in R2 and decreases in nRMSE
of the stand height to biomass relationship (Figures A.16 to A.18). Recent advances
in individual tree delineation from airborne lidar (Duncanson et al., 2014; Ferraz
et al., 2016) and terrestrial laser scanning (Raumonen et al., 2013) have the potential
to improve our understanding of tree allometries and the structural realism of forest
models. When models are able to reproduce observed patterns in the relationship
between remote sensing metrics and static biomass stocks, we can move forward using
the presented methodology to explore dynamic changes of biomass stocks.

2.6 conclusion

This study introduced a novel approach for coupling remote sensing simulations with
a dynamic forest model to derive structure-to-biomass relationships for a tropical
forest, including disturbed stands. The lidar model was validated successfully with
airborne and census reference data from Barro Colorado Island. The model proved its
capacity for efficient and realistic lidar point cloud simulations for large, simulated
forest stands. Virtual forest inventory datasets were generated with a forest model
and sampled with the lidar simulation model. The results provide a comprehensive
overview of biomass estimation errors for a wide range of lidar metrics and spatial
scales and may guide decisions on which metric to choose for a given remote sensing
data structure (e.g., point clouds, vertical profiles, canopy height models). It was found
that height-to-biomass relationships were similar for undisturbed and disturbed forest,
but errors were larger for the latter. Furthermore, we found that top-of-canopy height
was an accurate biomass predictor even if pixel resolutions were only 10 to 20 m. Such
resolutions could be derived at large scale from spaceborne sensors.
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3.1 abstract

Monitoring of changes in forest biomass requires accurate transfer functions between
remote sensing derived changes in canopy height (∆H) and the actual changes in
aboveground biomass (∆AGB). Different approaches can be used to accomplish this
task: Direct approaches link ∆H directly to ∆AGB. Indirect approaches are based on
deriving AGB stock estimates for two points in time and calculating the difference.
In some studies direct approaches led to more accurate estimations, while in others
indirect approaches led to more accurate estimations. It is unknown how each ap-
proach performs under different conditions and over the full range of possible changes.
Here, we used a forest model (FORMIND) to generate a large dataset (> 28,000 ha) of
natural and disturbed forest stands over time. Remote sensing of forest height was
simulated on these stands to derive canopy height models for each time step. Three
approaches for estimating ∆AGB were compared: (1) the direct approach, (2) the indi-
rect approach and (3) an enhanced direct approach (dir+tex), using ∆H in combination
with canopy texture. Total prediction accuracies of the three approaches measured
as root mean squared errors were RMSEdirect = 18.7 t ha-1, RMSEindirect = 12.6 t ha-1

and RMSEdir+tex = 12.4 t ha-1. Further analyses revealed height-dependent biases
in the ∆AGB estimates of the direct approach, which did not occur with the other
approaches. Finally, the three approaches were applied on radar-derived (TanDEM-X)
canopy height changes on Barro Colorado Island (Panama). The study demonstrates
the potential of forest modeling for improving the interpretation of changes observed
in remote sensing data and for comparing different methodologies.

3.2 introduction

Forests play a crucial role in the global carbon budget. Carbon stocks of forests
worldwide are estimated to be around 350 to 600 Gt (Houghton et al., 2009; IPCC,
2007; Pan et al., 2011). Deforestation and forest degradation are estimated to cause
an annual change of 1.1 Gt of carbon. However, these change estimations include
large uncertainties, because they can only be derived indirectly from estimates of
other carbon stocks and fluxes (Houghton et al., 2009). Passive optical remote sensing
sensors are successfully used for monitoring the forest extent (Hansen et al., 2013).
However, to quantify the aboveground biomass and thus carbon stocks of forests,
passive optical sensors suffer from saturation and can be used only for forests with
relatively low biomass (Zolkos et al., 2013; Lu et al., 2014). Active sensors such as light
detection and ranging (lidar; Lefsky et al., 2002a; Wulder et al., 2012) and synthetic
aperture radar (SAR; Treuhaft et al., 2015) enable measurements of the canopy height
structure of forests, which can be used to derive information about the standing
aboveground biomass (AGB). The height-to-biomass relationship at the stand level for
area-based biomass estimations is a topic of many recent studies in different forest
ecosystems and geographical regions. A multitude of remote sensing metrics (Lefsky
et al., 2002b; Lu et al., 2014), spatial scales (Chen et al., 2016; Knapp et al., 2018a) and
modeling approaches (Fassnacht et al., 2014) have been tested and compared in this
context. It was found that often a single metric that captures canopy height can provide
accurate biomass estimations based on equations derived from regression analysis
(Drake et al., 2002). Among several possible metrics that describe average canopy
height (e.g., height quantiles, mean profile height), the so called mean top-of-canopy
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height (TCH; Asner and Mascaro, 2014) has become one of the most frequently used
metrics (Marvin et al., 2014; Coomes et al., 2017; Getzin et al., 2017).

Country-wide (Asner et al., 2014) and even biome-wide maps (Saatchi et al., 2011;
Baccini et al., 2012) have been published that build on the height-to-biomass relation-
ship. Combining a baseline map of biomass stocks (Saatchi et al., 2011) with maps
of forest cover change (Hansen et al., 2013) the carbon emissions due to tropical
deforestation between 2000 and 2005 have been estimated to be 0.81 Gt yr-1 (Harris
et al., 2012). Such an area-change-based estimation does not, however, account for the
dynamics of degradation, disturbances and recovery within forested areas.

For the monitoring of changes in forest biomass, two basically different methods
have been suggested in recent years, often referred to as the direct and the indirect
approach (Cao et al., 2016). Both try to estimate the change in aboveground biomass
(∆AGB) or carbon of a forest during a certain time interval, based on two remote
sensing data acquisitions, one before and one after the period of interest. In the indirect
method the remotely sensed height information at the beginning and at the end of
the time interval is used to estimate the standing biomass stocks before and after
the interval. The biomass change is then calculated as the difference between the
stocks at both points in time. Hence, the indirect approach relies on the height-to-
biomass relationship. In contrast, the direct method tries to link the height change
(∆H) to the biomass change. Thus, first height change is calculated as the difference
between height at the end and height at the start of the interval. Then, a ∆H-to-∆AGB
relationship is used to estimate the change in biomass from the observed height
change.

The direct and the indirect biomass change estimation have been applied in several
studies (sometimes in direct comparison to each other), covering different forest types,
from boreal (Bollandsås et al., 2013), temperate (Hudak et al., 2012; Zhao et al., 2018),
subtropical (Cao et al., 2016) and tropical regions (Dubayah et al., 2010; Meyer et al.,
2013). In some studies, the direct approach led to more accurate estimations, while
in other studies the indirect approach led to more accurate estimations. It remains
unclear, which approach performs better under which conditions. The studies dealing
with the topic had a rather regional extent and were based on a limited set of forest
inventory plots. Plots are usually small in size which results in large variation in
the observed relationships. With new spaceborne lidar and SAR sensors becoming
operational (e.g., TerraSAR-X-Add-on for Digital Elevation Measurements (TanDEM-
X), Sentinel 1, Global Ecosystem Dynamics Investigation Lidar (GEDI), BIOMASS,
Tandem-L) that enable large-scale measurements of forest structure, it is necessary to
establish standardized approaches for how to estimate biomass changes from remote
sensing.

There are advantages and disadvantages to both approaches. The advantage of the
indirect approach is that it makes use of the well-studied H-to-AGB relationship which
is applied at the beginning and end of the time interval. The direct approach requires
the establishment of a ∆H-to-∆AGB relationship. The advantage of this approach is
that with an established ∆H-to-∆AGB relationship, measurements of absolute forest
heights are no longer required and net changes in canopy surface height are sufficient
to estimate changes in AGB. This holds the potential to map ∆AGB from changes
observed in digital surface models (DSM; e.g., Shuttle Radar Topography Mission
(SRTM) and TanDEM-X products), which represent only the canopy surface height.
Knowing the terrain height (digital terrain model, DTM) underneath for deriving
net vegetation height (canopy height model, CHM) would not be required (Solberg
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et al., 2014; Solberg et al., 2015; Puliti et al., 2017). Such situations can arise if a certain
technique is only capable of generating surface information (e.g., photogrammetry,
SAR interferometry), or if the terrain information is of low precision due to dense
vegetation or on hill slopes (e.g., large footprint lidar, polarimetric SAR interferometry).

Despite the lack of absolute vegetation height information, the DSMs do, however,
contain valuable information on canopy structure. Crown and gap size distributions
vary among forest stands, depending on their age and height structure and are
reflected in the DSM texture. Textural information from optical remote sensing imagery
has been used previously to map habitat heterogeneity (Tuanmu and Jetz, 2015) and
forest biomass (Couteron et al., 2006; Proisy et al., 2012; Singh et al., 2015) and
textural information from DSMs and CHMs has been used successfully in forest
classification (Kennel et al., 2013) and estimation of average tree height, basal area
and stem volume (Bohlin et al., 2012; Abdullahi et al., 2016). Thus, analyzing the
DSM texture, i.e., local height variability among neighboring pixels, can provide a
useful set of metrics to characterize a forest stand in the absence of absolute height
information. This textural information could be used to enhance biomass change
estimations in situations where a simple direct approach may fail. Each single texture
metric alone may only show a weak relationship with canopy height, but using an
ensemble of metrics and a machine learning algorithm (e.g., random forest), we expect
to improve estimations of biomass change from DSM change compared to the simple
direct approach. Comprehensive analyses of the relations between remote sensing
metrics and ground-based metrics require a large number of ground-truth plots. The
measurement effort becomes even larger when the goal is to analyze changes over
time, which requires synchronized remote sensing and field campaigns at regular time
intervals, ideally covering the full successional range of the forest. Biomass losses due
to disturbances happen stochastically and even the most expansive field campaigns
can hardly provide representative samples for them. For that reason, forest models
have gained popularity to analyze simulated forests and explore relationships between
remote sensing and ground-based metrics (Shugart et al., 2015).

Forest models have a long tradition in ecology and forestry. They have traditionally
been used to understand processes in forest ecosystems and to test system behavior
under the influence of management scenarios or disturbance events (Shugart, 2003).
Starting from simple forest yield tables (Moser Jr, 1980), the incorporation of more
ecological processes led to advanced types of forest models, including forest gap
models (Botkin et al., 1972), and finally to the development of individual-based forest
models (Huston et al., 1988). Forest ecosystem functions and forest structure emerge
from individual trees and their interactions. Therefore, gap models are designed to
work at local scale and represent forest structure and dynamics at a detailed level
(Bugmann, 2001; Shugart et al., 2018). An architecture based on individual trees allows
the modeling of structurally realistic concepts that are based on field measurements at
different organizational levels (Grimm and Berger, 2016) – which was the key driver
for the successful applications of gap models. As the impact of disturbance events
or management in forests is mainly quantified at the tree level, an individual-based
structure is a huge advantage for simulating disturbances.

The individual-based approach facilitates the linkage of forest models to remote
sensing data. Previous applications have covered different aspects including mapping
of biomass (Hurtt et al., 2004; Rödig et al., 2017b) and productivity (Rödig et al., 2018),
understanding of height biomass relationships (Köhler and Huth, 2010; Palace et al.,
2015), error quantification (Frazer et al., 2011) and monitoring of changes in forest
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structure (Cazcarra-Bes et al., 2017). The individual-based forest model FORMIND
(Fischer et al., 2016) has been used to analyze the relationship between many different
lidar metrics and AGB for a tropical rainforest across scales and disturbance states
(Knapp et al., 2018a). The simulated disturbances allowed to expand the range of
stand structures and successional stages far beyond the range covered by the available
inventory data of an old-growth forest.

In this study, we used FORMIND simulations to analyze and compare different
ways of how to estimate biomass changes from height changes. We simulated time
series of tropical forest stands (synthetic ground-truth) and synthetic remote sensing
data. Tropical forests are of particular interest in the context of mapping forest biomass
changes, due to their large share in the global vegetation carbon pool and their high
deforestation rates. The methods developed on the basis of forest simulations were
finally tested with TanDEM-X data acquired at two points in time.

The main research questions were as follows: (1) How can aboveground biomass
change be estimated from canopy height change, if the goal is to cover the full range
of tropical forest succession including disturbed forests? (2) Under which conditions
do the different approaches work best? (3) Can canopy texture information improve
estimates of biomass change in the absence of canopy height information?

3.3 materials and methods

3.3.1 Study Area

The study focusses on Barro Colorado Island (BCI), Panama (9.15° N, 79.85° W), a semi-
deciduous tropical lowland rainforest site. Average daily maximum and minimum
temperatures are 30.8 and 23.4 °C and the annual precipitation sum is 2,600 mm,
with a dry season from January to April (Condit et al., 2001). BCI hosts a 50-ha
(1,000 m × 500 m) rainforest observation plot, which has been continuously monitored
for more than three decades, with every tree with a diameter at breast height (DBH)
≥ 1 cm being recorded at 5-yr intervals (Condit, 1998; Condit et al., 2012; Hubbell et al.,
1999; Hubbell et al., 2005). This inventory dataset with its outstanding spatial and
temporal dimensions, along with the large amount of research conducted around it,
provides a rich source of information for forest model parameterization (Kazmierczak
et al., 2014; Knapp et al., 2018a) as well as ground-truthing for remote sensing studies
Mascaro et al., 2011a; Meyer et al., 2013; Lobo and Dalling, 2014). In this study, a
forest model parameterized with the census data was used and the census data of
2010 and 2015 (in combination with the same allometries as used in the forest model,
Equations 3.1 to 3.3) served for ground-truthing of satellite-derived estimations of
biomass change.

3.3.2 Forest Model Description

The forest model FORMIND simulates the dynamic processes of establishment, growth,
competition (for light and space) and mortality at the individual tree level. Species with
similar ecological traits and growth characteristics are grouped into plant functional
types (PFT). Biomass growth is mainly driven by light. Large trees receive most of the
incoming radiation and shade smaller trees. The resulting biomass growth of each tree
is determined by a physiology-based carbon balance including photosynthesis and
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respiration. An increase in tree biomass results in stem diameter growth and through
the use of allometric relationships also in a growth of tree height, stem volume and leaf
area. A detailed description of the model processes can be found in Fischer et al. (2016).
FORMIND was already fully parameterized for the study site (Knapp et al., 2018a).
All species present in the BCI plot were grouped into four PFTs, according to stem
diameter increment rates (slow, fast) and maximum tree height (small, tall). Allometric
equations from the literature (Bohlman and O’Brien, 2006) were used to describe tree
geometries (Knapp et al., 2018a). Tree height Htree [m] and crown diameter CDtree [m]
are modelled as functions of DBHtree [m] using Equations 3.1 and 3.2.

Htree = 43.4 · DBH 0.6
tree (3.1)

CDtree = 18.2 · DBH 0.68
tree (3.2)

PFTs can reach different maximal heights (20, 20, 40 and 55 m). AGBtree is calculated
from Equation 3.3, where F is the stem form factor, which accounts for the deviation
from a cylindrical shape, ρ is the wood density [tODM m-3] and σ is the stem-to-total
AGB ratio of the tree. Parameter values are given in Knapp et al. (2018a).

AGBtree = π · (DBHtree

2
)2 · Htree · F · ρ

σ
(3.3)

The parameterization has been shown to reproduce several patterns observed in the
field (AGB, basal area, stem numbers and stem size distributions of the total plot and
per PFT). Additionally, it has been used in combination with lidar simulations and
could reproduce patterns of airborne lidar data (Knapp et al., 2018a). The temporal
development of AGB and canopy height during primary succession is shown in
Appendix B Figure B.1.

3.3.3 Simulations

FORMIND was used to simulate the development of a 16-ha area (400 m × 400 m)
of the BCI forest for a long period (2,000 years). The first 200 years of spin-up were
discarded from the analysis. In each year a full inventory table containing all trees
with DBH ≥ 3 cm was stored and a virtual lidar scan of the area was sampled
using the lidar simulation approach described by Knapp et al. (2018a) (Figure 3.1). In
FORMIND, we simulated spatially explicit disturbances to frequently clear parts of
the area. Disturbances were set to reoccur at random times and places within the area
with an average time interval of 25 years and an average affected area of 50% (Fischer
et al., 2016). These settings created a spatially heterogeneous mosaic of different forest
regrowth stages. The scenario was designed to produce a dataset with maximum
possible structural heterogeneity to cover the full range of possible biomass and height
changes with the simulations.

3.3.4 Biomass, Height and Change Calculations

The simulated lidar data were processed to obtain a metric called TCH10 (mean
top-of-canopy height with 10-m pixel resolution) at 1-ha scale. This metric has been
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shown to yield a height-to-biomass relationship which produces accurate biomass
stock estimates (RMSE = 19.8 t ha-1; nRMSE = 8%; R2 = 0.96; Knapp et al., 2018a) To
obtain TCH10 from the simulated lidar point cloud a canopy height model (CHM) was
produced by taking the height of the highest lidar return falling into each 10 m × 10 m
area as pixel value. Next, all pixel values were averaged to obtain one TCH10 value
for each hectare. Aboveground biomass (AGB) of the simulated forest stands was
aggregated at the 1-ha scale. Changes in observed AGB (called ∆AGBobserved) and
changes in TCH10 (called ∆TCH10) over each 5-yr interval were calculated for each
simulated hectare (Figure 3.1, see Appendix B for equivalent analysis for 10- and 25-yr
intervals). The total number of analyzed 1-ha forest stands was 28,736.

Figure 3.1: Technical flowchart of the analysis of the simulated data. The analysis of empirical
data was conducted in the same way, just with different data sources: inventory data
instead of forest model and TanDEM-X data instead of remote sensing simulation
(section 3.3.8). Abbreviations: AGB = aboveground biomass, CHM = canopy height
model, DSM = digital surface model, TCH = mean top-of-canopy height. Note that
we distinguish between CHM and DSM. In the simulations CHM and DSM are
the same, because the simulated forest stands are on flat terrain. However, CHMs
are only required to derive TCH (indirect approach), while for ∆TCH and texture
calculations DSMs are sufficient (direct and dir+tex approach).

3.3.5 Texture Calculations

A variety of texture metrics were derived from the simulated CHM rasters (10-m
resolution) to capture vegetation surface variability. We used a 3 × 3 pixel moving
window (30 m × 30 m), only considering the direct neighbors for each pixel, and then
averaged those textures over each hectare. First order texture metrics are independent
of the spatial arrangement of pixel values within the moving window. The following
first order texture metrics were derived (using the raster package in R (R Develop-
ment Core Team, 2014): standard deviation, skewness, kurtosis, slope, topographic
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ruggedness index (TRI), topographic position index (TPI) and roughness of the nine
pixel values in the moving window. Second order texture metrics are based on the
grey-level co-occurrence matrix (GLCM), i.e., they consider how often certain pixel
values occur next to each other (Haralick et al., 1973). To obtain a limited set of discrete
grey-levels for GLCM texture calculations, the original CHM values were rounded
(5-m classes). The following GLCM metrics were calculated (using the glcm package in
R): homogeneity, contrast, dissimilarity, entropy and angular second moment (ASM).
Directionality in the co-occurrence pattern was not considered (circular version). It
is important to note that all texture metrics are independent of the absolute pixel
values. The texture metrics depend only on the differences in values between focal
pixel and neighbor pixels. Thus, they can be derived from a CHM (terrain-normalized)
or a DSM (not terrain-normalized) alike (assuming that the contribution of terrain
variability is much smaller than the contribution of canopy surface variability to DSM
variability at the given 30 m × 30 m moving window scale).

3.3.6 Biomass Change Estimation

Three different approaches for ∆AGB estimation were tested with the simulated
dataset: (1) the direct approach, (2) the indirect approach and (3) an enhanced direct
approach involving canopy texture information (dir+tex; Figure 3.2).

3.3.6.1 Direct Approach

A linear regression model with slope m and intercept n was fit between simulation-
derived ∆AGBobserved and ∆TCH10 (Equation 3.4) and used for ∆AGBdirect predictions.

∆AGBdirect = m · ∆TCH10 + n (3.4)

3.3.6.2 Indirect Approach

For each simulated forest stand (1 ha) and simulation year the AGB stock [t ha-1] was
estimated using an established TCH10-to-AGB power law relationship (Equation 3.5)
with coefficients a = 0.4 and b = 1.81, derived in a previous study (Knapp et al., 2018a).

AGB = a · TCHb
10 (3.5)

∆AGBindirect was calculated as the difference between AGB stocks at the beginning
(t1) and end (t2) of the time interval (Equation 3.6).

∆AGBindirect = AGBt2 − AGBt1 = a · TCHb
10, t2 − a · TCHb

10, t1 (3.6)

3.3.6.3 Enhanced Direct Approach (dir+tex)

We used the random forest machine learning algorithm (Breiman, 2001) to predict
∆AGBdir+tex from ∆TCH10 (like in the direct approach) in combination with the CHM
texture metrics. Random forest is an ensemble method based on regression trees. To
train the algorithm, an ensemble of regression trees (here 1,000) is fit. Each single
tree is trained using only a subset of the full training data and using only a subset
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of available predictor variables. A prediction of a random forest is generated by
averaging the predictions obtained from all single regression trees. We used the model
selection procedure developed by Murphy et al. (2010) to obtain a parsimonious set of
a few meaningful predictor variables (using the rfUtilities package in R). The goal of
the procedure is to find the model that maximizes explained variability, minimizes
the mean squared error (MSE) and needs the lowest possible number of predictor
variables. In the procedure, random forest models are iteratively fit to the data, starting
with all predictor variables. During each iteration, predictors are ranked by decreasing
relative importance (contribution to MSE reduction) and predictors falling below an
importance threshold are dropped before the next iteration. We used deciles from 0.1
to 1 as importance thresholds. Additionally, we chose a parsimony threshold of 0.05,
meaning that in the end from all models for which MSE was only 5% or less above
the MSE of the very best model, the model with the smallest number of predictors
was chosen as the most parsimonious and hence best model. The model selection was
applied using the whole dataset.

Figure 3.2: Inputs and principles of the three different approaches to derive biomass
change (∆B) over time from observed canopy heights (H) or height change
(∆H) and canopy texture, respectively. H refers to mean top-of-canopy
height, obtained by averaging the canopy height model (CHM, indicated
by red line). The direct approach and the dir+tex approach do not require
absolute canopy height information, thus digital surface models (DSM)
can be used instead of CHMs.
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The three different approaches for ∆AGB prediction were evaluated based on
how well predictions fit observations (i.e., ∆AGBobserved derived directly from the
FORMIND output) and corresponding goodness-of-fit statistics such as R2, root mean
squared error (RMSE) and bias (mean residual value). To avoid overfitting of the
machine learning model in the dir+tex approach, the dataset was split into five
similarly sized groups and five random forest models were trained with 80% of the
data, respectively. The predictions were then made for the remaining 20% test data,
which were not part of the training dataset (5-fold cross validation).

3.3.7 Evaluation Experiments by Bootstrapping

To assess how prediction accuracy depends on forest height, we conducted a boot-
strapping analysis of the simulated dataset. We iterated through forest height classes i
from 5 to 50 m in 1-m steps. For each height class i the simulated dataset was subset,
selecting all stands for which the stand height at the initial year (TCH10, t1) was inside
the height class i with a class width of 10 m (i.e., i - 5 m < TCH10, t1 < i + 5 m). From
all available stands in each height class i, 1,000 stands were randomly sampled with
replacement. Estimations of ∆AGB were derived for the 1,000 sample stands using
(1) the indirect, (2) the direct and (3) the dir+tex approach. These ∆AGB-estimates
were compared against the actual ∆AGBobserved values of each stand to calculate and
record R2, RMSE and bias. The whole sampling procedure was repeated 100 times for
each height class.

3.3.8 Application on TanDEM-X Data

To finally test the derived models on real world data, we used imagery derived from
the TanDEM-X satellites over BCI in the years 2011 and 2015. TanDEM-X is a radar
interferometer with synthetic aperture (SAR) providing single pass interferometric
(Graham, 1974; Bamler and Hartl, 1998) and polarimetric interferometric (Cloude
and Papathanassiou, 1998) data at X-band (Krieger et al., 2013). The data have been
acquired in a bistatic configuration, with a practically zero temporal baseline and a
spatial baseline corresponding to a height of ambiguity of about 47 m for the 2011
and 70 m for the 2015 acquisition. Canopy height was calculated from interferometric
TanDEM-X data at HH polarization in combination with a lidar DTM (acquired in
2009; Knapp et al., 2018a; Lobo and Dalling, 2014) needed as reference for the terrain
topography below the trees. The single inversion steps are described in detail in
Kugler et al. (2014). Here, the Single-Pol Inversion was applied. The forest layer was
modeled as a random volume (random distribution of scatterers) over a ground layer
as described by Attema and Ulaby (1978) and Treuhaft et al. (1996). This random
volume over ground model (RVoG) assumes that the backscattering at X-band along
forest height, can then be described by an exponential backscatter function in which
the backscattered power decreases from the tree tops to the ground. Furthermore,
Kugler et al. (2014) assumed that the interferometric measurement at X-band contains
only backscattering from the vegetation layer (no backscattering from the ground
below the forest). With these preconditions and with the ground information from the
lidar DTM, we constructed CHMs of 10-m resolution from the TanDEM-X data for the
years 2011 and 2015. TCH10 was derived at 1-ha scale for the 50-ha inventory plot for
both years. ∆AGB was estimated from ∆TCH10 using the three approaches. As ground-
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truth, AGB at 1-ha scale was calculated from DBH measurements of the BCI census
data of 2010 and 2015 using the same tree allometries as in FORMIND (Equation 3.3).
Inventory-based ∆AGB was compared against the three TanDEM-X-based ∆AGB
estimates.

3.4 results

3.4.1 Simulation Results

In total, the simulated forest dataset consisted of 28,736 ha. For each of these 1-ha
stands, the changes in biomass and height were recorded over a 5-yr interval. Biomass
increased on 72.6% (20,868 ha) and decreased on 27.4% (7,868 ha) of the stands. Height
increased on 74.9% (21,522 ha), decreased on 25% (7,186 ha) and stayed equal on 0.1%
(28 ha) of the stands. The maximal biomass gain was 83.7 t ha-1 and the maximal
biomass loss was -428.6 t ha-1. The maximal height gain was 10.3 m and the maximal
height loss was -42.6 m.

Figure 3.3: Simulated data showing (a) the ∆TCH10-to-∆AGB relationship for a 5-yr time inter-
val between first and second measurement and (b + c) the frequency distributions
of both variables. Each point represents a 1-ha forest stand. Colors indicate the
initial height (TCH10) of each stand. The black line represents the linear regression
model.

To establish a direct relationship between height change ∆TCH10 and biomass
change ∆AGB, a linear regression model was fit between the two variables (Figure 3.3)
with a significant slope term of 9.38 (p < 0.001) and an insignificant intercept of
0.14 (p = 0.218). This matches the expectation that a change of zero in forest height
should, on average, also result in zero change in biomass. Forcing the regression
through the origin did not change the slope term. The R2 was 0.878 and the RMSE was
18.7 t ha-1 (5 yr)-1. Figure 3.3 shows the scatterplot with colors indicating the TCH10

of each stand at the initial year. Low, early successional stands (blue) tend to show
large ∆TCH10 values associated with small ∆AGB values, whereas high, old-growth
forests (red) tend to show small ∆TCH10 values associated with large ∆AGB values.
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Results for the analyses of 10- and 25-yr time intervals can be found in Appendix B
(Figure B.2).

The derived ∆TCH10-to-∆AGB relationship was used to estimate ∆AGB from
∆TCH10 following the direct approach. Alternatively, ∆AGB was estimated for each
hectare following the indirect approach and the dir+tex approach. Statistics were
derived for the linear relationship of prediction vs. observation. The direct approach
resulted in R2 = 0.878 (RMSE = 18.7 t ha-1 (5 yr)-1). The indirect approach resulted in a
R2 = 0.945 (RMSE = 12.61 t ha-1 (5 yr)-1). The cross-validation of the dir+tex approach
resulted in a R2 = 0.947 (RMSE = 12.42 t ha-1 (5 yr)-1). Figure 3.4 shows the 1:1-plots
for the different approaches.

Figure 3.4: 1:1-plots of estimated ∆AGB versus observed ∆AGB following (a) the direct (b) the
indirect and (c) the dir+tex approach. Each point represents a 1-ha forest stand.
Colors indicate initial height (TCH10) of each stand. Black lines represent linear
regression models.

In the random forest model selection procedure for the dir+tex approach nine
predictor variables were selected to form the most parsimonious model (Figure B.3).
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∆TCH10 was identified clearly as the most important predictor variable, followed
by first order texture variables skewness, topographic position index and kurtosis.
Second order (GLCM-based) texture metrics were of minor importance.

The derived models for ∆AGB estimation were evaluated for forests with different
heights (bootstrapping analysis). We explored height gains and losses separately
(Figure 3.5). According to the R2 values (Figure 3.5a-c), the linear trend between
prediction and observation is weak for stands with low canopy heights (TCH10 < 10 m)
but the R2 reach values around 0.9 for all stands with TCH10 ≥ 10 m. However, if
losses are regarded separately, stands need to have an initial height ≥ 25 m to show
such high R2 values. If gains are regarded separately, the linear trend is generally
less pronounced with maximal observed R2 values being around 0.5. Overall, the R2

patterns are similar for the direct, the indirect and the dir+tex approach with a slight
increase from low to high stands.

Figure 3.5: Prediction statistics of the three approaches plotted over stand heights. R2, RMSE
and Bias were calculated from 1,000 samples in each stand height class. Solid lines
represent the mean and dashed lines represent the minima and maxima of 100
bootstrapping replicates. Sampling was done using the full dataset (“All”, black)
and using exclusively stands with positive (“Gains”, blue) or negative (“Losses”,
red) height changes, respectively.

In contrast to the R2 patterns, the prediction error (RMSE) patterns are quite distinct
between the approaches. RMSE for the direct approach (Figure 3.5d) are large for low
and high stands and have a minimum at intermediate stand heights around 25 m
(40 m in case of losses). For the indirect approach (Figure 3.5e) RMSE stay constant
around 10 t for stands with heights < 30 m and increase slightly for stands with
heights ≥ 30 m. For the dir+tex approach (Figure 3.5f) the RMSE pattern for gains is
similar to the indirect approach. For losses, the pattern is similar to the direct approach
but with smaller RMSE values.
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Finally, when we look at the systematic biases of the ∆AGB predictions, the indirect
approach does not show any pronounced bias over the entire height range (Figure 3.5h).
The direct approach leads to considerable systematic biases when estimating ∆AGB
from height gains and losses (Figure 3.5g). Gains are overestimated by up to 60 t for
the lowest forest stands and underestimated by up to -20 t for the highest stands.
Losses are negatively biased by up to -50 t for low stands and positively biased by up
to 20 t for high stands. The biases are around zero for stands around 35 m height. The
biases for the dir+tex approach are higher than the ones for the indirect approach but
much lower than the ones for the direct approach (Figure 3.5i). Gains are unbiased for
stands up to 40 m height. Biases of losses show a similar but less pronounced pattern
to the direct approach.

3.4.2 Theoretical Considerations about the ∆H-to-∆AGB Relationship

For a better understanding of the observed biases, in particular the height-dependent
biases of the direct approach, we made the following theoretical considerations. For
simplicity, we replaced TCH10 with H. The problem with assuming a linear relationship
between ∆H and ∆AGB is that the underlying H-to-AGB relationship is non-linear
and can be described, e.g., by a power law (Equation 3.7 with parameters a and b
from Equation 3.5). The relationship between height change and biomass change at
any given height can be derived from the first derivative of Equation 3.7 (see Equation
3.8 and Equation 3.9).

AGB = a · Hb (3.7)

dAGB
dH

= a · b · Hb−1 (3.8)

∆AGB = a · b · Hb−1 · ∆H (3.9)

Equation 3.9 describes the relationship between ∆AGB and ∆H, which depends also
on H (which is unknown in case of missing DTM). Thus, the magnitude of ∆AGB
is not only dependent on ∆H but also on the absolute height H of a stand. For any
given stand height H, the ∆H-to-∆AGB relationship can be expressed with a linear
model, but the slope of the linear model is different for each possible H (Figure 3.6a).
If we assume that H lies inside the range from 0 to 55 m, the marked area in the
plot encloses all possible ∆H-∆AGB combinations (black envelope resembling the
shape of a propeller). Stands of a given initial height move along power law-shaped
trajectories over time (e.g., open circles for 10 m and filled circles for 30 m initial height
in Figure 3.6a). The possible gains for a certain time interval are constrained by the
forest’s growth rate, while losses can be large even within short time periods, due to
the stochastic occurrence of mortality and disturbance events. For 5-, 10- and 25-yr
intervals, the simulations show the subspace of observable ∆H-∆AGB combinations
(colored envelopes in Figure 3.6b). The simulation data exceed the black propeller,
particularly around the coordinate origin. The explanation is that the black propeller
envelope only applies under the assumption of an exact power law relationship
between H and AGB without variability in the H-to-AGB relationship.
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Figure 3.6: Theoretical considerations on the relationship between height change and biomass
change. (a) shows the slopes of the relationship for different initial stand heights.
The black envelope covers all possible change combinations if the initial height
is restricted to the range of 0 to 55 m and the height-to-biomass relationship is
an exact power law. The (open and closed) circles mark trajectories of different
forest stands with a given start height (10 and 30 m). (b) shows the envelopes of
simulated data for different time intervals and the empirical data from the BCI
50-ha plot.

3.4.3 Results for the 50-ha Plot

The CHMs of the BCI 50-ha plot derived from TanDEM-X data of 2011 and 2015
(Figure B.4, Appendix B) served to test the three ∆AGB estimation models which
had been fit with simulation data. At the 1-ha scale, the mean TCH10 over the 50 ha
was 31.0 m (± 3.4 m SD) in 2011 and 30.3 m (± 3.9 m SD) in 2015. Distributions
of canopy height (TCH10) in both years and canopy height change (∆TCH10) within
the four years are given in Figure 3.7a-c. The distribution of biomass change (∆AGB)
calculated from the inventory data is given in Figure 3.7d. There was a slight loss
in average canopy height (mean ∆TCH10 = -0.6 m ± 2.6 m SD), but a slight gain in
average biomass (mean ∆AGB = 3.3 t ha-1 ± 16.6 t ha-1 SD). When plotted against
each other ∆AGB and ∆TCH10 of the BCI plot scatter closely around the coordinate
origin in Figure 3.6b (blue points), showing neither strong gains nor losses.

Table 3.1: R2 values for the 1:1 relationships of
∆AGB predictions from TanDEM-X data
following the three different approaches
vs. inventory-based ∆AGB and against
each other.

Direct Indirect Dir+tex

Inventory 0.006 0.007 0.003

Dir+tex 0.966 0.946 -

Indirect 0.991 - -
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Figure 3.7: TanDEM-X-derived distributions of (a+b) mean top-of-canopy height (TCH10),
(c) height change (∆TCH10) and (d) inventory-derived biomass change at 1-ha scale
within the 4-yr interval.

The TanDEM-X-derived ∆AGB estimates from all three approaches did not show
any significant correlation with the observed ∆AGB derived from the forest inventory
data from censuses in 2010 and 2015, with R2 values close to zero (Figure 3.8 and
Table 3.1). The estimates of ∆AGB from the three approaches were, however, closely
correlated among each other with R2 values ≥ 0.96 (Table 3.1). Thus, within the
narrow range of height changes observed in the BCI plot over the short time interval
of 4 years, the three different approaches produced very similar predictions. However,
the observed height changes do not reflect the changes in AGB adequately, hence,
none of the approaches resulted in ∆AGB estimates that could be confirmed by the
ground-truth data.

Figure 3.9 shows ABG stocks plotted over TCH10 at 1-ha scale for both years. The
arrows illustrate the changes between 2011 and 2015 in both attributes. There is no
clear link in the sense that an increase or decrease in AGB is accompanied with an
increase or decrease of canopy height, respectively. On 23 hectares AGB and canopy
height changed in the same direction, whereas on the remaining 27 hectares they
changed in opposite directions. This explains the difficulties in estimating ∆AGB.

3.5 discussion

Our results provide insight into the relationship between canopy height and biomass
change over time for a tropical lowland rainforest. Understanding this relationship
is crucial to quantify forest carbon losses and gains with remote sensing data. Using
forest simulations, including disturbances, we could produce a large dataset covering
a wide range of stand structures and successional stages. With this dataset, we were
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Figure 3.8: 1:1 plot of predicted ∆AGB (based on TanDEM-X-derived ∆TCH10) versus observed
∆AGB (based on forest inventory data) at 1-ha scale for the BCI 50-ha plot and
the time interval between 2011 and 2015. Colors represent the direct (black), the
indirect (red) and the dir+tex (blue) approach.

able to compare the performance of three different approaches to estimate biomass
change.

3.5.1 Performance of the Approaches

In comparison, the indirect approach performed better than the direct approach. The
former led to more precise and unbiased ∆AGB estimations over the full range of
possible height changes. Nevertheless, looking only at the statistics for the whole
dataset, both approaches showed high R2 values. However, the colors indicating the
initial height in the 1:1-plot (Figure 3.4a) and the bootstrapping results (Figure 3.5)
reveal that the direct approach only worked well in a window of forest heights around
30 m, while for low and high stands it produced strongly biased results. Analyzing
gains and losses further revealed the asymmetry in the ∆H-∆AGB relationship, due to
slow, continuous growth and abrupt, stochastic mortality, and its effect on statistics that
quantify prediction accuracy. The biases of the direct approach for low and high stands
can be explained by the non-linearity of the H-AGB relationship, leading to different
slopes in the ∆H-∆AGB relationship, depending on stand height. The development of
an enhanced direct approach, which avoids such bias and allows accurate estimations,
even in the absence of information about H, was the goal behind the dir+tex approach.
The textural information should compensate for the missing information about H. It
was shown that estimations of ∆AGB from the dir+tex approach were nearly unbiased
and of similar accuracy as the ones from the indirect approach.

In this study, we did not test the robustness of the approaches with regard to the
time interval, i.e. whether it is possible to calibrate an approach based on observations
over a certain time interval and then apply it for predictions over a different time
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Figure 3.9: Aboveground biomass (AGB) plotted over canopy height (TCH10) for the two
different years. Each point represents 1-ha of the BCI 50-ha plot. Arrows represent
the change in both attributes over the 4-yr interval. Colors of the arrows indicate
whether AGB and TCH10 changed in the same (blue) or opposite (red) direction.

interval. For the indirect approach the interval is irrelevant, because it is based on two
independent biomass stock estimates. For the direct approach estimates depend on the
slope of the ∆H-∆AGB relationship, which was similar for 5-, 10- and 25-yr intervals
(9.38, 9.99, 10.51). In the dir+tex approach, the only variable depending on the interval
is ∆H (like in the direct approach), while all texture variables only describe the state
of the forest at the initial point of the interval. Hence, we expect all three approaches
to be fairly robust for variable time intervals. The length of the time interval does,
however, influence the frequency distribution of observable changes, with large gains
being only possible over longer time intervals and large losses being more frequent
over longer time intervals (Figure B.2).

3.5.2 Comparison with Other Studies

In an earlier study comparing the indirect and direct approach on BCI, Meyer et
al. (2013) used data acquired in 1998 with the Laser Vegetation Imaging Sensor
(LVIS, large footprint) and discrete return small footprint lidar data from 2009 (11-
yr interval). They could not find a direct ∆H-∆AGB relationship at the 1-ha scale
(R2 < 0.1) and using the indirect approach they report large estimation uncertainties.
They considered the different sensor types as a major reason for the missing direct ∆H-
∆AGB-relationship. In another study using data from two successive LVIS campaigns
in 1998 and 2005 (7-yr interval) at La Selva, Costa Rica, Dubayah et al. (2010) found a
direct ∆H-∆AGB relationship (R2 = 0.65, RSE = 10.54 t ha-1 or excluding secondary
forests R2 = 0.5, RSE = 8.86 t ha-1) using a two-predictor model based on changes in
height quantiles ∆RH50 and ∆RH100. The statistics of that relationship are in the order
of magnitude of what was observed for gains in our simulations. Several comparative
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studies in boreal (Bollandsås et al., 2013; Næsset et al., 2013) and subtropical (Cao
et al., 2016) forests report ∆AGB estimations to be more accurate when obtained from
the direct approach as opposed to the indirect approach. Others, covering tropical Asia
(Englhart et al., 2013) or temperate North America (Hudak et al., 2012), only tested the
indirect approach. In two studies, we found scatterplots that indicate a different slope
in the ∆H-∆AGB relationship for secondary (disturbed) sites than for old-growth
(undisturbed) sites (Figure 8 in Dubayah et al., 2010 and Figure 9F in Hudak et al.,
2012). This is in agreement with our simulation results and the explanation given in
Figure 3.6.

As soon as the goal is to cover a wide range of successional stages including
disturbed stands, the non-linear H-AGB relationship leads to H-dependent biases
in the linear ∆H-∆AGB relationship. The condition for an unbiased direct approach
would be that the underlying H-AGB relationship is linear. In past studies, the
direct approach has worked better in boreal sites (coniferous forests) and worse in
tropical sites (broadleaved forests). Hence, the differences in crown shapes and forest
structure between those forest types might lead to a more linear H-AGB relationship
in coniferous forests, making them more suitable for the direct approach.

Recently, there have been attempts to generalize the height-to-biomass relationships
accounting for differences between geographical regions and forest types (Asner and
Mascaro, 2014; Bouvier et al., 2015). These relationships are, however, not linear, but
power laws. Thus, the linear relationship that has been found in some studies in the
past might be an effect of either small plot sizes, causing large variability (Solberg
et al., 2015; Solberg et al., 2017), or a limited sampling of successional stages, not
covering the full spectrum of H-AGB combinations.

A linear H-AGB relationship is a strict criterion for the application of a method.
Many forests may not fulfill this criterion and for large-scale mapping of AGB changes
(from height changes) a method independent of such a requirement should be pre-
ferred. With the proposed dir+tex approach, we found a method that works indepen-
dently of knowledge about absolute canopy height. Biomass changes are estimated
based on height change and local canopy texture at the initial point in time. Predictions
showed similar accuracies to the indirect approach. Biases were somewhat larger than
for the indirect but much smaller than for the direct approach. This texture-assisted
approach could therefore be applied to multi-temporal DSM data for which no exact
underlying DTM is available and hence CHM creation is impossible. This applies to
global DSMs, originating from different spaceborne sensor systems (SRTM, TanDEM-
X) (Puliti et al., 2017; Solberg et al., 2014; Solberg et al., 2015) and to DSMs derived
photogrammetrically from digital stereo imagery (Bohlin et al., 2012; Vastaranta et al.,
2013).

3.5.3 Outcome of TanDEM-X Application

Despite the good performance of the three approaches on the simulation dataset,
none of them was able to produce accurate predictions of biomass change for the BCI
50-ha plot, based on canopy height change derived from TanDEM-X data. The main
difference between the simulated data and the TanDEM-X data was that the forest
in the simulations was exposed to a disturbance regime causing dramatic changes
in canopy height and biomass, while no such disturbances occurred on the BCI plot
within the observed time interval. Thus, the changes observed on the BCI plot are
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only a subset of possible changes for a 5-yr interval (Figure 3.6b). BCI only represents
old-growth dynamics with small changes in canopy height and biomass, while the
simulations cover the entire range of possible changes. We suspect that there are two
main reasons for the difficulties in predicting ∆AGB from TanDEM-X-derived ∆TCH10

on the BCI plot: (1) the variability unexplained by the prediction models and (2) the
uncertainty in canopy height estimates.

Regarding the unexplained variability (1), the bootstrapping results tell us that for
an old-growth forest, like on the BCI plot, with an average height TCH10 = 30 m,
the average estimation error for ∆AGB over a 5-yr interval is around 10 t ha-1 for all
three approaches (e.g., for the indirect approach RMSE = 9.5 t ha-1). This is a high
uncertainty given that the standard deviation of ∆AGB from the BCI inventory was
only 16.6 t ha-1 and the mean ∆AGB was only 3.3 t ha-1. The high R2 values in the
direct ∆H-∆AGB relationship of the simulated data were caused by the large losses.
Since such losses did not occur on BCI, the R2 for the BCI plot should be expected
to be much lower. In the simulations, the average R2 for gains only was 0.35 for a
30 m high stand. Even this value can be expected to be too optimistic for the BCI
plot, as the simulated gains include areas of recovery after disturbances, which were
also not present in the BCI plot. Thus, the intrinsic variability in canopy height and
biomass alone leads to a very weak ∆H-∆AGB relationship for old growth forests.
The simulations did not account for the uncertainty in canopy height estimates from
remote sensing, which is yet another factor influencing the results from the BCI plot.

Uncertainty in X-band-derived tropical forest heights (2) has been reported to lie
in a range from 1 to 6 m (Kugler et al., 2014; Treuhaft et al., 2017). The precise
numbers may vary depending on the sensor configuration, the height metrics and
the spatial scale considered. In our study, the main limitation of the TanDEM-X
derived heights arose from the sub-optimum spatial baselines available, that were
practically too large for the forest heights within the study site, leading to a low
interferometric coherence (Figure B.5) and to rather inaccurate forest heights. Note
that the limited penetration capability at the X-band was circumvented by using
lidar-derived topographic information. The observed height changes on the BCI plot
were small (standard deviation of 2.6 m for ∆TCH10 at ha-scale and mean ∆TCH10 of
-0.6 m) in comparison to the large uncertainty.

Thus, the two reasons, (1) variability in the ∆H-∆AGB relationship and (2) uncer-
tainty in canopy height estimates, lead to a low signal-to-noise ratio and explain why
the presented approaches are insufficient for the detection of small changes in AGB in
an undisturbed old-growth tropical rainforest. Further sources of uncertainty are the
variability in tree geometry at the individual level which is simplified in the forest
model by allometric equations, as well as temporal mismatch (between census and
remote sensing acquisition), errors in the census data and geolocation errors.

3.5.4 Perspectives

The presented approaches to estimate biomass changes at 1-ha scale based on 10-m
resolution vegetation height changes are best suited for monitoring changes due to
disturbances, degradation and growth. They could serve to map biomass changes
caused by these processes from TanDEM-X data at regional scale. They cannot detect
small changes associated with old-growth forest dynamics. Future research efforts
should focus on reducing the uncertainty in biomass change estimates. Uncertainty
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in the prediction models can be reduced, e.g., by considering data at finer horizontal
resolution, the full vertical signal distribution, the multitude of variables that can
describe forest structure and individual-tree-based approaches (Zhao et al., 2018). The
uncertainty in height estimations due to the variability in the remote sensing data can
be reduced by fitting trends to dense time series of multiple acquisitions (Treuhaft et al.,
2017). Future research should also try to disentangle the processes and compartments
behind biomass dynamics (including also belowground biomass) by quantifying the
contributions of wood productivity, mortality, foliage and fine root turnover (He et al.,
2012). Upcoming spaceborne missions (e.g., GEDI, BIOMASS, Tandem-L) and the
increasing data collections from airborne campaigns (lidar, SAR, photogrammetry)
will provide the measurements to advance in this direction. Data fusion will help to
use the available data most effectively with each individual mission contributing to a
different aspect, e.g., by providing detailed vertical foliage distributions and ground
elevation at points in space (GEDI), or wall-to-wall measurements of SAR backscatter
from woody biomass components (BIOMASS, Tandem-L). Forest models will help to
understand and interpret new remote sensing observations.

3.6 conclusion

In this study, we analyzed different approaches for estimating aboveground biomass
change in a tropical rainforest from observed changes in mean top-of-canopy height.
With forest simulations, it was possible to generate and analyze data covering a much
wider range of changes than usually available from field data. Goodness-of-fit statistics
(R2, RMSE and bias) for the ∆AGB estimations were computed over the full range of
possible stand heights, also demonstrating an asymmetry between gains and losses.
It was found that a direct, linear ∆H-to-∆AGB relationship only provides accurate
predictions under limited conditions and can lead to large prediction biases when
applied over a wide range of stand heights. The indirect approach, which builds on
the H-to-AGB stock relationship, can be used to avoid such biases, but it is dependent
on accurate measurements of canopy height. A third approach, based on random
forest machine learning, was found to provide similar prediction accuracies to the
indirect approach. The latter did not require canopy height as input. Instead, canopy
height change in combination with a set of canopy texture metrics served as predictors.
The simulation-derived approaches were not sensitive enough to detect small biomass
changes based on TanDEM-X data for a 50-ha plot in Panama. Further research is
required to improve our ability to detect even small changes in biomass with remote
sensing. The presented approaches with their accuracies of around ± 13 t ha-1 are
nevertheless well suited for monitoring of forest biomass changes at large scales. In
summary, the study demonstrated the potential of using a forest model for improving
the understanding and interpretation of multi-temporal remote sensing data and for
evaluating different approaches.
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4.1 abstract

Forest aboveground biomass is a key variable in remote sensing based forest monitor-
ing. Active sensor systems, such as lidar, can generate detailed canopy height products.
Relationships between canopy height and biomass are commonly established via
regression analysis using information from ground-truth plots. In this way, many site-
specific height-biomass relationships have been proposed in the literature and applied
for mapping in regional contexts. However, such relationships are only valid within
the specific forest type for which they were calibrated. A generalized relationship
would facilitate biomass estimation across forest types and regions. In this study, a
combination of structural descriptors is proposed as an approach for generalization
between forest types. Each descriptor is supposed to quantify a different aspect of
forest structure, i.e., mean canopy height, maximum canopy height, maximum stand
density, vertical heterogeneity and wood density. Lidar data covering 194 ha of forest
inventory plots from five different sites including temperate and tropical forests from
Africa, Europe, North, Central and South America were used. Biomass predictions
using the best general model (nRMSE = 12.4%, R2 = 0.74) were found to be almost as
accurate as predictions using five site-specific models (nRMSE = 11.7%, R2 = 0.77). The
results further allow interpretation about the importance of the employed structure
descriptors in the biomass estimation and the mechanisms behind the relationships.
Understanding the relationship between canopy structure and aboveground biomass
and being able to generalize it across forest types are important steps towards con-
sistent large scale biomass mapping and monitoring using airborne and spaceborne
platforms.

4.2 introduction

Quantifying global carbon stocks of forests as well as their changes over time requires
spatially explicit measurements and monitoring (Harris et al., 2012). The primary
variable of interest hereby is forest aboveground biomass (AGB). Thus, there is a
growing amount of literature about estimating forest biomass from canopy height
metrics derived from light detection and ranging (lidar), synthetic aperture radar or
photogrammetry (Goetz and Dubayah, 2011; Zolkos et al., 2013; Asner and Mascaro,
2014; Lu et al., 2014). The majority of these studies investigated data from specific
forest sites with the goal to find the best prediction model, i.e. maximizing explained
variability (e.g., R2), minimizing prediction error (e.g., RMSE) and minimizing sys-
tematic bias, while using the most parsimonious set of predictor variables (Zolkos
et al., 2013). Different statistical approaches have been used including multiple lin-
ear regression models and machine learning methods (Fassnacht et al., 2014). As a
result various site- and forest type-specific relations for biomass estimation have been
proposed and applied successfully for biomass mapping at regional scale.

Comparatively few studies have tried to seek for generalization in the estimation
approaches (e.g., Lefsky et al., 2002b; Asner et al., 2012b; Magnussen et al., 2012;
Asner and Mascaro, 2014; Vincent et al., 2014; Bouvier et al., 2015). For consistent
global mapping of forest biomass, however, it would be desirable to have more generic
relationships which are applicable across different forest types and biogeographic re-
gions. Such an approach would contribute to a better understanding of how structural
attributes differ between forest types and how they are related to biomass. It would
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also facilitate biomass mapping across the globe. Given the variety of metrics that
can be derived from lidar data (Næsset, 2002), it would further be desirable to have a
minimum set of meaningful metrics, describing different aspects of forest structure,
to avoid problems with multicollinearity and extensive model selection procedures
(Bouvier et al., 2015). A widely used general approach is the one proposed by Asner
et al. (2012b) and modified by Asner and Mascaro (2014) for pan-tropical application.
The function is inspired by individual tree allometry, where tree AGB can be modeled
as a multiplicative power law of tree diameter at breast height (DBH; or tree basal
area BA), tree height and species-specific wood density (Chave et al., 2014). Hence,
as a stand level equivalent for area-based AGB estimation a power law of stand BA
sum, mean top-of-canopy height (TCH) and average wood density is used. It further
assumes a linear relationship between BA and TCH, which may differ between regions,
and regional differences in average wood density can be considered. This approach
has been established using data from different tropical regions (Hawaii, Panama,
Peru, Madagascar) and has been applied successfully in other tropical regions, e.g.,
Colombia (Asner et al., 2012a), Malaysia (Coomes et al., 2017) and Tanzania (Getzin
et al., 2017).

In a recent study, Bouvier et al. (2015) suggested a different model for generalized
AGB estimation. They used several a priori defined lidar-based metrics that captured
different aspects of forest structure. Their model was able to produce accurate AGB
estimations for different forest types in France. However, site-specific coefficients
led to higher prediction accuracies for each site, compared to using only one set of
coefficients across all sites.

In this study, we attempted to find a model that is generally applicable throughout
different forest types and even different biomes by including structural information
on forest stands. Tropical forests in Panama, French Guiana and Gabon were analyzed
along with temperate forests in the United States of America and Germany. We tried
to estimate BA and AGB at the 1-ha scale. Usually, the two are closely correlated.
However, BA is a simple inventory-derived metric, which is easily comparable among
sites and studies. Inventory-based AGB, on the other hand, is more complex to
compute. Assumptions about allometric relationships and wood density values are
required to derive single tree AGB. It can lead to considerable differences in stand
AGB if different assumptions are chosen for the same stand (Duncanson et al., 2017).
Therefore, both variables were chosen in this analysis – BA for its robustness and
comparability and AGB as the major variable of interest in forest carbon mapping
efforts.

We hypothesized that the following structural forest attributes may contribute to
explaining stand BA and AGB: a) mean canopy height, b) maximum possible stand
density c) maximum possible tree height, d) vertical canopy heterogeneity, and for
AGB, additionally, e) average wood density. Most of these structural attributes can
be quantified in several alternative ways. Thus, for one attribute there may be a set
of several candidate metrics. In this analysis, data from 194 ha of temperate and
tropical forest from five megaplot sites were combined with the following goals: 1) to
find a generic approach for BA and AGB estimation that can be applied across all
sites without causing prediction bias at any individual site and 2) to investigate the
contributions of the different structural attributes.

69



forest structure metrics to generalize biomass estimation

4.3 materials and methods

4.3.1 Study Sites

Data from five forest sites covering different forest types and biogeographical zones
were used (Table 4.1). Four study sites are part of the ForestGEO megaplot network
(Anderson-Teixeira et al., 2015) and thus they have been inventoried according to a
standard protocol. The data structure for the fifth site, Paracou, is similar to the one
of the other sites. For each tree the diameter at breast height (DBH), spatial position
and species identity were recorded. In this study, all trees with a DBH ≥ 10 cm
were considered and all given numbers refer to trees above this size threshold. In
the following the five sites are briefly described. 1) Barro Colorado Island (BCI),
Panama, is a Central American lowland tropical moist forest site with an annual
precipitation of 2,580 mm and an average temperature of 27.1 °C. The census on the
50-ha plot was conducted in 2010 (Condit, 1998; Hubbell et al., 1999; Hubbell et al.,
2005) and comprised 22,084 trees, which belonged to 223 species. 2) Paracou, French
Guiana, is a South American lowland tropical rainforest with an annual precipitation
of 3,040 mm and an average temperature of 26 °C. There are 16 large plots with
plots 1 to 15 having an extent of 250 m × 250 m each and plot 16 having an extent of
500 m × 500 m. In 1986 and 1987, selective logging with different treatment intensities
(timber logging, fuelwood logging, thinning) has been conducted on some of the
plots, while others have served as control plots (Hérault and Piponiot, 2018). Since
our analysis was conducted for 100 m × 100 m units, only subareas of 200 m × 200 m
measured from the south-western corners of plots 1 to 15 were used. In total 85 ha
from Paracou were analyzed. Censuses were conducted in 2015 and comprised 53,501
trees of 713 species. 3) Rabi, Gabon, is a Central African lowland tropical rainforest
site with an annual precipitation of 2,300 mm and an average temperature of 26 °C.
The census on the 25-ha plot was conducted from 2010 to 2012 (Labrière et al., 2018)
and comprised 12,019 trees, which belonged to 235 species. 4) The Smithsonian
Environmental Research Center (SERC) plot, United States of America, is a North
American deciduous broadleaved temperate forest site with an annual precipitation of
1,070 mm and an average temperature of 13.2 °C. The census on the 16-ha plot was
conducted in 2014 (McMahon and Parker, 2015; Král et al., 2016) and comprised 4,719
trees, which belonged to 39 species. 5) Traunstein, Germany, is a Central European
managed mixed temperate forest site, which includes conifer and broadleaf plantations.
It has an annual precipitation of 1,240 mm and an average temperature of 7.6 °C.
The census on the 25-ha plot was conducted in 2016. Due to the shape of the plot
a rectangular 18-ha subarea was selected for the analysis. It comprised 7,182 trees,
which belonged to 25 species.

4.3.2 Inventory Data

The inventory data was processed to calculate AGB of each individual tree. Based on
species identity wood density values were assigned to each tree using the ForestGEO
wood density database1 and in the case of Paracou the Global Wood Density Database2

(Chave et al., 2009; Zanne et al., 2009). If a wood density value was not available at

1 http://ctfs.si.edu/Public/Datasets/CTFSWoodDensity/
2 https://datadryad.org/resource/doi:10.5061/dryad.234
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Table 4.1: Information on the study sites.

Site Forest type Size [ha] Location Year of
inventory

Year of
lidar scan

Basal area
[m2 ha-1]

BCI Neotropical
moist

50 9.15° N
79.85° W

2010 2009 17.3 - 38.5

Paracou Neotropical
wet

85 5.27° N
52.92° W

2015 2015 24.8 - 38.7

Rabi Afrotropical
wet

25 1.92° S
9.88° E

2010 - 2012 2015 20.8 - 36.7

SERC Nearctic
temperate
broadleaf

16 38.89° N
76.56° W

2014 2017 26.2 - 43.5

Traunstein Palearctic
temperate
mixed

18 47.94° N
12.67° E

2016 2016 7 - 44.6

species level, the median value of available species at higher taxonomic levels (genus,
family) was used. For the few cases in which no related species were present, the
overall median wood density at the site was assigned. From DBH the height of
each tree was calculated using site specific asymptotic allometric relationships. These
relationships were derived by fitting regression models of the Michaelis-Menten type
(Equation 4.1) to the diameter height dataset from Jucker et al. (2017), grouped by
biogeographical region and forest type.

H =
hmax · D
d1/2 + D

(4.1)

This equation describes tree height H [m] as a function of DBH D [m] with two
parameters: hmax, which is the asymptotic maximal possible tree height, and d1/2,
which is the DBH of a tree that has reached a height of half of hmax. A verification
whether the derived models describe the DBH-height relations at each site reasonably
well was done by plotting the curves together with the maximal observed DBH and
maximal (lidar-derived) height of each hectare (Figure C.1). This showed that the
relationships match the observed values for the BCI, Paracou, Rabi and Traunstein plot,
but strongly underestimate the tree heights at SERC. Thus, for SERC we discarded
the diameter-height relationship obtained from the dataset and instead obtained
parameters by directly fitting a regression model to the data points in Figure C.1,
representing the lidar-derived maximal heights on each hectare. All height allometry
parameters used are listed in Table 4.2.

Aboveground biomass (AGB [t]) of each tree was calculated according to the general
allometric equation suggested by Chave et al. (2014) (called "Model 5" in the original
publication; Equation 4.2) with DBH D [m], height H [m] and wood density WD [t m-3].

AGB = 0.559 · D2 · H · WD (4.2)

4.3.3 Lidar Data

Small footprint discrete return lidar data was collected in BCI in August 2009 using
an Optech ALTM Gemini sensor (Lobo and Dalling, 2014), in Paracou in October 2015
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Table 4.2: Parameters for the different diameter-height relation-
ships modeled with a Michaelis-Menten equation.

Site Species group hmax d1/2

BCI All 57.4 0.43

Paracou All 57.4 0.43

Rabi All 59.9 0.48

SERC (discarded) All 37 0.22

SERC (used instead) All 54.7 0.27

Traunstein Angiosperms 48.8 0.25

Traunstein Gymnosperms 68.9 0.5

using an Riegl LMS Q 780, in Rabi in 2015 using a Riegl VQ-480i sensor (Labrière
et al., 2018), at SERC in July 2017 using a Riegl VQ-480i sensor (Cook et al., 2013) and
in Traunstein in August 2016 using a Riegl LMS Q 680i sensor. The lidar point clouds
were terrain-normalized using LAStools (Isenburg, 2011) and rasterized to canopy
height models (CHM) with 1-m resolution, by taking the height of the highest return
in each 1-m2-cell (Figure 4.1). No interpolation was used and cells with no return were
filled with value zero (ground height).

4.3.4 Forest Structure Metrics

All four megaplots were divided into square-shaped subplots of 1-ha size each. At
1-ha scale a variety of structural metrics was calculated from 1) the inventory data
and 2) the lidar data. Inventory-based metrics included basal area sum (BA), number
of stems per ha (N), quadratic mean tree diameter (at breast height, Dg), maximum
DBH per ha (Dmax), mean wood density weighted for tree basal area (WDBA) or tree
aboveground volume (WDAGV) and stand density index (SDI, Equation 4.3), which is
a standardized metric for stocking (Reineke, 1933).

SDI = N · ( 25
Dg

)−1.605 (4.3)

Additionally to those metrics derived at 1-ha-level, we derived a set of metrics at
site-level. Those site-level metrics included maximum basal area sum (BAsmax) and
maximum SDI (SDIsmax) of all the 1-ha plots at each site s and basal area-weighted
mean wood density (WDsBA) and aboveground volume-weighted mean wood density
(WDsAGV) across all trees at each site s.

Lidar-based metrics were maximum canopy height per 1-ha plot Hmax and per site
Hsmax, mean top-of-canopy height from CHMs of two different resolutions (1-m and
10-m pixels called TCH1 and TCH10), standard deviation of the 1-m CHM (SDCHM),
coefficient of variation of the 1-m CHM (CVCHM) and Gini index of the 1-m CHM
(GiniCHM). The vertical foliage profile (VFP) was derived from the vertical profile of the
1-m CHM following the approach described by Harding et al. (2001) (Equation 4.4).

VFP(hi) =
1

k · ∆h
· ln(

GP(hi)

GP(hi+1)
) (4.4)
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Figure 4.1: Canopy height models of the five study sites: a) Barro Colorado Island, b) Rabi,
c) Paracou Plot 16 (biodiversity plot), d) Paracou Plot 1 (control plot), e) Paracou
Plot 2 (selective logging), f) Paracou Plot 3 (selective logging and timber stand
improvement), g) Paracou Plot 4 (selective logging, timber stand improvement
and fuelwood collection), h) Smithsonian Environmental Research Center and
i) Traunstein. The black grids and numbers represent the 1-ha subplots with each
ha representing one record in the analysis.

with k being the light extinction coefficient, ∆h the width of one height bin (here
1 m) and GP(hi) the gap probability (value of the cumulative CHM profile) in height
bin hi (Ni-Meister et al., 2001). All pixels below 5 m height were regarded as ground
and k was set to 0.3. The parameter k can be described as the quotient of a projection
coefficient G, which is 0.5 for a random leaf angle distribution, and a clumping index
C, which on average is 1.58 for different forest types (Tang et al., 2012). A value of
k = 0.3 has been shown to result in good LAI estimations (Getzin et al., 2017). The
same vertical distribution metrics as for the CHMs were derived from the VFP, namely
SDVFP, CVVFP and GiniVFP.
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4.3.5 Multivariate Regression Analysis

Regression analysis was conducted to find the best relationship and set of predictor
variables for BA and AGB estimation with the main objective to minimize overall root
mean squared error (RMSE) across sites. The regression models had the functional
form of multivariate power laws. Each predictor was supposed to capture a different
structural aspect of the forest. Several candidate metrics were grouped into sets of
potential predictors and tested in different combinations. By categorizing metrics into
different structural aspects it was avoided to test all possible metric combinations
including redundant ones that capture the same structural aspect. For BA a four
predictor equation was used (Equation 4.5). For AGB a five predictor equation was
used (Equation 4.6).

BA = a0 · P ah
h · P ad

d · P am
m · P av

v (4.5)

AGB = b0 · P bh
h · P bd

d · P bm
m · P bv

v · P bw
w (4.6)

Each Px represents a predictor for a certain structural aspect x with ax being the
coefficients for BA estimation and bx being the coefficients for AGB estimation. The
predictor sets were defined as follows: The predictor for mean canopy height Ph
contained TCH1 and TCH10 as possible variables. The maximum possible canopy
height Pm was exclusively represented by Hsmax. The predictor for maximum density
(stocking) contained BAsmax and SDIsmax. For vertical heterogeneity of the canopy Pv

SDCHM, CVCHM, GiniCHM, SDVFP, CVVFP and GiniVFP have been explored. Average
wood density Pw was only included in the AGB estimation and contained WDsBA and
WDsAGV.

Maximum likelihood parameter estimation in R (R Development Core Team, 2014)
was used to derive the coefficients for Equations 4.5 and 4.6. All possible metric combi-
nations were tested including all possible subsets discarding one or several predictors
Px. The goodness-of-fit was evaluated based on linear regression of predictions against
observations of the dependent variable to quantify R2, RMSE and nRMSE (normalized
RMSE by dividing it by the mean observed value). Wilcoxon tests were performed to
check whether the mean prediction residual at each site deviated significantly from
zero, with the goal of identifying unbiased prediction models. For each predictor
combination 1,000 bootstrapping replicates were performed, by resampling the dataset
randomly with replacement. Site-level metrics BAsmax, SDIsmax, Hsmax and WDsAGV

were recalculated based on the resampled dataset, i.e., if the plot with the largest Hmax

of site s was not in the resampled dataset, Hsmax was set to the largest Hmax of any
plots from site s present in the resampled dataset (likewise for the other metrics). Mean
bootstrapped statistics (RMSEb, nRMSEb and R2

b) served to evaluate the different
models.

4.3.6 Site-specific Reference Regression Models

Site-specific reference models were required to assess the performance of the derived
general, site-independent, structure-based multi predictor regression models. For this
purpose, single predictor regression models were fit. As predictors for these reference
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models Ph, i.e., TCH1 or TCH10, were used. These metrics have been most widely used
for this purpose (Asner and Mascaro, 2014; Knapp et al., 2018a). The models given
by Equations 4.7 and 4.8 were fit by splitting the dataset into five subsets with each
subset containing only records from one site s and using the same fitting procedure as
described above.

BA = a0,s · P ah,s
h (4.7)

AGB = b0,s · P bh,s
h (4.8)

4.4 results

4.4.1 Forest Structure at Different Sites

The different structure attributes at 1-ha scale varied within and among the five sites
(Figure 4.2 and Figure C.2). BA values ranged from 7 to 44.6 m2 ha-1 with a mean of
29.8 m2 ha-1. AGB values ranged from 76 to 638 t ha-1 with a mean of 354 t ha-1. Mean
top-of-canopy height ranged from 5.6 to 38 m when calculated from 1 m × 1 m pixels
(TCH1) and from 15.8 to 41.8 m when calculated from 10 m × 10 m pixels (TCH10).
In both cases the distributions for the tropical sites were similar while TCH were on
average higher at SERC and lower at Traunstein. Mean wood densities per hectare
were calculated on a BA-weighted and on an AGV-weighted basis. Both were similar
in their distributions and mean wood densities calculated for each site across the
entire megaplot weighted by either BA or AGV were almost identical with the largest
difference being 0.02 t m-3 in the case of BCI (WDsBA: BCI: 0.51 t m-3, Paracou: 0.69 t m-3,
Rabi: 0.66 t m-3, SERC: 0.48 t m-3, Traunstein: 0.5 t m-3; WDsAGV: BCI: 0.49 t m-3,
Paracou: 0.69 t m-3, Rabi: 0.66 t m-3, SERC: 0.47 t m-3, Traunstein: 0.5 t m-3). Due to
this similarity, only AGV-weighted wood density at site level WDsAGV was considered
in the further analysis. Mean wood densities at Paracou and Rabi exceeded the values
from all other sites strongly with WDAGV at the 1-ha scale ranging from 0.6 to 0.74 t m-3

at Paracou and Rabi and from 0.42 to 0.55 t m-3 at all other sites. Stand density index
values ranged from 138 to 778 with the lowest values occurring in recently managed
parts of Traunstein. The maximal SDIs are proxies for the highest possible stocking
density in the different forest types (BCI: 683, Paracou: 749, Rabi: 703, SERC: 708,
Traunstein: 778). The maximum canopy height covered a wide range from 27.1 m to
54.7 m. Hmax at SERC only covered a very narrow range falling inside the range of
the tropical sites, while Hmax at Traunstein were much lower. The maximum canopy
heights per site Hsmax were 54.7 m at BCI, 50 m at Paracou, 52.6 m at Rabi, 46.2 m at
SERC and 40.3 m at Traunstein.

The vertical heterogeneity was measured in several different ways using standard
deviation, coefficient of variation and Gini index of the canopy height model and the
vertical foliage profile, respectively. CHM- and VFP-based vertical structure metrics
showed quite different distribution patterns (Figure C.2). For the CHM-based metrics,
Paracou and SERC showed the lowest values, due to a homogenous canopy surface,
BCI and Rabi showed intermediate values, due to their rough canopy surface with
large trees alternating with gaps and Traunstein showed (at least for CV and Gini
index) the highest values, due to its heterogeneous structure composed of old and
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Figure 4.2: Boxplots of the distributions of a selection of forest structure metrics at 1-ha
scale across the five study sites Barro Colorado Island (B), Paracou (P), Rabi (R),
Smithsonian Environmental Research Center (S) and Traunstein (T). Graphics
a) and b) depict the two target variables basal area and aboveground biomass.
Graphics c) to h) depict six possible predictor variables.
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young stands interrupted by forest roads. For the VFP- based vertical structure metrics,
Traunstein showed the lowest values, which is in accordance with the fact that large
parts of the plot are single-layered stands of different age, while the other sites showed
higher values, indicating a more complex, multi-layered canopy.

4.4.2 Site-specific Basal Area Estimation

Here, basal area was estimated from lidar using a single structural descriptor of
stand height Ph. Mean top-of-canopy height at 1- and 10-m pixel resolution (TCH1

and TCH10) were tested as Ph to derive site-specific power law coefficients (a0,site

and ah,site). Coefficients for each site are listed in Table C.1 and a scatterplot with
site-specific curves is displayed in Figure 4.3. The following goodness-of-fit statistics
were derived across all sites using the site-specific relationships: The TCH1-based
basal area predictions resulted in RMSE = 2.5 m2 ha-1 (8.3%) and R2 = 0.79. The TCH10-
based basal area predictions resulted in RMSE = 2.8 m2 ha-1 (9.5%) and R2 = 0.73. In
both cases, the mean residuals were not significantly different from zero at any site
(Wilcoxon tests with the smallest p-value of all sites being p = 0.54).

Figure 4.3: Site-specific relationships (power laws) be-
tween basal area and TCH1 with each point
representing 1 ha.

4.4.3 Generalized Basal Area Estimation

Here, basal area was estimated using several structural descriptors from lidar, which
were supposed to capture different aspects of forest structure (Equation 4.5). In total,
125 models consisting of different descriptors and metrics were analyzed. The best
models found are listed in Table 4.3. The models are ranked according to increasing
mean bootstrapped RMSEb. The listed models represent the best overall model and
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the best models with certain structural descriptors Px removed. For the different Px

in most cases the same metrics were selected. For Ph mostly TCH10 was selected and
TCH1 only occurred once. For Pd always the site specific maximal basal area BAsmax

was selected. For Pm the site specific maximal tree height Hsmax was the only available
metric. For Pv, however, four different metrics appear in the list of best models, namely
SDVFP, GiniVFP., CVVFP and CVCHM. The overall best model was one using all four
structural descriptors (Equation 4.9; nRMSE = 9.8%).

BA = 9.2 · TCH 1.3
10 · BA 0.359

smax · H −1.03
smax · SD −0.305

VFP (4.9)

The goodness-of-fit decreased only marginally if information on maximal possible
height (Pm) was excluded from the predictors (nRMSE = 10%). The third best model
was a two-predictor model using only mean current and maximal possible canopy
height (Ph and Pm, nRMSE = 10.9%). Hence, there was no other three-predictor
model that could exceed this two predictor model in accuracy. It was followed by a
model using mean canopy height and maximal possible stand density (Ph and Pd,
nRMSE = 11.5%), and one using mean canopy height and vertical heterogeneity (Ph
and Pv, nRMSE = 12.2%). At the lower end, the best model making no use of current
mean canopy height (no Ph) was somewhat better (nRMSE = 14.2%) than the one
using exclusively mean canopy height (Ph = TCH10, nRMSE = 14.6%). Thus, adding
any structural descriptor decreased nRMSE by at least 2.4% compared to a model
purely based on canopy height.

The additional goal was finding a relationship that is unbiased across all sites.
According to the Wilcoxon tests predictions of the best found model were slightly but
significantly biased for BCI (p = 0.0036) and Paracou (p = 0.05), whereas the second
best model did not show any significant bias for any of the sites (Table C.2). Figure 4.4
shows the 1:1 plots for site-specific TCH1-based predictions (a), the generalized TCH10-
based predictions (c) and the predictions using the best model based on structural
descriptors (e). Figure 4.4 also shows the residual distributions resulting from each of
the three predictions for the different sites (b, d, f).

4.4.4 Site-specific Aboveground Biomass Estimation

Analogous to BA, AGB was modeled as a power law function of mean canopy height
Ph, using either TCH1 or TCH10 by fitting site-specific coefficients (b0,site and bh,site;
Table C.1). Applying these site-specific relationships, the following goodness-of-fit
statistics were derived across all sites: The TCH1-based AGB predictions resulted in
RMSE = 41 t ha-1 (11.6%) and R2 = 0.78. The TCH10-based AGB predictions resulted in
RMSE = 41.8 t ha-1 (11.8%) and R2 = 0.77. In both cases, the mean prediction residuals
were not significantly different from zero at all sites (Wilcoxon tests with the smallest
p-value of all sites being p = 0.39).

4.4.5 Generalized Aboveground Biomass Estimation

To derive a generalized AGB estimation model the same structural descriptors as for
basal area were used. Additionally, a fifth descriptor for the average wood density Pw

was introduced, which resulted in 251 models in total. Table 4.4 lists the best models
found for different combinations of structural descriptors. The models are ranked
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Figure 4.4: Scatterplots of predicted basal area against observed basal area using a) a site-
specific single predictor model, c) a general single predictor model (based on
TCH10) and e) the best general multi predictor model (Equation 4.9). The boxplots
on the right hand side show the distribution (quartiles) of prediction residuals
at each site with numbers below displaying the mean residual value (bias) and
asterisks above indicating whether the means deviate significantly from zero
(b, d, f).
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Figure 4.5: Site-specific relationships (power laws) be-
tween aboveground biomass and TCH1 with
each point representing 1 ha.

according to increasing RMSEb (derived from bootstrapping). The listed models
represent the best overall model and the best models with a reduced number of
structural descriptors Px. Compared to the basal area estimation more descriptor
combinations are possible due to the additional parameter Pw. TCH10 was selected in
most cases for Ph. For Pd maximal basal area BAsmax and maximal stand density index
SDIsmax per site do appear in the models. For Pv three different metrics have been
selected: SDCHM, SDVFP and CVVFP. In the case of aboveground biomass estimation the
best model was the one using all five available structural descriptors (Equation 4.10;
nRMSE = 12.4%).

AGB = 1.92 · TCH 1
1 · SDI 0.979

smax · H −1.24
smax · SD 0.212

CHM · WD 0.0838
sAGV (4.10)

Leaving either Pv, Pw or both aside increased the nRMSE by around 1%. The best
model that did not rely on any site related ground-based information was the one
using only Ph and Pm (nRMSE = 13.5%). Table 4.4 documents the results for other
descriptor combinations. E.g., a naïve single predictor model based on TCH10 only had
nRMSE = 16.5%. Pd and Pm were more important than Pv (according to their presence
in the best models), which is different from the basal area estimation where Pv was
more important than Pd and Pm. The best model without Ph had a nRMSE = 17.8%.
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Figure 4.6: Scatterplots of predicted aboveground biomass against observed aboveground
biomass using a) a site-specific single predictor model, c) a general single predictor
model (based on TCH10) and e) the best general multi predictor model (Equa-
tion 4.10). The boxplots on the right hand side show the distribution (quartiles) of
prediction residuals at each site with numbers below displaying the mean residual
value (bias) and asterisks above indicating whether the means deviate significantly
from zero (b, d, f).

81



f
o

r
e

s
t

s
t

r
u

c
t

u
r

e
m

e
t

r
i
c

s
t

o
g

e
n

e
r

a
l

i
z

e
b

i
o

m
a

s
s

e
s

t
i
m

a
t

i
o

n

Table 4.3: The best basal area estimation models for different predictor combinations ranked for increasing mean bootstrapping root mean squared error
(RMSEb). For explanation of the columns names and variable names please refer to the main text.

Mean canopy
height Ph

Max. stand
density Pd

Max. canopy
height Pm

Vertical hetero-
geneity Pv

RMSE nRMSE R2 RMSEb nRMSEb R2
b Bias

TCH10 BAsmax Hsmax SDVFP 2.9 9.8% 0.71 2.9 9.6% 0.72 yes

TCH10 BAsmax - GiniVFP 3.0 10.0% 0.70 3.1 10.4% 0.67 no

TCH1 - Hsmax - 3.3 10.9% 0.64 3.1 10.4% 0.67 yes

TCH10 BAsmax - - 3.4 11.5% 0.60 3.6 12.0% 0.56 yes

TCH10 - - CVVFP 3.6 12.2% 0.55 3.6 12.0% 0.56 yes

- BAsmax - CVCHM 4.2 14.2% 0.40 4.2 14.1% 0.39 no

TCH10 - - - 4.4 14.6% 0.36 4.3 14.5% 0.36 yes

Table 4.4: The best aboveground biomass estimation models for different predictor combinations ranked for increasing mean bootstrapping root mean squared
error (RMSEb). For explanation of the columns names and variable names please refer to the main text.

Mean canopy
height Ph

Max. stand
density Pd

Max. canopy
height Pm

Vertical hetero-
geneity Pv

Mean wood
density Pw

RMSE nRMSE R2 RMSEb nRMSEb R2
b Bias

TCH1 SDIsmax Hsmax SDCHM WDsAGV 44.0 12.4% 0.74 46.1 13.0% 0.71 no

TCH10 BAsmax Hsmax SDVFP - 47.4 13.4% 0.70 47.9 13.5% 0.69 yes

TCH10 SDIsmax Hsmax - WDsAGV 45.6 12.9% 0.73 48.5 13.7% 0.69 no

TCH10 SDIsmax Hsmax - - 46.0 13.0% 0.72 48.5 13.7% 0.69 yes

TCH1 - Hsmax - - 47.7 13.5% 0.70 48.9 13.8% 0.68 yes

TCH10 BAsmax - CVVFP WDsAGV 51.2 14.5% 0.67 49.7 14.0% 0.67 yes

TCH10 BAsmax - - WDsAGV 60.1 17.0% 0.55 50.6 14.3% 0.66 yes

TCH10 SDIsmax - - - 50.9 14.4% 0.66 50.7 14.3% 0.66 yes

TCH10 - - CVVFP - 54.3 15.3% 0.61 53.9 15.2% 0.61 yes

TCH10 - - - WDsAGV 57.2 16.1% 0.57 57.2 16.1% 0.57 yes

TCH10 - - - - 58.5 16.5% 0.55 58.3 16.4% 0.55 yes

- BAsmax - SDVFP - 63.0 17.8% 0.48 62.2 17.5% 0.49 yes
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With regard to the goal of finding a relationship that is unbiased across all sites,
the Wilcoxon tests identified two models for which the mean of residuals at none
of the single sites differed significantly from zero (Table C.3): the models in rows
1 and 3 in Table 4.4. For all other models predictions were biased for at least one
site. Figure 4.6 shows the 1:1 plots for site-specific TCH1-based predictions (a), the
generalized TCH10-based predictions (c) and the structure guided predictions using
the best model (e). Figure 4.6 also shows the residual distributions resulting from each
of the three predictions for the different sites (b, d, f).

4.4.6 Comparison of Results

Overall, achieved relative errors in BA estimation were somewhat lower than the
ones for AGB estimation. The exclusion of different structural descriptors led to an
increase in estimation errors. Figure 4.7 shows the obtained nRMSE for different sets
of Px in comparison to the nRMSE of site-specific estimations. For BA estimation, the
best unbiased generic model required four coefficients and resulted in a nRMSE of
10.4%, which is 2.1% higher than the nRMSE of 8.3% obtained from five site-specific
models, requiring ten (two per site) coefficients. For AGB estimation, the best unbiased
generic model required six coefficients and resulted in a nRMSE of 13%, which is 1.4%
higher than the nRMSE of 11.6% obtained from five site-specific models, requiring ten
coefficients.

Figure 4.7: Summary of how the exclusions of certain structural descriptors Px influence the
normalized root mean squared error (nRMSE) of basal area (a) and aboveground
biomass estimation (b). The black bar represents the site-specific reference model.
The grey bars represent mean bootstrapping nRMSE of the different generic models.
The striped bars mark the models which produce unbiased predictions at all sites.
For the meaning of the indices of the predictors please refer to the main text.
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4.5 discussion

The goal of this study was to determine a set of forest structure metrics that can be
used for BA and AGB estimation from CHMs at very distinct forest sites, which belong
to different biomes. It could be shown that a combination of four metrics capturing
mean canopy height, maximal stand density, maximal canopy height and vertical
heterogeneity could estimate BA using a generic model across all sites with a high
accuracy, which was almost as good as the accuracy achieved by site-specific models.
The accuracy for AGB estimation was slightly weaker than the one for BA estimation.

4.5.1 The Role of Mean Canopy Height

It was found that the mean canopy height (Ph), represented here by TCH1 and TCH10,
was the most important predictor variable, which is in support of its wide use in
previous studies (Lefsky et al., 2002b; Asner and Mascaro, 2014; Duncanson et al., 2015).
It was important in BA and AGB estimation, with accuracies decreasing considerably
when Ph was dropped from the models. Despite the mathematical simplicity of TCH
(the mean height of all CHM pixels) it is a quite comprehensive metric capturing
much of the forest structure in a single number. It is influenced by the heights and
crown sizes of the trees (which contribute to the CHM) and therefore closely related
to Lorey’s height (BA-weighted mean tree height; Asner and Mascaro, 2014). However,
TCH also provides information on horizontal vegetation density, if ground pixels, e.g.,
in canopy gaps, are included in its computation (Lu et al., 2014). There have been
studies that tried to separate the "height" and "density" aspect of TCH by calculating
mean canopy height only from canopy pixels (and excluding ground pixels) and
capturing horizontal vegetation density as fractional canopy cover, i.e., the relative
proportion of canopy pixels above an arbitrary height threshold, or its inverse, the
gap fraction (Bouvier et al., 2015). It has also been shown that fractional canopy cover
alone can predict AGB in tropical forests quite well over a range of canopy height
thresholds (Meyer et al., 2018).

It was found that TCH10 derived from a rough 10-m-pixel CHM often performed
better than TCH1 derived from 1-m pixels. This has been observed also in an earlier
study at BCI using TCH in single predictor models (Knapp et al., 2018a). It might be
explained by the ability of TCH10 to capture the canopy structure of the large trees,
which contribute most to BA and AGB, and the larger gaps where such trees are
missing. TCH1 includes more detail and is influenced by the structure of individual
tree crowns and small gaps within and between crowns, which might not be relevant
or even counterproductive for estimating BA and AGB. In particular, in the context
of generalization between different forest types it might be beneficial that TCH10

"ignores" differences in crown shapes.

4.5.2 The Role of Stand Density

Maximal stand density per site (Pd) was of high importance for AGB and BA estima-
tion. Only one in the best eight AGB models did not contain Pd. Asner and Mascaro
(2014) pointed out that for many sites BA shows a linear relationship with TCH, but
with considerable differences in the slopes, which was therefore an important term in
their AGB estimation model. Differences in this relationship can be expected because
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at different sites different tree species may occur, which have different geometries,
in particular regarding the relationships between DBH and height and DBH and
crown diameter. Of two stands with the same canopy height, one may contain trees
with slender crowns and has a much higher stocking than the other one containing
trees with wide crowns. We tried to reduce the necessary information about density
as much as possible by only using the maximum observed value per site. As this
parameter is not derived from remote sensing data, there is either inventory data or
expert knowledge required. As metrics for Pd either BAsmax or SDIsmax were used.
The two are independent from each other: The highest SDI identifies the stand with
the highest stocking according to the self-thinning rule (Reineke, 1933), which is not
necessarily the stand with the highest current BA (Figure C.3). Among the five sites
investigated, the tropical sites had lower BAsmax (38.5, 38.7, and 36.7 m2 ha-1) than the
temperate sites (43.5 and 44.6 m2 ha-1). SDIsmax, however, was similar at BCI, Rabi and
SERC (683, 703, 708) and somewhat higher at Paracou (749) and Traunstein (778). As
shown, either of the two metrics could improve the AGB estimation in comparison to
the case of missing Pd.

4.5.3 The Role of Maximum Height

An inclusion of maximum possible height (Pm) was expected to improve estimation
models. The reason behind is the same as for stand density, namely the possibility of
regionally different DBH-height relationships of trees, that lead to differences in the
maximum possible canopy height. Pm can be easily extracted from remote sensing data
(in contrast to Pd). Here, the maximum observed canopy height Hsmax (in the CHM)
was used under the assumption that the plots are large enough to be representative
for the maximum possible tree height in the respective forest types. Maximum height
showed no relevance in BA estimation, but prediction errors for AGB increased from
11.8% to 14.8% if it was dropped from the model. Hsmax might act as a standardization
for TCH. Site-specific relationships between TCH and AGB (Figure 4.5) show that,
e.g., the forest at Traunstein reaches high AGB values at much lower mean canopy
heights than other sites. By additionally providing the information that also Hsmax at
Traunstein is lower than elsewhere, the TCH values are put into the perspective of how
high is the forest now and how high could it possibly become. This standardization
role of Hsmax is supported by the fact that all selected models have negative coefficients
(am, bm), commonly close to -1 for Hsmax, and positive coefficients (ah, bh), commonly
close to +1 for TCH, i.e., the ratio TCH / Hsmax is used in the predictions. Models
based on TCH1 and Hsmax also were the best two-predictor models in BA and AGB
estimation, respectively.

4.5.4 The Role of Vertical Heterogeneity

Vertical heterogeneity (Pv) was after mean canopy height (Ph) the second descriptor
derived at individual plot-level rather than site-level. It was included in the best BA
and AGB models, however dropping it increased the nRMSE by less than 1%. From
the six candidate metrics for Pv, various were chosen in different models.

The calculation of the vertical metrics was either based on the canopy height model
or on the vertical foliage profile. As visible in Figure C.2, the distributions of SD, CV
and Gini index differed strongly depending on whether they were CHM- or VFP-
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based. CHM-based variability metrics describe the heterogeneity of the canopy surface,
including ground pixels, i.e., canopy gaps. VFP-based variability metrics describe
the vertical layering of the reconstructed foliage profile, which does not contain any
ground component, but up-weights profile parts in the lower heights to compensate
for the occlusion by high trees. Hence, their contributions to BA and AGB estimation
might be different: CHM-based metrics rather characterize forests in the spectrum
from smooth canopy surfaces, as observed for young, dense stands, to rough canopy
surfaces, as observed for old or disturbed stands. VFP-based metrics rather account for
the overseen trees in the lower canopy. Other studies have also identified the vertical
heterogeneity as a component in prediction models. Magnussen et al. (2012) proposed
a two-predictor model based on 1) TCH and 2) the variance of the CHM divided by
TCH, which is closely related to CVCHM used here. Bouvier et al. (2015) considered
two vertical metrics in their four-predictor model: 1) variance of the CHM and 2) CV
of the leaf area density in the VFP. To conclude, there is a wide variety of metrics that
characterize vertical heterogeneity and they may in fact capture quite different aspects
of forest structure. They do contribute in the improvement and generalization of BA
and AGB estimation. Future analyses should try to achieve a better understanding of
how the different metrics are related to ground-based metrics of forest structure, and
whether a combination of several of them could further improve estimation results.

4.5.5 The Role of Wood Density

Regional differences in average wood density have been suspected to be a main
reason behind differences in the height-to-biomass relationship of forests (Asner and
Mascaro, 2014; Vincent et al., 2014; Meyer et al., 2018). In our analysis, however,
dropping the wood density parameter (Pw) led only to a slight increase in nRMSE of
less than 1% for AGB estimations. The values of WDsAGV were very similar for BCI,
SERC and Traunstein, but considerably higher for Paracou and Rabi. If region-specific
estimates on average wood density are available they should definitely be considered
in AGB estimation models. Nevertheless, our results suggest that compared to other
parameters wood density is of minor importance for a generalized AGB estimation.
With regard to the question, how average wood density should be calculated, Vincent
et al. (2014) argued to use AGV instead of BA as a weighting variable, as AGV of the
trees in the ground-truth plots has to be calculated anyway to derive tree AGB, and
AGV is the structurally more appropriate weighting variable compared to BA. In this
study, for all five study sites WDsAGV and WDsBA were found to be very similar. Thus,
only WDsAGV was further used in the analyses.

4.5.6 Generalization and Outlook

With the identified structural variables and the fitted coefficients we propose general
prediction models for BA and AGB estimation in different forest types. Having such
models and also understanding the contribution of different forest structural aspects
is important for consistent large scale mapping of forest carbon stocks (Lefsky et al.,
2002b). This is particularly relevant for upcoming spaceborne missions such as GEDI
(Stavros et al., 2017), BIOMASS (Le Toan et al., 2011) or Tandem-L (Moreira et al., 2015)
which will provide consistent forest height measurements across very different forest
types, not all of which are represented sufficiently in ground-truth datasets.
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As a next step, the proposed relationships need to be tested at other forest sites
to either confirm or, if necessary, adapt them. Further, the influence of spatial scale
needs to be investigated, as different sensors produce measurements at different scales.
Finally, methods need to be developed for acquiring more of the structural variables
entirely from remote sensing and becoming independent from any ground-based
input. Individual tree delineation from high resolution canopy height data can be
applied to derive stand density information directly from remote sensing (Duncanson
et al., 2015; Ferraz et al., 2016). Average wood density can be estimated based on forest
type or even species classification using passive optical remote sensing (Fassnacht
et al., 2016). These technologies have to be combined to derive very detailed estimates
from airborne acquisitions at landscape scale. The estimates can then serve as training
areas for wall-to-wall mapping using spaceborne products.

4.6 conclusion

Data from temperate and tropical forest plots were combined to develop a general
equation for biomass (and basal area) estimation based on a set of forest structure
metrics from remote sensing. The different structural dimensions were a priori defined.
The results provided insight in the relative importance of mean and maximal canopy
height, stand density, vertical heterogeneity and wood density for biomass estimation.
Not all of those forest attributes can be derived from lidar data. For maximal stand
density and mean wood density field-based information is required at the site level.
Alternatively, a model without those attributes can be chosen from the list of models,
at the expense of slightly lower prediction accuracies. The found relationships should
provide guidance towards a standardized workflow for estimating aboveground
biomass for forest carbon mapping and monitoring from remote sensing.
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synthesis and outlook

5.1 main results and limitations

As a dominant component of global land cover and the carbon budget forests play
a significant role in the earth and climate system. Today, they face multiple threats,
primarily due to human influence, but also increasingly due to climate change. If we
are to conserve global forest covers, it is imperative to develop the tools to better ana-
lyze and understand their dynamics. Field inventories, i.e., sample based approaches,
alone cannot fulfill the requirements to investigate all aspects. In this thesis methods
from the disciplines of remote sensing and forest modeling were combined and new
approaches developed. These novel approaches are contributing to the overall goals of
enabling large scale measurements of forest attributes and improving the mechanistic
understanding behind observations of forest structure.

The challenges which were met in this thesis were the following: 1) development
of a lidar simulator and its integration into a forest model; 2) use of lidar and forest
simulations to explore biomass stock estimation at different scales and under different
disturbance regimes; 3) simulation of forest dynamics to explore possibilities for
remote sensing of biomass change over time and 4) combination of forest structure
descriptors for generalizing biomass estimations across different forest types from
different continents. In the following the main results of each of these tasks are
summarized and discussed including also limitations.

5.1.1 Integrating Remote Sensing Simulations in a Forest Model

Forest gap models like FORMIND produce large datasets. They can cover hundreds
of hectares over hundreds of time steps and consist of millions of trees. Simulating
lidar point clouds for such datasets requires storage capacities comparable to real
airborne lidar campaigns at regional scale (~50 to 1,000 MB km-2) and an efficient
algorithm and code. Hence, detailed ray-tracing algorithms that act at the leaf and
branch level (Disney et al., 2010) are unsuitable for simulations of such large forest
areas. The voxel-based lidar simulation approach developed in this thesis has a level
of complexity to capture all the important patterns obtained from airborne lidar data
while being quickly applicable for large forest stands. Producing point clouds which
mimic airborne lidar data ensures the flexibility to aggregate the data along different
dimensions (e.g., vertical profiles, canopy height models, arbitrary distribution metrics)
at any desired spatial resolution. This is a great advantage compared to earlier studies,
which used canopy height as a forest model output at a model-given spatial resolution
(Hurtt et al., 2004; Köhler and Huth, 2010). Additionally, the simulated lidar products
can be compared one-to-one to their real-world equivalents.

The benefit of linking the use of forest and lidar simulations for understanding and
interpreting remote sensing observations has been demonstrated in this thesis. An
aspect which did not get as much attention in this work, but bears enormous potential
is the use of forward remote sensing simulations in calibration and validation of
forest models. Individual-based forest models require a long list of parameters, not
all of which are easy to obtain from field data or literature. Hence, calibration and
validation based on multiple patterns are common practice and often essential for
obtaining accurate parameterizations (Wiegand et al., 2003). Quite a range of patterns
can be obtained from field data (i.e., basal area, stand density, stem size distributions,
tree positions), but patterns describing the vertical dimension (canopy structure)
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are insufficiently covered in the field. Lidar data provides a multitude of metrics
describing canopy structure. In forest model calibration approaches, these patterns can
now be derived from simulations and be compared with those derived from airborne
data (e.g., like in the FORMIND calibration described in Appendix A.1.2), with the
potential to improve parameterizations of forest models with regard to structural
realism in the future.

The lidar simulator was implemented in C++ and integrated in the FORMIND
source code as an optional module. For more application flexibility, i.e., using it in
combination with other forest models or simulating lidar data based on field inventory
data, the lidar simulator was also implemented in R. The performance of the R version
is comparable to the compiled C++ version, due to the integration of the R packages
data.table and parallel, which speed up the processing considerably. It has been
published (together with a set of analysis functions) in an R package on GitHub1.

5.1.2 Effects of Scale and Disturbance States on Biomass Estimation

The spatial scale has been identified as a major influence on biomass estimation
accuracy. Biomass can be mapped accurately for large area units (≥ 1 ha), but with
decreasing size of the mapping units down to the size of common field sampling plots
(~10 to 30 m) the errors increase strongly. Surprisingly, scale effects have only lately
become a focus of interest, in particular the problems with very small plots also found
in this thesis (Mascaro et al., 2011b; Zolkos et al., 2013; Réjou-Méchain et al., 2014). In
Chapter 2 it was shown that the variability in canopy height (condensed to a metric of
mean canopy height) is an important factor for biomass estimation and the maximal
observed height as a single number is a weak predictor of biomass.

Being aware of the effects of spatial scale is relevant for planning of remote sensing
missions, to design the sensor resolution accordingly. The small footprint size of the
GEDI mission (~20 m) is expected to cause a rather high uncertainty in biomass
estimation at the single footprint level (Dubayah, personal communication). Parts of
the uncertainty will average out when upscaling to a 1-ha resolution product. The
BIOMASS mission, as another example, will provide P-band SAR-based estimates
of canopy height and biomass at 200-m resolution. The question here is rather if the
horizontal resolution of 200-m is sufficient for accurate biomass estimates. Simulations
similar to the ones conducted for airborne lidar in this thesis could be used to evaluate
the estimation accuracies of the proposed spaceborne missions.

Differences in the derived height-to-biomass relationships between undisturbed
and disturbed forests were small. With the lack of field data covering the successional
gradient after disturbance events, these simulation findings cannot be confirmed yet
for the real forest. If such differences existed, a likely reason would be differences in
tree allometries and wood densities among early and late successional species. The
species-level variability of these attributes is lost in the PFT approach of FORMIND,
but the general trend of lower and higher wood density of early and late successional
species, respectively, is included in the PFT approach. Hence, the model could show
small differences in the height-to-biomass relationships, but to which degree these
exist in reality requires further investigation.

The main benefit of using disturbance simulations was rather the possibility to
generate heterogeneous, mixed-state plots, where more than one successional stage

1 https://github.com/niknap/slidaRtools
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occur next to each other. Such cases are common in real landscapes and are crucial
to be present in the model, if the model is supposed to be able to represent the full
range of stand structures observed in nature. In Chapter 2 the potential of combining
a forest model with disturbance simulations and lidar simulations was shown, for
generating and investigating the full range of possible stand structures. In Chapter 3
the focus was on the specific advantage of simulating time series of forest and remote
sensing data.

5.1.3 Detecting Biomass Changes over Time with Remote Sensing

Repeated synchronous collections of airborne remote sensing and ground-truth data
have been rarely realized. Simulated time series of remote sensing and forest inventory
data have a high potential for filling knowledge gaps in change detection. Because
of data scarcity, few studies have analyzed forest biomass changes with lidar so far.
One could argue that mapping biomass stocks at different points in time also enables
change calculation. However, it is important to point out that the relative errors
associated with biomass stock estimates are usually in the range of 10 to 20% (at 1-ha
scale). These errors are much larger for biomass change estimates (> 30%), due to the
fact that changes are smaller than stocks. Especially, the small gains caused by forest
growth seem to be often below the detection limits. The simulations in Chapter 3 have
served to analyze this aspect and compare different approaches of change estimation,
also considering the asymmetry of gains and losses. Further research is needed to
improve the precision of change estimates.

Indirect change estimation based on biomass stock estimates at two time points is
only possible if information on canopy height above ground (i.e., also terrain height) is
available. Otherwise a direct approach, i.e., a direct height-change-to-biomass-change
relationship is required. A systematic bias in a direct height-change-to-biomass-change
relationship has been identified in this study. Biases could be removed in an improved
direct approach that involved canopy texture analysis and random forest machine
learning (dir+tex). Such an approach bears the potential for large scale biomass change
detection, based on the global TanDEM-X digital surface model product (Solberg et al.,
2014). Since it involves machine learning, it requires a large training dataset, which
was only possible to generate using the linked forest and remote sensing simulations.
Further research is required for a mechanistic understanding of the relationships
between textural metrics, forest structure (Abdullahi et al., 2016) and terrain variability,
and simulated data sets are an ideal test bed for this. They will allow experiments
on how tree crown sizes affect canopy texture (Proisy et al., 2007) and how sensitive
texture metrics are with regard to uneven terrain. The application of textural metrics
also requires a thorough investigation of the influence of the moving window size, i.e.,
the considered pixel neighborhood from which texture is calculated, which comes in
as a third scale component between the pixel and the plot scale of the data.

5.1.4 Generalization of Structural Relationships Across Forest Types

A general equation that links forest height and remote sensing-derived structure to
biomass, regardless of the specific forest type, would be a big achievement in the field
of forest mapping. It could reduce the efforts of ground-truth plot sampling and would
lead to comparable remote sensing products for forest carbon monitoring worldwide.
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Despite the good performance of TCH as single biomass predictor in numerous studies
since its proposal (Asner and Mascaro, 2014), it is obvious that one single lidar metric
is not sufficient for generalization across forest types due to the differences in forest
structures and tree allometries (Bouvier et al., 2015). In Chapter 4, a combination of
structural descriptors was identified which allowed unbiased biomass predictions
across five distinct forests from four different continents, representing the temperate
and tropical biomes. The estimation errors using the derived general equation were
only marginally higher compared to using site-specific equations.

Please note the dataset used in the study is far from representing the full range
of possible forest types and structures. Fortunately, forest plot networks such as
ForestGEO make comparison and synthesis studies like this possible. If more lidar
campaigns were conducted over further inventory sites, these could serve to validate
and improve the general equation for biomass estimation. Ideally, as many forest types
as possible from all biogeographical regions (e.g., a combination of the 8 biogeographic
realms with the 14 biomes or the 867 ecoregions identified by Olson et al., 2001)
and across different successional stages should be represented in the database. An
important point is also the accessibility of data. Many datasets are being collected but
not shared with the scientific community. Data policies like the ones of the ForestGEO
network and remote sensing missions such as G-LiHT, which provide easy and free of
charge access to their datasets, are positive examples fostering scientific progress.

In lack of empirical data, simulated data could be useful in this context. The
parameterizations of FORMIND for different forest types across the world could be
used to simulate lidar data and test the general equation. With simulated data it would
be possible to manipulate the tree allometries and test the robustness of the biomass
equation for extreme cases. A truly robust general equation should even be able to
deal with extreme forest structures, which might go beyond what is observable in
nature.

5.2 ideas for future research

In the following section, possible future research directions based on the results of this
thesis are outlined. Some of the proposed ideas are already part of ongoing research
activities. All ideas have the common goal, to exploit more of the potentials, which
emerge from the link between remote sensing and forest modeling.

5.2.1 Disentangling Uncertainty Using Simulations

Any remote sensing product contains uncertainties. Some of them can be reduced by
refinement of technology and methods, while others are inherent. In either case, it
is important to understand the mechanisms behind uncertainties in derived remote
sensing products and to be able to quantify them. Forest and remote sensing sim-
ulations not only enable to derive relations between different forest attributes, but
also allow detailed uncertainty analyses. E.g., in the biomass estimation procedure,
various sources of uncertainty are contained. These can be categorized into 1) allo-
metric variability, 2) structural ambiguity, 3) border effects, 4) geolocation errors and
5) instrument errors. Disentangling the contributions of each of these error sources is
difficult with empirical data, but can be achieved with simulated remote sensing data
of forest stands.
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Allometric variability refers to the anatomic differences between trees. While al-
lometric equations describe the average relationships between tree DBH and other
morphological attributes, each tree differs to a certain degree from this average rela-
tionship. Thus, there is some uncertainty in the relationship between tree height and
crown diameter (remote sensing observables) and DBH from which the biomass is
calculated. Furthermore, there is variability in the wood density among species and
individuals. The uncertainty that is introduced by this variability at tree level can be
quantified by comparing simulations that explicitly account for the variability with
simulations where the variability is switched off, i.e., all trees follow the exact same
allometry.

Structural ambiguity refers to the fact that different forest stand structures can
result in identical remote sensing signals. Hence, the signals (e.g., lidar profiles)
are ambiguous with respect to the variable of interest (e.g., biomass). This is, to a
certain degree, caused by allometric variability, as described before, but also the spatial
positions of trees inside the plot area are important, because the contribution of smaller
trees to the signal can be very different depending on whether they are standing freely
visible for the sensor or are covered by crowns of larger trees. In a currently running
project, the lidar simulator developed during this thesis was adapted to simulate
large-footprint waveforms (e.g., with the technical specifications of the ICESat GLAS
instrument with its 65 m footprint diameter). Lidar sampling was simulated for
the whole Amazon rainforest using the regionalized FORMIND version (Rödig et al.,
2017b) with the goal to quantify the structural ambiguity (regarding biomass estimates)
behind each real ICESat GLAS waveform collected over the Amazon (Figure 5.1;
Rödig, Knapp, et al., in prep.2). For each GLAS waveform the 100 most similar
simulated waveforms were derived from FORMIND. For some GLAS profiles the
biomass distribution of the 100 stands behind these simulated profiles was narrow (low
uncertainty, Figure 5.1b2), while for others it was wide (high uncertainty, Figure 5.1a2).
Unlike most previous studies, which estimated biomass based on a few lidar metrics,
this approach takes the full vertical profile information into account. Future analyses
need to find out whether there are specific profile characteristics associated with low
and high structural ambiguity.

Border effects refer to the problem that crowns of trees near the plot borders can
cross these borders. While the biomass estimate for a plot is based on all trees that have
their stem foot position inside the plot area (an alternative approach is the concept of
crown-distributed biomass suggested by Mascaro et al., 2011b), the remote sensing
signal includes contributions of all tree crowns that occupy the canopy space above
the plot. Trees which are inside the plot often have parts of their crowns outside the
plot area. On the other hand, there are trees which are located outside the plot but
close to its border and parts of their crowns are inside the plot area. Hence, parts of
the crowns of trees inside the plot are lost in the remote sensing signal, while parts of
the crowns of trees outside the plot have an unwanted contribution. Border effects are
strong in cases of a large border-to-area ratio, i.e., for small plots (e.g., 20 m × 20 m),
and are expected to become small for large enough plots. It would be valuable to
investigate such border effects in more detail to improve sampling methods. In a
current project, the magnitude of border effects in biomass estimation at different
spatial scales is investigated using simulated lidar data. One possible approach is to

2 Rödig, E., Knapp, N., Fischer, R., Bohn, F., Dubayah, R., Tang, H., Huth, A. (in prep.). The state of the
Amazon rainforest derived from forest modeling and full lidar profiles.
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Figure 5.1: Two ICESat waveforms (dark blue) and for each the 100 most similar simulated
waveforms (light blue, a1, b1) along with the aboveground biomass distributions of
the 100 FORMIND stands behind the simulated waveforms, respectively (a2, b2).
The map shows the ambiguity (CV = coefficient of variation) of biomass estimates
for 1 million ICESat footprints across Amazonia (c; Rödig, Knapp, et al., in prep.).

introduce periodic boundary conditions in the simulations. That means crowns which
leave the plot on one side reappear on the opposite side and no crowns of other trees
can enter the plot, i.e., border effects are being “switched off” (Figure 5.2, Knapp et
al., in prep.3).

Geolocation errors refer to the uncertainty caused by weak co-registration of remote
sensing and ground-truth data. The stronger the spatial mismatch between the two,
the larger is the error. Spatial shifts are commonly in the cm range, but can also
reach several meters. In simulated datasets geolocation errors do not exist, but can be
introduced to systematically investigate them (Frazer et al., 2011).

Instrument errors refer to errors caused by the technical specifications of the sensor.
An understanding of the noise patterns of a sensor system is important in simulating
realistic remote sensing signals, e.g., for pre-launch assessment of mission require-
ments (Hancock et al., 2017). It involves testing the influence of different possible
inclination angles and sensor-target distances, which are given by the flight path
and viewing direction of the sensor platform and the earth’s topography. It further
involves scattering processes in the atmosphere, possible interactions with clouds and
the influence of environmental background radiation. It finally requires knowledge
about the magnitude of stochastic noise introduced at the level of sensor electronics
(Hancock, personal communication).

The main potential for forest models in disentangling remote sensing uncertainty
lies in improving the understanding of the interplay between border effects, structural
ambiguity and allometric variability in the overall observed uncertainty. Instrument
errors fall into the domain of the mission engineers and require expert knowledge
in earth observation, radiative transfer and sensor electronics. Geolocation errors are
rather easy to understand and need to be avoided as much as possible.

3 Knapp, N., Fischer, R., Rödig, E., Taubert, F., Dantas de Paula, M., Huth, A. (in prep.). Tree crowns
and plot borders: quantifying the contribution of border effects in area-based biomass estimations from
remote sensing.
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Figure 5.2: The border effect is caused by tree crowns leaving and entering the plot area (a). Its
influence on biomass estimation can be analyzed by enforcing periodic boundary
conditions on simulated canopy height models. To illustrate this, an example canopy
height model of nine 50 m × 50 m plots is shown under normal conditions (b) and
with periodic boundaries for each plot (c). The regression analysis of 200 plots
shows that the overall error of 18% (d) would reduce to 11% if border effects were
non-existent (e; Knapp et al., in prep.).

5.2.2 Remote Sensing of Forest Productivity

Besides standing biomass, there is a growing demand to estimate forest productiv-
ity from remote sensing, in order to understand the climate vegetation interaction.
Coarse estimates of vegetation productivity are based on the fraction of absorbed
photosynthetic radiation and can be derived from MODIS at 1-km resolution (Zhao
et al., 2005). For more fine scale productivity estimates the forest structure has to
be considered. Productivity may refer to the gross primary productivity (GPP), net
primary productivity (NPP, which is GPP minus plant respiration) or net ecosystem
productivity (NEP, which is NPP minus losses due to mortality and consumption
by heterotrophic organisms). The challenge is that unlike biomass, which can be
calculated from inventory data via allometric equations, productivity is more difficult
to measure in field plots. Repeated censuses provide estimates on tree growth for de-
riving net primary productivity, but usually with intervals of several years. Eddy-flux
towers measure carbon fluxes above the canopy near-real time, but are complex and
costly systems, which only enable investigations at a few selected points (Rödig et al.,
2017a).

Process-oriented forest models enable detailed analyses of the relationship between
stand structure and productivity. A recent study using FORMIND and a stand struc-
ture generator called ‘forest factory’ has shown how tree height heterogeneity can
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explain differences in productivity for stands of similar density (basal area; Bohn and
Huth, 2017). In a follow-up study, lidar simulations of the forest factory stands were
used to identify remote sensing metrics which are closely correlated to field-based met-
rics that describe horizontal and vertical forest structure (Figure 5.3; Fischer, Knapp
et al., in prep.4). Based on this information, aboveground biomass (AGB) and above-
ground woody productivity (AWP) were derived as functions of mean top-of-canopy
height (TCH) and the standard deviation of canopy height (SDH).

Figure 5.3: Matrix of R2 values of relationships between field-based and remote sensing-
derived descriptors of horizontal and vertical forest structure (Fischer, Knapp et al.,
in prep.).

In a current pilot project, these relationships are used to estimate forest productivity
across Germany. As no wall-to-wall lidar data for Germany was available, lidar data
was simulated for the 47,000 plots of the German forest inventory (Bundeswaldin-
ventur) and derived lidar metrics were interpolated in space to generate maps of
horizontal and vertical structure, AGB and AWP (Figure 5.4; Fischer, Knapp et al., in
prep.; Fischer et al., 2019).

5.2.3 Model Initialization at Individual Tree Level

Many ecological processes in forests act at the individual tree level or are emergent
properties caused by the interactions among individuals. The strength of individual-
based models to represent these processes appropriately is what makes forest gap
models so useful and warrants their wide application. Remote sensing products have
been used for a long time to describe these processes at an aggregated, area-based
scale. With increasing resolution of remote sensing data also the information retrieval
at individual tree level has become possible. In the author’s opinion, it is a logical
next step to link the approaches of individual-based remote sensing and individual-
based modeling. However, there has been little progress in this direction so far. In

4 Fischer, R, Knapp, N, Bohn, F, Shugart, HH, Huth, A (in prep.). The relevance of horizontal and vertical
structure for forest biomass and productivity - new perspectives for remote sensing.
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Figure 5.4: Maps of Germany showing mean top-of-canopy height (TCH), standard deviation
of height (SDH), aboveground biomass (AGB) and aboveground woody productiv-
ity (AWP) based on the German forest inventory and lidar simulations (Fischer,
Knapp et al., in prep.).

the course of this thesis, several Master student projects have been supervised, with
the goal of applying individual tree crown delineation (ITCD) algorithms to lidar
data and derive information for forest model parameterization and initialization. The
two biggest challenges in the field of ITCD are 1) the detection of understory trees in
multilayered stands and 2) the processing time. Many ITCD algorithms operate on
canopy height models and are built to detect trees in the upper canopy layer (Lindberg
and Holmgren, 2017). One algorithm called adaptive mean shift 3D (AMS3D) operates
on full point clouds and has shown promising results even in a complex tropical
rainforest (Ferraz et al., 2016). This algorithm was re-implemented in a Master student
projects at the UFZ with the goal of optimizing processing speed (Falke, 2017). In
another Master student project a workflow was developed for time efficient parallel
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processing of lidar point clouds at state scale (entire Thuringia; Nguyen, 2017). By
combining the methods developed in both projects, it may soon be possible to count
and measure every individual tree at country scale using airborne lidar data.

Ongoing Master student projects are dealing with the questions on how to use
ITCD to derive allometric relationships for model parameterization and to initialize
forest simulations with the precise spatial and structural configuration as found in
the field (Fujimoto, in prep.5; Naya-Geiger, in prep.6). Several project proposals have
been prepared for establishing a processing chain that uses lidar-based ITCD for
initialization of dynamic forest simulations to estimate productivity and development
under variable environmental conditions at country scale. Meanwhile, the AMS3D re-
implementation has been applied successfully on several different datasets (Figure 5.5;
Vincent personal communication) and the code was recently published as an R package
on GitHub7.

Figure 5.5: Lidar point clouds of 1 ha of temperate (Traunstein) and tropical (BCI) forest with
each color representing one tree crown cluster identified by the adaptive mean
shift 3D algorithm.

5.3 vision

This thesis has laid the foundations for coupling remote sensing and individual-
based forest modeling with benefits for both disciplines. In combining the methods
described here with data from upcoming missions such as GEDI (precise height and
vertical structure), EnMAP (hyperspectral signatures revealing functional traits and
taxonomic identities) and Tandem-L (wall-to-wall horizontal and vertical structure
at subannual revisit intervals) we are not far from being able to localize, identify
and measure all trees at continental scale and predict their future fate based on
simulations. Even if individual tree crowns cannot be delineated as directly as in the

5 Fujimoto A. (in prep.). Currently conducted Master’s thesis at the University of Osaka on the topic of
using UAV-based structure from motion to conduct ITCD and initialize FORMIND for estimating growth
of a Japanese coniferous forest.

6 Naya-Geiger A. (in prep.). Currently conducted Master’s thesis at UFZ in cooperation with HNE
Eberswalde on the topic of using lidar and AMS3D to derive allometric relationships of trees and
initialize FORMIND for estimating productivity of the Traunstein megaplot.

7 https://github.com/niknap/MeanShiftR
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case of airborne lidar, satellite derived vegetation profiles will allow the reconstruction
of tree size distributions (e.g., Stark et al., 2015). The species information will come
from a combination of multispectral, hyperspectral and textural data in combination
with machine learning algorithms (e.g., Fassnacht et al., 2016). Hence, in the near
future individual-based forest model applications at continental scale, which will
be constrained by detailed remote sensing products of high resolution, will become
possible. To be clear, the goal should be to develop methods which provide the
option to simulate any tree in any forest on earth where needed, which does not
mean that the model has to explicitly contain representations of all 3 trillion trees
on earth (Crowther et al., 2015). The fusion of remote sensing and forest modeling
will blur the boundaries between model initialization, calibration, validation and
remote sensing interpretation sensu Plummer (2000) and is maybe best described
with the term assimilation. This means for such a system to work smoothly the
remote sensing interpretation needs to be well established and the model needs to be
flexible to integrate remote sensing input at the starting point and for updates during
runtime. There is also a need for producing synthetic remote sensing output for data
comparisons.

A forest model, which could be initialized by remote sensing with the current
state and structure of the forest at any place in the world to run simulations under
different climate, disturbance and management scenarios would offer interesting new
possibilities for application. It could support climate change mitigation and resource
planning through monitoring of forest disturbances and quantification of the impacts
of afforestation projects, e.g., in the REDD+ context. It would help forest managers
with optimizing silvicultural treatments and harvesting operations while considering
multiple ecosystem services of forests. Further, it would facilitate climate change
adaptation by predicting possible changes in optimal species compositions at any site.
In contrast to frequently used statistical habitat suitability models, a process-oriented
model would allow mechanistic simulations on species range shifts and migration
rates due to climate change. Predictions could be validated, based on a range of remote
sensing patterns, and if necessary adjusted, based on the continuous assimilation of
remote sensing observations.

The development of such an integrated global forest information system could
be realized with existing technology within the next five to ten years. Meanwhile,
basic research in forest ecology, modeling and remote sensing has to find answers and
solutions to open questions and problems. On the ecology and modeling side, one
big challenge is to understand which degree of complexity and structural realism is
required to accurately predict the variables of interest. Individual-based forest gap
models are at a level of intermediate complexity. Tree growth can be represented
(and with terrestrial laser scanning also measured; Disney, 2018) in far higher detail
than realized in gap models. Functional-structural plant models that explicitly model
plant organs such as branches and leafs (e.g., represented as L-systems) can help to
study morphological plasticity and the environmental conditions causing it (Wang et
al., 2018). This level of detail is good for understanding how processes like competition
lead to observed structures. It is however, not practicable in large scale simulations
and therefore higher order rules (e.g., allometric relationships), which account for
different conditions (e.g., competition), need to be derived to simplify processes at
aggregated levels. Aggregation can go far beyond the individual tree level and the
dynamics of individual-based forest models can also be approximated with differential
equations systems (Tietjen and Huth, 2006). Such stock-based approaches can be
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computationally more efficient and may also be easier to link to coarse scale remote
sensing observations.

On the remote sensing side one big challenge is to make the best use out of all the
data which is already available (Pettorelli et al., 2014). Current trends in the earth obser-
vation community are about the provision of data access and exploitation platforms
(data cubes and cloud computing; Baumann et al., 2018). This new infrastructure will
facilitate big data processing and enable the application of computationally intensive
machine learning or physically based inversion methods for large areas. For forest
remote sensing this could enable the implementation of automated disturbance detec-
tion and classification and the surveillance of local weather and microclimate for an
improved risk assessment.

The fate of the world’s forests in the 21st century is critical if we want to preserve
a livable environment for present and future generations. With remote sensing and
forest modeling we own the technology that could enable us to monitor and manage
forests in a sustainable way. If we learn to apply it properly it will hopefully provide
guidance to cope with global change.
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A
A P P E N D I X O F C H A P T E R 2 :
L I N K I N G L I D A R A N D F O R E S T M O D E L I N G T O A S S E S S B I O M A S S
E S T I M AT I O N A C R O S S S C A L E S A N D D I S T U R B A N C E S TAT E S

a.1 supplementary information

a.1.1 Lidar Model Parameterization

The light extinction model contains two parameters, P0 and k. The value of the surface
return probability P0 affects the point density of simulated lidar point clouds and
must be chosen to match densities of airborne lidar data. The extinction coefficient k
affects the shape of the vertical distribution of simulated lidar returns. The literature
suggests that k values for near infrared (NIR) wavelengths, as commonly found in
airborne lidar systems, are lower than those for the photosynthetically active radiation
(PAR) spectrum due to the lower absorptivity of leafs. Jones (2013) reported values of
kNIR = 0.17 and kPAR = 0.5 in crop fields. Calculations following Campbell and Norman
(2012) led to kNIR = 0.22 and kPAR = 0.45, assuming absorptivities of αNIR = 0.2 and
αPAR = 0.8, a vertical incidence angle of 0° and a spherical leaf angle distribution.

To find a good k for our lidar simulations, we ran the lidar model with varying k
and compared the outputs to airborne lidar data. Two independent datasets of the BCI
50-ha plot were used for this purpose: 1) the airborne lidar point cloud acquired in
2009 and 2) the census data containing positions and diameter at breast height (DBH)
of 246,903 trees with a DBH ≥ 1 cm acquired in 2010. The collection times of the
two datasets were considered to be in close proximity such that changes in the forest
structure between the two dates could be neglected. The census data were used as
input to the lidar simulations. The airborne data were used as a reference, which
should be approximated using simulations. Based on the DBH [m] for each tree,
the height H [m] and crown diameter CD [m] were calculated according to given
allometric equations (Bohlman and O’Brien, 2006).

H = 43.4 · DBH0.6 (A.1)

CD = 18.16 · DBH0.68 (A.2)

These relationships are based on measurements from BCI. Equation A.1 represents
the average allometry over different functional groups of species, whereas Equation A.2
is based on subcanopy species. We tested different crown diameter allometries by
simulating canopy height models (CHMs) based on the inventory data and comparing
them to the airborne CHM. Visual inspection along with quantification of canopy
gap fraction (area proportion below 20 m height) per ha led us to the decision to
choose the allometry that results in the largest possible crown diameter for a given
DBH, which was the one called "subcanopy" in Bohlman and O’Brien (2006). Overall,
mean gap fractions were 0.32 (airborne), 0.34 (simulated with "subcanopy" allometry)
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and 0.47 (simulated with the average "all" allometry). Regarding the height allometry,
we had to set a maximal height limit of 40 m. Most forests and tree species show
an asymptote in height as diameter gets larger (Jucker et al., 2017) and the power
law would overestimate height of very large trees. Additional parameters required
for the lidar simulations were crown length, crown shape and LAI. Crown lengths
were assumed to be a constant proportion of 0.4 · H for all trees. Crown shapes were
modeled as cylinders. LAI was set to 2.0 for all trees. All these allometric equations
and parameters were retained in the FORMIND simulations.

A 9-ha subplot of the 50-ha plot was selected. Synthetic lidar point clouds of these
9 ha were generated by applying different values for k and P0 from 0.1 to 1 in steps
of 0.1. The pulse density for the simulations was set to 4 m-2. From the airborne and
simulated lidar point clouds, normalized vertical profiles were derived by counting
the points in each 1-m height bin and dividing by the total number of points. The
relative overlap (intersection area divided by union area) between the airborne and the
simulated profile served as a measure for evaluating each k. Based on this approach,
k = 0.1 led to the best profile overlap (88.6%), slightly ahead of k = 0.2 (87.3%)
(Figure 2.4a). Because 0.2 is in better agreement with the literature values (Campbell
and Norman, 2012; Jones, 2013), it was chosen for all further lidar simulations. The
value was validated on another 9-ha subset for which k = 0.2 led to an equally good
overlap (87.5%) between simulated and airborne lidar profile (Figure 2.4b). The value
of P0 did not affect the shapes of the simulated profiles. We chose a value of P0 = 0.2,
because resulting return densities of the simulated point clouds were most similar
to the airborne point cloud (4 m-2). The 9 ha used for calibration and validation
covered the 300 m × 300 m squares in the southwestern and northeastern corners of
the megaplot, respectively. Those two areas were selected, because of the maximal
possible spatial distance within the plot and because they cover different habitat types
with the southwest being mainly classified as low plateau, stream and swamp and
the northeast being mainly classified as high plateau, slope and young forest (Harms
et al., 2001). The lidar simulations worked equally well for both plots (Figure 2.4).

a.1.2 FORMIND Model Parameterization

The full model description has been published in Fischer et al. (2016) and no changes
to the model structure have been made. The parameterization of FORMIND for BCI
was originally developed and described by Kazmierczak et al. (2014) and is based
on 50 ha census data (years 1990 to 2010). Kazmierczak et al. (2014) showed that
grouping the 323 tree species that are found at the site into four plant functional
types (PFT) provides sufficient variability between trees to reproduce many patterns
observed in the field data, while keeping model complexity and parametrization effort
within a feasible range. The aim of this study was to additionally reproduce remote
sensing patterns; thus, the original 4-PFT parametrization was revised to incorporate
the allometric relationships of tree heights and crown sizes described in Equations A.1
and A.2. The four PFTs were defined as follows: 1) small, slow growing; 2) large,
slow growing; 3) small, fast growing; and 4) large, fast growing species. Fast growing
species were those for which the 75-percentile of annual DBH increment exceeded
5 mm. Large species were those with a maximal DBH > 27.5 cm (corresponding to
a maximal height > 20 m, according to Equation A.1). All four PFTs were modeled
with the same height and crown diameter allometries. The maximal heights of the
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PFTs were set to (1) 20 m, (2) 40 m, (3) 20 m and (4) 55 m. Allowing trees of one
group to reach a higher maximum height was necessary to obtain the typical canopy
pattern of BCI, with scattered emergent trees. Since in our species grouping the largest
species show higher DBH increments than 5 mm yr-1 (75-percentile) based on field
data, we decided for them (PFT 4) to grow higher than the slow growing large trees
(PFT 2). Crown lengths were modeled as 0.4 times H. The wood specific gravity of
each PFT was calculated as the basal area weighted mean of the wood specific gravities
of all contained species. Species-specific wood specific gravity values were derived
from the database of the CTFS-ForestGEO network (Anderson-Teixeira et al., 2015).
Aboveground biomass (AGB) of trees was calculated using Equation A.3:

AGB = π · (DBH
2

)2 · H · F · ρ

σ
(A.3)

where F is a stem form factor which accounts for the deviation from a cylindrical
shape and is calculated as a power law from f0 · DBHf1, ρ is the wood density
(tODM m-3) and σ is the stem-to-total AGB ratio of the tree. Parameter values are listed
in Table A.1.

Annual diameter increments were calculated for all individual trees in the BCI
inventory using the CTFS R package (http://ctfs.si.edu/Public/CTFSRPackage/). To
fit diameter growth curves for each PFT, the records were grouped into ten equidistant
DBH classes spanning the full DBH range of the PFT. Within each DBH class, the
90-percentile of DBH increment was calculated and a 3rd order polynomial model
was fit to describe DBH increment (90-percentile) as a dependent variable of DBH.

A few parameters were calibrated inversely by varying values within a reasonable
range and comparing emergent patterns of the simulation output to their equivalents
from field data. Calibrated parameters were annual seed ingrowth, background mor-
tality and parameters of the light response curve for photosynthesis. Patterns used for
calibration were AGB, basal area, stem number and stem size distribution of each PFT
after 500 yr of simulation. Additionally, simulated lidar patterns, i.e., the vertical lidar
profile, mean canopy profile height and the CHM, were considered and compared
with airborne data. Calibration was performed using a dynamically dimensioned
search (DDS) optimization algorithm (Lehmann and Huth, 2015). All parameters used
for the FORMIND simulations can be found in Table A.1.

a.1.3 Comparison of Simulation-Derived Lidar-to-Biomass Relations with Reference Data

We quantified the bias between n reference observations (BCI inventory and airborne
lidar data) and predictions based on the power laws that were fit to the simulated data
and normalized it to the mean AGB observed in the reference data to obtain nBias
(Equation A.4).

nBias =

n
∑

i=1
(predAGBi − re f AGBi)

n
· 1

mean(re f AGB)
(A.4)

A shift between simulated and reference field data was observed. For TCH-based
biomass predictions the nBias was always negative. For the undisturbed scenario,
nBias ranged from -6 to -28% (Figure A.10); for the disturbed scenario, it ranged
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Table A.1: Model parameters to simulate the forest on Barro Colorado Island (BCI) using
FORMIND with four plant functional types (PFT). The parameters are described in
Fischer et al. (2016).

Process Parameter Unit
Plant functional type (PFT)

Reference
1 2 3 4

geometry

Hmax m 20 40 20 55 7

h0 43.4 1

h1 0.6 1

cl0 0.4 10

cd0 18.16 1

cd1 0.68 1

cd2 0 1

ρ tODM m-3 0.62 0.56 0.52 0.39 7

σ 0.7 9

f0 0.49 3

f1 -0.1 3

l0 2 7, 9

l1 0 7, 9

recruitment
Nseed ha-1 yr-1 80 78 80 70 3

Iseed 0.1 0.1 0.4 0.25 3

Dmin m 0.01 3

mortality
MB yr-1 0.025 0.022 0.092 0.013 7, 9

ffall 0.3 3, 4

photosynt.

I0 µmolphoton

m-2 s-1
850 8

k 0.5 5

lday h 12 8

φact d 365 8

pmax µmolCO2
µmolphoton

-1
1.7 1.6 9.9 7.6 9

α µmolCO2
m-2 s-1

0.4 0.5 0.3 0.3 9

growth

g0 0.001297 0.001303 0.011046 0.01685 7

g1 0.004319 0.02878 0.024529 -0.022556 7

g2 0.135525 -0.022137 -0.14802 0.03249 7

g3 -0.544071 0.003709 -0.188849 -0.010326 7

fire

λ yr 25 11

β 0.5 11

sfire 0.55 9

exmoisture 0.4 9

minfuelload 0.25 9

tolfire 2 6

References: 1) Bohlman and O’Brien (2006), 2) Dislich et al. (2009), 3) Kazmierczak et al. (2014), 4) Brokaw (1985),
5) Campbell and Norman (2012), 6) Busing and Solomon (2006), 7) field data, 8) climate data, 9) calibrated, 10) esti-
mated, 11) Cochrane et al. (1999).
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from -20 to -33% (Figure A.11). In both cases, the largest biases were observed for
pixel resolutions of 10 m, whereas biases decreased towards higher and lower pixel
resolutions. Plot size had no effect on nBias.

We also fit power laws for the TCH-to-AGB-relationship to the reference field data
(Figure A.4) and to the simulated data under the different disturbance regimes (fire
and logging) separately (Figures A.7 and A.8). The curves of the reference data fit
the simulation-based curves best for small CHM pixel sizes and medium to large
plot sizes (Figure A.9). For larger pixel sizes, the reference curve bends more strongly
upwards than the simulation curves do. Thus, the simulation-based power laws tend
to mostly underestimate real AGB, particularly for large TCH values.

The greatest differences between simulation scenarios can be observed in the case in
which only the maximum lidar height in a plot is taken as TCH (plot size = pixel size
in Figure A.4 and following). In those cases, the undisturbed curves have rather flat
slopes, indicating low variability of maximal tree height with AGB at the plot scale.
The lower lying curves of the fire-disturbed forest result from cases in which single
surviving trees in otherwise burned plots cause high maximum tree heights along
with low total AGB stocks on the plots (Figure A.7). Such cases do not occur in the
logged forest scenario, in which large trees are taken out homogeneously across the
whole plot (Figure A.8).

As for TCH, for most other metrics the model derived power laws underestimated
the reference AGB. The nBias for all metrics at all scales is plotted in Figure A.14. For
some metrics, RH25, RH50 and FCC (> 20 m), the nBias was below 10%. For certain
vegetation density metrics (e.g., NAGR/NGR and FCC), nBias increased with plot size,
whereas for the majority of metrics no clear trend with plot size was detected.

a.1.4 Sensitivity of Lidar Simulations to Alternative Tree Representations

The lidar simulations are based on assumptions about tree geometries. For some
of those assumptions, there exist alternatives, which could possibly improve the
model’s quality. Therefore, we analyzed how alternative assumptions about the leaf
area distribution, the crown shape, the diameter-height relation and the crown length
proportion influence the derived metrics from the lidar simulations. This analysis
was done by simulating lidar data for the 50-ha inventory data and varying the
assumptions.

Figure A.15 shows the obtained vertical profiles in comparison to the airborne profile
for the 50-ha plot. Figures A.16 to A.18 show the relations between three different
lidar metrics (MCH and TCH from 1- and 10-m pixels) and AGB at 1-ha scale. Case (a)
shows the base scenario (geometric assumptions as explained in the main text). In (b),
we changed the assumption of a fixed LAI of 2 for each tree with the assumption of a
constant leaf area volume density (LAD). A value of LAD = 0.29 m2 m-3 was chosen to
preserve the overall average LAI = 5.4 m2 m-2 of the 50-ha plot. In (c), we replaced the
assumption of cylindrical tree crowns by ellipsoid tree crowns, preserving the crown
diameters and lengths. In (d), we replaced the DBH-height relationship of the power
law type (with a maximal possible height of 40 m) by an asymptotic function of the
Michaelis-Menten type (Equation A.5):

H =
55 · DBH

0.5 + DBH
(A.5)
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In (e), we calculated crown lengths CL of trees using the "All" crown depth function
from Bohlman and O’Brien (2006) for which Equation A.6 contains the parameters in
meter units:

CL = 17.5 · DBH0.7 (A.6)

In (f), all the alternative assumptions were combined. The LAD in this case was
0.44 m2 m-3, due to the altered crown geometries.

All alternative assumptions did not alter the simulated lidar profiles much
(Figure A.15). Compared to our base scenario we observed slight decreases in the
overlap with the airborne reference profile and marginal changes in the MCH and
ground return peaks. Using ellipsoid crown shapes and an asymptotic height curve
smooths the profiles at the upper canopy limit around 40 m. The scatterplots of
MCH (Figure A.16), TCH1 (Figure A.17) and TCH10 (Figure A.18) against AGB for
the different tree geometric assumptions do not provide arguments for or against a
certain scenario. Different geometric assumptions produce similar results. Using an
asymptotic instead of a power law height allometry led to slight increases in R2 and
decreases in nRMSE of the stand height to biomass relationships.

Table A.2: This table can be found as Table S2 in the digital supplementary material of Knapp
et al. (2018a) as an Excel file1. It contains model parameters and statistics for all 672
cases in which it was possible to fit a power law model between a lidar metric and
aboveground biomass (AGB). Columns: 1) Data set: simulation scenario or field
reference; 2) Lidar metric (based on point cloud PC or canopy height model CHM);
3) Scale: plot size [m]; 4) a: pre-exponential factor; 5) b: scaling exponent; 6) Mean:
mean observed AGB [t], 7) RMSE: root mean squared error of AGB estimation [t]
quantified within the data set itself; 8) Bias: bias of AGB estimation [t] quantified
within the data set itself; 9) RMSE (all): quantified against the pooled simulation
data from different scenarios; 10) Bias (all): quantified against the pooled simulation
data from different scenarios; 11) Bias (ref): quantified against the field reference
data; 12) R2: coefficient of determination for the linear fit between predicted and
observed AGB; 13) Intercept: of the linear fit; 14) Slope: of the linear fit.

1 https://www.sciencedirect.com/science/article/abs/pii/S0034425717305679
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a.2 supplementary graphics

a.2.1 Graphics Concerning FORMIND Output Patterns

Figure A.1: Aboveground biomass (AGB) succession of the four plant functional types (PFT)
on an area of 16 ha over 500 years of undisturbed FORMIND simulation. The
circles on the right side represent the field reference data from the BCI 50-ha plot.

Figure A.2: Stem diameter distributions of the four plant functional types (PFT) with 10-cm
class width on a double logarithmic scale. Different symbols represent the BCI
50-ha plot (Inventory) and a 16-ha FORMIND simulation after 500 years. Note
that PFT 2 and 4 can only reach maximal heights of 40 and 55 m, respectively,
in FORMIND, which in turn limits their diameters to maxima of 87 and 148 cm,
respectively. This explains why the largest diameter classes of these PFTs have
higher stem numbers than the next smaller classes. All trees in the field inventory
with diameters exceeding the maximal possible diameters in the model were
assigned to the largest diameter class.
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a.2.2 Graphics Concerning Biomass Prediction from Top-of-Canopy Height

Figure A.3: Example of the sampling approach. The canopy-height-models (CHM) show a
scene of 9 ha of simulated forest with different parts of the area in different
stages of succession after fire disturbances. Aboveground biomass (AGB) and
top-of-canopy height (TCH) were calculated for each plot using different plot sizes
(black grids). CHMs of different pixel sizes were derived from the underlying lidar
point cloud by taking the height of the highest return within the extent of each
pixel of the respective resolution. TCH was calculated from the CHM by averaging
the pixel values in each plot. In the extreme case, pixel size equals plot size such
that TCH equals the maximal lidar height found in a plot (right column). Plot
sizes of 20 m, 50 m and 100 m side lengths (rows) and pixel sizes of 1 m, 10 m
and the maximum possible (columns) are shown. The arrangement of resolutions
corresponds to the arrangement of scatterplots displayed in Figures A.4 to A.9.
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Figure A.4: Aboveground biomass (AGB) as a function of top-of-canopy height (TCH) for dif-
ferent plot sizes and different CHM pixel resolutions. The black symbols represent
the data from the 50-ha BCI plot. The grey lines represent the best power law fits.
Note that the Y-axis always ends at 1000 t ha-1 to be consistent with Figures A.5 to
A.9. However, at the 20-m plot scale some plots had AGB values beyond 1000 t ha-1

(see also Figure 2.3).
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Figure A.5: Aboveground biomass (AGB) as a function of top-of-canopy height (TCH) for
different plot sizes and different CHM pixel resolutions. The green shading rep-
resents 1,400 ha of undisturbed forest simulated with FORMIND. The grey lines
represent the best power law fits.
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Figure A.6: Aboveground biomass (AGB) as a function of top-of-canopy height (TCH) for dif-
ferent plot sizes and different CHM pixel resolutions. The red shading represents
1,400 ha of fire-disturbed and 1,400 ha of regularly logged forest simulated with
FORMIND. The grey lines represent the best power law fits.
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Figure A.7: Aboveground biomass (AGB) as a function of top-of-canopy height (TCH) for
different plot sizes and different CHM pixel resolutions. The orange shading
represents 1,400 ha of fire-disturbed forest simulated with FORMIND. The grey
lines represent the best power law fits.
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Figure A.8: Aboveground biomass (AGB) as a function of top-of-canopy height (TCH) for
different plot sizes and different CHM pixel resolutions. The blue shading rep-
resents 1,400 ha of regularly logged forest simulated with FORMIND. The grey
lines represent the best power law fits.
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Figure A.9: Aboveground biomass (AGB) as a function of top-of-canopy height (TCH) for
different plot sizes and different CHM pixel resolutions. The curves represent
the best power law fits for the different data sets, represented by the following
colors: 1) black = field reference; 2) green = undisturbed; 3) orange = fire-disturbed;
4) blue = logging-disturbed; 5) red = combined-disturbed. To calculate nRMSE,
the pooled simulated data set with all scenarios combined was used, except for
nRMSE of the field reference data, where only the field data itself was used. The
nBias values always refer to the bias between predictions derived from each model
and the corresponding field reference observations.
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Figure A.10: Normalized biases (nBias) [%] of power law models that describe the relationship
between aboveground biomass (AGB) and top-of-canopy height (TCH) at differ-
ent plot scales and different CHM pixel resolutions for undisturbed simulated
forest. The nBias quantifies the difference between model prediction based on
FORMIND-derived data and field observations from the BCI reference data.

Figure A.11: Normalized biases (nBias) [%] of power law models that describe the relationship
between aboveground biomass (AGB) and top-of-canopy height (TCH) at different
plot scales and different CHM pixel resolutions for disturbed simulated forest. The
nBias quantifies the difference between model prediction based on FORMIND-
derived data and field observations from the BCI reference data.
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a.2.3 Graphics Concerning Biomass Prediction from Various Lidar Metrics

Figure A.12: Aboveground biomass (AGB) as a function of miscellaneous lidar metrics at
the 1-ha scale. The violet shading represents 4,200 ha of forest simulated with
FORMIND (undisturbed, fire-disturbed and regularly logged, 1,400 ha each). The
black symbols represent reference data from the 50-ha BCI plot. The grey lines
represent the best power law fits for the simulated data. Whether certain metrics
were derived from point clouds (PC) or from canopy-height-models (CHM) is
indicated in brackets. For explanations of the abbreviations, please refer to the
main text.
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Figure A.13: Normalized root mean square errors (nRMSE) [%] of power law models that
describe the relationship between aboveground biomass (AGB) and various lidar
metrics (for explanations of the abbreviations, please refer to the main text and
Table 2.1) at different plot scales. Whether certain metrics were derived from
point clouds (PC) or from canopy-height-models (CHM) is indicated in brackets.
This analysis was based on pooled (undisturbed and disturbed) simulated forest
data. Empty cells indicate that no power law model could be fit.

Figure A.14: Normalized biases (nBias) [%] of power law models that describe the relationship
between aboveground biomass (AGB) and various lidar metrics (for explanations
of the abbreviations please refer to the main text) at different plot scales. The
nBias quantifies the difference between model prediction based on FORMIND-
derived data and field observations from the BCI reference data. Whether certain
metrics were derived from point clouds (PC) or from canopy-height-models
(CHM) is indicated in brackets. This analysis was based on pooled (undisturbed
and disturbed) simulated forest data. Empty cells indicate that no power law
model could be fit.
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a.2.4 Graphics Concerning the Sensitivity of Lidar Simulations to Alternative Tree Repre-
sentations

Figure A.15: Simulated lidar profiles of the BCI 50-ha plot under alternative assumptions about
the tree geometry and leaf area volume density (LAD). Dashed lines indicate
mean canopy profile height (MCH).

Figure A.16: Relationship between aboveground biomass (AGB) and mean canopy profile
height (MCH). Points represent values at the scale of one hectare. Each graphic
shows results from lidar simulations under alternative assumptions about the
tree geometry.
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Figure A.17: Relationship between aboveground biomass (AGB) and mean top-of-canopy
height derived from 1-m pixels (TCH1). Points represent values at the scale of
one hectare. Each graphic shows results from lidar simulations under alternative
assumptions about the tree geometry.

Figure A.18: Relationship between aboveground biomass (AGB) and mean top-of-canopy
height derived from 1-m pixels (TCH10). Points represent values at the scale of
one hectare. Each graphic shows results from lidar simulations under alternative
assumptions about the tree geometry.
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B
A P P E N D I X O F C H A P T E R 3 :
M O D E L - A S S I S T E D E S T I M AT I O N O F T R O P I C A L F O R E S T
B I O M A S S C H A N G E : A C O M PA R I S O N O F A P P R O A C H E S

Figure B.1: Development of aboveground biomass and mean top-of-canopy height over time
during primary succession in a FORMIND run using the Barro Colorado Island
parameterization. Lines represent the mean of 16 ha and envelopes the standard
deviations at 1-ha scale.

Figure B.2: Simulated data showing the ∆TCH10-to-∆AGB relationship for (a) a 10-yr and (b) a
25-yr time interval between first and second measurement. Each point represents
a 1-ha forest stand. Colors indicate the initial height (TCH10) of each stand. The
black line represents the linear regression model.
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Figure B.3: The nine predictor variables, contributing to the random forest predictions in the
dir+tex approach, ranked by decreasing standardized importance. Canopy height
change (∆TCH10) was the most important predictor, followed by eight canopy
texture metrics. For explanation of the abbreviations please refer to Section 3.3.5.

Figure B.4: TanDEM-X-derived canopy height models (CHM) for the years 2011 (a) and 2015 (b)
on the BCI 50-ha plot. CHMs have 10-m pixel resolution and mean top-of-canopy
height (TCH10) [m] was calculated at 1-ha scale (labels on maps).

Figure B.5: TanDEM-X-derived interferometric coherence for the years 2011 (a) and 2015 (b)
on the BCI 50-ha plot.
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A P P E N D I X O F C H A P T E R 4 :
F O R E S T S T R U C T U R E M E T R I C S T O G E N E R A L I Z E B I O M A S S
E S T I M AT I O N F R O M L I D A R A C R O S S C O N T I N E N T S

Figure C.1: Maximal lidar height in each 1-ha plot plotted over maximal diameter at breast
height (DBH) in each plot. The curves represent the DBH-height allometries
derived from dataset of Jucker et al. (2017). The derived curve for SERC (dashed
violet) did not match the data, hence a regression was fit to this dataset (solid
violet) and used as DBH-height allometry instead.
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Figure C.2: Boxplots of the distributions of the different forest structure metrics at 1-ha scale
across all study sites Barro Colorado Island (B), Paracou (P), Rabi (R), Smithsonian
Environmental Research Center (S) and Traunstein (T).
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Figure C.3: Relationship between quadratic mean stem diameter Dg and stem number on
log-log-scale. Each point represents one hectare with colors indicating the sites.
Lines represent the self-thinning trajectories for each site according to Reinecke’s
rule with a slope of -1.605 and an intercept based on the highest stand density
index (SDI) observed at each site. The SDI can be graphically derived as the y-
values (stem numbers) corresponding to the intersection points of the lines with
the dashed vertical line, which represents the standard Dg of 25 cm. Black circles
mark the plots with the highest basal area per site and black triangles mark the
plots with the highest SDI per site, respectively. At BCI and Paracou these two
maxima coincide in the same plot.
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Table C.1: Site-specific reference models for basal area (BA) and aboveground biomass (AGB) estimation based on either TCH1 or TCH10 as
single predictors.

Site Target
variable

Predictor
Ph

a0,site /
b0,site

ah,site /
bh,site

RMSEsite nRMSEsite R2
site RMSEall nRMSEall R2

all Wilcoxon
p-value

BCI BA TCH1 0.885 1.07 2.4 8.8% 0.69

2.5 8.3% 0.79

0.84

Paracou BA TCH1 4.65 0.569 2.1 6.8% 0.36 0.8

Rabi BA TCH1 1.13 0.969 2.7 10.1% 0.52 0.71

SERC BA TCH1 3.33 0.691 3.2 8.9% 0.52 0.86

Traunstein BA TCH1 0.613 1.41 3.1 10.3% 0.91 0.93

BCI BA TCH10 0.163 1.47 2.6 9.5% 0.64

2.8 9.5% 0.73

0.9

Paracou BA TCH10 4.84 0.526 2.2 7% 0.31 0.75

Rabi BA TCH10 0.487 1.14 2.8 10.5% 0.48 0.54

SERC BA TCH10 0.839 1.04 3.4 9.4% 0.47 0.9

Traunstein BA TCH10 0.268 1.47 4.9 16.1% 0.79 0.9

BCI AGB TCH1 2.98 1.43 29.6 10.5% 0.74

41 11.6% 0.78

0.98

Paracou AGB TCH1 5.93 1.25 40.1 10.3% 0.54 0.6

Rabi AGB TCH1 1.1 1.77 58.2 16.6% 0.57 0.89

SERC AGB TCH1 60.6 0.576 48.4 10.9% 0.35 0.86

Traunstein AGB TCH1 6.04 1.42 36.6 11.8% 0.89 0.39

BCI AGB TCH10 0.316 1.96 28.7 10.2% 0.75

41.8 11.8% 0.77

0.91

Paracou AGB TCH10 4.65 1.25 42.8 11% 0.48 0.57

Rabi AGB TCH10 0.638 1.81 57.8 16.5% 0.57 0.73

SERC AGB TCH10 12.5 0.988 49.8 11.2% 0.31 0.86

Traunstein AGB TCH10 0.331 2.12 32.7 10.6% 0.91 0.73
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Table C.2: The best basal area estimation models for each possible predictor (Px) combination ranked for increasing mean bootstrapping root mean squared
error (RMSEb). The regression coefficients ax for each model are given along with goodness of fit statistics. The Wilcoxon test p-values indicate for
each site (B = Barro Colorado Island, P = Paracou, R = Rabi, S = Smithsonian Environmental Research Center, T = Traunstein) whether predictions
are biased, i.e., mean prediction residuals are significantly different (p ≤ 0.05) from zero. For explanation of the columns names and variable names
please refer to the main text.

Predictor variables Regression coefficients Single model statistics Bootstrapping statistics Wilcoxon test p-values per site

Ph Pd Pm Pv a0 ah ad am av RMSE nRMSE R2 RMSEb nRMSEb R2
b B P R S T

TCH10 BAsmax Hsmax SDVFP 9.2 1.3 0.359 -1.03 -0.305 2.9 9.8% 0.71 2.9 9.6% 0.72 0.0036 0.05 0.09 0.86 0.72

TCH10 BAsmax - GiniVFP 4.37E-03 1.02 1.33 - -0.292 3 10% 0.7 3.1 10.4% 0.67 0.71 0.74 0.65 0.06 0.3

TCH1 - Hsmax - 812 0.614 - -1.35 - 3.3 10.9% 0.64 3.1 10.4% 0.67 5.30E-04 0.022 0.011 0.12 0.55

TCH10 BAsmax - - 3.63E-03 0.879 1.62 - - 3.4 11.5% 0.6 3.6 12% 0.56 0.0073 0.0092 0.41 0.011 0.26

TCH10 - - CVVFP 0.766 0.967 - - -0.394 3.6 12.2% 0.55 3.6 12% 0.56 0.26 0.0029 0.052 0.0017 0.0034

- BAsmax - CVCHM 0.138 - 1.37 - -0.262 4.2 14.2% 0.4 4.2 14.1% 0.39 0.58 0.9 0.96 0.56 0.77

TCH10 - - - 1.78 0.807 - - - 4.4 14.6% 0.36 4.3 14.5% 0.36 3.20E-05 0.77 6.40E-05 0.0017 0.0023

Table C.3: The best aboveground biomass estimation models for each possible predictor (Px) combination ranked for increasing mean bootstrapping root mean
squared error (RMSEb). The regression coefficients bx for each model are given along with goodness of fit statistics. The Wilcoxon test p-values
indicate for each site (B = Barro Colorado Island, P = Paracou, R = Rabi, S = Smithsonian Environmental Research Center, T = Traunstein) whether
predictions are biased, i.e., mean prediction residuals are significantly different (p ≤ 0.05) from zero. For explanation of the columns names and
variable names please refer to the main text.

Predictor variables Regression coefficients Single model statistics Bootstrapping statistics Wilcoxon test p-values per site

Ph Pd Pm Pv Pw b0 bh bd bm bv bw RMSE nRMSE R2 RMSEb nRMSEb R2
b B P R S T

TCH1 SDIsmax Hsmax SDCHM WDsAGV 1.92 1 0.979 -1.24 0.212 0.0838 44 12.4% 0.74 46.1 13% 0.71 0.44 0.3 0.94 0.56 0.64

TCH10 BAsmax Hsmax SDVFP - 1.52 2 0.601 -0.753 -0.383 - 47.4 13.4% 0.7 47.9 13.5% 0.69 7.90E-05 0.79 0.017 0.25 0.47

TCH10 SDIsmax Hsmax - WDsAGV 0.793 1.45 0.785 -1.05 - 0.0936 45.6 12.9% 0.73 48.5 13.7% 0.69 0.099 0.17 0.33 0.74 1

TCH10 SDIsmax Hsmax - - 0.08 1.46 1.05 -0.921 - - 46 13% 0.72 48.5 13.7% 0.69 0.016 0.29 0.08 0.86 0.8

TCH1 - Hsmax - - 3520 0.959 - -1.38 - - 47.7 13.5% 0.7 48.9 13.8% 0.68 0.031 0.82 0.56 0.025 0.47

TCH10 BAsmax - CVVFP WDsAGV 0.406 1.22 0.692 - -0.156 0.284 51.2 14.5% 0.67 49.7 14% 0.67 1.40E-06 0.33 0.94 0.013 0.0066

TCH10 BAsmax - - WDsAGV 3.62E-03 0.549 2.7 - - 0.665 60.1 17% 0.55 50.6 14.3% 0.66 0.061 0.7 0.063 0.46 2.50E-04

TCH10 SDIsmax - - - 1.55E-05 1.56 1.74 - - - 50.9 14.4% 0.66 50.7 14.3% 0.66 7.60E-05 0.022 0.34 0.013 6.70E-04

TCH10 - - CVVFP - 1.15 1.57 - - -0.312 - 54.3 15.3% 0.61 53.9 15.2% 0.61 6.60E-09 0.98 0.37 0.065 5.30E-05

TCH10 - - - WDsAGV 3.12 1.38 - - - 0.201 57.2 16.1% 0.57 57.2 16.1% 0.57 5.50E-09 0.8 0.31 0.0034 7.60E-05

TCH10 - - - - 2.3 1.44 - - - - 58.5 16.5% 0.55 58.3 16.4% 0.55 1.10E-09 0.063 0.56 0.074 1.10E-04

- BAsmax - SDVFP - 0.87 - 1.38 - 0.645 0.782 63 17.8% 0.48 62.2 17.5% 0.49 5.90E-04 0.81 0.12 0.013 0.5129
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Acronym Explanation

ACD Aboveground carbon density

AGB Aboveground biomass
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AGV Aboveground volume

AMS3D Adaptive mean shift 3D algorithm

ASM Angular second moment

AWP Aboveground woody productivity

B Biomass
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BCI Barro Colorado Island
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CAO-2 Carnegie airborne observatory 2

CD Crown diameter

CHM Canopy height model

CO2 Carbon dioxide

CV Coefficient of variation

D Diameter (stem)

DBH Diameter at breast height (stem)

DDS Dynamically dimensioned search

DEM Digital elevation model

DGVM Dynamic global vegetation model

dir+tex Direct and texture

DLR Deutsches Luft- und Raumfahrtzentrum

DSM Digital surface model

DTM Digital terrain model

EBV Essential biodiversity variables

ECV Essential climate variables

EnMAP Environmental mapping and analysis program

FAO Food and agriculture organization

FAPAR Fraction of absorbed photosynthetic active radiation

FCC Fractional canopy cover

FORMIND Forest model individual-based

FSC Forest stewardship council
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GCOS Global climate observation system

GEDI Global ecosystem dynamics investigation lidar

GEOBON Group on earth observations biodiversity observation net-
work

GF Gap fraction
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GLCM Grey-level co-occurrence matrix

G-LiHT Goddard’s lidar, hyperspectral and thermal airborne imager

GNSS Global navigation satellite system

GP Gap probability

GPP Gross primary productivity

GR Ground returns

H Height

HH Horizontal/horizontal polarisation

HOME Height of median energy

HV Horizontal/vertical polarisation

IBM Individual-based model

ICESat Ice, cloud, and land elevation satellite

InSAR Synthetic aperture radar interferometry

IPCC Intergovernmental panel on climate change

IR Infrared

ISS International space station

ITCD Individual tree crown delineation

LAD Leaf area volume density

LAI Leaf area index

LIDAR Light detection and ranging

LM Lidar metric

LVIS Land, vegetation and ice sensor

MCH Mean canopy height

MODIS Moderate-resolution imaging spectroradiometer

MSE Mean squared error

NASA National aeronautics and space administration

nDSM Normalized digital surface model

NDVI Normalized difference vegetation index

NEE Net ecosystem exchange

NEP Net ecosystem productivity

NIR Near infrared

NPP Net primary productivity

nRMSE Normalized root mean square error
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Acronym Explanation

PAR Photosynthetically active radiation

PC Point cloud

PEFC Programme for the endorsement of forest certification
schemes

PFT Plant functional type

PolInSAR Polarimetric synthetic aperture radar interferometry

QMCH Quadratic mean canopy height

QTCH Quadratic mean top-of-canopy height

RADAR Radio detection and ranging

REDD+ Reduction of emissions from deforestation and forestdegra-
dation and the role of conservation, sustainable manage-
ment of forestsand enhancement of forest carbon stocks in
developing countries

RH Relative height quantile

RMSE Root mean squared error

RVoG Random volume over ground

SAR Synthetic aperture radar

SD Standard deviation

SDH Standard deviation of height

SDI Stand density index

SERC Smithsonian environmental research center

SLICER Scanning lidar imager of canopies by echo recovery

SRTM Shuttle radar topography mission

TanDEM-X TerraSAR-X add-on for digital elevation measurement

TCH Mean top-of-canopy height

TPI Topographic position index

TR Total returns

TRI Topographic ruggedness index

UAV Unmanned aerial vehicle

UFZ Helmholtz Centre for Environmental Research

UNFCCC United nations framework convention on climate change

VCF Vegetation continuous field

VFP Vertical foliage profile

VH Vertical/horizontal polarisation

VIS Visible light

VOD Vegetation optical depth

VV Vertical/vertical polarisation

WD Wood density
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