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ABSTRACT

While many water bodies are found to be polluted by a mixture of
numerous chemicals, suitable tools which allow a comprehensive di-
agnosis of the resulting biological effects are lacking. However, such
effect information would be needed in water body management to facil-
itate measures which counteract decreasing ecological quality. Toxicoge-
nomic methods (i.e., the application of omics technology in toxicology)
could fill this gap by providing non-target bioanalytical approaches.
Therefore, this dissertation aims at advancing the applicability of toxi-
cogenomics in environmental monitoring.

It has been shown that exposing organisms to chemicals may induce
compound specific changes on the transcriptome, i.e. the entire compo-
sition of RNA transcripts in a cell or tissue. Transcripts are copies of
genes on the DNA, which may have regulatory functions or encode the
assembly of proteins. The analysis of transcriptome profiles, which can
be conducted with the help of cDNA-microarrays, may indicate specific
compound exposure, and at the same time provide insights about the
cellular or physiological responses in the organism (e.g., biotransforma-
tion, proliferation, cell death). These properties could be used to apply
transcriptomics for comprehensive diagnoses of biological effects and
the respective responsible substances in environmental samples.

However, the inference of compound profiles is still challenging. The
responses are dependent on exposure settings, such as exposure concen-
tration or duration. Next to compound specific transcript regulations,
there are also more general responses to be expected, which appear
in response to several chemicals. This complicates the interpretation
and comparison of transcriptome profiles, especially when evaluating
mixture profiles. Additionally, it has not been resolved yet how the
transcriptome profiles of single compounds combine in a mixture.

Therefore, this work first of all strived for identifying general re-
sponses towards chemical exposure. To achieve this, a meta-analysis
was conducted, which compiled published transcriptome data of ze-
brafish embryos (Danio rerio) exposed to chemicals (chapter 2). Herein,
transcripts could be identified, showing a common trend in response
to certain groups of compounds or in specific exposure settings. The
meta-analysis also revealed a large heterogeneity in experimental de-
sign, though. Additionally, missing time and concentration dependent
investigations made extrapolation of effects infeasible and complicated



thorough comparisons between different compounds or exposure set-
tings.

To allow for extrapolation and enhance comparability of transcrip-
tome profiles, an experimental design and analysis strategy was devel-
oped to infer time and concentration resolved transcriptome profiles
(chapter 3). With the help of a self-organizing map of the previously
compiled meta-analysis data the profiles could be aggregated to "tox-
icogenomic landscapes". This allowed visual representations and facil-
itated comparisons between compounds and exposure settings. To al-
low for quantitative description of the profiles, a regression model was
developed, capturing the time and concentration dependence of the
toxicogenomic effects. The analysis strategy, which included landscape
projection and regression modeling, was applied in a case study on the
exposure of zebrafish embryos to three selected model compounds. The
developed strategy allowed to infer compound specific toxicogenomic
landscapes, suitable for extrapolation and comparison between com-
pounds and exposure settings. Since two of the model compounds were
known to inhibit the enzyme cyclooxygenase, characteristic patterns
for this mode of action could be identified from the landscapes.

Next, to advance our understanding of mixture effects on transcrip-
tome level, the toxicogenomic profile was investigated which was in-
duced by a mixture of the three previously characterized model com-
pounds (chapter 4). Careful experimental design allowed to show for
the first time that qualitative as well as quantitative combination ef-
fects (i.e., effects induced by more than one compound) occur on tran-
scriptome level. Additionally, it was found that the mixture concept of
concentration addition performed well in predicting the combination
effects, outperforming other concepts, such as effect addition, boolean
mixture, or independent action. Furthermore, the patterns of cyclooxy-
genase inhibition could be recovered in the mixture.

In summary, this dissertation offers strategies for retrieving and mod-
eling time and concentration resolved toxicogenomic profiles of environ-
mental chemicals. Additionally, it advances our understanding of how
these toxicogenomic effect profiles of single substances combine in a mix-
ture exposure and facilitates the prediction of mixture profiles. This can
advance the applicability of toxicogenomics for non-target bioanalytical
effect diagnosis.



ZUSAMMENFASSUNG

Während viele Gewässer mit Mischungen zahlreicher Chemikalien be-
lastet sind, fehlen derzeit Methoden, die eine umfassende Diagnose der
dadurch verursachten biologischen Effekte ermöglichen. Solche Effekt-
informationen werden jedoch im Gewässermanagement benötigt, um
geeignete Maßnahmen gegen das Absinken der ökologischen Qualität
treffen zu können. Toxikogenomische Methoden (d.h. die Anwendung
von omics Technologien in der Toxikologie) könnten diese Lücke füllen
und als ungerichtete ("Non-Target") bioanalytische Werkzeuge dienen.
Deshalb verfolgt diese Dissertation das Ziel, die Anwendbarkeit toxiko-
genomischer Methoden im Umweltmonitoring zu verbessern.

Vorangegangene Studien haben gezeigt, dass die Exposition von Or-
ganismen gegenüber Chemikalien stoffspezifische Änderungen im Tran-
skriptom, also in der Gesamtheit aller RNA Transkripte in einer Zelle
oder einem Gewebe, hervorrufen kann. Transkripte sind Kopien von
Genen auf der DNA, die regulatorische Funktion haben können oder
als Bauanleitung für Proteine dienen. Die Analyse von Transkriptom-
profilen ist z.B. mit Hilfe von cDNA-Microarrays möglich und kann
auf die Exposition gegenüber bestimmten Stoffklassen hinweisen und
gleichzeitig Informationen bezüglich der zellulären oder physiologischen
Reaktion der Organismen liefern (z.B. Biotransformation, Proliferation,
Zelltod). Deshalb könnten Transkriptomanalysen für eine umfassende
Diagnose biologischer Effekte und der dafür verantwortlichen Substan-
zen in Umweltproben genutzt werden.

Jedoch bleibt die Erstellung toxikogenomischer Stoffprofile schwierig,
da sich diese abhängig von den Expositionsbedingungen (z.B. Exposi-
tionskonzentration oder Dauer) verändern können. Neben stoffspezifi-
schen Mustern sind auch generellere Antworten zu erwarten, die als
Reaktion auf verschiedene Stoffe auftreten. Dies erschwert die Inter-
pretation von Transkriptomprofilen, insbesondere bei der Analyse von
Chemikalienmischungen. Des Weiteren ist bisher nicht geklärt, wie sich
die Transkriptomprofile von Einzelstoffen bei einer Mischungsexpositi-
on zusammenfügen bzw. wiederfinden lassen.

Deshalb war es in dieser Arbeit zunächst das Ziel, generelle Ände-
rungen im Transkriptom nach Chemikalienexposition zu identifizieren.
Dafür wurden in einer Meta-Analyse veröffentlichte Transkriptomda-
ten von Embryonen des Zebrabärblings (Danio rerio) zusammengestellt
(Kapitel 2). Es konnten Transkripte identifiziert werden, die einen gene-
rellen Trend in ihrer Reaktion auf Chemikaliengruppen oder spezifische
Expositionsbedingungen zeigen. Die Meta-Analyse offenbarte jedoch



auch eine ausgeprägte Heterogenität in den Expositionsbedingungen.
Gleichzeitig wurde innerhalb der Studien in der Regel keine Zeit- oder
Konzentrationsabhängigkeit der Effekte untersucht. Daher lassen sich
Ergebnisse kaum auf andere Bedingungen übertragen, was den Ver-
gleich zwischen Substanzprofilen erschwert.

Für die Verbesserung der Übertragbarkeit und Vergleichbarkeit toxi-
kogenomischer Profile wurden ein experimentelles Design und eine Ana-
lysestrategie entwickelt, welche die Erstellung zeit- und konzentrations-
abhängiger toxikogenomischer Profile von Chemikalien ermöglichen (Ka-
pitel 3). Die Profile wurden mit Hilfe einer self-organizing map der
vorher kompilierten Daten der Meta-Analyse zu „toxikogenomischen
Landschaften“ aggregiert. Diese können visuell dargestellt werden und
erleichtern den Vergleich zwischen Stoffen und Expositionsbedingun-
gen. Für eine quantitative Beschreibung der Profile wurde ein Regressi-
onsmodell entwickelt, welches die zeit- und konzentrationsabhängigen
Effekte erfassen kann. Landschaftsprojektion sowie Regressionsmodel-
lierung wurden an einem Fallbeispiel angewendet, bei dem Zebrabärb-
lingsembryonen gegenüber drei ausgewählten Stoffen exponiert wurden.
Die entwickelte Strategie erlaubte die Erstellung von stoffspezifischen
toxikogenomischen Landschaften, die sich für die Extrapolation und
den Vergleich zwischen den Stoffen eigneten. Da es sich bei zwei der
ausgewählten Stoffe um Cyclooxygenase-Hemmer handelte, konnte ein
charakteristisches Effekt-Muster für diese Wirkweise identifiziert wer-
den.

Als nächstes wurde die Ausweitung unseres Mischungsverständnisses
auf Transkriptomebene angestrebt. Dafür wurde das toxikogenomische
Profil genauer untersucht, welches durch die Mischung aus den drei
Modellchemikalien der vorherigen Untersuchung hervorgerufen wurde
(Kapitel 4). Sorgfältige Versuchsplanung ermöglichte erstmals auf Tran-
skriptomebene den Nachweis qualitativer wie quantitativer Kombinati-
onseffekte (d.h. Effekte, die von mehr als einer Komponente hervorgeru-
fen werden). Es wurde gezeigt, dass das Mischungskonzept der Konzen-
trationsadditivität im Vergleich mit anderen Konzepten (wie Effektad-
ditivität, Boolesche Mischung, Unabhängige Wirkung) die besten Vor-
hersagen für Kombinationseffekte liefern kann. Des Weiteren konnte
das Effekt-Muster für Cyclooxygenase-Hemmung in der Mischung wie-
dergefunden werden.



Zusammenfassend, enthält diese Dissertation Strategien für die Er-
stellung und Modellierung zeit- und konzentrationsaufgelöster toxikoge-
nomischer Profile von Umweltchemikalien. Zusätzlich wird unser Ver-
ständnis darüber erweitert, wie sich toxikogenomische Profile in Mi-
schungen zusammenfügen, und damit die Vorhersage von Mischungs-
profilen erleichtert. Dies dient der Weiterentwicklung und Implementie-
rung toxikogenomischer Methoden für die Non-Target bioanalytische
Effektdiagnose.
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There is increasing evidence for complex chemical contamination in
European water bodies (Loos et al., 2013; Moschet et al., 2014). As Problem:

Contamination of
aquatic ecosystems
with mixtures of
chemicals with
unknown effect.

analytical chemistry is improving and analysis of more compounds
with lower detection limits is becoming feasible, an increasing number
of chemicals is being detected in the aquatic environment. However,
in most cases routine surveillance measures cannot resolve how these
chemical mixtures effect aquatic organisms and ecosystems (Altenburger
et al., 2015).

At the same time, we observe that a only a small part of European
water bodies are in good ecological status (European Environment
Agency, 2012) and biodiversity in aquatic ecosystems is decreasing
(Dudgeon et al., 2006). There are several stressors, such as increasing
temperature, hydromorphology, invasive species or increasing nutrient
level which probably play a role in this development, and contamina-
tion by organic chemicals is discussed to be one of them (Beketov et al.,
2013; Malaj et al., 2014; Schäfer et al., 2016).

It is the declared goal of the European Union to improve the ecologi- Biological effects
of chemicals and
their mixtures need
to be investigated.

cal status of a majority of water bodies towards a good shape (Council
Directive 2000/60/EC 2000). To be able to take the right steps to
achieve this goal, it is necessary to elucidate if and how chemicals have
impact on aquatic ecosystems. This includes determining whether ad-
verse effects can be assigned to main drivers out of the multitude of
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detected chemicals (Brack et al., 2007). Additionally, it should be in-
vestigated to what extent combination effects play a role in the effects
of complex contamination (Altenburger et al., 2015).

1.1 measurement and prediction of biological effects
caused by environmental chemicals

There are different approaches to elucidate the biological effects of en-
vironmental chemicals. One way is to predict the biological effects from
chemical monitoring (termed "bio-effect prediction" by Schroeder et al.,
2016). A complementary approach applies bioassays to evaluate biolog-
ical effects of environmental extracts (termed "bio-effect surveillance by
Schroeder et al., 2016).

1.1.1 Predicting biological effects from chemical monitoring

To estimate the risk posed by (routinely) measured chemicals in the
water bodies across Europe, Malaj et al. (2014) compiled toxicity pa-
rameters (i.e., LC50) of detected compounds and related them to the
respective environmental concentrations. The study indicated high risk
for mainly chronic effects on organisms in many water bodies. How-
ever, the approach was biased by the number of compounds targeted
in the respective monitoring efforts (more compounds measured at a
site were leading to a higher risk). Combination effects could not be
considered, and toxicity drivers were not identified. Additionally, due
to often incomplete toxicity data, such as lack of chronic effect data,
safety factors were applied, which makes the results of such kind of
approaches imprecise.Predicting effects

from chemical
monitoring data is
biased by quality of
chemical analytics

and knowledge
about detected

substances.

Another study dealing with the prediction of biological effects from
chemical monitoring data was a study by Busch et al. (2016), which
focused on the modes of action (MOAs) of detected chemicals. The study
showed that there is a wide range of compounds with different MOAs
to be expected from the organic chemicals present in the water bodies.
However, this picture might still be rather incomplete; Again, results
were heavily dependent on the monitored chemicals on the one hand,
and on the quality and comprehensiveness of effect information about
the detected chemicals on the other hand.

1.1.2 Measuring biological effects

An approach which does not depend on chemical analytics was taken by
Neale et al. (2017), who used a bioassay battery to asses biological ef-
fects of environmental samples. The study also compared the measured
effects with predicted effects for analytically detected substances. It be-
came clear that the measured biological effects could not be sufficiently
explained by the predictions based on the detected chemicals. This
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demonstrates the need for bioanalytical testing when comprehensively Assessing
biological effects
directly is
necessary but only
possible for
selected endpoints
with conventional
methods.

assessing environmental health. However, even a bioassay battery used
in the discussed study could only cover a reduced number of selected
effects.

Another approach combining bioanalytical testing, chemical fraction-
ation, and analytics is effect-directed-analysis (EDA). Here, an environ-
mental sample is fractionated, and the fractions tested for biological
effects. Fractions showing biological effects are subsequently analyzed
for their ingredients. This can help in identifying toxicity drivers in
environmental extracts (Brack et al., 2007; Brack, 2003). However, bi-
ological testing is limited to a few selected endpoints, possibly over-
looking important biological effects. Additionally, there might be an
underestimation of combination effects.

1.2 (eco)toxicogenomics

The brief overview over approaches to assess biological effects from en-
vironmental samples shows that both effect prediction from chemical
monitoring as well as effect measurement with the help of bioassays may
provide incomplete information about exposure and effects of environ-
mental chemicals. However, while in chemical monitoring the chemical
universe is nowadays being tackled with non-targeted analytics, compa-
rable approaches assessing a comprehensive set of biological effects are
yet lacking. Here, omics methods could come into play, which aim to Toxicogenomics

could offer the
possibility for a
comprehensive
biological effect
assessment.

get a system wide view of molecular changes occurring in cells, tissues
and organisms. They enable comprehensively measuring the abundance
of cellular constituents, such as gene transcripts (transcriptome), pro-
teins (proteome), or metabolites (metabolome). Omics methods are dis-
cussed for offering solutions for a range of (eco)toxicological challenges
(Afshari et al., 2011; Bahamonde et al., 2016; Brinke and Buchinger,
2017). The field tackling toxicological questions with omics methods
has been termed toxicogenomics (Nuwaysir et al., 1999) and was ex-
tended to ecotoxicogenomics, describing the involvement of ecotoxico-
logical topics (Snape et al., 2004).

The basic idea of toxicogenomic approaches was framed by Nuwaysir
et al. (1999) who stated that almost all toxic effects should be reflected
in a change of gene expression at some point. Changes could either be
direct effects of the contaminant (e.g., receptor activation leading to
increased transcription of a gene), or indirect effects (e.g., a contami-
nant has neurotoxic effects, which influences breathing, which is then
reflected on molecular level by a change in metabolism and gene ex-
pression). Soon after the first development of omics techniques, it was
envisioned by Nuwaysir et al. (1999), Hamadeh et al. (2002), and Snape
et al. (2004) to use characteristic toxicogenomic profiles of substances
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(i.e., distinct molecular changes induced by a contaminant) to catego-
rize substances according to their molecular mode of action (MOA),
such as estrogenic activity, cell cycle inhibitor, or similar.

This idea has been extended to the detailed elucidation of adverse
outcome pathways (AOPs), respectively modes of action (MOAs) of com-
pounds (Perkins et al., 2011; Woo et al., 2015) since one would ex-
pect that there are always some important key events (KEs) of a toxi-
cants AOP which are expected to have an impact on the molecular con-
stituents of the cells (i.e. the transcriptome, proteome or metabolome).
The key events of an AOP can either be constituted by a change in gene
expression or a higher level key event may be followed by a change
in gene expression via feedback mechanisms (compare Figure 1.1). By
conducting time and concentration dependent measurements it may be
possible to resolve key events of different levels and their causality in
an AOP (compare figure Figure 1.3).

MIE KE KE AO

Transcription

Translation

Metabolism

potential
feedback

Figure 1.1: Representation of adverse outcome pathway in gene expression
and metabolism. The key events (KEs) and adverse outcome (AO)
of an AOP can be propagated by changes in gene expression (i.e.,
transcription, translation) or metabolism; or KEs/AO are followed
by a change in gene expression/metabolism. Feedback mecha-
nisms may lead to changes in transcription even if translation or
metabolism are mainly affected (inspiration taken from Brinke and
Buchinger, 2017).

Other applications of omics in environmental toxicology are the iden-
tification of new biomarkers (e.g., Fetter et al., 2015; Wang et al., 2008)
or estimating the degree of pollution of specific environmental sites of
interest (Boer et al., 2015). More recently, toxicogenomic analyses have
also been proposed for a comprehensive effect assessment of contami-
nated sites by relating toxicogenomic profiles induced by environmen-
tal samples with known chemical-gene interactions (e.g., Perkins et al.,
2017; Schroeder et al., 2016).
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1.2.1 Transcriptomics

Toxicogenomic effects can be measured on different molecular biological
levels (compare Figure 1.1) with each level having its own specific bene-
fits, regarding its experimental accessibility, information content, or the
possibility to extrapolate to different species, for example (Brinke and
Buchinger, 2017). In this work the focus will be on the toxicogenomic ef-
fects on the transcriptome measured with the help of cDNA-microarrays.
Transcriptomic methods focus on the change in gene transcription and
measure the differential abundance of specific RNA molecules (Manzoni
et al., 2016).

Transcriptional activity is highly regulated in eukaryotic cells to
assure tissue specific gene expression as well as respond and adopt
to external stimuli (Latchman, 1997). In response to toxicant expo- Transcriptional

activity is highly
regulated, i.a. in
response to
external stimuli.

sure, transcriptional regulation may be part of a "controlled" adaption
processes (e.g., regulation of metabolic enzymes) or sign of cellular
malfunction (e.g., ectopic cell proliferation or hormone secretion, cell
death). Regulation takes place via the modulation of chromatin struc-
ture (Berger, 2007) or the recruitment of transcription factors (proteins
or RNA molecules) to the DNA region of specific genes (Hobert, 2008;
Latchman, 1997). Transcription factor activity can itself be regulated,
e.g. via phopsphorylation (Hunter and Karin, 1992). In many cases ex-
ternal stimuli activate specific receptors, which initiate a signaling cas-
cade resulting in the activation of transcription factors. For example,
one of the most prominent signaling pathways in response to chemi-
cal exposure is the arylhydrocarbon (Ah) receptor mediated signaling
pathway (Schmidt and Bradfield, 1996). This receptor gets activated by
certain polycyclic aromatic hydrocarbons (PAHs), for example, which al-
lows the receptor to dimerize with the Ah receptor nuclear translocator.
Subsequently the complex moves into the nucleus and binds to target
regions on the DNA. If one observes increased abundance of Ah receptor
target gene transcripts (such as cyp1a, for example) one can deduce
an exposure to Ah receptor ligands and activation of PAH metabolic
enzymes.
Certainly, other levels of molecular regulation exist in the cell which Due to the

uniform
biochemical
properties of RNA,
transcriptional
abundance can be
assessed most
comprehensively

are not captured by transcriptome analyses, such as post-translational
modifications. Additionally, regulation on transcriptome level is not in
every case translated into higher level effects. Anyhow, the transcrip-
tome can be assessed in a more comprehensive manner than the pro-
teome or metabolome (Brinke and Buchinger, 2017). This is because
gene transcripts only vary in their specific nucleotide sequence but not
in their biochemical properties as proteins or metabolites do. The com-
prehensiveness of biological effect information, which is a major focus
in this work, may therefore be achieved most effectively using transcrip-
tome analyses.
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1.2.2 The zebrafish embryo in ecotoxicology and toxicogenomics

Zebrafish embryos (ZFEs) as well as adult zebrafish are increasingly
used in biomedical (Lieschke and Currie, 2007; Lin et al., 2016) and
environmental research (Scholz et al., 2008) due to the advantageous
combination of biological complexity of a whole organism and the po-
tential for high throughput handling (Driessen et al., 2014). Hermsen
et al. (2011) and Driessen et al. (2015) showed that ZFE transcriptome
analyses could be applied in human or environmental toxicology test-
ing by providing information about hepatotoxicity or embryotoxicity,
for example. Several studies have analyzed the embryo’s transcriptome
after it was subjected to chemical exposure (Williams et al., 2014). The
application of toxicogenomics using the ZFE provides the advantages of
a whole organism apical assay, which is able to capture and integrate
a wide range of effects (Altenburger et al., submitted). Additionally,
the approach provides diagnostic power by facilitating the dissection of
induced effects on molecular level.

1.3 vision: ecotoxicogenomics as non-target bioas-
say

A major contribution of toxicogenomics to ecotoxicological research
could be the application as a non-target bioanalytical tool in environ-
mental surveillance. Complementary to non-target chemical analytics
such an analysis could give a comprehensive summary about the type
and extent of biological effects expected from the ingredients of envi-
ronmental extracts.
In Figure 1.2 it is schematically shown how such a non-target toolComparison of

environmental
toxicogenomic

profile with single
compound profiles

could give
information about
effects and drivers.

could potentially be used: The toxicogenomic profile of an environmen-
tal site of interest can be derived from exposure of a model organism
to an environmental extract retrieved from the respective site. This
profile can then be compared to known toxicogenomic profiles of single
substance exposures. This would already allow hypotheses about a bio-
logical effect category (e.g., if the profile resembles profiles of neurotoxic
compounds), adverse outcome (e.g., apoptosis, heart failure, decreased
growth) and main effect drivers in the extract. Since we usually expect
several compounds to exert an effect, we will expect the environmental
toxicogenomic profile to be a combination of single compound profiles.
An iterative procedure could be envisioned trying to reproduce the en-
vironmental toxicogenomic profiles from the single compound profiles.
The procedure could optionally be supported by chemical analytics.

1.4 aims and objectives

In order to be able to predict mixture toxicogenomic profiles, as envi-
sioned in Section 1.3, some challenges have to be overcome. First, we
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Figure 1.2: Scheme of envisioned application of toxicogenomic methods in environmental surveil-
lance: A toxicogenomic profile of an environmental site is compared with a predicted
combination of toxicogenomic profiles of single substances. Challenges addressed in this
dissertation are shaded in red and include the development of an analysis pipeline to
derive extrapolated toxicogenomic profiles, and the development of mixture models for
toxicogenomic profiles.

need to validate our expectation that similar compounds, respectively
similar adverse outcomes, are inducing similar toxicogenomic profiles
(see Section 1.4.1 and Chapter 2).

Additionally, it is not without complication to compare the toxicoge- Aims: Develop
strategy to infer
extrapolatable
toxicogenomic
profiles and
elucidate
predictability of
mixture effects.

nomic profile induced by an environmental sample with profiles which
are induced by single compounds. This is because the compounds in
an environmental sample will probably occur in other concentrations
than in the single compound exposures, from which we derived the
"database" profiles. Therefore, we need to develop a strategy and analy-
sis pipeline to infer robust compound profiles which allow extrapolation
to other exposure settings (see Section 1.4.2 and Chapter 3).

Last but not least, for the envisioned approach we need to be able
to predict how toxicogenomic profiles combine in a mixture (see Sec-
tion 1.4.3 and Chapter 4).
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1.4.1 Molecular profiles for effect categories and adversity - Which
genes are responding?

There is a substantial number of studies, dealing with toxicogenomic
effects of single compounds (e.g., for teleost fish in aquatic toxicology,Numerous studies

analyzed the ZFE
transcriptome
after chemical

exposure.

compare Williams et al., 2014). They usually compare genome expres-
sion in tissues or whole model organisms between treatment and control
conditions, resulting in ranked list of differentially expressed genes, pro-
teins or metabolites. The functional interpretation of the toxicogenomic
profiles is then achieved by integrating knowledge about protein func-
tion from public databases (such as Gene Ontology, Reactome, KEGG).
This can be supported by over-representation analyses or gene set en-
richment analysis (GSEA). The extraction of biological functions from
toxicogenomic profiles is an important first step and many studies could
demonstrate the suitability of toxicogenomics to reveal biological effects
of toxicants and elucidate (parts) of their AOPs. For example, Klüver et
al. (2011) could identify the regulation of the small heat shock protein
hspb11 as key transcriptional response towards neurotoxic compounds
in the early developmental stages of the ZFE. Perkins et al. (2011) could
identify potential key events of the AOP of flutamide in the ZFE usingToxicogenomic

studies
demonstrate
potential of
methodoly,

however they have
provided mostly

anecdotal evidence,
so far.

a reverse engineering approach. Hermsen et al. (2013) identified com-
pound specific regulated pathways in the ZFE after exposure to differ-
ent embryotoxicants. Those pathways were indicative of the MOA of the
respective compounds. Additionally, they found some commonly regu-
lated pathways indicative of embryotoxicity. Schiller et al. (2013) found
gene set regulation of different endocrine disruptors to be indicative of
estrogenic, respectively anti-androgenic activity. Integrating transcrip-
tome data of Daphnia magna exposed to different chemicals, Antczak
et al. (2015) identified altered calcium homeostasis as a potential key
event of narcotic compounds. Woo et al. (2015) applied network per-
turbation analysis to identify proteins directly targeted by anti-cancer
drugs.
This is just to give a few examples of the potentials of toxicogenomics

to elucidate molecular responses, i.e., AOPs of chemicals. Most of the
mentioned studies have examined toxicogenomic effects or AOPs for sin-
gle substances in isolation, while the connection between the different
AOPs is still unclear (compare scheme in figure Figure 1.3a). However,
it is expected that "many distinct [adverse outcome] paths will [...]
converge on a relatively finite number of terminal adverse outcomes"
(Villeneuve et al., 2014). Therefore, we expect some of the toxicoge-We expect the

convergence of
AOPs to be
reflected in
converging

toxicogenomic
profiles.

nomic patterns to be of a compound specific nature, while patterns
directly related to adverse outcome should be similar for a wider range
of different compounds. For example, in the ZFE this has been shown
for the case of crystallin transcript regulation, being suspected to indi-
cate an unspecific developmental delay (Hermsen et al., 2013); similarly
Antczak et al. (2015) identified calcium homeostasis as key event for
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Figure 1.3: Scheme of current and envisioned AOP knowledge.

a range of different narcotic compounds (see above). In combination
with the resolution of time and concentration dependency, information
about specificity of regulation could enable the integration of multiple
AOPs (compare scheme in figure Figure 1.3b).

If we want to define robust toxicogenomic profiles, reflecting a cer-
tain MOA/AOP, which can be recovered in an environmental extract
later on, we need to be able to distinguish between specific and general
responses. Thus, as a first step in this work, I strived to identify gen- A meta-analysis

was conducted to
identify general
responses in the
ZFE
transcriptome.

eral toxicogenomic responses in the ZFE by aggregating and comparing
results from many different single compound exposures. Most toxicoge-
nomic studies published so far have focused on the isolated analysis of
single chemicals (Schroeder et al., 2016), while an aggregation of these
results is missing so far. Therefore, I conducted a meta-analysis of tox-
icogenomic transcriptome data in order to get a qualitative overview
about toxicogenomic effects in the zebrafish embryo. The main ques-
tions were:

• Which experimental factors influence the type and extent of gene
regulation in ZFE?

• Can genes be identified which generally respond towards any kind
of chemical exposure?

• Can genes be identified generally responding in groups of common
treatments (e.g., exposure time, MOA of chemical, effect concen-
tration)?

These questions are addressed in Chapter 2.
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1.4.2 Concentration- and time dependence - How do the genes re-
spond?

As it was outlined above, we need profiles which can be extrapolated
across varying exposure concentrations for the application of toxicoge-
nomic profiling as non-target bioanalytical tool. However, most toxi-
cogenomic studies (implicitly) assume a binary type of molecular re-
sponse, i.e. the assumption is that a compound induces/represses the
expression of a gene or protein or not. This is reflected in the experimen-Concentration or

time dependence is
rarely considered

in gene expression
studies.

tal design, where the comparison of one experimental treatment versus
control condition is standard and not exception (an approach possibly
adopted from biomedical studies like in cancer research, where one can
only compare diseased versus healthy samples). However, when compar-
ing the toxicogenomic profiles of two compounds, this binary assump-
tion becomes highly problematic and is conflicting with a fundamental
principle of toxicology, namely "the dose makes the poison" (paraphras-
ing Paracelsus, 1493-1541). One could add to this that also the time
makes the poison and both statements have been demonstrated to be
true for toxicogenomic profiles (e.g., Hamadeh et al., 2002). While it
may not be the most pressing need for the analysis of single compound
related questions, for the comparison of single compounds and finally
interpreting the toxicogenomic effects of a mixture, it is not only im-
portant to determine if a gene is responding but it is also necessary to
find a quantitative description of how those genes respond.
As already mentioned, the notion of concentration and time dependence
of toxicogenomic profiles is not new. However, there are only few stud-
ies considering those variables. Thomas et al. (2007) took an approach
to calculate benchmark doses for Gene Ontology (GO) categories. How-
ever, the authors were using linear and polynomial models, which might
not be the best representation of toxicological responses. Gündel et al.
(2012) and Smetanová et al. (2015) extended the description of con-
centration response relationships to proteomics and metabolomics and
also used sigmoidal models to describe the concentration response re-
lationships. Gao et al. (2015) is one of the few studies measuring the
signal over dose and time. However, the signals are integrated into ef-
fect levels, which leads to a loss of information, the model parameters
are limited in their explanatory power, and inter- or extrapolation to
different exposure settings is hardly feasible.

Here, the objective was to extend the previous work on time- and
concentration dependence, and develop an experimental design and
data analysis strategy to derive robust toxicogenomic profiles, which
may be extrapolated across exposure duration and concentration, and
are comparable between different compounds. This included to find a
general regression model for gene regulation. It should be able to cap-
ture transcript dynamics after exposure to different compounds. The
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model should resolve time- and concentration dependence, and include
model parameters which lend themselves for biological interpretation. Objective: develop

experimental
design and
analysis pipeline
for deriving robust
toxicogenomic
profiles

This should enable us to quantitatively describe how a gene is reacting
and inter-/extrapolating to different exposure settings, which is cru-
cial for mixture modeling. I exemplarily applied the newly developed
experimental and analysis pipeline on three model substances. The re-
trieved toxicogenomic profiles should later on be recovered in an artifi-
cial mixture. The analysis strategy is described and evaluated in detail
in Chapter 3.

1.4.3 Combination effects

Environmental extracts will in many cases comprise of a multitude of
compounds (Loos et al., 2009, 2013). They might be partly similarly
acting and partly dissimilarly acting (Altenburger et al., 2004). For
a meaningful interpretation of the resulting toxicogenomic "mixture-
profile" in a way as it is envisioned in Figure 1.2 we need to get an idea
how single compound profiles combine in mixtures.

To predict the combined action of non-interacting components in
a mixture based on biological activity of the components, mainly two
conceptual models have been established (reviewed in e.g., Altenburger
et al., 2013; Cedergreen et al., 2013). These concepts are called concen-
tration addition (CA, also known as Loewe additivity) and independent
action (IA, also known as Bliss independence). The model of CA adds
up the concentrations of the individual components scaled by an ef-
fectiveness factor. The model of IA multiplies the fractional effects of
the individual components (for details see Chapter 4). In ecotoxicology,
these models have been successfully used to predict combination effects
of biological effects such as lethality (Altenburger et al., 2013).

mixture toxicology and toxicogenomics In the field
of toxicogenomics, conceptual models like CA or IA are rarely used
(Altenburger et al., 2012). Instead many times a boolean combination
is implicitly assumed, i.e. if a gene is regulated by one of the mixture
components at any concentration, it is expected to be regulated in the
mixture (at any concentration). This approach might partly be due to CA and IA are

well established
mixture concepts
in ecotoxicology,
but have not been
thoroughly
evaluated in
toxicogenomics
studies so far.

the predominating experimental design of contrasting treatment ver-
sus control conditions and the reluctance to establish concentration
response relationships needed for a quantitative prediction of combina-
tion effects. Additionally, genome regulation might in some cases be
deemed too complex (e.g. including redundancy or feedback-loops) to
be sufficiently described and predicted by established "simple" regres-
sion models such as the hill model, or concepts like CA or IA in the case
of mixture investigations. Experiments based on a boolean combination
assumption usually result in identifying high numbers of genes either
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unexpectedly regulated in the mixture or unexpectedly unregulated in
the mixture - a result which is difficult to interpret without knowing
about concentration response relationships (Altenburger et al., 2012).

There are first indications that established mixture concepts can be
transferred to the field of toxicogenomics. Labib et al. (2017) showed
that combined effects of PAHs on the mean expression of genes of a few
selected pathways could be well predicted using the independent action
model. De Coninck et al. (2014) also used the independent action model
to identify interacting mixture components.

While they provide a good starting point for evaluating mixture toxi-
cology on transcriptome level, the mentioned studies relied on a very
limited number of applied concentrations (three for Labib et al. (2017)
and one for De Coninck et al. (2014)) and a thorough evaluation of the
occurrence and predictability of combination effects on genome scale
has not been performed. Therefore, in this work, I strived for a genome
wide view of toxicogenomic combination effects, based on robust con-
centration and time resolved single compound profiles (compare Chap-
ter 3). I mainly focused on the following questions:

• Is it possible to identify toxicogenomic combination effects (i.e.,
effects which are stronger than would be expected by any of the
individual components)

• Are the combination effects predictable using established mixture
concepts such as concentration addition (CA), independent action
(IA) or effect addition (EA)?

• How well can the whole toxicogenomic profile of a mixture be
predicted from the profiles of the mixtures components?

• Can effects from single substances be recovered in the mixture
exposure?

These questions are addressed in Chapter 4.
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2.1 introduction
The content of
this chapter has
been published as:
Schüttler, A.,
Reiche, K.,
Altenburger, R.,
Busch, W. (2017).
The Transcriptome
of the Zebrafish
Embryo After
Chemical
Exposure: A
Meta-Analysis.
Tox Sci,
157(2):291–304.

Technologies measuring the entirety of gene transcripts, proteins or
metabolites in a sample (“omics”) are increasingly used in toxicologi-
cal research and are discussed to be included into chemical regulatory
assessments in the future (Marx-Stoelting et al., 2015). In toxicology,
these methods are primarily used to obtain insight into a compound’s
mode of action, to group similar acting compounds or to define new
biomarkers (Afshari et al., 2011). Several studies have been published
demonstrating responses to chemical exposure on transcriptome, pro-
teome, metabolome or epigenome level in different organisms. Here, we
review the achievements made with the ZFE in the field of toxicoge-
nomics (measuring gene transcript abundance, often also termed “gene
expression”). ZFEs as well as adult zebrafish are increasingly used in
biomedical (Lieschke and Currie, 2007; Lin et al., 2016) and environ-
mental research (Scholz et al., 2008) due to the advantageous combina-
tion of biological complexity of a whole organism and the potential for
high throughput handling (Driessen et al., 2014). The added value of
ZFE transcriptome analyses for human toxicology testing has been dis-
cussed before (Driessen et al., 2015; Hermsen et al., 2011) and several
studies have analyzed the embryo’s transcriptome after it was subjected
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to chemical exposure (Williams et al., 2014). However, to our knowl-
edge, results of ZFE toxicogenomics studies have not been aggregated
or compared so far. In many studies it could not be resolved, which of
the observed effects were specific for the compound or compound class
studied and which would be expected to be of a more general nature,
e.g., related to disturbance of embryonic development or global home-
ostasis. We assume that compounds mostly act via a range of different
molecular mechanisms (e.g., different target molecules), but we also
expect effect cascades to converge into smaller and more general sets
of toxicity pathways (Villeneuve et al., 2014). This should also be re-
flected on the transcriptome level so that chemical induced differential
transcription of at least some genes or gene sets should be independent
of compound or embryonic stage. To be able to derive a meaningful and
reproducible grouping of compounds and later on elucidate connections
of molecular effects with higher level effects, which are of interest not
only for regulatory issues, such knowledge about common responses is
of utter importance.

Thus, in this meta-analysis we aimed at the identification of genes
or gene sets showing a general response towards chemical exposure. In
the study presented here, we compared 33 microarray studies including
exposures of the ZFE to 60 different compounds (948 arrays in total)
and aimed at identifying common transcriptional regulation across all
experiments as well as across meaningful subgroups. We followed two
complementary approaches (see Figure 2.1 and Figure A.1). First, we re-

Separate Significance Testing 

(moderated t-test) 

(for each of 225 contrasts) 

Data retrieval/Preprocessing/Normalization 

(separated for each of 33 studies)  

33 studies 

60 chemicals 

948 arrays 

 

Which DEGs overlap 

across studies? 
 

Proportion of DEGs 

dependent on 

experimental factor ?  

Common Significance Testing 

(random effects model) 

(across 170 contrasts) 

Which genes show 

common (significant) 

trend across studies? 

Figure 2.1: Approach of the meta-analysis of transcriptome studies of the ze-
brafish embryo after chemical exposure. For details also see Fig-
ure A.1.

analyzed each experimental dataset separately, identified differentially
expressed genes (DEGs) using moderated t-statistics and then deter-
mined the overlap of DEGs across datasets. In a second approach, we
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aggregated normalized data from all studies and determined a sum-
mary effect size using a random effects model. Functional enrichment
analysis allowed us to derive conclusions about some general stress re-
sponses. Finally, we discuss, what is needed for future experiments, in
order to allow for more powerful interpretations of omics profiles after
chemical exposure.

2.2 methods

For our analysis we followed a strategy similar to that proposed by
(Ramasamy et al., 2008). Studies were selected for the meta-analysis in
which microarray measurements of global gene transcription changes in
the ZFE after exposure to chemical compounds were performed (gene
knock-down studies were not included). A database query was con-
ducted in Gene Expression Omnibus and ArrayExpress (no search term,
Filters: Organism: Danio rerio, Data type: expression profiling by ar-
ray, one-color array or two color common reference) and all studies
satisfying above restrictions were manually selected. This resulted in
33 studies reporting on 60 compounds tested in 948 arrays (see table
2.1).

Table 2.1: List of chemicals included in the meta-analysis together with as-
signed mode of action, study ID and corresponding references.

Compound MoA Reference(s) ID(s)

2,3,7,8-
tetrachlorodibenzo-p-
dioxin

A Alexeyenko et al. (2010) and Hahn
et al. (2014)

22; 40

All-trans-retinoic acid A Hermsen et al. (2013) and Weicksel
et al. (2013)

17*; 27

Benz(a)anthracene A Goodale et al. (2013) 10
Decabromodiphenylether A Garcia-Reyero et al. (2014) 29*
Dimethoxybenzene A Klüver et al. (2011) 5
Dinitrophenol A Klüver et al. (2011) 5
Ethanol A Sarmah et al. (2013) and Tal et al.

(2012)
23; 26*

Paraquat A Driessen et al. (2015) 24*
Pentachlorophenol A Xu et al. (2014) 13
Perchloroethylene A Smetanová et al. (2015) 6*
Tert-butylhydroquinone A Hahn et al. (2014) 40
Thioacetamide A Driessen et al. (2015) 24*
Azinphos-methyl B Klüver et al. (2011) 5
Caffeine B Hermsen et al. (2013) 17*
Carbamazepine B Hermsen et al. (2013) 17*
Chlorpromazine B Driessen et al. (2015) 24*
Cyanopeptolin B Faltermann et al. (2014) 35*
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Table 2.1: List of chemicals included in the meta-analysis together with as-
signed mode of action, study ID and corresponding references.

Compound MoA Reference(s) ID(s)

Fluoxetine B Park et al. (2012) 11
Lithium carbonate B Driessen et al. (2015) 24*
Morphine B Herrero-Turrión et al. (2014) 21
Sertraline B Park et al. (2012) 11
Valproic acid B Driessen et al. (2015) and Hermsen

et al. (2013)
24*; 17*

17-alpha ethinylestradiol C Driessen et al. (2015) and Schiller
et al. (2013b)

24*; 2*

17-beta estradiol C Hao et al. (2013) and Saili et al.
(2013)

25*; 14*

Beclomethasone C Prykhozhij et al. (2013) 37*
Bisphenol A C Lam et al. (2011), Saili et al.

(2013), and Schiller et al. (2013b)
16; 14*;
2*

Flutamide C Schiller et al. (2013b) 2*
Genistein C Schiller et al. (2013a) 1*
GSK4716 C Saili et al. (2013) 14*
Linuron C Schiller et al. (2013b) 2*
Methylparaben C Schiller et al. (2013b) 2*
Propanil C Schiller et al. (2013b) 2*
Triiodothyronine C Pelayo et al. (2012) 30
1-
Naphthylisothiocyanate

NA Driessen et al. (2015) 24*

2-
mercaptoethanesulfonic
acid functionalized gold
nanoparticle

NA Truong et al. (2013) 38*

Acetaminophen NA Driessen et al. (2015) 24*
Adefovir NA Driessen et al. (2015) 24*
Amiodarone NA Driessen et al. (2015) 24*
Cyclopamine NA Büttner et al. (2012) 9
Cyclosporin A NA Driessen et al. (2015) 24*
Dibenzothiophene NA Goodale et al. (2013) 10
D-Mannitol NA Driessen et al. (2015) and Hermsen

et al. (2013)
24*;17*

Epoxyeicosatrienoic acid NA DiBiase et al. (2012) 31
Flusilazole NA Hermsen et al. (2012) 4*
G3-Polyamidoamine NA Oliveira et al. (2013) 18*
G4-Polyamidoamine NA Oliveira et al. (2013) 18*
GANT-61 NA Büttner et al. (2012) 9
Isoniazid NA Driessen et al. (2015) 24*
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Table 2.1: List of chemicals included in the meta-analysis together with as-
signed mode of action, study ID and corresponding references.

Compound MoA Reference(s) ID(s)

Leflunomide NA White et al. (2011) 32
Methyl tert-butyl ether NA Bonventre et al. (2013) 12
Midostaurin NA Oggier et al. (2011) 39*
N,N,N-
trimethylammoniumethanethiol
functionalized gold
nanoparticle

NA Truong et al. (2013) 38*

Oil emulsion NA Penn et al. (2013) 36
Prochloraz NA Schiller et al. (2013b) 2*
Pyrene NA Goodale et al. (2013) 10
Saccharin NA Hermsen et al. (2013) 17*
SANT-2 NA Büttner et al. (2012) 9
Sorafenib NA Kawabata et al. (2015) 34*
Tetracycline NA Driessen et al. (2015) 24*
Trimethyltin chloride NA Tanguay et al. (2011) 28*

2.2.1 Data import, quality control, normalization and cleaning

Raw data of each study were downloaded from Gene Expression Om-
nibus or Array Express and imported into R (version 3.2.2, R Core
Team, 2015), which was used together with packages from the Bio-
conductor repository (Huber et al., 2015) for all subsequent analysis.
For each dataset quality control and normalization were conducted as
described in Appendix A.

annotation Since the microarrays used for the different studies
have been designed and annotated using different genome-versions (and
possibly different annotation strategies) it was necessary to renew the
annotation for all arrays. All array probes were mapped against the
recent Danio rerio genome (DanRer10, September 2014) and annotated
using the Ensembl Database (Ensembl Release 80, May 2015). The
annotation strategy was based on (Arnold et al., 2014) and is described
in Appendix A.

2.2.2 Grouping of contrasts

To be able to derive biologically meaningful information from the large
number of different treatments included in the analysis, treatments
were grouped according to experimental factors. Those factors were:



24 meta-analysis of transcriptome data

Figure 2.2: Metadata of experiments included in the meta-analysis. (A) Onset and duration of chemi-
cal exposure, each bar represents exposure window of one experiment, bar colors indicate
different studies, experiments are grouped as in meta-analysis into early (exposure end
before 24 hpf), middle (exposure end before 50 hpf) and late exposures (exposure end
after 50 hpf). (B) Association plot of experimental subgroups. Width of bar proportional
to expected counts, height of bar proportional to Pearson residuals. Black bars indicate
significant dependence. This plot shows, that some of the experimental subgroups are
not independent, e.g. early experiments were often conducted with LOEC concentrations
of neuroactive substances. Mode of Action: A = reactive, teratogenic, B = neuroactive,
C = endocrine. Effect Concentration : no effect = applied concentration had no reported
phenotypic effect in the experiment, LOEC = applied concentration was lowest observed
effect concentration or some not precisely defined low effects up to EC10. EC = applied
concentration reported to induce visible or lethal effects.
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a) observation time points, b) modes of action of compounds and c)
exposure concentration. The groups were assigned using a rather broad
perspective. This way groups included enough different treatments and
studies to be able to detect general patterns and not just specific results
of one treatment:

a) Observation time point: the diverse exposure windows (compare
Figure 2.2a) were grouped into three categories according to ob-
servation time point in the ZFE (which was the exposure end in
most cases) with early exposures ending at latest at 24 hpf, in-
termediate exposures ending after 24 hpf and before 50 hpf and
late exposures ending later than 50 hpf.

b) Modes of action: modes of action or effect categories were re-
trieved from literature for the 60 chemicals used in the different
studies. Three groups were analyzed in more detail, namely re-
active, teratogenic or carcinogenic substances (“A”), neuroactive
substances (“B”) and endocrine disrupting chemicals (“C”). To
achieve maximum consistence, chemicals were only assigned to a
group if strong evidence for the assignment existed. See Table 2.1
for the assignments.

c) Chemical concentration: all considered studies reported the mo-
lar concentrations of the applied exposure solution. However, for
being able to compare the exposure concentrations of different
substances in a quantitative way, it is necessary to relate the expo-
sure concentration to a comprehensive effect scale (such as lethal
concentration). Since this was only available for a few studies, ex-
periments were grouped into three sets with respect to effect con-
centrations on the ZFE phenotype: the "no effect" group included
all treatments using arbitrarily chosen no effect concentrations
and treatments using no observed effect concentration (NOEC),
no observed adverse effect level (NOAEL) or fractions of NOEC or
NOAEL for exposure; the "LOEC" group contained all treatments
using exposure concentration reported as LOEC, treatments lead-
ing to not precisely defined low effects, as well as treatments with
exposure concentrations of EC10 and lower as well as BMCGMS1-
BMCGMS10 (as defined by Hermsen et al. (2011)). Finally, the
"EC" group contained all treatments with exposure concentrations
reported as inducing visible effects, if quantified larger than EC10
as well as BMCGMS >=10 and all reported lethal concentrations
(min.=LC5).
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2.2.3 Analysis

The analyzed studies highly varied with regard to the number of mea-
sured time points and applied concentrations. Studies with many con-
centrations or time points measured would therefore have a biased im-
pact on the analysis. This is why in each subgroup only the highest
concentration and latest time point of each study and compound was
included (suspected to represent the treatment showing the strongest
and most general toxicity profile). The meta-analysis was performed
with two complementary approaches (Figure 2.1).

(i) For separate significance testing each dataset was quantile normal-
ized, and differentially expressed genes were identified with a moderated
t-test using the R-package “limma” (Ritchie et al., 2015). Cutoff crite-
ria for DEGs were |logFC|>1 and adjusted p-value (adj.p.val)<0.05. The
proportion of DEGs for each treatment was determined and related to
experimental factors. Additionally, those genes were determined which
were identified as DEG in most treatments (across all treatments and
subgroups).

(ii) In order to identify genes with a common trend of differential
transcription, common significance testing was applied: Each array
was normalized by cumulative proportion transformation using the R-
package "YuGene", a normalization method specifically designed for
cross-platform normalization considering different dynamic ranges for
different platforms (Lê Cao et al., 2014). Then, random effect mod-
els were used to determine a summary effect size for each gene based
on the fold-change and significance was estimated using a permutation
analysis (1000 permutations) based on Significance Analysis of Microar-
rays (Tusher et al., 2001) applying the R-packages “MAMA“ (Ihnatova,
2013) in combination with “GeneMeta” (Choi et al., 2003; Lusa et al.,
2015). Cutoff criteria for genes with a significant summary effect size
(“meta-genes”) were |effect size|>1 and adj.p.val<0.05. This method is
described in detail by (Choi et al., 2003).

To derive a mechanistic understanding from the lists of genes identi-
fied as meta-genes, functional annotation was performed using the Bio-
conductor package "clusterProfiler" (Yu et al., 2012). A manually com-
bined library of zebrafish gene sets from KEGG (Release 75.0, Kanehisa
(2000)), ZFIN (April 2015, Sprague (2006)), GeneOntology (Ensembl
release 80,Gene Ontology Consortium (2015)), WikiPathways (Ensembl
release 80, Kelder et al. (2012)) and Interpro-domains (Ensembl release
80, Mitchell et al. (2015)) was created for enrichment analysis (for de-
tails see Appendix A).

2.3 results

This meta-analysis aggregated microarray data from 33 studies in which
transcriptome responses in ZFE upon exposures to an overall number of
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60 different chemicals were investigated. We systematically compared
experimental settings with regard to exposure time, concentration and
microarray platform. Since the number of DEGs can give a first hint
on the extent of molecular disturbance in the embryo (Hermsen et
al., 2012), we compared the proportion of DEGs between the studies.
We also investigated the influence of different experimental factors on
the extent of gene regulation. In the last step we strived to identify
commonly regulated genes in the ZFE after chemical exposure.

2.3.1 Heterogeneous exposure settings

A first important finding is that exposure settings across studies are
quite heterogeneous with respect to exposure time, concentration and
the applied microarray platform.

exposure times A summary of exposure onset and durations of
all treatments is depicted in Figure 2.2a. Studies include very early
exposures immediately after fertilization (e.g., Hermsen et al., 2012;
Schiller et al., 2013a,b), as well as exposures of stages after the hatching
of the embryo (e.g., Driessen et al., 2015; Faltermann et al., 2014; Hahn
et al., 2014; Kawabata et al., 2015). The exposure durations cover a
range between one hour (Alexeyenko et al., 2010) to several days (e.g.,
Garcia-Reyero et al., 2014; Lam et al., 2011; Park et al., 2012). RNA
extraction for microarray analysis usually took place immediately after
the end of exposure, with only one exception: Alexeyenko et al. (2010)
analyzed molecular responses to dioxin at several time points during
depuration after a short exposure time.

exposure concentrations Since studies are based on differ-
ent motivations and assumptions, the experimental strategies also dif-
fered with respect to exposure concentrations. Five of 33 studies used
an exposure concentration showing no phenotypic effects in the embryo
(e.g., Bonventre et al., 2013; Driessen et al., 2015; Hao et al., 2013),
three studies used the lowest concentration leading to a sublethal phe-
notypic or lethal effect (e.g., Saili et al., 2013) and eight studies used
concentrations causing death of 5-20 percent of all embryos (e.g., Klüver
et al., 2011; Lam et al., 2011; Oliveira et al., 2013). Five studies recorded
phenotypic effects for the applied exposure concentrations but did not
quantify the effects (e.g., Alexeyenko et al., 2010; Tal et al., 2012; White
et al., 2011). Three studies used an exposure concentration, which was
related to concentrations found in the environment (e.g., Garcia-Reyero
et al., 2014; Park et al., 2012) and eight studies did not explicitly relate
their applied concentration to a reference concentration or phenotypic
effect (e.g., Hahn et al., 2014; Kawabata et al., 2015; Xu et al., 2014).
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microarray platforms The studies considered in this meta-
analysis made use of different microarray platforms. Commercially avail-
able microarrays manufactured by Agilent or Affymetrix are used most
frequently. Besides general differences in array design between those
companies, the different generations of arrays also appear to differ sub-
stantially in terms of transcriptome coverage as depicted in Figure A.3a.
Here, a summary of transcriptome coverage of all used arrays shows
that only few platforms achieve to cover most known Danio rerio genes.
Roughly only 20% ( 5,000) of known genes are covered across all plat-
forms and can be compared across all conditions. However, if genes are
grouped into gene sets using ontology and pathway information from
databases, most gene sets are covered with at least 30% of their genes
on all arrays (see Figure A.3b). For our effect size analysis we used a
reduced dataset from fewer studies with the intention to increase the
overlap in covered genes across studies and thus the number of genes
that could be analyzed. The number of genes could be increased to a
coverage of about 45% ( 12,000 genes). We included data from different
platforms since a limitation to only one platform would have reduced
the analysis to too few compounds to derive any general conclusions.

2.3.2 Association of experimental factors

Figure 2.2b shows that in this meta-analysis not all experimental groups
can be considered to be independent. Shaded bars show a significant
correlation between experimental factors. For example, substances in
MoA group A (“reactive, teratogenic”) were often investigated in no
effect concentrations at late time-points.

extent of gene regulation depends on exposure con-
centration As a first analysis step the proportion of DEGs among
all measured genes was determined for all treatments (adjusted p-Value
<0.05, |logFC|>1). The proportion of DEGs ranged from no genes in 77
of 225 contrasts (treatment-control) up to a maximum of roughly 9%
DEGs (Figure 2.3a). Treatments ending at time points between 24 hpf
and 50 hpf seem to induce a slightly higher number of genes than those
ending at earlier or later time points (see Figure 2.3b). Additionally,
experiments using no-effect concentrations showed fewer significantly
regulated genes than experiments using a concentration reported to
cause visible effects on the phenotype (Figure 2.3d). The fact that some
contrasts do not show any significantly regulated genes goes in hand
with the published studies about the corresponding datasets, since some
of these studies chose not to correct their statistical test for multiple
hypothesis testing for deriving a list of regulated genes (Bonventre et
al., 2013; Garcia-Reyero et al., 2014; Saili et al., 2013; Xu et al., 2014).
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(a) Individual experiments, each bar represents
one individual treatment
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(d) Subgroups according to the applied effect con-
centrations

Figure 2.3: Proportion of DEGs among all measured genes in respective subgroups.

Other studies tested a range of concentrations with the lower concentra-
tions not always yielding significant transcriptional changes. Addition-
ally, the mode of action seems to have an effect on the extent of gene reg-
ulation. In Figure 2.3c it is illustrated that endocrine acting substances
seem to induce a comparatively larger response. However, this might
also be due to the fact, that endocrine substances were mostly tested at
higher effect concentrations (Figure 2.2b). We grouped the proportion
of regulated genes according to concentration and time (Figure A.4a)
and according to concentration and mode of action (Figure A.4b) and
it appears that both, mode of action as well as concentration play a
role in the extent of gene regulation. Therefore and as explained above,
it is hardly possible to consider the groups independently. Additionally,
it should be noted that some of the treatments in all considered groups
show none or only few DEGs. This explains the increased variability
for all groups with an increased median proportion of DEGs (leading to
“higher” boxes in Figures 2.3b-d).

2.3.3 Low overlap in differentially expressed genes between studies

In the next analysis step we strived to identify genes commonly differ-
entially expressed in the embryo in response to chemical exposure in
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Table 2.2: Number of "meta-genes" and enriched gene sets in experimental subgroups and number
of contrasts and studies contributing to the subgroup.

Category Group Genes Gene sets Contrasts Studies
Up Down Up Down

Time early 164 413 75 62 14 6
middle 177 209 4 7 15 7
late 12 12 0 0 21 8

Mode of action reactive 28 15 5 1 6 5
endocrine 126 249 0 1 13 6
neuroactive 120 168 4 32 7 3

Concentration noeffect 11 14 2 0 16 5
LOEC 411 531 0 21 15 5
EC 151 327 11 35 21 9
all 4 7 17 1 45 17

general. In a first approach, DEGs were identified for each treatment and
subsequently overlaps of DEGs were determined across all treatments as
well as across subgroups of treatments. In order to reduce study bias,
only those treatments with at least one DEG and only the highest con-
centration and latest time point investigated per substance and study
were considered (resulting in a maximum of 60 contrasts/33 studies).
Across all treatments and in all subgroups some overlapping DEGs could
be identified with an overlap higher than would be expected by chance
(p<0.05). However, even the most commonly differentially transcribed
genes appeared in less than 50% of analyzed treatments and regularly
showed a study bias, if several compounds of one study were included
in the dataset (see Figures A.5-A.14). Each list of DEGs (if there were
any detected) for each treatment was also analyzed for functional en-
richment using the R-package clusterProfiler (Yu et al., 2012). Again,
the overlap of enriched terms was determined, which was found to be in
the same range as for genes - with no gene set appearing in more than
50% of the treatments. Since the evidence for general regulation of the
genes or gene sets with the highest overlap was weak, no further bio-
logical conclusions were derived from the findings of this analysis step.
Rather, in a second step genes were searched for that show a common
trend of regulation irrespective of statistical significance in the single
studies.

2.3.4 Effect size analysis – common trends of gene regulation

Our expectation to find some genes identified to be differentially ex-
pressed in all treatments (and accordingly in experimental subgroups)
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Estimated effect size
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(b) Top 10 meta-genes in the subgroup of exper-
iments with neuroactive substances

(c) Meta-genes associated with the Lysosome
pathway (KEGG) in the EC-subgroup (expo-
sures with concentrations causing apical ef-
fects)

(d) Meta-genes associated with calcium binding
(GeneOntology annotation) in the subgroup
of early exposures

Figure 2.4: Estimated effect sizes for selected meta-genes (= genes significantly differentially ex-
pressed in a subgroup as indicated by effect size analysis). Values above 0 = increased
expression after chemical exposure, values below 0 = decreased expression after chemical
exposure. (a)/(b) Circles represent single effect sizes, arrows single effect sizes smaller -5
or larger 5, colors represent study affiliation, bars summary effect sizes, grey circles and
bars single effect sizes and summary effect sizes of experiments not in the group, Study
IDs as given in Table 1. (c)/(d) values clipped below -5 and above 5.
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as evidence for common gene regulation was not met. We reasoned
that there might still be genes showing a common trend of differential
expression across treatments, without being identified as significantly
differentially expressed in each individual treatment. Those genes would
not be identified using the overlap method described above. Thus, in
a second approach we obtained a summary effect size for each gene
across all contrasts before determining its significance by permutation
analysis. The summary effect size (bars in Figure 2.4) can be regarded
similarly to a weighted average of the effect sizes of individual treat-
ments, while the single effect sizes of each treatment and gene (circles in
Figure 2.4) were obtained from the fold-changes (treatment vs. respec-
tive controls) and normalized by the standard deviation. This method
only allowed those genes to be included in the analysis which were
tested in all treatments. Therefore, only studies with at least 15,000 in-
vestigated genes were included in the analysis (this cutoff was chosen as
a trade-off between number of analyzable studies (17 studies containing
176 treatments) and number of analyzable genes (11,679/ 45% cover-
age)). Again, to reduce study bias the dataset was reduced to those
treatments with highest concentration and latest time point for each
compound and study. The results of this analysis are summarized in
Table 2.2, where the number of genes with a summary effect size devi-
ating significantly from zero (FDR < 0.05, |effect size| > 1, here called
“meta-genes”) is given for each group as well as the number of enriched
functional terms within this group of meta-genes. Summary effect sizes
across all contrasts were significant for 11 genes, including four genes
with positive (plekhf1, nars, atf3, phgdh) and seven genes with negative
summary effect size (csf1b, ppp1r27a, lrrn1, pvalb8, atp2a1l, neuro6b,
nr4a1). In spite of statistical significant summary effect sizes, single ef-
fect sizes of each contrast still show large variation between treatments
(Figure 2.4a). Several treatments even show a reverse effect size in com-
parison to the summary effect size, meaning for example that the gene
is upregulated in some studies whereas the summary effect size shows
a significant repression.

2.3.5 Meta-genes for experimental subgroups

As mentioned above, we also calculated the summary effect sizes for all
included genes across different experimental subgroups. For 6 of the 9
subgroups we identified more than 100 genes showing a common trend
of increased or decreased expression (see Table 2.2, FDR<0.05, |effect
size|>1). The distribution of effect size and FDR was different between
subgroups, as depicted in the volcano plots in Figure A.15. All genes
with a significant summary effect size and respectively enriched gene
sets are summarized in Table S1 and S2 (https://academic.oup.com/
toxsci/article/157/2/291/3055845#supplementary-data) for all ex-
perimental subgroups. Heatmaps for each subgroup summarizing the

https://academic.oup.com/toxsci/article/157/2/291/3055845#supplementary-data
https://academic.oup.com/toxsci/article/157/2/291/3055845#supplementary-data
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single effect sizes of up to 100 of the respective "meta-genes" are pro-
vided as supplemental material (Figure A.16-Figure A.24). Figure 2.4b
illustrates exemplary for the top 10 genes responding to neuroactive
substances, that meta-genes identified in the subgroups at least par-
tially show a consistent trend (all individual treatments show either
increased or decreased expression compared to control). Furthermore,
it demonstrates that summary effect sizes for experimental subgroups
may substantially differ from the summary effect size for all treatments
(light grey bars in Figure 2.4b indicating no effect across all studies)
which may indicate a group specific response.

observation time point For early observation time points (up
to an embryo age of 24 hpf) 164 genes had an estimated summary effect
size larger than 1 (increased expression, FDR < 0.05) and 413 genes
had an effect size smaller than -1 (decreased expression, FDR< 0.05).
In contrast to other time related subgroups, numerous functional terms
were enriched for those genes. Among genes with increased expression,
terms related to mesoderm development as well as several T-box tran-
scription factors (tbx6, tbx6l, tbx16, ta) were predominantly affected.
Two signaling pathways were overrepresented, namely the Wnt-pathway
(e.g., fibronectin 1b, wnt inhibitory factor 1, wnt11r, dact2) and the
Fgf-pathway (e.g., fgf receptor 1a, fgf 17, fgf receptor like 1b). Both
pathways play an important role in ZFE development (Ota et al., 2009;
Verkade and Heath, 2009). Additionally, ten of the genes with increased
expression were coding for proteins with EGF-like domains. The motif
enrichment performed with human orthologue gene annotations indi-
cated potential upstream regulation for ten of the induced genes by
the vitamin D receptor (VDR) and the hepatic transcription factor 1
(TCF1). Among the terms enriched for genes with decreased expression
one cluster contained genes for beta- and gamma-crystallins. Another
cluster could be linked to neuron expression, myotome and muscle de-
velopment. An effect on muscle development is also indicated by the
enriched transcription factor motifs of MEF2A (Myocyte Enhancer Fac-
tor 2A) and MYOD (myogenic differentiation 1). Besides myogenesis
and muscle cell differentiation those potential upstream regulators are
involved in neuronal differentiation, cell growth control, apoptosis and
cell cycle arrest (Berkes and Tapscott, 2005; McKinsey et al., 2002;
Naya and Olson, 1999; Weintraub et al., 1991). Additionally, there
were clusters of genes enriched for calcium ion binding proteins (e.g.,
calpains, parvalbumins, calsequestrins) and for metabolic processes like
glycolysis. Furthermore, a cluster of genes coding for homeobox-domain
containing proteins was found to show decreased expression in early
treatments (e.g., hoxb13a, lhx1b, lhx9, nkx2.1). This protein class is
highly conserved and plays an essential role in morphogenesis and early
development (Kimmel, 1989; Mallo et al., 2010). A clusterplot showing
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the downregulated terms of the early exposure group is shown in Fig-
ure A.25. In observations between 24 hpf and 50 hpf (group: “middle”)
177 genes showed an average increase in expression but only the terms
blood, leucine zipper domain, steroid biosynthesis and cellular amino
acid metabolic process were enriched for this group of genes. Among
the 209 genes with decreased expression only a small group of six genes
could be annotated to be connected with dentary expression. In late
measurements twelve genes showed an average increase and twelve an
average decrease in expression, but no functional terms were enriched.

concentration Next to the consideration of observation time
points we also grouped the experiments according to the applied expo-
sure concentrations. We built three groups of experiments, namely con-
centrations with no reported apical effect ("no effect"), concentrations
in the LOEC range ("LOEC") and concentrations with a reported api-
cal effect ("EC"). Eleven genes showed an average expression increase
and 14 an average decrease in the “no effect” concentration group. En-
richment analysis for this group resulted in only two terms connected
to the fin bud, of which two genes were among the genes with increased
expression. Experiments of the “LOEC” group showed 410 genes with
increased and 531 genes with decreased expression. However, in spite
of the large number of genes showing increased expression, only genes
with decreased expression could be functionally annotated. Here, di-
verse anatomical terms were enriched, including musculature system,
heart tube, dentary, blood and fin bud. Additionally, genes coding
for proteins involved in glycolysis (e.g., fbp2, pfkma, pfkmb, gapdh)
were decreased in expression as well as genes coding for globin like
and EF-hand domain containing proteins (e.g., parvalbumins). Exper-
iments with reported apical effects of EC10 and higher, showed 151
genes with increased expression. These were enriched among others for
steroid biosynthesis, the protein domain of ABC transporters and a
group of lysosome genes including a range of peptidases (cathepsins,
legumain) and glycosidases (hexb, naga). The expression increase of
these genes indicates a raise in degradation of damaged proteins and
macromolecules as a response to cell damage. In Figure 2.4c the single
effect sizes of significantly regulated lysosomal genes in “EC” experi-
ments are exemplary illustrated in a heatmap. Here it can be seen that
not all compounds applied in a concentration causing an apical effect
induced lysosomal genes in a similar way, however an overall trend of
induction is obvious. The 327 genes with decreased expression in the
“EC” group showed enrichment for muscle, dentary and heart expres-
sion as well as the troponin domain (similar to the “LOEC” group).
Additionally, the terms focal adhesion and ECM-receptor interaction
were enriched, possibly indicating destabilized tissue structures. Tran-
scription factor motif enrichment is similar to the “early” group of genes
with decreased expression.
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mode of action The studies included into the effect size analysis
investigated 40 chemicals of which 22 were grouped into three broad
groups with similar modes of action, namely reactive, carcinogenic or
teratogenic compounds (group “A”); neuroactive compounds (group
“B”); and compounds known to act on the endocrine system (“C”). We
identified 28 genes with increased and 15 genes with decreased expres-
sion in the group of reactive substances (“A”) of which two genes (nfkb2,
tnfrsfa) are coding for proteins containing the death domain and three
genes are coding for transporters of the major facilitator superfamily
(slc37a2, slc17a9b, svolp). Among the genes with increased expression
we also found acy3, a gene coding for aminoacylase 3, an enzyme which
is known to deacetylate mercapturic acids (Newman et al., 2007), which
are common transformation products of reactive/electrophile chemicals
(Vermeulen, 1989). Neuroactive compounds (“B”) induced an increased
expression of 120 genes, of which 8 were found to be related to the neu-
ral rod (wnt4a, gdf6a, cxcl12a, hspa4b, greb1, heyl, hoxd13a, mdkb)
and 3 are connected to neuron migration (prickle1b, cxcl12a, hdac1).
The 168 genes with decreased expression showed enrichment for mus-
cle and heart expression, glycolysis, the insulin signaling pathway and
fatty acid degradation. The third group of endocrine acting chemicals
(“C”) showed common trends of increased expression of 126 genes and
decreased expression of 249 genes but no functional term was enriched
besides Glycolysis for decreased genes.

2.4 discussion

n our meta-analysis we revealed that overlap of gene expression profiles
is generally low between analyzed studies. However, common trends
of differential expression, especially in meaningful subgroups, hint at
important stress response mechanisms in the zebrafish embryo which
we will discuss below. At the same time we also identified limitations
in experimental design which we will briefly discuss.

The studies compared here all sought to use global gene transcrip-
tion analysis to analyze the molecular response provoked in the ze-
brafish embryo by exposure to specific compounds. Some studies were
interested in substance related effects at a specific embryonic stage
like gastrulation, others looked at further developed stages, e.g., with
developed hepatocytes. Some studies aimed to identify the mode of ac-
tion of a specific chemical, others aimed to demonstrate the suitability
of the microarray technique for toxicological studies using well known
model chemicals. Those different specific research interests resulted in
many different experimental designs. This heterogeneity in experimen-
tal factors is a challenge when comparing the data. Since the setup
does not give a balanced design regarding the analyzed subgroups (see
Figure 2.2b), it is almost impossible to trace back differences between
experiments to a single factor. Another confounding factor was the
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difference in array design with only a small set of genes being jointly
observed on all arrays. Moreover, to obtain comparable data, all data
were "forced" into one analysis design here which was restricted to one
treatment per chemical and study in order to reduce study bias. This
however reduced power in our analysis for those studies, which chose
to investigate more concentrations or time points and less replicates,
for example, which is actually a favorable and strong study design.

In the analysis of overlap of regulated genes between treatments
none of the most frequently significantly affected genes was found in
more than 50% of the treatments. Also in smaller groups of studies no
larger overlap was detected. This finding goes in line with earlier meta-
analyses of microarray data of tissue samples of ovarian cancer, also
showing low overlap between observed expression profiles (Györffy et
al., 2008) as well as earlier studies in ecotoxicology indicating, that the
number of commonly regulated genes gets smaller as the group of ex-
periments is getting larger (Hermsen et al., 2013). In a meta-analysis of
changes within zebrafish proteomes after chemical exposure overlap of
regulated proteins was even smaller and found to be below 30% (Groh
and Tollefsen, 2015). A recent study by (Vidal-Dorsch et al., 2016)
showed a lower than expected overlap in an inter-laboratory compari-
son of ecotoxicological microarray analyses. All these results indicate,
that analyses of top-lists are always prone to bias and especially when
evaluating single studies, stronger proof of biological regulation e.g., by
enrichment analysis (as performed by Driessen et al., 2014) or molec-
ular interaction network analyses are needed. However, a functional
enrichment analysis as performed here also revealed a maximum over-
lap of only 50% in the subgroups, which might be expected to be larger
for more consistent experimental designs.

In spite of a generally low overlap of significantly regulated genes be-
tween studies we could detect common trends of gene regulation using
an effect-size based approach and found indications for certain molec-
ular responses to chemical stress in the ZFE. Molecular responses were
assigned to a range of anatomical regions, biological processes and sig-
naling pathways. The eleven genes showing a significant trend across
all treatments already hint at a few general molecular processes in re-
sponse to chemical stress. The gene atf3 (activating transcription factor
3) plays a role in cell cycle arrest and apoptosis (Lu et al., 2006) and
shows a trend of upregulation across all treatments (Figure 2.4a). The
same is true for plekhf1 (pleckstrin homology and FYVE domain con-
taining 1) which is connected to lysosome dependent apoptosis (Chen
et al., 2005). In the “EC” group the importance of lysosomes in stress
response is even more pronounced with several lysosomal genes upreg-
ulated (Figure 2.4c).

Among the seven genes with a trend for downregulation across all
treatments three genes are connected to calcium homeostasis. The gene
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pvalb8 (parvalbumin 8) is the zebrafish orthologue of the human ON-
COMODULIN 2 coding for a high-affinity calcium ion-binding protein
that belongs to the superfamiliy of calmodulin proteins containing an
EF-hand protein domain. Also, the expression of the gene for the or-
phan nuclear receptor nr4a1 showed a trend of downregulation across
all studies. It has been shown that the transcriptional regulation of this
endocrine receptor is dependent on calcium level (Abdou et al., 2016;
Medzikovic et al., 2015). Additionally, the zebrafish gene atp2a1l is an
orthologue of the SERCA gene, coding for an intracellular Ca2+ trans-
porting ATPase in the sarcoplasmatic reticulum of muscle cells. This
pump has recently been shown to be inhibited by lipophilic compounds
in Daphnia magna and it was hypothesized that intracellular calcium
level plays an essential role in basal toxicity (Antczak et al., 2015). Fi-
nally, the ryanodine receptors (RYR2 and RYR3) functioning to release
calcium from the sarcoplasmic reticulum, e.g. in the context of muscle
contraction (Pessah et al., 2010), had a significant negative effect size
in four of the nine subgroups. Indeed, repression of genes connected to
calcium binding or transport was a recurring observation in our anal-
ysis and most prominent in early exposures. Downregulation of genes
of calcium binding proteins in the early exposure group is displayed
in a heatmap in Figure 2.4d. Here, it can also be seen that negative
control compounds like saccharin or mannitol but also nanoparticles do
not have an effect on this group of genes, while all other compounds
lead to differing degrees of downregulation in early exposed ZFE. A
downregulation of calcium binding proteins as response to chemical
stress was also described as potential key event in mouse embryonic
stem cells after progesterone exposure (Kang et al., 2016) and in ZFE
exposed to Vitamin D3 (Zhang, 2015). Furthermore, in a proteomics
study calcium signaling proteins were found among the most frequently
differentially expressed proteins besides actins, myosins, crystallins and
metabolic enzymes in a meta-analysis of zebrafish proteome data ob-
tained after chemical stress (Groh and Tollefsen, 2015). Brette et al.
(2014) showed that the decrease of intracellular calcium current and
calcium cycling leading to disruption of excitation-contraction coupling
in fish cardiomyocytes after crude oil exposure is a key mechanism in
crude oil caused cardiotoxicity in fish. Calcium has many different reg-
ulatory functions, one of which is its role during cell cycle progression
(e.g., Kahl and Means, 2003; Roderick and Cook, 2008). In a study
with Saccharyomyces cerevisiae O’Duibhir et al. (2014) detected cell
cycle arrest as a general stress response towards environmental per-
turbations. A cell cycle arrest would also go in line with our finding
that in the subgroups related to observation time many downregulated
genes are connected to those anatomical regions, which develop during
the respective developmental stage. This is true for heart, musculature
system and parts of the brain (including the eyes) all of which start
to develop before 24 hpf (Kimmel et al., 1995). Those regions are all
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connected to downregulated genes in early treatments (ending before
24 hpf). In the second group (exposure ending between 24 hpf and
50 hpf) the dentary system seems to be affected, which is starting to
develop just before 2 dpf (Heyden and Huysseune, 2000). In the late
exposure group (measurement later than 50 hpf), when most of the
zebrafish morphogenesis is completed, no anatomical terms were en-
riched among the meta-genes. Overall, this could indicate a general
delay in development, but also a reduction in growth and metabolism
(with the mentioned anatomical regions mostly affected). This is fur-
ther supported by a significant downregulation of many genes involved
in glucose metabolism in five of the nine subgroups. In summary, it
might be hypothesized that the repression of calcium binding proteins
indicates an early stress response which induces a cell cycle arrest and
suppression of differentiation (as shown by Kang et al., 2016). However,
it remains to be elucidated whether the downregulation of calcium bind-
ing transcripts and proteins is really the cause or rather the result of a
perturbation of development and differentiation. Most calcium binding
genes are cell type specific and might occur as repressed just because
the cell type is not as developed as in the respective control.

Additionally, genes can be identified showing the same trend of dif-
ferential expression for compounds, which are expected to act in a sim-
ilar way. Induced genes in the group of neuroactive compounds could
partly be functionally annotated with the terms neural rod and neuron
migration. For endocrine disruptors and reactive compounds the meta-
genes could not be functionally annotated, which indicates a knowledge
gap in functional annotation of signaling pathways and gene-gene in-
terconnections during zebrafish development. Missing knowledge about
relevant sets of genes involved in responses towards toxicants is also in-
dicated by the fact, that more downregulated meta-genes are annotated
in gene sets (representing known metabolic and homeostatic functions
repressed by chemical stress) than upregulated meta-genes which might
represent specific but unknown responses to chemical-biomolecule inter-
actions during development. However, a detailed functional analysis of
single affected genes might also give evidence for a specific response
as shown for the gene acy3 (aminoacylase 3), which was exclusively
affected in the group of reactive compounds and identified as a poten-
tial biomarker indicating biotransformation of electrophiles (Newman
et al., 2007; Vermeulen, 1989).

Apart from mechanistic evidence, the findings of our study should
help to improve the design of toxicogenomic experiments in the fu-
ture. The analysis of proportions of regulated genes revealed that ex-
periments using concentrations which did not induce visible effects in
the embryo showed a low proportion of genes differentially transcribed.
This should be considered in toxicogenomics experiments as well as in
discussions about the sensitivity of responsive transcriptomes. To fos-
ter the interpretation of toxicogenomics studies the separation between
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general responses versus specific responses as well as primary versus
secondary and early versus late responses induced by individual sub-
stances is important. This is especially true, if such data should become
useful for risk assessment in the framework of the AOP concept (Ankley
et al., 2010). This might become much easier in the future if studies
are designed to advance from “snapshot” experimental designs cover-
ing only single concentrations and time points to a design including a
range of concentrations and time points for each study as illustrated
in Figure 2.5. A minimum number of five time points and five different

Figure 2.5: Schematic representation of concentration and time dependent
gene expression. Current experimental designs (“Study 1-Study
3”) only give snapshot information and can lead to seemingly con-
tradicting results in toxicological experiments. Concentration and
time variation measurements (“new design”) would allow estab-
lishing systematic relationships.

exposure concentrations would be recommended as this would allow for
simple descriptive modeling approaches. We recommend equal spacing
of time points and concentrations on a logarithmic scale. The exposure
time frame should be chosen according to the scientific question. Only if
one is specifically interested in disturbance of early embryonic develop-
ment, exposure should start immediately after fertilization. Otherwise
we recommend to start not before 24 hpf , when the embryo has al-
ready developed to its phylotypic appearance. Furthermore, exposure
concentrations should be anchored to a phenotypic effect (e.g., LCX).
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This will foster the establishment of causal relationships between gene
expression and adverse outcome in the future.

2.5 conclusion

In a meta-analysis of 33 toxicogenomic ZFE studies we could not iden-
tify a general uniform stress response. We found that the analyzed
transcriptome studies show great heterogeneity in experimental settings
that we take responsible for heterogeneous results. However, in selected
experimental subgroups we could identify common trends of gene reg-
ulation. We identified gene sets connected to anatomical development,
metabolism or calcium homeostasis as downregulated in different sub-
groups whereas upregulation of gene sets seemed to be more diverse
and thus more specific. Induced genes could among others be linked
to signaling pathways (e.g. Wnt, Fgf) as well as lysosomal structures
and apoptosis. This analysis shows some methodological constraints of
existing ZFE transcriptome studies but at the same time it provides
a starting point to substantially increase our understanding of toxic
effects of chemicals and stress responses in the developing zebrafish
embryo.
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3.1 introduction

Toxicogenomic studies offer great potential to give insight into molec-
ular processes. This can help tackling problems and questions in the
field of environmental toxicology (Brinke and Buchinger, 2017; Snape et
al., 2004), e.g., in the assessment of environmental health (Bahamonde
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et al., 2016), which will be our focus here. At the same time, toxi-
cogenomic data bear the challenge of analyzing and interpreting highly
complex molecular profiles, even when considering only one exposure
condition. The integration of time or concentration dependent measure-Parts of this

chapter have been
submitted for
publication as:
Schüttler A.,

Altenburger R.,
Ammar M.,

Bader-Blukott M.,
Jakobs G., Knapp

J., Krüger J.,
Reiche K., Wu

G.-M., and Busch
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ments or different molecular levels (such as transcriptome, proteome
and metabolome) even adds another layer of complexity. The seem-
ingly endless number of potential gene expression combinations makes
every exposure study outcome an individual case and a new challenge
for functional interpretation. This is why a lot of effort has been put
into developing strategies to analyze and interpret genome scale molec-
ular profiles and discriminate important subtle changes from statistical
noise. Approaches in toxico- or pharmacogenomic studies include mul-
tiple hypothesis testing combined with functional enrichment analyses
(e.g., Schiller et al., 2013), the study of benchmark doses for genes or
gene sets (e.g., Dean et al., 2017; Hermsen et al., 2013; Thomas et al.,
2007), inference of networks integrating knowledge about molecular re-
sponses to chemicals (e.g., Perkins et al., 2011, 2017; Schroeder et al.,
2017), or the study of network perturbation (Woo et al., 2015).

However, as has been laid out in Chapter 2, most toxicogenomics
datasets are limited to a few exposure scenarios. At the same time,
these scenarios differ greatly between studies. This makes most omics
results hard to compare, and it is difficult or even impossible to judge
the generality or specificity of the respective findings and derive conclu-
sions for exposure settings different from the ones measured (compare
Figure 2.5). However, when we want to move to the application field
of environmental monitoring, comparability of profiles as well as the
ability to extrapolate toxicogenomic profiles on concentration and time
scale will be essential. This is because on the one hand, when categoriz-
ing certain patterns in toxicogenomic profiles (similar as it was already
envisioned by Nuwaysir et al., 1999) with only anecdotal exposure in-
formation available, there is a high risk of deriving false conclusions
due to spurious correlations or multi-functionality of gene sets. On the
other hand, environmental concentrations of toxicants in environmen-
tal extracts will differ from concentrations used in a single substance
exposure. For that reason, we will have to obtain concentration resolved
toxicogenomic profiles of environmental toxicants and find ways to ex-
trapolate to concentrations which have not been measured. Assuming
that toxicogenomic profiles of environmental extracts will resemble the
profiles of its components, it should then be possible to compare profiles
of environmental extracts with those of single compounds to identify
major effects (compare Figure 1.2).

Therefore, heading towards the application of transcriptomics as tool
for non-target bioanalytics, our goal was to develop an experimental
and bioinformatic pipeline, being generally applicable for the gener-
ation of toxicogenomic profiles of any chemical of interest. It should
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Terminology Box 3.1: SOM terminology
self organizing map/kohonen map Unsupervised
machine learning algorithm belonging to the class of neu-
ral networks. Data is clustered onto a two-dimensional grid
according to similarity. It was first developed by Kohonen (1982).

toxnode coordinate of the →zebrafish embryo toxicoge-
nomic universe with a definite number of genes assigned to it.

zebrafish embryo toxicogenomic universe
(zetu) Available datasets from zebrafish embryo single
compound exposures clustered by the →self organizing map
method. Forms the backbone dataset for the →ZETAC.

zebrafish embryo toxicogenomic transcrip-
tome coordinate system (zetac) Association grid
of the →zebrafish embryo toxicogenomic universe. Assigns each
zebrafish gene a specific position on a two-dimensional map
(here 60× 60 →toxnodes).

compound toxicogenomic landscape map showing
average logFCs, or regression parameter estimates of →toxnodes
(arranged according to →zebrafish embryo toxicogenomic com-
pass) for a specific exposure condition or compound.

result in compound profiles which can be extrapolated across exposure
duration and concentration, and which are comparable between differ-
ent compounds.

On experimental side this required an experimental design covering
a set of different exposure durations and a range of carefully selected
contaminant concentrations (compare Section 3.2.2).

self-organizing maps Regarding data analysis the retrieved
high-dimensional data set had to be aggregated into a digestible and
comparable format. With the help of the established machine learning
method of self-organizing maps (SOMs) (Kohonen, 1982; Wirth et al.,
2011) the toxicogenomic responses in the zebrafish embryo were clus-
tered by compiling public datasets from the meta-analysis (Chapter 2)
and the profiles of our model compounds. We call the resulting database
Zebrafish Embryo Toxicogenomic Universe (ZETU) (compare terminol-
ogy box 3.1). It consists of 3600 "toxnodes", each node containing sev-
eral transcripts, showing similar behavior in response to chemical ex-
posure ("co-expression"). The backbone of the Zebrafish Embryo Tox-
icogenomic Universe (ZETU) is a two dimensional coordinate system,
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assigning each toxnode (and thereby each transcript) a defined coordi-
nate. The coordinate system we call Zebrafish Embryo Toxicogenomic
trAnscriptome Coordinate system (ZETAC). When the average logFC of
each toxnode, considering a specific treatment, is projected on this coor-
dinate system, we obtain a treatment specific toxicogenomic landscape.
If there is concentration and time resolved data available, we obtain
a set of landscapes, of which the behavior of each toxnode can be de-
scribed by regression modeling. The obtained landscapes or landscape
sets are easily comparable between compounds, since the underlying
toxnodes are always arranged in the same way based on the ZETAC.
This way the landscape can in a first step be visually inspected.

To allow for extrapolation of the toxicogenomic profiles, two different
regression models were developed and applied to describe the toxnode
behavior. They describe the logFC of transcript levels (compared to con-
trol conditions) in an exposure duration and concentration dependent
manner. Besides extrapolation, the fitted model parameters can also
serve as descriptors of the toxicodynamic landscape.

case study The whole pipeline was applied on three exemplarily
selected environmental contaminants. The quality of the toxicogenomic
landscapes and the ability of the regression models were assessed to
describe the behavior of toxnodes. Additionally, we analyzed and inter-
preted the most prominently affected toxnodes in order to elucidate,
what can be concluded from the toxicogenomic landscapes about the
effect of the substances and if this does represent our current knowl-
edge about the compounds. Additionally, we asked whether compounds,
which are expected to act similarly, actually lead to similar toxicoge-
nomic landscapes. Recurring patterns might be applicable for detecting
a certain mode of action in a chemical mixture (e.g., an environmental
extract).

The experimental setup and analysis pipeline developed and described
here could serve as a blueprint for creating informative and compara-
ble toxicogenomic profiles of environmental toxicants. The application
of the proposed Zebrafish Embryo Toxicogenomic Universe (ZETU) al-
lows to incorporate all/most toxicogenomic data already created in the
past and thus can already be used to retrieve important toxicological
information. The quality of the toxicogenomic universe can be further
improved, by the integration of more data in the future.

In the following the pipeline is explained in more detail. A flowchart
of the whole procedure is shown in Figure 3.1.

3.2 experimental setup

The experimental procedure is described in detail in Appendix B. In
the following, the experimental design and the selection of the model
compounds will be motivated.
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Figure 3.1: Flowchart of developed toxicogenomic analysis pipeline.
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3.2.1 Model compound selection

Three model compounds, namely diuron, diclofenac and naproxen were
chosen for exposure due to the following criteria: 1) The compounds
should have an environmental relevance; 2) Two of the compounds
should be expected to act similarly, while one should be acting dis-
similar to the other two; 3) Compounds should show excess toxicity in
the zebrafish embryo test (i.e., lethality occurs at lower concentration
than would be predicted from the liposome-water partitioning coeffi-
cient of the compound Klipw, compare Klüver et al., 2016). This was
to increase the chance of detecting specific molecular effects and not
solely baseline toxicity.

diclofenac Diclofenac is used as a pharmaceutical substance, of-
ten applied as pain killer and to reduce inflammation. It belongs to
the group of non-steroidal anti-inflammatory drugs (NSAIDs) and is
a known inhibitor of both variants of the COX enyzme. COX produces
prostaglandins, which act as inflammatory signaling molecules (reviewed
in Ricciotti and FitzGerald, 2011). By inhibiting COX an inflammatory
response is repressed. As environmental toxicant diclofenac first gained
attention due to its toxicity in vultures, which has lead to a significant
decline in the vulture population in Pakistan (Oaks et al., 2004). But
also in aquatic toxicology it was identified as priority environmental
pollutant (e.g., Busch et al., 2016). There have been numerous toxico-
logical studies in aquatic organisms (reviewed in Lonappan et al., 2016).
In fish, there have been reports about adverse effects of diclofenac on
gill, liver, kidney and the gastrointestinal tract, as well as reduced egg
growth and delay in hatching. Jin et al. (2014) analyzed prostaglandin
signaling in developing zebrafish embryos and found that prostaglandin
as a product of COX, affects ciliogenesis in developing zebrafish.

naproxen Naproxen is, like diclofenac, widely applied as COX-
inhibitor of the NSAID group. It can be detected in surface waters
(Busch et al., 2016; Tixier et al., 2003; Verenitch et al., 2006), and
it has been shown to lead to histopathological liver damage and peri-
cardial edema in zebrafish embryos (Li et al., 2016).

diuron Diuron is a compound with herbicidal properties, identified
as priority pollutant in European water bodies (Busch et al., 2016). In
plants, it is specifically inhibiting the electron transfer from photosys-
tem II. Thus, there is no specific effect expected on animals like the
zebrafish. With this we expect diuron to act differently compared to
diclofenac and naproxen. In zebrafish embryos, diuron was found to
have sublethal effects on heartbeat and spontaneous movements (Velki
et al., 2017).
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Figure 3.2: Concentration response relationships for apical effects induced by (a) diuron (b) diclofe-
nac and (c) naproxen. Vertical lines illustrate selected exposure concentrations for tran-
scriptome experiments. Curves illustrate best fit model, solid lines for lethality, dashed
lines for sublethal+lethal effects, colours indicate different exposure durations. For di-
uron, no time dependent lethality was observed after 24 hpe. Sublethal effects: Exposure
time 24-48hpf (×); 24-72hpf (�); 24-96hpf (O). Lethal effects: Exposure time 24-48hpf
(◦); 24-72hpf (4); 24-96hpf (+).

3.2.2 Exposure design

Exposure settings for our transcriptome measurements were designed
to meet several requirements. We wanted to be able to follow compound
specific toxicodynamic processes but also account for differences in tox-
icokinetics. Most importantly, results were supposed to be comparable
between the compounds.
The exposure for a standard zebrafish embryo toxicity test starts

immediately after fertilization (OECD, 2013). However, there might
be many unspecific developmental effects in the first hours of develop-
ment. Therefore, we decided for an exposure period between 24 and
96 hpf. Time points of RNA-extraction during the exposure were 3, 6,
12, 24, 48, and 72 hours post exposure (hpe). The exposure concentra-
tions were phenotypically anchored to the lethal concentration (LC) at
96 hpf/72 hpe. The LC25, modeled from experimental observations (see
Figure 3.2), served as highest and the LC0.5 as lowest exposure con-
centration with 6 equal dilution steps in between, with dilution steps
1,2,4 and 6 chosen for exposure (see Equation 3.1, Equation 3.2, and
Figure 3.3). The selected concentrations for transcriptome experiments
are summarized in Table 3.1.

Dilution factor (DF) =
(
LC25
LC0.5

)1/6
(3.1)

Exposure concentrations = LC25
DF x

;x = 0, 1, 2, 4, 6 (3.2)
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Figure 3.3: General experimental design for transcriptome experiments. Each
"x" indicates one sampling condition, df = compound specific dilu-
tion factor (compare Table 3.1)

Table 3.1: Exposure concentrations applied for transcriptome experiment.

substance dilution
factor

applied concentrations (µmol L−1)

diuron 1.57 1.9; 4.7; 11.7; 18.4; 28.9;
diclofenac 1.06 5.1; 5.8; 6.5; 6.9; 7.4
naproxen 1.15 134.6; 177.6; 234.3; 269.1; 309.1

modeling of concentration response relationships
To determine an accurate value for LC25 and LC0.5, concentration re-
sponse relationships were modeled from experimental data using es-
tablished toxicological models (Scholze et al., 2001). All analyses were
conducted using the statistical software R (version 3.3.1, R Core Team,
2016), together with the package bbmle (Bolker and Team, 2017). Three
models, namely logit, weibull and generalized logit were fit to experimen-
tal data using maximum likelihood estimation. Afterwards the best fit-
ting model was selected by comparing the AICc. The best fitting model
for each substance was used to determine the LC25 and LC0.5.

3.3 data analysis pipeline

The toxicogenomic transcriptome experiments conducted in this study
included the exposure to the compounds diuron, diclofenac, and napro-
xen, each substance applied at five concentrations (plus control) and
the transcriptome measured at six time points. Since each measurement
includes abundance data for ∼ 20, 000 genes, the whole dataset sums up
to more than 2× 106 data points. We strived for establishing an analy-
sis pipeline, extracting the most relevant dynamics from the data in a
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digestible and comparable format. The pipeline includes several steps
from data normalization up to the projection of model parameters on a
coordinate system, which we termed Zebrafish Embryo Toxicogenomic
trAnscriptome Coordinate system (ZETAC) here. In the following, each
step of the pipeline is motivated and explained in detail. All data
analyses were performed using the software R (version 3.3.1, R Core
Team, 2016). The data discussed in this chapter have been deposited
in NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and are
accessible through GEO Series accession number GSE109496 (https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109496). All
scripts used for analyses and figures in this chapter have been deposited
in GitHub and are accessible in the GitHub repository ZFEmixtomics
(https://github.com/anschue/ZFEmixtomics).

3.3.1 Import, quality control and normalization

Before actually analyzing the data, results were normalized and data
from flawed measurements were detected by quality control measures
and removed. To account for differences in data distribution between
the samples regarding amounts of total RNA content (which can arise
during the extraction, labeling or hybridization processes, for example),
data has to be normalized between samples.

data handling The median fluorescence for each array spot was
extracted by the Agilent Feature Extraction Software (Version 11.5.1.1,
compare Appendix B). Those values were imported into R using the
package limma (Ritchie et al., 2015). Quality control was performed by
checking density distributions and signal intensities of spike in probes.
Samples that showed irregular density distributions were removed from
further analysis. Processed intensity values were normalized using the
cyclic loess method. This method takes into account information from
all datasets for its normalization relation, which has been shown to give
better results than using a baseline array (Bolstad et al., 2003). Thereby,
the method is comparable to the commonly used quantile normaliza-
tion, though not as "aggressive" in its normalization (Ballman et al.,
2004). The method is based on normalizing the relationship between
the difference in log expression values and the average of log expression
values of two arrays and was first applied to normalize two-color arrays
(Dudoit et al., 2002).

After normalization all data was transformed by log2. Subsequently,
the median of replicate probes was calculated. Only replicates which
had not been flagged for poor quality during the feature extraction
process (due to inhomogeneous spots or background) were considered.
Laboratory batch effects in the diclofenac experiment were removed
using the R-package "sva" (Leek et al., 2012).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109496
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109496
https://github.com/anschue/ZFEmixtomics
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3.3.2 Time normalization

Transcript abundance is changing quite drastically for many transcripts
during the course of embryo development, even without exposure to a
chemical (compare Section 3.4 and Yang et al., 2013). At this point
the effect of the chemical was of main interest. Therefore, the devel-
opmental effect on the transcriptome was removed by normalizing all
transcript level values against the control of the respective time point.
This resulted in log2(fold-change) (logFC) data for all experimental con-
ditions.

3.3.3 Self-organizing maps

A major challenge when analyzing omics data is to find a way to repre-
sent the important properties of the data in a way feasible to grasp, but
without loosing important information at the same time. When dealing
with a multitude of different conditions (like exposure to a variety of
compounds) this becomes even more challenging since any gene might
be important under some conditions. At the same time, transcript levels
of single genes might not be a consistent measure across different biolog-
ical or technical replications (Feswick et al., 2017). The machine learn-
ing method of SOMs has the potential to deal with these challenges. The
algorithm has been developed by Kohonen (1982), was first applied to
gene expression data by Törönen et al. (1999) and Tamayo et al. (1999),
and has been further developed and tested for tissue expression as well
as toxicogenomic data by Wirth et al. (2011, 2012). This method clus-
ters transcripts into groups of co-regulated or co-expressed transcripts.
Those groups are arranged on a two-dimensional grid in a way that sim-
ilar behaving groups end up in the same regions. Each coordinate on
the map – called "toxnode" here ("node" in general SOM terminology)–
therefore gets assigned a distinct group of genes. The resulting map can
subsequently be used to plot the representative responses of each group
(termed "metagene" by Wirth et al. (2011)) under certain conditions,
e.g., the exposure to a specific compound. Alternatively, quantitative
descriptors of each toxnode can be retrieved and projected. This way
one can inspect the responses of the whole transcriptome at the same
time. Additional surveying of the map and the member genes of certain
toxnodes or map-regions allows to draw functional conclusions. For ex-
ample, a common regulator or common function can be suspected for
member-genes of the same toxnode or map region (Wirth et al., 2012).
Furthermore, the clustering of genes into toxnodes (for which SOMs
represent one among many available methods) allows to derive quanti-
tative summaries for each node. In this way, regression models can be
derived from groups of transcripts rather than from single transcripts.
When treating all genes belonging to one toxnode as replicates for this
toxnode, one can infer much more robust parameter estimates. Thereby,
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one may dampen the influence of biological variability on the results,
often inherent to omics data.

the zebrafish embryo toxicogenomic universe With
regard to the application of omics methods to environmental surveil-
lance we aimed to create one universal SOM from all toxicogenomic
responses known so far in our model organism. This SOM represents
the "toxicogenomic universe" of this organism and the results of all
(preceding or subsequent) toxicogenomic experiments can be projected
on the coordinate system of this universe (Zebrafish Embryo Toxicoge-
nomic trAnscriptome Coordinate system (ZETAC)), thereby creating
toxicogenomic landscapes for particular exposure settings. Compound
landscapes can either be represented by the average logFCs of each
toxnode for defined exposure settings. Or, if time and concentration
dependent data are available, estimated parameter values of a regres-
sion model for each toxnode can be projected on the coordinate system.
Here, the extensive dataset from the meta-analysis (compare Chapter 2)
was combined with results from our exposures to infer the Zebrafish Em-
bryo Toxicogenomic Universe (ZETU) based on all retrievable current
toxicogenomic zebrafish embryo transcriptome data.
A major advantage of the SOM at this point is the ability to deal with

missing values. In the meta-analysis in Chapter 2, many datasets were
included with only a limited number of transcripts (e.g, due to older
microarray generations). In the SOMs, one can include the information
of all those arrays, and thus retrieve as much information as possible.
One disadvantage of the self-organizing maps (as of most kinds of

unsupervised analysis/clustering methods) is that there is no proper
way of dealing with replicates (Wirth et al., 2012). Our experimental
design has few replicates but many treatments along continuous vari-
ables, which is unfavorable since the machine learning algorithm might
prefer to cluster genes with "common outliers". Therefore, to reduce the
influence of biological noise and measurement outliers on the machine
learning process, the experimental data was spline smoothed with a thin
plate spline. The logFCs which resulted from the fitted spline were used
for further analysis. For experiments aggregated in the meta-analysis
mostly no continuous data were available, and thus a spline fit was not
feasible (compare Chapter 2). Therefore, the "raw" logFCs between the
means of treatment and control of each exposure condition were taken
as input from the meta-analysis data for SOM inference.

data handling The spline smoothed logFC data from our exper-
iments were combined with the logFC data from the meta-analysis to
one dataset.
Before smoothing the data, the Grubb’s test (Grubbs, 1950, imple-

mented in R-package outliers) was used iteratively to remove outliers
from the group of data points (points were removed until p >= 0.001).
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Table 3.2: Properties of SOM learning

parameter value

learning rate 0.99 – 0.001
neighborhood radius 40 – (-40)
neighborhood function gaussian
epochs 1000
distance function manhattan distance

Then, a thin plate spline was fitted to the treatment conditions of each
probe using the R-package mgcv (Wood, 2003), and logFC values for
each measurement condition were extracted. The R-package kohonen
(Wehrens and Buydens, 2007) was used to train the self-organizing map
on a 60× 60 rectangular grid. The properties of the map and the learn-
ing algorithm are summarized in Table 3.2. The outcome of this step is
one 60× 60 grid of 3600 "toxnodes". Each gene present in our dataset
is "permanently" assigned to one toxnode, while each toxnode contains
genes which behave similarly across all exposure conditions. This grid,
we call the Zebrafish Embryo Toxicogenomic trAnscriptome Coordinate
system (ZETAC).

3.3.4 Regression models for time and concentration dependent toxi-
cogenomic response

On the way to a more mechanistic understanding of toxicogenomic
responses, an important step is the ability to quantitatively describe
the responses. Most useful with regard to the possibility of connect-
ing to other biological levels (e.g., lethality) or toxicokinetics would be
a mechanistic model, e.g., described by a set of differential equations.
However, this is still a challenge especially on omics scale and a general
understanding of the responses is deemed necessary, at first. Therefore,
we decided for implementing a regression model, capturing the toxi-
cogenomic responses of different substances as general and comparable
as possible. This should enable us to inter- and extrapolate to expo-
sure conditions not measured (essential for mixture predictions) and to
describe the responses with the help of meaningful model parameters.

Description of regression models

Different regression models have been proposed for concentration de-
pendent toxicogenomic responses, e.g., polynomials, splines, linear, ex-
ponential, gaussian and sigmoidal models (e.g., Smetanová et al., 2015;
Thomas et al., 2007). Usually, the strategy is to fit different models and
afterwards select the one with the best fit. This, however, impedes the
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comparison of fitted parameters for a responding gene between differ-
ent compounds or the comparison between different genes or toxnodes.
Therefore, we strived for a model, capturing the responses as general as
possible. Two similarly structured models were set up to capture the re-
sponse of transcripts (respectively toxnodes), the Hill-Gauss model for
monotonic responses (on the concentration scale) and the Gauss-Gauss
model for biphasic responses.

hill-gauss model The Hill-Gauss model describes a sustained
response on the concentration scale and a temporal response on the
time scale. It is based on the "Hill equation", a 3-parameter non-linear
model, originally describing the binding of hemoglobin to oxygen depen-
dent on oxygen saturation (Hill, 1910). Due to its flexibility on the one
hand, and physiological meaningfulness on the other hand, it was later
on used in many applications (reviewed in Goutelle et al., 2008) and
also proposed for pharmacological dose response modeling (Wagner,
1968). One representation of the Hill-equation is Equation 3.3. It is
defined by the parameters logFCmax, slope, and X50. The parameter
logFCmax is the maximum logarithmic fold change observed for the
respective transcript, the slope defines the steepness of the curve and
X50 defines the concentration, where the response (i.e., logFC) reaches
half-maximum.
We observed that on time scale most responses showed a biphasic re-

sponse. This progression can be captured by a time dependency of the
parameter X50 in Equation 3.3. Empirically, we discovered that the dy-
namics of the reciprocal of X50 is in many cases accurately captured by
the logarithmic gaussian function (Equation 3.4). We call the recipro-
cal of X50 "Sensitivity", since a small X50 indicates a sensitive response
(i.e., the half-maximum is already reached at low concentrations). When
inserting Equation 3.4 into Equation 3.3, we get a full regression model
describing the time and concentration dependent logFC after compound
exposure (Equation 3.5):

logFC(c) =
logFCmax

1 + e−slope∗(log(concentration)−log(X50))
(3.3)

Sensitivity(t) =
1

X50(t)
= maxSen ∗ e−0.5∗( log(time)−log(µ)

sigma
)2

(3.4)

logFC(c, t) =
logFCmax

1 + e
−slope∗(log(concentration)−log( 1

maxSen∗e
−0.5∗( log(time)−log(µ)

sigma
)2

))
+ ε

ε ∼ N (0, σ2),

(3.5)

where logFCmax corresponds to the maximum fold change of the re-
spective gene across all conditions,maxSen is the maximum sensitivity
(1/EC50) of the gene, µ is the time-point of maximum sensitivity, and
sigma represents a measure of duration of the sensitivity interval.
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gauss-gauss model The Gauss-Gauss model (Equation 3.6) is
similar to the Hill-Gauss model, only that the concentration dependent
response is also described by a log-Gaussian function. This results in a
three dimensional Gauss-function:

logFC(c, t) =

logFCmax ∗ exp
[
−
(
(log(c)− log(mconc))2

2 ∗ sconc2 +

(log(t)− log(µ))2

2 ∗ sigma2

)]
+ ε

ε ∼ N (0, σ2),

(3.6)

where logFCmax is the maximum fold change of the respective gene
across all conditions, µ is the time-point of maximum logFC, sigma a
measure of duration of change, mconc the concentration of maximum
fold change, and sconc is a measure of concentration range with change.

parameter estimation of regression models Parame-
ter estimation of non-linear regression models as described above is a
common challenge in many fields of natural and life sciences (Bates and
Watts, 1988). Since no explicit solution exists, parameters have to be
estimated iteratively to optimize the function value. Several challenges
arise with this. For example, initial parameter guesses are required,
which might not be straight forward to select and possibly have a strong
impact on the outcome. This is primarily because there might be lo-
cal optima of the objective function, which iterations can converge to.
Additional problems may arise, if the objective function surface or the
derivative is not smooth or discontinuous. Numerous parameter estima-
tion methods exist, trying to deal with those challenges in various ways.
Especially, when working with omics data, which means that a regres-
sion model has to be fit thousands of times to different data points,
an estimation method should be rather independent from the choice
of initial parameter guesses. Otherwise, initial parameters have to be
estimated first from the data points, which might be infeasible in many
cases and lead to a high number of false results.
An estimation method which was developed to optimize parameter

values while taking into consideration the complete feasible parameter
space is called shuffled complex evolution (SCE, described in Duan et al.,
1993). Until now, it has mostly been used in hydrological modeling. It
is based on the Nelder-Mead-Algorithm (Nelder and Mead, 1965), but
includes the generation and shuffling of several simplices generated from
random points across the parameter space. This makes the algorithm
robust and independent from starting values, which is why we selected
it for parameter estimation of our transcript level models. We used the
R implementation of the algorithm in the package hydromad (Andrews
et al., 2011). To estimate parameter uncertainty we applied Markov
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Chain Monte Carlo (MCMC) sampling using the R-implementation of
the statistics software stan (Carpenter et al., 2017).

parameter boundaries While the shuffled complex evolution
(SCE) algorithm is not sensitive to parameter starting values, it is - like
other global parameter estimation methods - sensitive to the parameter
boundaries, which therefore have to be defined carefully. To limit the
fitted parameter values to a range that make sense in the context of the
model, boundaries were set as summarized in Table B.1 in Appendix B.
The motivations for the parameter boundaries are summarized in Sec-
tion B.5.

data handling Normalized logFC data (derived in the previous
step) were used as input data for the model. Measured data from all
probes assigned to one node of the SOM were used to estimate one
parameter set for each node and substance (i.e., experimental repli-
cates and transcriptional replicates/groups of transcripts were treated
as belonging to one distribution here). The Grubb’s test (Grubbs, 1950,
implemented in R-package outliers) was used iteratively to remove out-
liers from the group of data points (points are removed until p>=0.001).
The extreme values across all samples and experimental conditions were
determined for each node. Then, the dataset for each node was used
to estimate parameters for the Hill-Gauss and the Gauss-Gauss model
using the SCE algorithm assuming up-regulation. This estimation pro-
cedure was repeated 6 times with 6 different random seeds and the
best model afterwards selected using AICc. The same procedure was
repeated assuming down-regulation. The best up-regulation model and
the best down-regulation model were again compared using AICc and
the best fit model subsequently used for a quantitative description of
the node.

3.3.5 Selecting significantly affected toxnodes

Most known genes of the zebrafish genome (26,143 of 34,738 coding and
non-coding genes currently referenced in the ensembl database, release
90, Yates et al., 2016) are represented on our map in 3600 toxnodes,
but we expect only a minority of the nodes to be affected by exposure
to a single compound. To be able to extract meaningful information
from the map, we need a measure defining the confidence/significance
for each node (and treatment), that the signal we see is not just random
noise but a systematic change in transcription. Therefore, we calculated
a significant effect level for each toxnode. The significant effect level is
given by the summed differences between the 95% confidence inter-
val (CI) for the fitted regression model and the 2.5% respectively 97.5%
quantile of all controls of the respective toxnode (compare Figure 3.4).
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Figure 3.4: Demonstration of calculation of significant effect level for a tox-
node.

In detail, for each substance and condition we used the estimated pa-
rameters and best-fit model (Hill-Gauss or Gauss-Gauss) to calculate
an estimated logFC. The estimated error term of the model determined
the confidence interval of the treatment. We then summed up the dis-
tances between the CI and the control quantiles. All toxnodes with a
summed CI-distance above zero were selected as significantly affected.

3.4 results

Our central goal was to develop an experimental and data analysis
pipeline, which allows to infer time- and concentration dependent tox-
icogenomic profiles of chemical substances acting on the ZFE as model
species. We exemplarily applied our pipeline on three selected envi-
ronmental contaminants, namely diuron, diclofenac and naproxen and
measured the transcriptome of ZFEs after exposure to increasing con-
centrations of these compounds. We show here that the application
of self-organizing maps (SOMs) on spline smoothed data and subse-
quent regression modeling allows to establish robust toxicogenomic
landscapes. The established landscapes may be used to elucidate ad-
verse outcome pathways (AOPs) of the respective compounds or gain
functional knowledge about gene products or signaling pathways in the
zebrafish embryo (ZFE). Here, we focused on extracting patterns in the
landscapes which appeared to be characteristic for the effect of a cy-
clooxygenase (COX)-inhibitor (i.e., common effects of diclofenac and
naproxen not appearing after diuron exposure). These structures may
be used later on to detect COX-inhibition in chemical mixtures such as
environmental extracts.

3.4.1 Data overview

To get an overview over the structure and quality of the high-dimension-
al transcriptome data, they were condensed to a two dimensional plot
using multidimensional scaling. Here, each sample is represented on a
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two-dimensional plot by one data point. The data points are arranged in
a way that the distance on the plot represents the distance between the
samples. Figure 3.5 shows a multidimensional scaling plot for the three
normalized datasets. It shows that samples of one embryo age (of all
experiments) cluster together. This means that the highest proportion
of variation in transcript abundance is due to the age of the embryo.
It also shows that the transcriptome measurements are reproducible
with respect to the stage of embryo development, since no batch effect
can be seen between the three datasets, which stem from experiments
performed several months apart. In the age-related cluster some of the
exposed samples diverge from the control samples, for the 12 hpe and 6
hpe samples they are more similar to the controls of the preceding time
point indicating a developmental delay induced by the chemical. Since
the main interest lies in the effect of the compound exposure here, the
dataset was normalized to the respective time point controls.

3.4.2 The toxicogenomic universe

To reduce complexity in the transcriptome data and make it more easily
digestible, results are structured by a self-organizing map (SOM). On a
SOM similar behaving transcripts are clustered together in nodes and
those nodes are arranged on a two dimensional grid. Our goal was to
make the results of our model substances comparable to each other as
well as to existing exposure studies and include as much information
as possible in the layout of the map. Therefore we inferred a SOM from
our experimental (spline-smoothed) logFC transcriptome data of our
three model substances. Additionally, we added the logFCs of all studies
compiled in the meta-analysis (compare Chapter 2). This resulted in a
dataset of 358 different conditions and 32210 unique genes (A few more
studies could be used in this design than in the original meta-analysis,
since the SOM-learning algorithm can deal with missing values). Of
those 32210 genes, 26143 genes had enough information to be clustered
on the map.
The first question we asked is, if it is feasible to create such a map

at all, since it relies on the assumption that a majority of transcripts
forms consistently co-expressed clusters. If this was not the case, the
nodes of such a map would show inconsistent profiles and the aver-
age response of most nodes will be low. Diagnostic plots (Figure 3.6)
show that the training process converges. The quality of the map ap-
pears to be good, since genes are evenly distributed across the map and
within distances only show a few outliers. The number of transcripts
per node range between 0 and 28 with a median of 7. The average
manhattan distance of transcripts within a node ranges from 0.3 to 211
with a median of 88. In Figure 3.7 a)/c)/e) the distribution of logFCs
of transcripts in three exemplary nodes are shown, one with a small
average within distance, one with medium, and one with high average
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Figure 3.5: Multidimensional scaling plot of all transcriptome samples for diuron, diclofenac and
naproxen exposure between 24 and 96 hpf. Numbers: exposure duration in hours; diuron
controls (�); diuron treatments (�); diclofenac controls (�); diclofenac treatments (�);
naproxen controls (�); naproxen treatments (�); the plot shows the relation between
the samples and illustrates that samples cluster according to embryonic stage.
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Figure 3.6: Diagnostic plots of toxicogenomic universe. In (a) the progress of the machine-learning
process is illustrated with the mean-distance of all genes to their assigned toxnode. The
distance decreases by reassignment of the genes and a decreasing neighborhood size. After
500 iterations the neighborhood size equals to one and the learning process converges.
In (b) the number of genes assigned to each toxnode are plotted and show some higher
populated areas in the middle part. In (c) the medium within distance of each node is
shown.

within distance. The plots show that transcripts within nodes, even
those with a higher within distance, show similar expression profiles
across different exposure settings (i.e., a narrow distribution for most
exposure settings). This indicates that co-expression seems to be quite
consistent across the 358 experiments. This becomes even more clear,
when evaluating the time and concentration resolved response of tox-
nodes showing small/medium/high within distances for exposures to
our model substances (Figure 3.7 b)/d)/f)). Here the within distances
are smaller in average (manhattan distance ranging from 0.2 to 74 with
a median of 18) and distinct co-regulation between member genes across
the different concentrations and time-points can be seen.

3.4.3 Visual inspection of molecular toxicodynamic maps

From qualitatively evaluating and comparing the model compounds’
logFC landscapes projected on the toxicogenomic coordinate system,
we already get an impression of the molecular action of the compounds
(Figures 3.8-3.10). The landscapes show a time and concentration de-
pendent regulation in both directions (up- and down-regulation). For
naproxen the response is strongest in the latest two time points, while
for diclofenac and diuron there are also strong effects visible in earlier
time points. In general, exposure duration seems to play a more pro-
nounced role for node regulation than exposure concentration. Unlike
expected, diclofenac and naproxen –both inhibiting the same enzyme–
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Figure 3.7: Transcript logFCs within different example nodes. For (a)/(c)/(e), each box represents
the distribution of the member transcripts in one experimental condition. (a) node with
minimum within distance (node 65, medium distance 27.7); (c) node with medium within
distance (node 2533, medium distance 88.1); (e) node with maximal within distance (node
3560, medium distance 211.1). A trend of co-regulation (i.e., narrow distributions) can
be seen also in the toxnode of high within distance. For (b)/(d)/(f) the horizontal axis
represents the exposure concentration from LC0.5 to LC25. 3 hpe ( ); 6 hpe ( ); 12 hpe
( ); 24 hpe ( ); 48 hpe ( ); 72 hpe ( ). Facets = Exposure compounds. (b) node with
minimum within distance (node 719, medium distance 7.0); (d) node with medium within
distance (node 451, distance 18.4); (f) node with maximal within distance (node 1441,
distance 74.3).
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Figure 3.8: Toxicodynamic landscape for diuron projected on the ZETAC. Shown is the representative
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Figure 3.9: Toxicodynamic landscape for diclofenac projected on the ZETAC. Shown is the represen-
tative logFC landscape for each sampled time point/exposure concentration.
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Figure 3.10: Toxicodynamic landscape for naproxen projected on the ZETAC. Shown is the represen-
tative logFC landscape for each sampled time point/exposure concentration.
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show quite different profiles in their toxicogenomic landscapes. The pro-
files show that naproxen clearly induces the strongest transcriptional
response of the three substances.

3.4.4 Quantitative description of toxnode levels by regression models

In a next step, we strived for a quantitative description of the toxnode-
dynamics in order to derive more substantial and comparable infor-
mation about the landscapes, as well as to deal with noise and uncer-
tainty, and to be able to extrapolate to other conditions. Therefore,
we developed and fitted two different regression models (compare Sec-
tion 3.3.4), the Hill-Gauss and Gauss-Gauss model, to describe time-
and concentration-dependent behavior of each toxnode for each sub-
stance. Since these models have not been applied so far, the first step
was to determine the model quality. In this context it is important to
determine how well the model can describe the data and how reliable
the parameter estimates are.

quality of data description by fitted model The
model fitting algorithm converged for fitting all nodes. There is no
trivial measure for goodness of fit for non-linear models (such as R2

for linear models, compare Spiess and Neumeyer, 2010). Therefore, the
quality of data description by the model was determined using the AICc-
weight compared to a null model. In Figure 3.11 and Figure 3.12 the
AICc-weights for the Hill-Gauss respectively Gauss-Gauss model versus
the null model are summarized. In the vast majority of cases the re-
gression models are preferred over the null model. When comparing
the regression models to the more flexible spline fit (compare Figures
B.1 and B.2 in Appendix B) which is assumed to be the "optimal fit"
here, there are (as could be expected) many toxnodes, where the spline
fit is preferred. However, for roughly 20% of the nodes the Hill-Gauss
or Gauss-Gauss models are even preferred over a spline fit.

comparison hill-gauss vs. gauss-gauss model The Hill-
Gauss model can accurately describe the response of many nodes. For
a majority of nodes the Hill-Gauss model is at least as good as the
Gauss-Gauss model (Figure 3.13). However, for a substantial amount
(~1/3) of nodes, the Gauss-Gauss model can capture the node response
better than the Hill-Gauss model. One example for such a case is shown
in Figure 3.14.

quality of parameter estimates When we want to use the
fitted parameter values as descriptors of the toxnodes, we need to be
aware of the respective reliability of the values. Therefore, we applied a
Bayesian analysis using Markov-Chain Monte Carlo sampling to obtain
an estimate of parameter uncertainty. The sampling revealed that not
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Figure 3.11: Histogram of AICc-weights for Hill-Gauss model compared to null
model for all toxnodes. The best fitting model is preferred over
the null model for most of the toxnodes.
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Figure 3.12: Histogram of AICc-weights for Gauss-Gauss model compared to
null model for all toxnodes. The best fitting model is preferred
over the null model for most of the toxnodes.
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Figure 3.13: Histogram of AICc-weights Hill-Gauss model compared to Gauss-
Gauss model. For about a third of the nodes, the Gauss-Gauss
model would be preferred, however it should only be used if the
Hill-Gauss model cannot describe the behavior, since Hill-Gauss
can be interpreted easier.
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Figure 3.14: Comparison of Hill-Gauss and Gauss-Gauss fit for the response
of example node #1362 towards diuron exposure. Shaded area
represent 95% CI. The response is captured better by the Gauss-
Gauss model.

in all cases the parameter estimates could be well defined. However, a
rough classification based on the parameter estimates of a node should
be feasible. It is obvious that the time parameter (µ) could be much bet-
ter defined than the concentration parameter (minEC50/mconc). The
confidence ranges for parameter estimates are summarized in Figures
B.3-B.8 in Appendix B.

selection of significantly affected toxnodes Cer-
tainly, we only expect a small fraction of the toxnodes to

40
5

38

27

3

21

277

diuron diclofenac

naproxen

Figure 3.15: Venn Diagram
of significantly
affected toxnodes

show a relevant response after expo-
sure to a specific compound. To judge
whether a node shows a significant regu-
lation in our exposure scenario, we com-
pared the 95% confidence interval for the
regression models with the 2.5% respec-
tively 97.5% quantiles of control mea-
surements. We selected those nodes with
a sum of differences above or below zero.
This resulted in 75 nodes for diuron, 67
nodes for diclofenac, and 328 nodes for
naproxen exposure, meeting this crite-
rion. Five nodes are regulated in both di-
uron and diclofenac exposures, 27 nodes
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in diuron and naproxen, and 21 nodes in diclofenac and naproxen ex-
posures, three nodes are regulated in exposures of all three compounds
(compare Figure 3.15).

These top toxnodes for each substance (respectively substance group)
can now be analyzed in detail, by retrieving parameter estimates and
determining under which circumstances those toxnodes are affected in
the toxicogenomic universe.

sensitivity dynamics of selected toxnodes The dy-
namics of toxnode sensitivity (i.e., 1/EC50) can be assessed by eval-
uating the estimated parameter values for maxS50, µ and sigma of
the Hill-Gauss model. In Figure 3.16 the sensitivities for significantly
affected toxnodes are plotted over time. There are clearly more tox-
nodes sensitive early after the beginning of diuron exposure compared
to naproxen exposure, for which most toxnodes are sensitive not before
24 hours post exposure (hpe). In Figure 3.17 the respective first time
points of toxnode regulation after compound exposure are plotted on
the ZETAC.

3.4.5 Summary of toxicogenomic landscapes of model substances

From the inferred toxicogenomic landscapes we can deduce informa-
tions about molecular effects of the tested compounds on the ZFE. Tran-
scripts clustered together in one toxnode are found co-regulated across
many exposure settings. This may indicate a common biological func-
tion or process they are involved in or a common upstream regulator.
In this way, the member-genes of significantly regulated toxnodes can
indicate the type of biological processes affected in response to a com-
pound exposure. At the same time, the estimated model parameters
can give quantitative information about the dynamics (i.e., µ, sigma)
and the concentration dependence (i.e, maxS50, hillslope). The ratio
of min(EC50)apical

min(EC50)Toxnode
indicates how much earlier (on the concentration

scale) a toxnode is affected, before apical effects are visible.
Here, we evaluated the top ten affected toxnodes of our model sub-

stances. We focused on toxnodes identified with the help of the Hill-
Gauss model (for top ten toxnodes identified with the Gauss-Gauss
model, compare Tables B.3-B.5 in Appendix B). Additionally, we ana-
lyzed the commonly affected toxnodes by diclofenac and naproxen as
potential COX-inhibition toxnodes. For the toxnodes discussed here, we
evaluated if the clustering of genes matches with our knowledge about
biological functions of the respective transcripts.

diuron Of the three model compounds, diuron exhibits the most
distinct early regulation. The most prominent toxnodes (Table 3.3) con-
tain genes for phase I (cyp1a, cyp1b1, cyp1c1, cyp1c2) and phase II
(sult6b1) biotransformation enzymes. Toxnode #1117 contains genes
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Figure 3.16: Predicted sensitivity dynamics of significantly affected toxnodes.
Dynamics are predicted from parameter estimates of Hill-Gauss
model. Each line represents one toxnode. Colours indicate first
time point of significant regulation: 3 hpe ( ); 6 hpe ( ); 12 hpe
( ); 24 hpe ( ); 48 hpe ( ); 72 hpe ( ); Horizontal dashed line
represents lethal sensitivity at 72 hpe

(a) Diuron (b) Diclofenac (c) Naproxen

Figure 3.17: Onset of toxnode regulation induced by model compounds pro-
jected on ZETAC. Significantly affected toxnodes are colored ac-
cording to their first time point of regulation: 3 hpe (�); 6 hpe
(�); 12 hpe (�); 24 hpe (�); 48 hpe (�); 72 hpe (�). Yellow framed
toxnodes are general toxnodes significantly affected by all model
substances. Black framed toxnodes are affected by diclofenac and
naproxen but not by diuron.
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Table 3.3: Top ten toxnodes regulated by Diuron. Ratio Lethal: min(LC50)/min(EC50)Toxnode; Ra-
tio Sublethal: min(EC50)apical/min(EC50)Toxnode. Parameter estimates given as ranges
of 95% confidence interval. Positive CI-differences indicate upregulation, negative indicate
downregulation of respective toxnodes.
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3567 cyp1a 15.8 15.8 0.204
0.333

0.8
1.1

8.6
27.3

1.22
11.66

0.29
0.47

73.4

1303 cyp1b1 10.1 10.1 0.118
0.265

0.8
1.4

1.5
3.8

1.41
2.18

0.44
0.67

21

3568 cyp1c2, cyp1c1, ENS-
DARG00000097714

9.4 9.4 0.124
0.218

0.9
1.4

19
22.3

0.56
0.75

0.61
0.77

11.7

3507 sult6b1 7.9 7.9 0.094
0.213

0.6
1.2

3.8
11.7

0.78
1.62

0.23
0.35

7.8

1061 prf1.5, grk1b 23.3 23.3 0.014
4.333

0.1
1.2

1.6
4.1

0.14
0.64

0.73
1

3.6

727 cxcr3.3 0.4 0.4 0.003
0.028

1
17.4

3.4
73.7

0.4
21.85

0.6
0.9

3.2

1002 grapb 4 4 0.038
0.242

0.7
10.1

4.6
7.8

0.14
0.51

0.57
0.86

1.4

3184 zgc:110373 36.1 36.1 0.091
2.889

0.2
3

67.5
74.9

0.13
0.2

0.71
1.1

-1.4

1117 saga, arr3a 0.5 0.5 0.003
0.036

0.5
18

4.3
73.9

0.25
21.64

0.93
1.25

1.4

3539 amy2a, zgc:92137, ela3l 2.9 2.9 0.041
0.06

1.8
5

65.1
74.8

0.14
0.27

0.46
0.59

-1.4
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Table 3.4: Top ten toxnodes regulated by Diclofenac. Ratio Lethal: min(LC50)/min(EC50)Toxnode;
Ratio Sublethal: min(EC50)apical/min(EC50)Toxnode. Parameter estimates given as
ranges of 95% confidence interval. Positive CI-differences indicate upregulation, negative
indicate downregulation of respective toxnodes.
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1260 cyp2k18 2 1.9 0.204
0.282

2.2
9.2

44.8
54.4

0.24
0.47

0.82
1.24

12.1

1259 si:zfos-411a11.2 1.9 1.8 0.186
0.281

0.7
2.5

45.8
54.6

0.19
0.39

0.22
0.34

8.6

1079 lepa, pth1a 1.9 1.7 0.192
0.28

1.8
6.9

45
55.2

0.22
0.52

0.69
0.92

5.5

1968 si:dkey-1c7.3 1.9 1.7 0.197
0.277

3.8
35.1

38.1
50.7

0.17
0.52

0.51
0.75

-3.9

3446 ugt1a4, ugt1a5, ugt1a6, ugt1a7,
ugt1a2, ugt1a1, ugt1ab

2.1 1.9 0.215
0.282

1.6
4.8

44.6
54.1

0.23
0.41

0.18
0.27

3.7

1137 fosab 1.6 1.5 0.164
0.268

1.6
14.7

44.6
57.4

0.21
0.71

0.75
1.13

3

1440 crygmxl2 1.2 1.1 0.099
0.252

0.5
4

5.1
7.4

0.14
0.35

0.43
0.64

-2.9

1500 crygm3, crygm2d12, crygm1,
crygm2d13, crygm2d7,
crygm2d3

2 1.8 0.197
0.281

0.6
1.9

5.5
6.9

0.14
0.24

0.42
0.49

-2.6

1199 nfe2l2b 1.1 1 0.097
0.252

0.1
3.8

9.2
74.1

0.42
20.69

0.46
0.7

2.5

1557 si:ch211-251b21.1 2 1.9 0.197
0.281

0.9
27.7

5.2
7.2

0.15
0.5

0.28
0.42

-1.8

for two members of the arrestin family. This protein family is involved
in dampening the signal cascade of G-protein coupled receptors. One
of these proteins, Saga, is involved in desensitization of the photo-
activated transduction cascade. The up-regulation goes in line with
an observed weakening of locomotor response after diuron exposure
(Leuthold, in preparation). Among the top ten toxnodes the minEC50
for toxnode regulation is predicted to be approximately one order of
magnitude lower than the minEC50 for lethality (no sublethal effects
were observed for diuron). However, there are also toxnodes (e.g., #3539)
for which the EC50s are only separated by a factor of two, or toxnodes
(e.g., #1117 or #727) for which the predicted minEC50 for toxnode
regulation is even higher than the apical EC50.

diclofenac Similarly as for diuron, the most prominent toxnodes
affected by diclofenac also contain phase I (cyp2k18, si:zfos-411a11.2)
and phase II (ugt1) biotransformation enzymes, albeit different ones
than induced by diuron (Table 3.4). Additionally, two toxnodes of down-
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Table 3.5: Top ten toxnodes regulated by Naproxen. Ratio Lethal: min(LC50)/min(EC50)Toxnode;
Ratio Sublethal: min(EC50)apical/min(EC50)Toxnode. Parameter estimates given as
ranges of 95% confidence interval. Positive CI-differences indicate upregulation, negative
indicate downregulation of respective toxnodes.
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1260 cyp2k18 5.8 2.8 0.013
0.017

1.6
2.6

62.2
74.4

0.26
0.45

0.29
0.45

34.2

3312 serpinh1b 5.4 2.7 0.011
0.017

0.9
1.5

52.1
74.6

0.67
0.96

0.24
0.36

25

1139 slc25a38a, c7b 2.7 1.3 0.007
0.013

1.8
2.8

61.8
74.8

0.15
0.34

0.33
0.46

16.1

1320 si:rp71-80o10.4 3 1.5 0.006
0.016

0.5
2

61.9
74.9

0.37
0.81

0.4
0.62

15.1

1140 si:ch1073-165f9.2, isg15 2.4 1.2 0.006
0.012

1.8
3.4

60.9
74.8

0.16
0.46

0.6
0.81

14.2

1259 si:zfos-411a11.2 5.7 2.8 0.012
0.017

0.9
1.8

65
74.8

0.21
0.37

0.25
0.39

13.5

1078 mmp13a 3.6 1.8 0.007
0.016

0.8
2.6

63.2
74.7

0.14
0.28

0.41
0.64

13.2

3477 ahsg2 3.9 1.9 0.007
0.016

1.4
5.2

67.2
74.8

0.13
0.23

0.97
1.54

-
12.5

3493 slc16a9a 4.2 2.1 0.008
0.017

0.9
2.5

63
74.8

0.15
0.32

0.38
0.6

12.2

1080 cart3, LOC101885512, ccl34a.4,
bmb

3.3 1.6 0.008
0.013

0.8
1.8

69.1
74.9

0.46
0.68

0.48
0.59

11.7

regulated crystallins (#1500 and 1440) belong to the most affected tox-
nodes (#1500 is also down-regulated in diuron). The up-regulation of
toxnode #1079 (up-regulated by naproxen as well), comprising of the
genes for leptin alpha and thyroid hormone 1, indicates a disturbance
of the thyroid system. The level of leptin alpha is thought to regulate
the activity of the thyroid system (Flier et al., 2000), therefore the clus-
tering of those two genes in one toxnode also match with our knowledge
of underlying biological processes.

For diclofenac the ratio between apical minEC50 and toxnode EC50
is not larger than two for any of the top ten toxnodes.

naproxen Naproxen shows the highest number of significantly af-
fected toxnodes and the latest effect on the ZETU, with most toxnodes
not affected until 12 hpe. Its most prominent toxnode is the same as in
diclofenac, containing cyp2k18 (Table 3.5).

Additionally, one toxnode includes serpinh1b, a gene for a collagen
specific chaperone. Toxnode #1139 (also regulated by diclofenac) con-
tains the gene for slc25a38a, a mitochondrial membrane carrier involved
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in heme synthesis and c7b, a part of the membrane attack complex.
Whether the clustering of those genes indeed reflect involvement in a
common biological process is not clear. However, it was shown before
that formation of a membrane attack complex indicates an immunolog-
ical response (Bayly-Jones et al., 2017). Toxnode #1140 contains, be-
sides a non-annotated transcript, the gene isg15, an ubiquitin-like pro-
tein, assigned to different cellular processes, e.g., directing ligated pro-
teins to intermediate filament. The up-regulated toxnode #1080 (also
showing significant regulation in response to diuron and a clear trend of
regulation in response to diclofenac) contains the genes cart3, coding for
a peptide regulating energy metabolism, apoptosis facilitator Bcl-2-like
protein 14 (LOC101885512), the gene for the chemokine ccl34a.4 and
brambleberry. The direct functional derivation of this toxnode is again
not straightforward, but the presence of Bcl-2-like protein 14 indicates
involvement in apoptosis. It should be mentioned that up-regulated tox-
node #1134 (ranked 62 among naproxen affected toxnodes) contains
the gene for COX2, junbb, and RNaseMRP. It is not clear whether this
up-regulation is a direct effect of inhibiting COX2 or if this effect is a
secondary effect due to activation of an inflammatory response.
For naproxen the ratio between apical minEC50 and toxnode EC50

shows a maximum of 5.8 for toxnode #1260. Although this toxnode
could be suspected to represent a COX inhibitor specific effect, it shows
clearly different ratios for diclofenac and naproxen. Interestingly the
ratios mainly differ when comparing to lethal effects and not so much
when comparing to sublethal effects.

In summary, all model substances clearly affect a limited number of
toxnodes in a time- and concentration-dependent manner. For some of
these toxnodes we can derive hypotheses about their involvement in the
response of the embryos towards the compounds. For some toxnodes
the establishment of those connections will need further investigation.

3.4.6 Toxnodes specifically affected by COX-inhibitors

With regard to environmental diagnostics, we would like to define a
set of toxnodes, indicating a certain mode of action (MOA). Two of
our model substances (i.e., diclofenac and naproxen) are known COX-
inhibitors. Thus, the question we are trying to answer is, if there is
a common MOA of those COX-inhibitors in zebrafish embryos, which
becomes visible on transcriptome level.
A number of 19 toxnodes showed significant up- or down-regulation

(in the same direction) in response to naproxen and diclofenac, but
no significant regulation in response to diuron. The regulation of one
of these nodes (toxnode 1019) is exemplarily shown in Figure 3.18.
In Figure 3.18a) it is demonstrated that the two member transcripts
of the toxnode are indeed co-expressed over different time points and
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concentrations, while in Figure 3.18c) it is shown how well the model
fits for the Hill-Gauss model actually represent the measured data. The
estimated parameters for these nodes for diclofenac and naproxen are
summarized in Tables 3.6 and 3.7.

Besides the already mentioned toxnodes 1260 and 1079, another tox-
node (#3445) containing genes for three phase II biotransformation
enzymes, namely cbr1l (carbonyl reductase), mgst3b (Microsomal glu-
tathione S-transferase) and ugdh (UDP-glucose 6-dehydrogenase) is
regulated by both diclofenac and naproxen.

An important toxnode for COX-inhibitors might be toxnode #1019,
containing the genes timp2b and clusterin. The enzymatic product of
COX, prostaglandin H-2 (PGH(2)) can be converted to prostaglandin
E-2 (PGE(2)) by prostaglandin E synthase. Increased abundance of
COX-inhibitors has been shown to induce TIMP-1 production in hu-
man rheumatoid synovial fibroblast, while PGE(2) dampens this effect
(Takahashi et al., 1997). In response to naproxen and diclofenac, we see
the toxnode up-regulated This is plausible since with COX-inhibition we
expect less of PGE(2)). At the same time, timp2a has been shown to
play an important role in ZFE development, and both, too much and
too less of the transcripts, has been demonstrated to be harmful (Zhang
et al., 2003). This toxnode thus indicates a direct connection between
COX-inhibition and transcriptional regulation.

Further toxnodes specifically reacting towards diclofenac and napro-
xen are #1198 containing the membrane transporter abcc2, which is
known to transport especially phase II biotransformation products in-
cluding conjugated drugs out of cells (Jedlitschky et al., 2006) or tox-
node #1200 containing a range of different U5 spliceosomal RNAs.

3.4.7 Assessing regulation of affected toxnodes in the toxicogenomic
universe

The framework of the toxicogenomic universe allows us to easily assess
which of the exposure settings (i.e., compounds) used to infer the tox-
icogenomic universe significantly affect toxnodes of interest. This can
give helpful information for the functional interpretation and compound
or MOA specificity of important toxnodes (keeping in mind that most
datasets integrated in the universe only contain a very limited range of
exposure settings). To exemplify this, we identified substances signifi-
cantly affecting the toxnodes, which we identified as COX-specific above.
The results are summarized in Table 3.8. We see that most toxnodes are
not specific for COX-inhibitors alone. Even toxnode #1019, for which
we derived a clear hypothesis about the regulation by COX-inhibition
is found to be affected by substances unsuspicious of inhibiting COX.
However, the combination of nodes seems to be unique for the exam-
ined COX-inhibitors, since none of the compounds in Table 3.8 appears
to affect all COX toxnodes.
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Table 3.6: COX-Toxnodes regulated by Diclofenac. Ratio Lethal: min(LC50)/min(EC50)Toxnode;
Ratio Sublethal: min(EC50)apical/min(EC50)Toxnode. Parameter estimates given as
ranges of 95% confidence interval. Positive CI-differences indicate upregulation, negative
indicate downregulation of respective toxnodes.
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1260 cyp2k18 2 1.9 0.204
0.282

2.2
9.2

44.8
54.4

0.24
0.47

0.82
1.24

12.1

1079 lepa, pth1a 1.9 1.7 0.192
0.28

1.8
6.9

45
55.2

0.22
0.52

0.69
0.92

5.5

1137 fosab 1.6 1.5 0.164
0.268

1.6
14.7

44.6
57.4

0.21
0.71

0.75
1.13

3

3445 cbr1l, mgst3b, ugdh 0.9 0.9 0.095
0.201

0.4
1.5

57
63.3

0.14
0.37

0.2
0.26

1.7

1198 abcc2, AL929435.1 (antisense
RNA)

1.3 1.2 0.11
0.257

0.3
4

45
56.2

0.14
0.63

0.39
0.53

1.5

3447 dhrs13l1, tpmt.2, aifm4 0.9 0.8 0.095
0.19

0.8
2.6

49.7
57.7

0.15
0.48

0.31
0.38

1.1

1138 LOC100000332 1 0.9 0.096
0.145

1.8
8.6

39.5
59.2

0.21
1.38

0.34
0.51

0.8

1019 timp2b, clu 1.2 1.1 0.134
0.167

4.1
10.8

61.2
74.8

0.27
0.84

0.42
0.56

0.8

1200 U5 spliceosomal RNA 1.1 1.1 0.132
0.162

5.5
10.8

61.2
74.7

0.31
0.86

0.39
0.46

0.7

3193 hbegfa 0.9 0.8 0.095
0.123

2.3
5.8

42.8
72.4

0.53
1.65

0.17
0.25

0.5

3552 g0s2, si:ch211-198c19.3 1.3 1.2 0.139
0.182

2.5
9

60.7
74.6

0.28
0.91

0.58
0.76

0.4

1076 atf3, crema, BX005417.1 (an-
tisense RNA)

1.5 1.4 0.161
0.261

1.3
8.7

40.2
55.2

0.17
0.57

0.47
0.59

0.4

3554 GLDC 1 0.9 0.098
0.139

2
9.5

43.7
74.7

0.6
5.3

0.26
0.39

0.3

1968 si:dkey-1c7.3 1.9 1.7 0.197
0.277

3.8
35.1

38.1
50.7

0.17
0.52

0.51
0.75

-3.9

1139 slc25a38a, c7b 1 0.9 0.096
0.161

2.2
8.4

61.7
74.7

0.15
0.57

0.51
0.7

0.2

1919 apoea, si:ch73-263o4.3 1 0.9 0.095
0.256

0.3
1.8

35.5
41.8

0.14
0.36

0.22
0.29

-0.1

360 tmem121a 1 0.9 0.097
0.18

1.1
133.2

6
72.2

0.16
21.13

0.45
0.7

-0.1

3314 btg2, zgc:85866, jun, ier2,
dusp1

1.1 1 0.112
0.196

2.2
7

50.6
58.3

0.2
0.71

0.31
0.37

0

3448 gstp1, gsto2, cmbl, sqrdl 0.8 0.8 0.095
0.162

1.1
2.9

60.5
74.7

0.14
0.55

0.27
0.33

0
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Table 3.7: COX-Toxnodes regulated by Naproxen. Ratio Lethal:min(LC50)/min(EC50)Toxnode; Ra-
tio Sublethal: min(EC50)apical/min(EC50)Toxnode. Parameter estimates given as ranges
of 95% confidence interval. Positive CI-differences indicate upregulation, negative indicate
downregulation of respective toxnodes.
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1260 cyp2k18 5.8 2.8 0.013
0.017

1.6
2.6

62.2
74.4

0.26
0.45

0.29
0.45

34.2

1079 lepa, pth1a 5.5 2.7 0.011
0.017

1.4
3

64.6
74.8

0.17
0.28

0.53
0.71

8.7

1137 fosab 2.2 1.1 0.005
0.011

1.4
5.9

61.6
74.6

0.15
0.44

0.49
0.77

2.8

3445 cbr1l, mgst3b, ugdh 4.6 2.3 0.007
0.017

0.1
0.6

55.8
74.7

0.3
0.64

0.32
0.41

3.9

1198 abcc2, AL929435.1 (antisense
RNA)

3.7 1.8 0.007
0.016

0.8
2.7

61.8
74.7

0.17
0.48

0.49
0.66

3.4

3447 dhrs13l1, tpmt.2, aifm4 3.8 1.9 0.005
0.017

0.1
0.8

29.8
45.1

0.21
0.69

0.54
0.69

2.4

1138 LOC100000332 2.1 1 0.005
0.01

1
3.9

62
74.6

0.17
0.43

0.34
0.55

6.6

1019 timp2b, clu 2.7 1.3 0.006
0.012

1.7
3.3

62.2
74.8

0.16
0.34

0.33
0.44

8.7

1200 U5 spliceosomal RNA 2.5 1.2 0.006
0.011

1.7
3

60.3
73.6

0.18
0.5

0.45
0.54

5.4

3193 hbegfa 1.5 0.7 0.003
0.008

0.2
2.8

55.2
74.8

0.24
1.53

0.3
0.48

3.9

3552 g0s2, si:ch211-198c19.3 3.5 1.7 0.007
0.016

0.6
1.9

62.6
74.9

0.14
0.31

0.39
0.53

8

1076 atf3, crema, BX005417.1 (an-
tisense RNA)

4.9 2.4 0.009
0.017

1.6
4.4

62.9
74.8

0.21
0.58

0.39
0.5

5.7

3554 GLDC 2.6 1.3 0.006
0.013

1.4
3.3

59.9
74.6

0.17
0.59

0.2
0.31

7.5

1968 si:dkey-1c7.3 0.6 0.3 0.001
0.003

0.4
2

36.1
58.7

0.14
1.17

0.37
0.59

-0.3

1139 slc25a38a, c7b 2.7 1.3 0.007
0.013

1.8
2.8

61.8
74.8

0.15
0.34

0.33
0.46

16.1

1919 apoea, si:ch73-263o4.3 4 2 0.008
0.017

1
3.3

45.2
55.7

0.17
0.39

0.3
0.41

-2.7

360 tmem121a 0.7 0.3 0.001
0.004

0.3
5.4

5.6
73.6

0.25
21.83

0.66
1.04

-0.1

3314 btg2, zgc:85866, jun, ier2,
dusp1

2.2 1.1 0.005
0.008

2.7
4.5

62.9
74.8

0.17
0.33

0.3
0.36

1.4

3448 gstp1, gsto2, cmbl, sqrdl 5 2.5 0.009
0.017

0.5
1.1

57.1
74.7

0.33
0.53

0.44
0.55

6
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(a) Single transcript regulation for three model
substances diuron (left), diclofenac (middle)
and naproxen (right)
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(b) Regulation of toxnode across complete toxi-
cogenomic universe
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(c) Model fit of Hill-Gauss model

Figure 3.18: Example regulation of potential COX toxnode #1019: timp2b/clusterin. In a) the
concentration-response curves for both transcripts are shown in thin lines, thick lines
represent the toxnode "code" (i.e., the summary of the toxnode). Colors represent differ-
ent time points. in b) the regulation of the two member transcripts across all conditions
of the toxicogenomic universe are shown as boxplot. In c) the model fit of the Hill-Gauss
model is illustrated. Shaded region indicates the 95% confidence interval.



3.4 results 87

Table 3.8: Substances significantly affecting COX-toxnodes (toxnodes identi-
fied to be affected by known COX-inhibitors and not affected by
diuron as exemplary "non-COX-inhibitor")

Toxnode Substances

1260 amiodarone, cyanopeptolin, oil emulsion
1079 –
1137 SiNP , retinoic acid, perchloroethylene, isoniazid,

1-naphthylisothiocyanate, adefovir, sertraline, be-
clomethasone, leflunomide

3445 oil emulsion
1198 amidarone, paraquat
3447 percholorethylene, paraquat
1138 SiNP, retinoic acid, perchloroethylene, isoniazid, flusi-

lazole, valproic acid, G3-polyamidoamine, beclometha-
sone, trimethyltin chloride

1019 SiNP, isoniazid
1200 –
3193 1-naphthylisothiocyanate, trimethyltin chloride
3552 beclomethasone
1076 SiNP, trimethyltin chloride
3554 perchloroethylene
1139 flusilazole, valproic acid, leflunomide
3314 –
3348 paraquat
360 –
1919 TCDD
1968 trichloroethylene, flusilazole, G3-polyamidoamine, be-

clomethasone
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3.5 discussion

We suggested an experimental design and analysis framework to deter-
mine informative and toxicogenomic profiles of environmental contam-
inants. The resulting profiles should help in establishing robust molec-
ular fingerprints of defined modes of action (MOAs), applicable to the
bioanalytical dissection of environmental extracts. The profiles, exem-
plarily inferred here, still need to be investigated further with regard
to robustness (e.g., inter-laboratory comparisons, comparison with com-
pounds expected to act similarly). Confidence of inferred model param-
eters, describing node response dynamics, varied between nodes and
should be improved especially on the concentration scale by includ-
ing more concentrations in the experimental design (compare Figures
B.3-B.8 in Appendix B). However, for toxnodes showing distinct regu-
lation in response to a substance, model parameters can be well defined.
The quality of the Zebrafish Embryo Toxicogenomic Universe (ZETU)
is dependent on the quality of the respective input datasets. If more
high-quality datasets should become available in future, the robustness
of the ZETU might still improve.

3.5.1 "Self-organization" of toxicogenomic knowledge

The application of self-organizing maps helps to integrate existing tox-
icogenomic knowledge in our analysis pipeline. At the same time it
reduces the number of entities to be analyzed by (at least) one order
of magnitude, without removing any transcripts from further analysis.
This is especially important when moving to comparison of several dif-
ferent compounds, and filtering out non-responsive transcripts is not
feasible any more. The projection of results on the map opens up the
possibility of visual inspection of any transcriptome wide results (e.g.,
logFCs, Figures 3.8-3.10; or parameter estimates, Figure 3.17). Addition-
ally, we suspect that results on toxnode level will be more robust than
findings on single gene level, since "exceptional" single gene changes
will be dampened by other members of the same toxnode. When apply-
ing regression models to the toxnodes, one benefits from more data to
estimate parameter values (here we treated the member-transcripts of
each toxnode as pseudo-replicates).

Certainly, effects on the transcriptome which are very substance spe-
cific (especially if they are more subtle) and would be detected by
gene-wise analysis might get lost in the toxicogenomic universe. Thus,
to reveal substance specific AOPs, our analysis strategy might not be
the first choice. However, with regard to diagnosis of environmental
extracts, we can anyhow only expect to be able to detect and interpret
robust signals for certain effect categories. Transcripts which show a
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robust signal on single gene level and are not correlated to other tran-
scripts will end up in single-member toxnodes, as it was the case for
cyp2k18 or cyp1a in our example.

Acknowledging the fact that most robust transcriptome effects do
not appear in much lower concentrations than apical effects (in our
experiments, ratios were not much higher than 2-3 in most cases), one
could argue that in a complex mixture one might only be able to de-
tect an unspecific "general" stress response. This could actually be the
case for a equitoxic mixture of many compounds with different mode
of actions. However, previous findings indicate that in environmental
mixtures we would expect a limited number of driver substances, being
responsible for the majority of a toxicological effect (Altenburger et al.,
2004). In those cases a toxicogenomic study could help in dissecting
exactly those important driving MOAs.

3.5.2 Regression models to describe toxnode behavior

For a quantitative description and the ability of extrapolation toxnode
behavior, we developed and applied two different regression models
to the toxicodynamic maps of our three model substances. The Hill-
Gauss model can describe the behavior of most toxnodes quite well.
The Gauss-Gauss model would be preferred in many instances over
the Hill-Gauss model, however, we should prefer working with the Hill-
Gauss model whenever possible, since it allows applying classic tox-
icological assumptions. Anyway, some nodes clearly show a biphasic
behavior on the concentration scale, which makes it necessary to apply
the Gauss-Gauss model. Hermsen et al. (2012) speculated that such
kind of responses indicate a homeostatic "collapse", when the limit of
adaption has been reached for the respective pathway. To capture such
responses in a more general way, one could also consider integrating a
multiphase Hill-model (e.g., Di Veroli et al., 2015), which is easier to
interpret but harder to infer. Therefore, more data would be needed
on the concentration scale to estimate the parameters of such a model.
When interpreting the estimated parameters of each node, one has to
be aware of the uncertainty connected to the estimation. We showed
that the width of confidence intervals can differ from node to node. Es-
pecially, the parameters describing concentration dependence are not
well defined in many cases. Therefore, the experimental design should
be adjusted to account for more concentrations (one can reduce the
amounts of replicates of treatments in exchange). Sometimes, the con-
trol levels are not adequately captured by only two replicates. Here, it
should be considered to use at least three (if not four) replicates to
establish a robust control level. Not all nodes can be adequately rep-
resented by our proposed regression models. However, nodes showing
a multiphasic behavior (maybe because of complex indirect regulation
loops) are hard to interpret biologically, anyway. Since they are neither
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strongly correlated with the exposure setting nor with apical outcome,
these nodes probably represent transient regulatory responses. In the
setting of analyzing environmental extracts it is not clear in which state
those nodes will be captured. Therefore, they may be neglected at this
point.

3.5.3 Time and concentration dependent transcriptomics

We could clearly demonstrate here that important toxnodes can show
substance specific response dynamics. This can be due to differences
in toxicokinetic or toxicodynamic processes. To get to a representative,
comparable and extrapolatable toxicogenomic profile of a toxicant, it
is therefore essential to capture and understand as far as possible the
time and concentration dependence. Otherwise, one is in high risk to
derive false conclusions from the resulting profiles. Our findings show
that not only concentration dependence (as it has already been shown
by Smetanová et al., 2015, for example) but also time dependence is
in many cases easily described. Therefore, we should move on from as-
suming binary gene responses. It cannot be resolved here, if the time
sequence of regulated nodes, which we can observe for all substances,
is the progression of a toxicodynamic process, or if it represents differ-
ent effects on different developmental stages of the zebrafish embryo.
Therefore, our suggested pipeline might provide extended information
when applied on a model, not developing as much as the ZFE during
the exposure period (or alternative in vitro systems).

3.5.4 Detection of a mode of action in the ZFE transcriptome

We strived for exemplarily establishing a toxicogenomic profile for COX-
inhibition. Therefore, we selected two model compounds known as COX-
inhibitors. The selected COX-inhibitors diclofenac and naproxen show
many differences in their effects on the ZFE, on transcriptome as well
as on apical effect level. For naproxen sublethal effects occur at clearly
lower concentrations than lethal effects (Ratio LC50

EC50
between 2.7 (24

hpe) and 2.1 (72 hpe)), while for diclofenac this distance is smaller (Ra-
tio LC50

EC50
between 2.0 (24 hpe) and 1.0 (72 hpe)). This corresponds to a

much more extensive effect on the transcriptome by naproxen compared
to diclofenac in our exposure setting. Additionally, the concentration
ratios between lethal effect and transcript effect ( min(LC50)

min(EC50)Toxnode
) are

larger for most toxnodes affected by naproxen compared to diclofenac.
Interestingly, the ratios between sublethal effects and transcript effect
( min(EC50)apical
min(EC50)Toxnode

) are similar for diclofenac and naproxen exposures. We
can derive several hypotheses from this: the observed transcript regula-
tion in diclofenac and naproxen mainly corresponds to sublethal effects;
most likely COX-inhibition alone cannot explain the lethality induced
by diclofenac and naproxen in the ZFE, and there might be additional
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toxicity mechanisms besides COX-inhibition leading to adverse effects.
It is possible that naproxen has a stronger COX-inhibiting effect than di-
clofenac, and for diclofenac the effect by COX-inhibition may be masked
by an onset of baseline toxicity in lower concentrations.

When comparing the estimated time parameters (i.e., µ and sigma)
of the COX-toxnodes for diclofenac and naproxen it is obvious that they
show different dynamics. Most toxnodes show an earlier time point of
maximum sensitivity in diclofenac compared to naproxen. This goes in
line with the observed dynamics of apical effects (see Figure 3.2), which
increase earlier with diclofenac exposure than with naproxen exposure.
This indicates a quicker uptake of diclofenac into the embryos (thus, a
toxicokinetic effect).

However, we identified commonly regulated toxnodes in the tran-
scriptome profiles, which might represent specific responses towards
COX-inhibition. The most distinct regulations were observed for genes
of biotransformation enzymes, such as cyp2k18 or ugt1. Additionally,
the induction of lepa and pth1a lets us suspect perturbation of the thy-
roid pathway. By comparing with other studies, we found that most
of the common COX toxnodes are also regulated by compounds which
are no COX-inhibitors. This could be explained by multiple targets of
the COX product PGH(2) or other products of the same pathway such as
PGE(2). Therefore, some of the targets can obviously also be affected by
other substances via different pathways, and a specific COX-inhibition
effect can probably only be detected by considering a combination of
toxnodes. Additionally, there might be also rather unspecific effects
(compare Chapter 2). For example, the down-regulation of crystallins
has been observed as an unspecific effect in ZFEs, possibly a result of
developmental delay (Hermsen et al., 2013).

In summary, our experimental design and analysis pipeline has proven
to be helpful in deriving informative and comparable toxicogenomic
profiles of three model substances. It was possible to identify toxnodes,
indicating the effect of COX-inhibitors on zebrafish embryos. Most likely,
one isolated node will not be specific enough to define this MOA (since
cyp2k18, the thyroid system or timp2b might also be triggered by differ-
ent mechanisms), but combining the information of the toxnodes might
allow to identify the effects of COX-inhibitors also in a mixture. An
in-depth analysis of COX-inhibitor specific toxnodes and integration of
prior knowledge about the member-genes of the respective nodes allows
to gain knowledge about the affected processes in the zebrafish embryo
when inhibiting COX. If the affected processes, indicated by regulated
toxnodes, go in line with our previous knowledge about COX-inhibition
in the same or in other species (i.e., in mammals), this additionally
strengthens our assumption that the observed molecular responses in-
deed directly result from the inhibition of COX (and do not represent
unspecific secondary responses). However, it is not essential to know
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the function of each affected toxnode, before using them as exposure
indicators.

A combination of toxnodes indicating a COX-inhibition profile could
be applicable for diagnostics of chemical mixtures. However, to be able
to detect and interpret such profiles in a mixture, it will be essential to
understand how the toxicogenomic profile combine in a mixture. This
will be the topic of the following chapter.
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4.1 introduction
"What I cannot
create, I do not
understand"
— R. Feynman

Toxicogenomic methods have been shown to bear the potential for elu-
cidating molecular effects of single substances. In the previous chapter
it was exemplarily shown how comprehensive molecular toxicodynamic
profiles of chemicals can be inferred from time- and concentration re-
solved transcriptome data. Applying an analysis pipeline integrating
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self-organizing maps (SOMs) and regression modeling, toxicogenomic
landscapes (i.e, toxicogenomic profiles of compound or exposure condi-
tions, projected on a universal coordinate system, compare Chapter 3)
for three model substances could be retrieved. Subsequently, charac-
teristic patterns for the MOA of cyclooxygenase (COX) inhibition could
be derived from the landscapes. It is conceivable that in future, toxi-
cogenomic landscapes of environmental extracts could be retrieved and
scanned for such MOA specific patterns. In this way, toxicogenomic
methods could serve as non-target bioanalytical tools to diagnose and
categorize dominating biological effects of environmental extracts (com-
pare Section 1.3).

4.1.1 Application of toxicogenomics in environmental monitoring

The potential for applying toxicogenomic methods in environmental
monitoring has been discussed (e.g., Bahamonde et al., 2016) and eval-
uated in a few case studies: One approach is the comparison of tox-
icogenomic profiles induced by environmental extracts or conditions
(i.e., in caged individuals) to those induced by selected reference com-
pounds. Bluhm et al. (2014), for example, analyzed gene regulations
in ZFEs caused by exposure against sediment extracts and compared
these to effects of selected single compound exposures. However, gene
regulation induced by the sediment extracts showed large differences
compared to the single compound exposures and the authors summa-
rized that "in addition to differences in time of exposure and concen-
trations applied, additive, synergistic as well as potential antagonistic
effects might impede a direct comparison". They concluded that "pro-
files of gene expression levels of these complex mixtures will hardly
correlate with profiles of single substances and therefore, contaminants
can hardly be detected based on a comparison of expression level pro-
files". A more advanced approach was suggested by Schroeder et al.
(2016), who combined the prediction of generic biological effects on
molecular level, based on chemical analytics, with the measurement of
biological effects, based on the exposure of cell-based bioassays to envi-
ronmental extracts or conditions. Here, an expectation about regulated
genes or pathways is formulated based on a list of chemicals detected
at a specific site and from literature-curated chemical-gene interactions
(such as the Comparitive Toxicogenomics Database (CTD), Davis et al.,
2017). These expectations can subsequently be compared to measured
gene regulation induced in caged individuals or individuals exposed
to environmental extracts. Thereby, major biological effects and candi-
date substances potentially contributing to the effects can be identified.
This approach was followed by Perkins et al. (2017) and Schroeder et
al. (2017), for example. They could demonstrate the potentially added
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value for environmental monitoring by providing hypotheses about bio-
logical effects on selected organisms and linking these effects to priority
substances detected at a specific site.

However, concentration- or time-dependence of toxicogenomic effects
has not been considered in such studies of environmental samples since
concentration dependent data of single component responses is rarely
available. This also implies that combination effects of effective com-
pounds could not be taken into account so far. However, in the envi-
ronment we usually face a complex mixture of compounds. For apical
endpoints it has been shown that effects of environmental mixtures
are commonly induced by more than one compound (i.e., combination
effects occur). Furthermore, the proportion of individual substances
contributing to the total effect may differ depending on the respective
effect level (Altenburger et al., 2004, submitted). The occurrence of
concentration dependent effects as well as combination effects might
therefore explain some of the unexpected effects by the environmental
sample, reported by Bluhm et al. (2014), for example. Also in the ap-
proach by (Schroeder et al., 2016) the neglect of combination effects
may lead to false conclusions.

4.1.2 Mixture toxicology

When following an integrated approach of chemical and biological effect
analytics, as suggested by Schroeder et al. (2016), signals not expected
from analytically detected compounds might hint at the presence of
not detected compounds. However, those signals might also result from
combination effects of multiple components (for definition of mixture
terminology see terminology box 4.1). Therefore, if we want to interpret
toxicogenomic landscapes of mixtures in the light of our existing knowl-
edge about single compound landscapes, we should get an idea about
how such single substance landscapes or characteristic MOA patterns
(like the ones exemplarily established for COX-inhibition in Chapter 3)
combine in mixtures (Altenburger et al., 2012). Otherwise it will be
virtually impossible to distinguish "unexpected" signals, resulting from
components not detected analytically or from unknown synergistic ef-
fects, from technically predictable combination effects.

Therefore, several questions should be raised in this context: Are the
same toxnodes (in the context of the previously established ZETU, com-
pare Chapter 3) affected by the mixture as by the single compounds or
is regulation suppressed for some of the nodes? Do unexpected toxnodes
get regulated by the mixture? Is it possible to recover an established
MOA (such as COX-inhibition) in the toxicogenomic landscape of the
mixture? Are there combination effects occurring (either qualitative
combination effects, i.e., toxnodes affected in the mixture not found to
be affected by one of the components, or quantitative, i.e., toxnodes
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Terminology Box 4.1: Mixture terminology
single compound effect Effect of the exposure to
a single compound on the toxicogenomic landscape or single
toxnodes.

mixture effect Effect of the exposure to a mixture of
two or more active or inert compounds on toxicogenomic land-
scape or single toxnodes. May be equivalent to single compound
effect if only one component of the mixture is active. With this,
the term mixture effect is used differently here, than in some
other parts of mixture toxicology literature (e.g., Kortenkamp
et al. (2009) use the term mixture toxicity synonymously with
combined effect).

combined effect Mixture effect resulting from the joined
action of two or more compounds in a mixture. In the context of
toxicogenomic landscapes there may be a) qualitative combined
effects, i.e., more toxnodes are affected than would be expected
by the most potent single compound exposure; or b) quantita-
tive combined effects, i.e., single toxnodes are affected stronger
(respectively more sensitive) than would be expected by the most
potent single compound exposure.

are affected stronger than expected from the most potent component)?
And in case of combination effects occurring, are they predictable?

These kind of questions have been discussed in the field of (eco)-
toxicology for decades (Altenburger et al., 2013), and there are well
established concepts which have been shown to reliably predict mix-
ture effects of several contaminants (reviewed in, e.g. Cedergreen et al.,
2013). The most commonly applied concepts are concentration addi-
tion (CA) and independent action (IA). While the concept of CA has
been shown to be the most accurate prediction in the case of similar
acting compounds (e.g., Altenburger et al., 2000; Altenburger et al.,
2004; Silva et al., 2002), IA serves as the most accurate prediction of
mixture toxicity in the case of dissimilar acting compounds (Backhaus
et al., 2000; Faust et al., 2003) (more details on the mentioned concepts
in Section 4.2).
However, in spite of many studies about toxicogenomic mixture ef-

fects, the mentioned concepts have almost exclusively been discussed
regarding apical endpoints, and there is little knowledge about combi-
nation effects and the applicability of CA and IA on transcriptome level
(Altenburger et al., 2012). Despite the lack of mechanistic pharmacolog-
ical support, the two concepts usually (and often implicitly) applied in
toxicogenomic studies are effect addition (EA) (e.g., Yang et al., 2007,
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assuming that effects of single components linearly add up) or the as-
sumption of a boolean mixture (e.g., Schroeder et al., 2017, assuming
those genes which have been observed to be regulated in response to any
of a mixtures components will be regulated in a mixture exposure). The
reasons for applying EA or boolean mixture assumptions instead of CA
or IA might be primarily due to lacking concentration response informa-
tion. First indications of the applicability of pharmacologically based
mixture concepts (i.e., CA or IA) are given by De Coninck et al. (2014),
who investigated the effects of binary mixtures on the transcriptome
of Daphnia pulex and could identify pathways for which interactions
between the different stressors could be suspected based on the IA as-
sumption. Recently, Labib et al. (2017) analyzed the transcriptome of
mice lung tissues exposed to eight different PAHs and their mixtures in
three doses. For six cancer related pathways the mixture concepts of IA,
CA and generalized concentration addition (GCA) were evaluated, while
IA was predicting pathway perturbations most accurately. While these
studies provide a good starting point, they do not explicitly evaluate
combination effects and rely on very limited concentration information
(one concentration in the study of De Coninck et al. (2014) and three
in the study of Labib et al. (2017)).
Therefore, the goal of this study was to systematically evaluate how

toxicogenomic profiles combine in a mixture as well as to evaluate the
predictability of mixture and combined effects. To achieve this, the tox-
icogenomic effects of a mixture consisting of the three compounds di-
uron, diclofenac and naproxen were measured. Of those compounds the
individual toxicogenomic landscapes had been thoroughly characterized
before (compare Chapter 3). We evaluated, if combination effects occur
on transcriptome level and if the mentioned pharmacologically based
mixture concepts (CA, IA) are suited to describe the combination effects.
Additionally, we used the concepts to predict a complete time and con-
centration resolved toxicogenomic landscape of the mixture. Last but
not least, we evaluated if landscape patterns from the single substances
could be recovered in the mixture landscape. The mixture predictions
were framed within the ZETU, which was inferred in Chapter 3. This
reduced the number of mixture predictions by one order of magnitude,
gave a better data foundation for prediction and provided an opportu-
nity for visually inspecting overall qualitative validity of the mixture
predictions.

4.2 methods

A mixture of the three compounds diuron, diclofenac and naproxen was
designed in such a way that distinct combination effects could be ex-
pected. A diagonal mixture design was chosen (Berenbaum, 1981), i.e.,
a mixture of constant ratio was applied in several dilutions. Experimen-
tal design and data analysis for the exposure were the same as for single
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substance profiling (described in Chapter 3), with exposure concentra-
tions ranging from LC0.5 to LC25 of the mixture, ZFEs being exposed
from 24 hpf to 27, 30, 36, 48, 72, and 96 hpf, and changes in transcrip-
tome measured at the end of exposure. A concentration response curve
for lethality including the selected exposure concentrations is shown
in Figure C.1 in Appendix C. The time and concentration resolved
toxicogenomic landscape of the mixture was evaluated for combination
effects. Next, several mixture concepts were evaluated for their qualita-
tive and quantitative predictivity of the combination effects and of the
whole mixture landscape. The mixture concepts evaluated were boolean
mixture (BO), effect addition (EA), concentration addition (CA) and in-
dependent action (IA). Partly, the concepts had to be adapted to be
applicable to toxicogenomic data, as it is described below. All data
analyses were performed using the software R (version 3.3.1, R Core
Team, 2016). The data discussed in this chapter have been deposited
in NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and are
accessible through GEO Series accession number GSE109498 (https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109498). All
scripts used for analyses and figures in this chapter have been deposited
in GitHub and are accessible in the GitHub repository ZFEmixtomics
(https://github.com/anschue/ZFEmixtomics).

4.2.1 Boolean mixtures

In many studies concentration dependence of chemical effects on molec-
ular level has not been investigated. This is the case for most toxi-
cogenomic profiles established so far (compare Chapter 2) and is also
reflected in databases like the CTD (Davis et al., 2017). In this case,
assumptions about mixture effects can only be formulated in a boolean
way, i.e, all transcripts affected by one of the substances in the mixture
are expected to be affected by the mixture also. A boolean approach is
followed by Schroeder et al. (2017), for example (compare Section 4.1.1).
The concept can be summarized by Equation 4.1:

Emix = Ei||Ei+1||Ei+2||...||En, (4.1)

where Emix is a boolean variable (i.e., can be either true or false) de-
scribing if a gene or toxnode is affected by the mixture exposure or not;
En is a boolean variable describing if a gene or toxnode if affected by
the nth mixture component (irrespective of exposure conditions).

4.2.2 Effect addition in toxicogenomics

The concept of effect addition (EA) is the implicit assumption in many
toxicogenomic mixture studies, when the components in the analyzed
mixture are applied in the same (single) concentrations as they were

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109498
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109498
https://github.com/anschue/ZFEmixtomics
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applied separately (compare Yang et al., 2007, for example). The as-
sumption behind this concept is that the effect of a mixture at a given
concentration is the sum of effects of the components at this concen-
tration. No concentration response modeling is needed to formulate
mixture hypotheses. It can be summarized by Equation 4.2:

Emix(cmix) =
n∑
i=1

(Ei(cmix ∗ pi)), (4.2)

where Emix(c) is the effect of the mixture at a given mixture concentra-
tion, Ei(c) is the effect of compound i at a given concentration, pi is the
proportion of compound i in the mixture, and cmix is the concentration
of the mixture.

4.2.3 Concentration addition in toxicogenomics

In the previous chapter it was shown that the concentration dependence
of toxicogenomic responses can be described by simple regression mod-
els. One of the two regression models, which were developed here, is
the Hill-Gauss-model, which allows the concept of concentration ad-
dition (CA) to be easily applied to toxicogenomic effects. The effect
concentrations of the mixture can be iteratively calculated for each
toxnode using Equation 4.3:

ECXmix =

(
n∑
i=1

pi
ECXi

)−1

, (4.3)

where ECXmix is the effect concentration of the mixture leading to X%
effect, ECXi is the effect concentration of compound i leading to X%
effect, and pi is the proportion of compound i in the mixture. A few
challenges exist, when applying the concept of CA for toxicogenomic
response modeling: In contrast to lethal effects, toxicogenomic effects
can be stimulatory or inhibiting compared to the reference. This means
that in some cases genes or toxnodes (compare Chapter 3) can be stim-
ulated by one compound and inhibited by another. In these cases, how-
ever, one would not expect similar action anyway and rather refer to
the model of independent action (see below). Here, to be able to make
a CA prediction for every toxnode anyway, the direction of regulation of
the majority of compounds (i.e., two compounds) was assumed as the
direction of regulation induced by the mixture. For all three substances
the estimated parameters for the selected direction of regulation was
taken for mixture prediction.

Another hurdle to overcome is that both mixture concepts, CA and
IA, assume a common maximum effect for all mixture components. For
lethality this is assumed to be 0% survivors (respectively 100% dead),
but for transcript abundance the maximum is not trivial to capture
or estimate. It might be gene or toxnode specific and depend on the
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dynamic range in abundance of the respective transcript (which we usu-
ally do not know). This problem was already tackled in Chapter 3 and
the maximum measured effect across all conditions for each toxnode
was considered as a proxy for the maximum effect of the respective
toxnode.

concentration addition for biphasic concentration
response relationships In Chapter 3 it was shown that the
concentration dependence of some toxnodes seems to be biphasic. Here,
we focus on monotone concentration response relationships. However,
it was also evaluated whether the consideration of biphasic responses
can explain deviations from mixture predictions with the help of an ex-
tended concentration addition concept, which was suggested by Martin-
Betancor et al. (2015). Details are given in Appendix C.

4.2.4 Independent action for toxicogenomics

The concept of CA only helps to predict combined effects for toxnodes
regulated in one direction. Similarly, the concept of independent action
(IA) is only used to describe proportional effects into one direction, until
now. However, since the concept is based on the notion that compounds
act independent from each other, it bears the potential to be extended
to cases of diverging effect directions.

We translated the concept of IA to the application on toxicogenomic
responses by transforming the absolute logFCs into relative logFCs (com-
pare Equation 4.4). From those, a combined relative logFC was retrieved
and subsequently transformed back into an absolute logFC. We consid-
ered up- and down-regulation separately at first, summing up the ab-
solute logFCs for up- and down-regulation in the end. This implies that
the combined effect of up- and down-regulation is weighted by the re-
spective maximum effects. In a binary mixture of two compounds which
are exactly complementary (one inducing a toxnode, one inhibiting it)
the net effect will be zero if the maximum effects in both directions
are the same; In a binary mixture with maximum positive logFC of 5
and maximum negative logFC of -2, the combined effect of high effect
concentration will be 3 (however it is possible that the logFC rises to 5
temporarily in an equieffective mixture ratio). The adapted IA model
is represented by Equation 4.4:

E(cmix) =

[
1−

nup∏
i=0

(
1− logFC(ciup)

maxlogFCup

)]
∗maxlogFCup

+

[
1−

ndown∏
i=0

(
1− logFC(cidown)

maxlogFCdown

)]
∗maxlogFCdown,

(4.4)

where E(cmix) is the mixture effect at a given mixture concentration,
logFC(ci) is the logFC induced by compound i, maxlogFCup is the
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Figure 4.1: Demonstration of combination effect identification. Effect and 95%
CI of single substance (�); Effect and 95% CI of mixture (�).
Arrows illustrate the quantification of a quantitative combination
effect.

maximum up-regulation logFC across all conditions and maxlogFCdown
is the maximum down-regulation logFC across all conditions.

4.2.5 Confidence interval for predictions

The mixture predictions for each toxnode are based on fitted regression
models of different certainty. To account for prediction errors of single
compound models, bootstrapping was applied to estimate a confidence
interval for each mixture prediction. In short, the error distribution
(compare Equation 3.5) was randomly sampled for each compound,
using a substance specific distribution given by the fitted standard
deviation. With this, a mixture effect was predicted and the process
was repeated 100 times. Afterwards, the Hill-Gauss model described in
Chapter 3 (respectively the Gauss-Gauss model) was fitted to the boot-
strapped data points of predicted mixture effect. This gave a measure
of uncertainty for mixture prediction but also allowed to qualitatively
predict which toxnodes will be affected by the mixture by comparing
the retrieved 95%CI with the respective 2.5%/97.5% quantile of con-
trols (complementary to the approach of selecting significantly affected
toxnodes for single substances).

identification of combination effects In order to de-
termine which of the toxnodes show combination effects in response to
the mixture, the 95%CI of the most effective component of each toxnode
was compared with the 95%CI of the measured (and modeled) mixture
effect (compare figure). The gap sizes between the CIs at each measured
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time point/concentration were summed up. A significant combination
effect was assessed to occur, if the sum of gaps was greater than zero.

4.2.6 Mixture design

To experimentally test the validity of the described mixture concepts,
the mixture composition for an experiment has to be carefully cho-
sen in order to induce combination effects. If the proportion of one
compound in the mixture is too high, measurable effects will only be
attributable to this compound, no combination effect will be visible,
and therefore the validity of the mixture concepts cannot be evaluated.
This is especially important for mixtures with only few components. For
toxicogenomic effects the task of optimizing the mixture proportions is
even more challenging, since thousands of endpoints (genes/toxnodes)
are measured at the same time, and single components show differing
sensitivities for each endpoint. This means that a mixture proportion
optimized to show a strong combination effect for one toxnode might
result in weak or no combination effects for other toxnodes. Therefore,
for our purpose of studying the predictivity of the mixture concepts,
the mixture composition had to be optimized to yield a maximum av-
erage distance between predicted mixture effect and the most effective
single compound (i.e., a strong combination effect) across all or a range
of selected toxnodes. Additionally, the combination effect should occur
at sublethal concentrations. For this reason, also the hypothetical expo-
sure concentrations of the mixture had to be taken into account, when
optimizing the mixture composition.

To find a mixture proportion accounting for all mentioned require-
ments, we determined the expected combination effects for a range of
different mixture compositions. A grid of different mixture proportions
was assembled, roughly aligned along the LC0.5 and LC25 of each sub-
stance to make sure that each substance would be present in the mix-
ture in an effective proportion. For the different mixture compositions,
CA was used to predict lethality and derive a hypothetical exposure
range for transcriptome measurements using the approach described in
Section 3.2.2. Then, the mixture effect was predicted in this concentra-
tion range for the regulation of each toxnode, applying the concepts of
CA and IA. From this, the difference of the area under the curve of CA/IA
prediction and the respective most effective individual components was
derived for each toxnode. The average difference for all toxnodes or for
selected toxnodes then gave an indication of how distinct a combina-
tion effect would be measurable. In Figure 4.2 the expected average
combination effects for all toxnodes significantly regulated in at least
two of the substances for different mixture proportions, assuming CA
or IA, are shown. As a compromise between inclusion of all substances
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Figure 4.2: Predicted combination effects on transcriptome level for different
mixture compositions of diuron, diclofenac and naproxen. Propor-
tions are shown for diuron and diclofenac, naproxen proportion
is determined by the respective remaining proportion. Color code
shows the difference of integral between mixture prediction and
most effective single component. Black dot illustrates mixture com-
position chosen for experimentation.

in a comparable effective proportion and expecting a distinct combina-
tion effect, the following (molar) mixture proportions were selected for
experimentation: diuron–0.110; diclofenac–0.026; naproxen–0.864.

4.3 results

We evaluated the toxicogenomic profile induced by the three-component
mixture of diuron, diclofenac and naproxen. The Zebrafish Embryo Tox-
icogenomic trAnscriptome Coordinate system (ZETAC) from the pre-
vious chapter was applied to infer a toxicogenomic landscape of the
mixture and get a structured overview over molecular effects of the
mixture. In this process we determined whether single compound and
MOA-specific toxnodes (here, COX-toxnodes identified in Chapter 3) are
also significantly affected in the mixture. Next, we evaluated if and for
which toxnodes combination effects appeared and how well these could
be predicted. Additionally to the toxnodes showing significant combina-
tion effects, we evaluated the predictivity of the mixture concepts for
the whole toxicogenomic landscape. Besides a qualitative evaluation,
we quantitatively compared the effect induced by the mixture with a
prediction based on the single compound effects and determined some
possible causes for deviations from mixture predictions.
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4.3.1 Toxnodes affected by mixture exposure (mixture effects)

Using the same procedure as described in Chapter 3 (applying the
identical ZETAC), 145 toxnodes were identified as significantly affected
by the mixture (compared to 422 toxnodes affected by at least one of
the components). The top ten nodes are listed in Table 4.1. They con-
tain toxnodes identified as top-toxnodes for diclofenac and naproxen
(e.g, toxnodes #1260, #1259) and toxnodes identified as top-toxnodes
for diuron (e.g., toxnode #3567). Of the 145 toxnodes affected by the
mixture, 19 were not identified as regulated by any of the single sub-
stance exposures earlier. However, most of those "new" toxnodes only
showed a weak regulation with a summed difference between control
and treatment CIs below 0.5 for 15 of those nodes. Of the 19 potential
COX-toxnodes, 18 were identified as affected by the mixture (compare
Table 4.2).

4.3.2 Identification and predictability of combination effects on tran-
scriptome level

When evaluating the effects of a mixture, one of the major questions we
should consider is if an observed mixture effect indeed resulted from
the joint action of the components (i.e, is a combination effect), or
if the mixture effect just resembled the effect of the most effective
component. On the scale of the observed toxicogenomic landscape we
can already conclude that combination effects were present since the
measured landscape did not resemble the landscape expected from one
compound but showed to be a combination of the components (see
above), thereby exhibiting a qualitative combination effect (compare
terminology box 4.1). Zooming in to the single toxnode scale, we may
additionally ask if there were toxnodes which are affected stronger than
it would have been expected by any of the single compounds alone or
even stronger than the sum of effects of all single components, thereby
exhibiting a quantitative combination effect.

identification of quantitative combination effects
Toxnodes which show a significant quantitative combination effect were
identified by comparing the modeled CIs of the mixture effect with the
CI of the strongest single compound effect (using the Hill-Gauss regres-
sion model) for each toxnode. When considering a 95% CI this resulted
in nine (up-regulated) toxnodes with a quantitative combination effect
(compare Figure 4.3 for single substance effects and Figure 4.5 for the
respective CA, IA and EA predictions). When considering a 75% CI,
for 32 toxnodes (28 up, 4 down) a quantitative combination effect was
identified. This corresponds to less than 1% of all toxnodes, but to 21%
of those toxnodes significantly affected by the mixture exposure. One
of the nodes showing a distinct combination effect was toxnode 1138,
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Table 4.1: Top ten toxnodes regulated in the ZFE after exposure to a mixture of diuron, di-
clofenac and naproxen. Ratio Lethal: min(LC50)/min(EC50)Toxnode; Ratio Sublethal:
min(EC50)apical/min(EC50)Toxnode. Parameter estimates given as ranges of 95% confi-
dence interval.
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3567 cyp1a 5.5 3.7 0.025
0.061

0.6
1.4

4.8
73.4

2.1
21.71

0.53
0.8

68.4

1260 cyp2k18 6.4 4.3 0.032
0.064

2.4
8.1

57.6
73.5

0.24
0.53

0.31
0.46

38.3

1259 si:zfos-411a11.2 8.7 5.8 0.043
0.066

1.3
2.4

64.2
74.7

0.19
0.33

0.26
0.41

16.9

3477 ahsg2 3.1 2.1 0.016
0.03

0.8
2

68.7
74.9

0.13
0.17

0.52
0.78

-
10.9

3312 serpinh1b 1.1 0.7 0.004
0.01

0.3
1.2

33.8
58.4

0.46
1.1

0.22
0.34

9.9

1140 si:ch1073-165f9.2, isg15 1.4 1 0.009
0.011

3.4
6.1

59.8
74.7

0.35
1.03

0.54
0.72

7.5

1139 slc25a38a, c7b 1.5 1 0.01
0.015

2.7
4.4

60.8
74.8

0.19
0.54

0.33
0.45

6.8

3493 slc16a9a 1.9 1.3 0.009
0.022

1.8
5.1

61.2
74.7

0.17
1.35

0.44
0.69

5.9

1199 nfe2l2b 4.8 3.2 0.016
0.062

1
3.4

41.9
69.1

0.29
1.31

0.29
0.47

5.1

3507 sult6b1 1.2 0.8 0.006
0.011

0.5
1.5

3.1
73

2.89
21.97

0.23
0.36

5
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Table 4.2: COX-Toxnodes regulated by Mixture. Ratio Lethal: min(LC50)/min(EC50)Toxnode; Ra-
tio Sublethal: min(EC50)apical/min(EC50)Toxnode. Parameter estimates given as ranges
of 95% confidence interval.
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1260 cyp2k18 6.4 4.3 0.032
0.064

2.4
8.1

57.6
73.5

0.24
0.53

0.31
0.46

38.3

1079 lepa, pth1a 1.2 0.8 0.005
0.009

0.9
3.8

44.8
74

0.66
1.69

0.55
0.72

1.1

1137 fosab 1.5 1 0.009
0.014

4 11 46.8
59.8

0.23
0.96

0.43
0.66

3

3445 cbr1l, mgst3b, ugdh 4 2.7 0.015
0.061

0.1
0.7

53
66.1

0.14
0.3

0.27
0.35

3.3

1198 abcc2, AL929435.1 (antisense
RNA)

2 1.3 0.011
0.024

0.8
3.3

47.8
62.7

0.17
0.61

0.5
0.67

0.6

3447 dhrs13l1, tpmt.2, aifm4 2.2 1.4 0.011
0.021

0.4
1.2

40.1
43.7

0.22
0.41

0.35
0.45

3.3

1138 LOC100000332 1.3 0.9 0.009
0.01

5.7
10.1

60
74.6

0.41
1.2

0.2
0.32

3.3

1019 timp2b, clu 1.3 0.9 0.007
0.011

3.1
9.8

60.5
74.8

0.21
1.15

0.35
0.47

1.6

1200 U5 spliceosomal RNA 1.4 0.9 0.009
0.01

9.3
31.9

61.9
74.7

0.33
0.79

0.58
0.69

0.8

3193 hbegfa 1.1 0.7 0.005
0.008

1.4
4.1

47.4
74.6

1.29
2.6

0.18
0.27

1.7

3552 g0s2, si:ch211-198c19.3 1.6 1.1 0.009
0.016

1.1
3.4

61.4
74.7

0.17
0.49

0.47
0.63

2.3

1076 atf3, crema, BX005417.1 (an-
tisense RNA)

1.5 1 0.009
0.012

2.1
5.2

44
74.3

0.7
1.86

0.4
0.5

0.8

3554 GLDC 1.7 1.2 0.01
0.023

1.4
2.6

51.7
58.3

0.15
0.47

0.14
0.21

4

1968 si:dkey-1c7.3 0.6 0.4 0.003
0.007

0.4
38.3

1.9
72.1

0.3
21.77

0.52
0.81

-0.2

1139 slc25a38a, c7b 1.5 1 0.01
0.015

2.7
4.4

60.8
74.8

0.19
0.54

0.33
0.45

6.8

1919 apoea, si:ch73-263o4.3 3 2 0.014
0.054

0.3
1.9

41.3
46.3

0.16
0.36

0.23
0.31

-2.2

360 tmem121a 4 2.6 0.006
0.062

0.2
13.4

4.9
9.5

0.16
1.37

0.39
0.6

0

3314 btg2, zgc:85866, jun, ier2,
dusp1

1.4 0.9 0.009
0.012

3.8
6.5

42.7
55.7

0.22
0.55

0.26
0.32

0.3

3448 gstp1, gsto2, cmbl, sqrdl 1.5 1 0.008
0.012

0.5
1.1

64.1
74.9

0.37
0.61

0.27
0.34

3.9
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(a) Toxnode 1138
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(b) Toxnode 1259
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(c) Toxnode 3314
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(d) Toxnode 3554

Figure 4.3: Effect of mixture and single substances (modeled) for four example toxnodes showing
distinct combination effect. Effect and 95% CI of single substance (�); Effect and 95%
CI of mixture (�)



114 toxicogenomic mixture effects

for example. The node was clearly affected stronger than would be ex-
pected by any of the single substances (compare Figure 4.3a) and even
stronger than would be expected when summing up the effects of the
single substances (this expected effect is represented by the EA concept
(yellow line) in Figure 4.5a.

qualitative predictivity for the occurrence of quan-
titative combination effects The next question arising is
if the observed combination effects were also predictable. To answer
this question, the mixture concepts of CA, IA and EA were applied to
predict the mixture effects and compare it with the measurements.

First, we evaluated how well it was predictable from the single sub-
stance exposures if a significant (quantitative) combination effect will
occur. The concept of CA predicted a significant combination effect for
four toxnodes (using a CI of 95%), of which three indeed showed a mea-
sured combination effect. For the fourth one (toxnode #1019) the quan-
titative regulation was overestimated and showed a bit higher variance
in the experiment than expected. Therefore, no significant combination
effect was detected experimentally. The concept of IA and EA did not
predict any toxnodes with combination effect for a CI of 95%. For a CI of
75% CA predicted combination effects for 21 up-regulated and 4 down-
regulated toxnodes, of which 15 up-regulated toxnodes indeed showed
a combination effect. The concept of IA did not predict a combination
effect for a CI of 75%. The concept of EA predicted a combination ef-
fect for two up-regulated toxnodes for a CI of 75% (which both indeed
showed a combination effect). For overlaps of predicted with measured
combination effects also compare Venn diagrams in Figure 4.4.

quantitative predictivity for combination effects
Next, we evaluated how well the observed combination effects could be
predicted quantitatively. Therefore, we determined how accurately the
sensitivity of toxnodes (i.e., the minimum EC50 as inverse of the param-
eter maxS50 in the hill-gauss model) could be predicted. As prediction
deviation ratio (PDR) we determined the ratio between predicted and
measured minimum EC50. When applying the CA concept, of the nine
toxnodes with strongest combination effect, for seven toxnodes (respec-
tively 78%) the predicted minEC50 was in the range of factor two
compared to the experimentally determined minEC50 (i.e., the PDR
was in the range between 0.5-2.0. This evaluation has been applied by
Belden et al. (2007) as "a benchmark for discussing the accuracy of
the [mixture] models"). The remaining two toxnodes were more sensi-
tive than predicted (also compare Section 4.3.5). Of the 32 toxnodes
showing a combination effect, considering a 75% CI, the minEC50 was
predicted in the range of factor two for 24 nodes (75%). Of the remain-
ing eight toxnodes, for six sensitivity was underestimated; for only one
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3

measured predicted (CA)

6 1

0

measured predicted (IA)

9 32 0

predicted (IA)measured

9 0

measured predicted (EA)

2 predicted (EA)30

measured

95% CI 75% CI

CA

IA

EA

17 1015

predicted (CA)measured

Figure 4.4: Qualitative predictivity for the occurrence of (quantitative) combi-
nation effects: Overlaps of predicted versus measured combination
effects for different mixture concepts and confidence intervals (CIs).
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toxnode sensitivity was overestimated, and for one the wrong direction
of regulation was predicted.

For the concept of IA and EA the predictions are less accurate and
in many cases underestimating sensitivity. With IA only 4 (95% CI)/15
(75% CI) toxnodes are predicted correctly, with EA 2/13 (also compare
Table 4.6). In conclusion, it can be shown here that distinct qualitative
as well as quantitative combination effects occur on the level of tran-
script regulation in our case study. The toxnode sensitivities, observed
here, were predicted best using the concept of CA.

4.3.3 Prediction of qualitative toxicogenomic mixture landscape – which
toxnodes are affected?

It could be demonstrated above that the concept of CA performed best
in predicting the sensitivities of those toxnodes which exhibit a distinct
combination effect. Next, we wanted to find out if (and which) mixture
concepts could be used to predict the whole toxicogenomic landscape of
the mixture (additionally comprising of toxnodes showing only a weak
or no combination effect) from the toxicodynamic landscapes of the
single compounds.
In a first step we evaluated how well it can be predicted which tox-

nodes will be significantly affected by the mixture. As described above,
of the 422 toxnodes which could be expected to be affected by the
mixture (based on a boolean mixture assumption, i.e., because they
are affected by at least one of the components) only 126 were actually
identified to be significantly affected by the mixture (probably mostly
due to lower concentrations of the components in the mixture com-
pared to the single compound exposures). Here, the first objective was
to determine if the mixture concepts of CA, IA or EA can give a more
precise expectation than a boolean concept, about which toxnodes will
be affected by the mixture. For this, the confidence intervals (CIs) of
the CA, IA and EA predictions were compared with the 2.5, respec-
tively 97.5 % quantile of control measurements. Only toxnodes show-
ing a gap between the prediction CIs and the control quantiles for one
of the treatment conditions were defined to be affected in the mix-
ture. As it is summarized in Table 4.3 for up-regulated toxnodes and
Table 4.4 for down-regulated toxnodes, the number of false positive
predicted toxnodes (for up-/down-regulation) decreased from 172/126
(Boolean) to 55/26 (CA), 4/2 (IA) and 2/1 (EA). While CA produced
more false-positive predictions than IA and EA, there were also less
false-negative results with only 25/38 false-negative predictions in com-
parison to 68/53 (IA) and 70/53 (EA). The number of false-positive and
false-negative predictions in relation to the number of true positive and
true negative predictions can be translated into scores measuring the
quality of binary predictions such as sensitivity and precision (compare
Table 4.5). Prediction precision ( true positives

true positives+false positives) was highest
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(a) Toxnode 1138
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Figure 4.5: Effect of mixture and single substances (modeled) for four example toxnodes showing
distinct combination effect: measured effect (•); modeled effect ( ); CA ( ); IA ( ); EA
( ).
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Table 4.3: Number of predicted and measured toxnodes significantly
upregulated by mixture exposure. CA:concentration-addition;
IA:independent action; EA: effect addition; BO: boolean mixture

MeasuredCA IA EA BO

upregulated 90 120 26 22 255
true positive 90 65 22 20 83
true negative 3510 3451 3502 3504 3334
false positive – 55 4 2 172
false negative – 25 68 70 7

Table 4.4: Number of predicted and measured toxnodes significantly
downregulated by mixture exposure. CA:concentration-addition;
IA:independent action; EA: effect addition; BO: boolean mixture

MeasuredCA IA EA BO

downregulated 55 43 4 3 167
true positive 55 17 2 2 41
true negative 3545 3515 3539 3540 3415
false positive – 26 2 1 126
false negative – 38 53 53 14

for EA (0.91 for up-regulation/0.67 for down-regulation), followed by IA
(0.85/0.5), CA (0.54/0.4) and the boolean approach (0.33/0.25). In con-
trast, sensitivity ( true positives

true positives+false negatives) was highest for the boolean
approach (0.92 for up-regulation/0.75 for down-regulation), followed by
CA (0.72/0.31), IA (0.24/0.04), and EA (0.22/0.04). A conclusive mea-
sure for model accuracy is given by the F1-score, the harmonic mean
of sensitivity and specificity. The F1-score was significantly higher for
CA predictions (0.62/0.35) than for the boolean approach (0.48/0.37),
IA (0.38/0.07), and EA (0.36/0.07). Therefore, we can conclude that for
a prediction of which toxnodes are affected by a mixture, the concept
of CA gives less sensitive but more precise estimates than the boolean
approach. Overall, estimates are most accurate using the CA approach,
which balances best the sensitivity and precision of predictions.

4.3.4 Prediction of quantitative toxicogenomic mixture landscapes –
how are the toxnodes affected?

The concept of CA overall performed best in predicting which toxnodes
are affected by the mixture exposure experiment analyzed here. In a
next step the objective was to determine if it is also predictable from
the single compound exposures, how the toxnodes are affected by the



4.3 results 119

Table 4.5: Qualitative prediction scores for mixture models (up-
regulation/down-regulation). CA: concentration addition; IA:
independent action; EA: effect addition; BO: boolean mixture

CA IA EA BO

sensitivity 0.72/0.31 0.24/0.04 0.22/0.04 0.92/0.75
precision 0.54/0.4 0.85/0.5 0.91/0.67 0.33/0.25
F1-Score 0.62/0.35 0.38/0.07 0.36/0.07 0.48/0.37

mixture in a time and concentration dependent manner. Therefore, CA
(as the best performing concept in the previous step) was applied to
predict time and concentration dependent in silico toxicogenomic land-
scapes for the mixture and compare it with the landscapes inferred
from our experimental mixture exposure. The in silico and experimen-
tal landscapes are shown in Figure C.2 and Figure C.3, the differences
between prediction and measurement in Figure C.4 (Appendix C). The
most prominent structures in the landscapes were correctly predicted
(especially in the later time points and higher concentrations). How-
ever, by visual inspection it already becomes clear that there were also
toxnodes distributed across the map, for which regulation cannot be cor-
rectly predicted, either because there was a false-positive/false-negative
qualitative prediction, or the quantitative prediction was not met by
the experimental observations.

mapping the prediction deviation ratio To evaluate in
more detail the quantitative predictive power of the mixture concepts
on whole transcriptome level for our case study, again the prediction
deviation ratio (PDR) between predicted and measured minimum EC50
was determined (compare Section 4.3.2), this time for all toxnodes. In
Figure 4.6, the predicted and measured sensitivities and PDRs (using
CA) for all toxnodes were projected on a map applying the ZETAC. This
allows a general visual inspection of the predictivity for the whole tran-
scriptome. Clearly, the most prominent structures in the landscapes
(the three "clusters" in the top region of the map, the cluster in the
middle right region and the cluster in the middle left region) showed
consistency between prediction and measurement. However, several tox-
nodes could be identified on the map, for which the measured values
did not agree with the predicted ones.

distribution of prediction deviation ratios For a com-
prehensive evaluation of the PDRs for the different mixture concepts,
Figure 4.7 shows the distribution of PDRs for different groups of selected
toxnodes: toxnodes with significant combination effect, COX-toxnodes,
significantly affected toxnodes, and all toxnodes. In Table 4.6 the pro-
portions of toxnodes are summarized, for which the PDR was smaller or
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equal to 2. Overall, CA gave the most accurate predictions of minEC50.
As already mentioned above, the proportion of toxnodes for which pre-
dictions met the measured sensitivities was highest for toxnodes with
a significant combination effect (78% using CA). Similarly, sensitivities
for 74% of the proposed COX-toxnodes could be correctly predicted. For
those toxnodes, identified to be significantly affected by the mixture,
still 61% of the sensitivities met the predictions, while for all toxnodes
only 31% of the predictions were consistent with the measurements.
Interestingly, the proportion of correctly predicted sensitivities for spe-
cific diuron/naproxen or diuron/diclofenac toxnodes turned out to be
lower than for COX-toxnodes (i.e., specific diclofenac/naproxen toxn-
odes). For IA and EA the distribution of PDRs is much wider (Figure 4.7)
and the proportions of correctly predicted toxnodes lower (maximum
68% for COX-toxnodes using IA; maximum 58% for COX-toxnodes us-
ing EA). This leads to the conclusion that similarly as for qualitative
predictions, the concept of CA also turned out to result in the most
accurate quantitative predictions in comparison with IA and EA. The
advantage of CA was most pronounced for toxnodes showing distinct
combination effects.

combination of qualitative and quantitative predic-
tions Qualitative and quantitative prediction as described above
can also be joined. In this case, sensitivity of nodes was set to zero
if there was no significant effect predicted or measured. Table 4.7 and
Figure C.5 in Appendix C show the results for joining qualitative and
quantitative prediction. When evaluating the complete map, the pro-
portion of toxnodes with a PDR in the range of two was increased from
24-31% (only quantitative prediction) to 96% (quantitative and qual-
itative prediction combined). For significantly affected toxnodes, the
proportion decreased slightly using CA and drastically, when using IA
or EA (due to the large number of false-negative predictions using those
concepts). For COX-toxnodes the proportion of toxnodes with a PDR in
the range of two was increased slightly from 74% to 79 % when using
CA. For IA or EA, the correctly predicted proportion decreased from
68%/58% to 37%/26%.

4.3.5 Deviations from predictions

As it was shown above, the predicted sensitivity was close to the mea-
sured sensitivity for roughly 80 % of toxnodes, which showed a distinct
combination effect, and for 60% of all significantly affected toxnodes,
when applying CA for prediction. This means that at the same time
20% to 40% of the toxnodes remained for which the measurements de-
viate from the predictions. Here, a few selected examples for toxnodes
with over- and underestimated sensitivity are shown. Three examples
for underestimation of toxicity were toxnodes 1260 (CA-ratio: 2), 1020
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Table 4.6: Proportion of toxnodes, for which measured minEC50 are within a range of 2 of prediction.
CA: concentration addition; IA: independent action; EA: effect addition.

Nodes CA IA EA

All toxnodes 0.31 0.30 0.24
Toxnodes affected by mixture 0.61 0.47 0.53
COX-Toxnodes 0.74 0.68 0.58
Diuon/Naproxen-Toxnodes 0.55 0.50 0.45
Diuron/Diclofenac-Toxnodes 0.25 0.50 0.50
Toxnodes with significant combination effect (95%CI) 0.78 0.44 0.22
Toxnodes with significant combination effect (75%CI) 0.75 0.47 0.41

Table 4.7: Proportion of toxnodes, for which measured minEC50 are within a range of 2 of pre-
diction, after combination with qualitative prediction. CA: concentration addition; IA:
independent action; EA: effect addition.

Nodes CA IA EA

All toxnodes 0.96 0.96 0.96
Toxnodes affected by mixture 0.46 0.13 0.10
COX-Toxnodes 0.79 0.37 0.26
Diuon/Naproxen-Toxnodes 0.65 0.45 0.40
Diuron/Diclofenac-Toxnodes 0.50 0.75 1.00

20
50
150

minEC50

(a) predicted minEC50 (µmol)

20
50
150

minEC50

(b) measured minEC50 (µmol)

0.05
1.00
20.00

pred. ratio

(c) prediction deviation ratio

Figure 4.6: Predicted minEC50, measured minEC50, and prediction deviation ratio (PDR) for mix-
ture. All toxnodes neither predicted nor measured to be affected are plotted in gray.
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Table 4.8: Ratios of predicted and measured min EC50 for COX-toxnodes.
CA: concentration addition; IA: independent action; EA: effect ad-
dition. The ratios representing the most accurate prediction for
each toxnode are printed in bold.

Toxnode # measured
min EC50

ratio CA ratio IA ratio EA

1260 25.9 2 2.7 2.1
1139 83.7 1.3 2 1.8
1079 120.9 0.5 0.7 0.5
1019 114.1 0.3 1.5 1.4
3552 58.8 1.4 2.4 1.9
3554 44 2.5 3 3.5
1138 106.5 1.1 1.9 -1.6
1200 101.9 0.8 1.9 1.5
1076 91.1 0.6 0.8 0.7
3448 93.4 1 0.7 0.5
1137 96.6 1 3.4 3
3445 33.5 2.7 0.5 0.5
1198 74.6 1.4 1.8 1.2
3193 130.5 1.5 1.8 1.6
1968 346.9 1 -1 -0.2
3447 66.1 3.9 0.7 0.4
1919 50.7 1.8 1 0.6
3314 101.2 1.3 1.9 -0.2
360 15.2 -22.9 -22.9 -6.1
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toxnodes. CA (�);IA (�); EA (�). Prediction deviation ratios
above 1 indicate underestimation of toxnode sensitivity by the
prediction, ratios below 1 indicate overestimation.
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(CA-ratio: -2.4) and 3447 (CA-ratio:3.9), shown in Figure 4.8 and Fig-
ure 4.9. While for toxnode 1260 the deviation could actually be a bio-
logical effect, detailed examination of toxnode 1020 revealed that the
wrong prediction was based on different directions of regulation over
time visible in the single compounds. Since the regression model was
not able to capture this kind of response, the mixture prediction was
based on one of the directions and could not capture the effect in the
other direction, which lead to an underestimation of effect. In the case
of toxnode 3447 a look at the single compound measurements revealed
that regulation showed a biphasic behavior on the concentration scale.
Therefore, we checked the prediction for biphasic-CA. This resulted in
a much better prediction for this toxnode than monotonic CA. The
predictions based on the gauss-gauss model are shown in Figure 4.12.

An example for overestimation of toxicity is shown for toxnodes 1363
(CA-ratio:0.1) in Figure 4.10. It remains unclear why the distinct reg-
ulation measured in diuron exposure did not reappear in the mixture,
and a biological cause could be suspected here.

These examples show that deviations from the mixture predictions
may indicate a biological (possibly synergistic/antagonistic) effect, but
detailed examination is still needed to exclude the possibility of a
"wrong" prediction, e.g. based on misfits in single compound models.
However, predictions using the concept of CA did significantly reduce
the number of "surprising" mixture effects in our case study compared
to commonly applied concepts like EA or boolean mixture.

In general, accuracy of mixture prediction was better the clearer the
reaction towards single substances were. This is shown in Figure 4.13:
For toxnodes with a high summed CI-difference (CI-differences are
summed across the three single substances) there is a higher proportion
of toxnodes with a PDR below 2.

4.4 discussion

Regarding environmental monitoring, the presence of chemical mix-
tures in the environment has been termed "the elephant in the room"
(Schroeder et al., 2016), especially in the application of high-throughput
bioanalytical methods. The potential of toxicogenomic methods in envi-
ronmental monitoring will be heavily dependent on our understanding
about combination effects on molecular level (Altenburger et al., 2012).
To begin elucidating the basic concepts with which toxicogenomic pro-
files combine in a mixture, we conducted a mixture exposure with a
ternary mixture of the three earlier characterized compounds diuron,
diclofenac and naproxen.

The results of the mixture exposure showed that significant and pre-
dictable combination effects could be clearly identified. Moreover, the
effect profile of COX-inhibition could be recovered in the toxicogenomic
landscape of the mixture. The predictability of the whole toxicogenomic



4.4 discussion 125

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

3 hpe 6 hpe 12 hpe 24 hpe 48 hpe 72 hpe

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

−2

0

2

4

exposure concentration [µM]

lo
gF

C

1260 hill−gauss
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(b) Measured and predicted mixture effects:
measured effect (•); modeled effect ( );
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Figure 4.8: Predicted and measured single compound and mixture effects for toxnode 1260. The
mixture effect is underestimated for this toxnode (PDR = 2.0).
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(b) Measured and predicted mixture effects:
measured effect (•); modeled effect ( );
CA ( ); IA ( ); EA ( )
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(c) Single substance and mixture effects: measured effect (•); modeled effect and 95%CI ( ); dashed lines
indicate concentrations of single compounds in the mixture exposure.

Figure 4.9: Predicted and measured single compound and mixture effects for toxnode 1020. The
mixture effect is predicted in the wrong direction for this toxnode.
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(a) Modeled single substance and mixture ef-
fects: effect and 95% CI of single substance
(�); Effect and 95% CI of mixture (�)
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(b) Measured and predicted mixture effects:
measured effect (•); modeled effect ( );
CA ( ); IA ( ); EA ( )
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(c) Single substance and mixture effects: measured effect (•); modeled effect and 95%CI ( ); dashed lines
indicate concentrations of single compounds in the mixture exposure.

Figure 4.10: Predicted and measured single compound and mixture effects for toxnode 1363. The
mixture effect is overestimated for this toxnode (PDR = 0.1).
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(a) Modeled single substance and mixture ef-
fects: effect and 95% CI of single substance
(�); Effect and 95% CI of mixture (�)
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(b) Measured and predicted mixture effects
based on biphasic response: measured ef-
fect (•); modeled effect ( ); CA (biphasic)
( ); IA ( ); EA ( )
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Figure 4.11: Predicted and measured single compound and mixture effects for toxnode 3447 based
on monotonic response.
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Figure 4.12: Predicted and measured single compound and mixture effects for toxnode 3447 based
on biphasic response.
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(b) Quantitative and qualitative prediction

Figure 4.13: Proportion of correctly predicted toxnodes over summed CI-differences. CI-difference is
summed across all conditions of single substance exposures.

mixture landscape was primarily limited by uncertain descriptions of
the single component responses, which will be discussed in more detail
below.

4.4.1 Experimental design, model and prediction uncertainties

While experimental efforts for the analysis of combination effects in a
mixture exposure increase with each additional mixture component (as
each component has to be characterized on its own first), the quantita-
tive evaluation of combination effects is becoming easier with more mix-
ture components. In the case of only three components the mixture has
to be carefully designed in order to be able to evaluate prediction con-
cepts for combination effects. For a toxicogenomics experiment this is
especially challenging, since optimization must be performed for a large
number of endpoints (i.e., genes or toxnodes) simultaneously. Another
challenge is the uncertainty of model prediction for some of the tox-
nodes single compound exposures, be it because of biological variation,
or because the concentration range in the single compound exposure
did not cover the whole concentration response range. While in a single
bioassay setting one would usually prevent such cases with the help of
range finding experiments, in an omics setting we cannot get around
those uncertainties. Here, those challenges were tackled with a care-
fully selected and phenotypically anchored single component exposure
as well as an optimization approach for the mixture design, maximizing



4.4 discussion 131

the expected combination effect. Uncertainty of predictions were quan-
tified in the modeling process, including a bootstrapping approach for
mixture prediction (which also allowed for qualitative predictions about
which toxnodes will be affected by the mixture exposure). A factor po-
tentially contributing to biased predictions could also be the unknown
maximum effect for each toxnode’s regulation. Here, we assumed the
maximum (respectively minimum) logFC across all single component
conditions of our three model compounds to represent the maximum
effect (for all three compounds). Therefore, if a compound did not af-
fect a toxnode, effects were assumed to occur in higher concentrations
than the measured ones. This implies that extrapolations to higher ex-
posure concentrations have to be treated with care. At the same time,
assigning the same maximum effect to all compounds allowed us to use
CA across the whole range of effect levels. Since, we did not observe
noticeable plateaus in the concentration responses well below the as-
sumed maximum effect, we deem this approach reasonable. Otherwise,
if such plateaus were observed, one should, for example, make use of an
toxic unit extrapolation approach (Scholze et al., 2014). Anyway, the
assumed maximum effect for each toxnode will have to be reviewed,
when more single substance exposures are performed in the future.

4.4.2 Recovery of effect profiles in toxicogenomic mixture landscapes
– qualitative combination effects

In the previous chapter a set of toxnodes were proposed as effect profile
for COX-inhibition. Here, it could be shown that this effect profile could
be recovered in a mixture of two compounds used as COX-inhibitors
(diclofenac, naproxen) and one used as a herbicide (diuron): Of the
19 proposed COX-toxnodes, 18 were found to be regulated in the mix-
ture. For 14 of the COX-toxnodes the predicted sensitivity was in the
range of factor two from the measured one. Moreover, also toxnodes
found to be affected by diuron alone, were found to be affected by the
mixture. Although one compound might not be sufficient to define an
effect group profile, it could still be observed how the effects of the
different compounds in the mixture combined on transcriptome level.
For example, the up-regulation of a combination of compound or MOA
specific biotransformation enzymes (e.g., cyp1a for diuron, cyp2k18 for
diclofenac and naproxen) could be observed in the mixture exposure.
Approximately 15% of the toxnodes significantly affected by the mix-
ture were not significantly affected by any of the components, however
most of those only showed a weak regulation. These could be signs of
interactions of the compounds, however, biological variation might also
be the cause for the regulation of those toxnodes.
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4.4.3 Occurrence of quantitative combination effects

When several components in the mixture affect the same toxnodes, this
might result in a quantitative combination effect. The results of our
mixture evaluations show that quantitative combination effects can be
expected on transcriptome level (i.e., single toxnodes are affected signifi-
cantly stronger than would be expected by exposure to any of the single
components). We found that the mixture effect of approximately every
fifth toxnode which was significantly affected by the mixture exposure
resulted of a combined effect. While in some cases the mixture effects
only differed slightly from the effects of the most effective substance,
the extent of combination effect will potentially be higher in mixtures
with more components (as discussed by Faust (1999), the maximum
ratio between the ECX predicted by CA and the ECX predicted by IA
corresponds to the number of mixture components). This is especially
relevant for the evaluation of toxicogenomic portraits of environmen-
tal extracts, since the joint action of many substances can lead to a
"something-from-nothing" effect (Silva et al., 2002), i.e., an effect of the
mixture, when no effect from the single components would be expected
(by the respective compound concentrations).

4.4.4 Predictability of combination effects

To evaluate the quantitative predictability of combination effects, a
newly developed regression model for time and concentration depen-
dent transcript regulation was applied here (compare Chapter 3) in
combination with mixture concepts established for apical endpoints.
With the help of these concepts it has been shown for apical as well as
receptor based bioassays (Altenburger et al., submitted) that mixture
effects can be predicted from known effects of the mixtures components.

In the context of toxicogenomics several studies have evaluated mix-
ture effects (reviewed in Altenburger et al., 2012). However, only few
studies explicitly relate their findings to expectations based on the-
oretical mixture concepts. De Coninck et al. (2014) investigated the
effects of binary mixtures on the transcriptome of Daphnia pulex and
could identify pathways for which interactions between different stres-
sors could be suspected based on the IA assumption. Recently, Labib
et al. (2017) analyzed the transcriptome of mice lung tissues exposed to
eight different PAHs and their mixtures in three doses. For six cancer re-
lated pathways the mixture concepts of IA, CA and GCA were evaluated,
while IA was predicting pathway perturbations most accurately. Both
mentioned studies provide a good starting point for mixture evaluation,
whereas they both do not explicitly evaluate combination effects of the
compounds and rely on very limited concentration response informa-
tion.
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It was shown here that of the evaluated mixture concepts (boolean,
EA, IA, CA) the concept of concentration addition (CA) gave the most
accurate quantitative predictions of combination effects. More precisely,
for close to 80% of the toxnodes, which showed a significant combina-
tion effect, the predicted sensitivity (using CA) was in the range of fac-
tor 2 of the measured sensitivity. Similar proportions have been found
for apical endpoints before (Belden et al., 2007). This strengthens the
applied regression model and also the pharmacological assumptions be-
hind the model and the CA concept.

However, the results of this work clearly differ from the findings of
Labib et al. (2017), who found CA as overestimating the toxicogenomic
effects. One reason for this could be the different approach of gene ag-
gregation, since Labib et al. (2017) aggregated genes based on pathway
annotation, while commonly co-regulated genes were clustered here.
Additionally, the mixture predictions by Labib et al. (2017) were based
on only three concentrations, which might also include a bias in the
findings.

Interestingly, we observed that sensitivities for toxnodes with com-
bination effects were rather underestimated and almost never overesti-
mated. It could be hypothesized that this resembles a synergistic effect
for immediately affected molecular targets, which gets weaker as the
signal evolves in its cascade. This would go in line with the predic-
tions of Fitzgerald et al. (2006), who showed that feedback-loops in a
signaling cascade should stabilize a non-interacting combination effect.

4.4.5 Predictability of whole toxicogenomic mixture landscape

It was also evaluated here how well the toxicogenomic mixture land-
scape can be predicted as a whole. We evaluated (qualitative) predic-
tions of which toxnodes in the ZETU will be affected by the mixture,
and (quantitative) predictions of how the toxnodes are affected.

For qualitative predictions for the whole toxicogenomic landscape,
the CA concept gave the best balance between sensitivity and precision
of the predictions. Interestingly, qualitative prediction was more ac-
curate for up-regulation than for down-regulation (irrespective of the
mixture concept applied). This might be an indication for different
types of responses, with up-regulation being an "active" response to
substance exposure, while down-regulation might primarily be a sign
of "passive" secondary effects, unspecific disregulation, or developmen-
tal delay (compare Chapter 2).

Applying mixture concepts, we cannot only make qualitative state-
ments about which toxnodes are affected but also quantitative predic-
tions how they should be affected by a mixture. We tested the quan-
titative power of the concept of concentration addition by predicting
a concentration and time resolved set of in silico toxicogenomic land-
scapes for the mixture. The predicted set of landscapes resembled the
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main structures visible in the experimental ones. To get a more detailed
view on the quantitative predictivity, we determined prediction ratios
for the minEC50 for each toxnode. For up to 61% of the toxnodes af-
fected by the mixture the predictedminEC50 was in the range of factor
2 of the experimentally determined value. When evaluating MOA spe-
cific toxnodes (here potential COX-toxnodes) this proportion increased
to 80 % (when combining quantitative with qualitative predictions).

Certainly, the predictions using the concept of CA are far from perfect,
and measurements deviate in many cases from the predictions. Those
deviations may have several reasons. Most importantly, prediction ac-
curacy depends on the valid characterization of single substance effects.
The more subtle an effect appears on the transcriptome, the less likely
a mixture effect will be correctly predicted. However, in some cases,
also more distinct effects are not captured correctly by the applied re-
gression model. We showed that in some cases a biphasic model (such
as the suggested Gauss-Gauss model) has to be applied to capture the
single compound responses. A biphasic CA model, suggested by Martin-
Betancor et al. (2015), could improve predictivity for selected nodes
showing a biphasic concentration-response relationship. In other cases
transcript regulation direction changed over time. This effect cannot
be captured by the applied regression models and can also lead to false
mixture predictions. Therefore, if we want to use the CA predictions
as null-hypothesis to identify interaction effects between mixture com-
ponents on a genome scale, we first have to further reliably separate
technically from biologically caused deviations.

4.5 conclusion

In summary, despite the mentioned shortcomings of the predictions,
the pharmacologically based concept of concentration addition signifi-
cantly improves the prediction of mixture effects on transcriptome level,
compared to the more trivial assumptions usually made until now. On
the other hand, our results should also challenge the assumption that
mixture effects might be to complex to predict on transcriptome level
(Bluhm et al., 2014). The superiority of CA for the prediction of mixture
effects, which was shown here, will even be more pronounced in mix-
tures containing more components since combination effects are more
likely to occur. This has several important implications for the interpre-
tation of (past and future) omics mixture experiments because mixture
effects which might have been interpreted as result of compound interac-
tion so far might actually just be caused by a concentration dependent
combination effect. The results are also highly relevant when applying
integrated approaches of molecular effect prediction and molecular ef-
fect surveillance like it is suggested by Schroeder et al. (2016). Here, one
should be aware of combination effects possibly leading to effects in the
surveillance which cannot be explained by adding up effects of detected
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chemicals. On the other hand, effects might also "disappear", i.e., be
diluted in a mixture due to their concentration dependence. Addition-
ally, as it was already discussed in Chapter 3, toxicogenomic profiles
may show time dependent changes, which also should be considered in
a mixture assessment. All of this demonstrates that the inclusion of
concentration and time information in toxicogenomic databases would
provide major added value to the applicability of omics data to envi-
ronmental risk assessment and monitoring since it would allow for a
more accurate evaluation of mixture effects.

The three component mixture applied here is still far away from a
complex mixture, typically found in the environment. Still, these find-
ings support the notion of the potential application of toxicogenomic
tools to detect dominating effect profiles in complex mixtures. This
would require that effect profiles established from single component
exposures can be recovered in mixtures and that there are no domi-
nating interactions leading to unexplainable effects (Altenburger et al.,
submitted). Both requirements were found to be met in the described
mixture case study.
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5
CONCLUS IONS AND FUTURE PERSPECTIVES

A non-target bioanalytical tool for the diagnosis of chemical effects
on (aquatic) organisms could provide a tremendous improvement for
assessing and safeguarding environmental health. A few case studies
have demonstrated how omics techniques can offer non-targeted bio-
logical effect information for environmental sites (Perkins et al., 2017;
Schroeder et al., 2016; Schroeder et al., 2017). However, some compli-
cations still need to be overcome until an application like envisioned in
Section 1.3 is feasible. This includes the development of efficient and
informative experimental designs and analysis strategies, which facili-
tate the reproducibility and interconnection between different studies,
as well as the consideration of mixture effects. This dissertation aimed
at tackling these challenges arriving at the following key findings:

• In a meta-analysis of published transcriptome datasets, genes
could be identified which show a common trend of transcriptional
regulation in response to exposure against specific groups of chem-
icals, or in specific exposure settings. It was shown that experi-
mental factors, such as embryo age or the applied effect concentra-
tion may significantly alter the type or extent of transcriptome re-
sponses. Thus, heterogeneous exposure settings probably obscure
a more pronounced overlap in responses, which would have been
expected for groups of commonly acting substances, for example.

• The algorithm of self-organizing maps (SOMs) offers a promising
strategy for integrating various toxicogenomic datasets, thereby
increasing robustness, digestibility and ability to interpret the
data as well as compare the effects of different compounds or ex-
posure settings. Here, ZFE transcriptome data from 358 different
exposure conditions were used to compile a Zebrafish Embryo
Toxicogenomic Universe (ZETU). This provides a universal coor-
dinate system to project toxicogenomic compound landscapes.

• A regression model was developed, which can sufficiently describe
time and concentration dependent regulation for a majority of
genes, facilitating extrapolation and mixture prediction. Addi-
tionally, our results confirmed that gene regulation in response
to chemical exposure is time and concentration dependent.

• Combination effects could be observed and predicted on transcrip-
tome level. The concept of concentration addition (CA) performed
best in comparison to the concepts of independent action (IA),
effect addition (EA), and boolean mixture (BO) regarding quali-
tative and quantitative prediction of combination effects.
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• The concept of CA also provided a reasonable prediction of the
toxicogenomic landscape which can be expected from a mixture
exposure. The prediction quality primarily depended on the qual-
ity of single compound profiles.

These findings may have several implications for further research and
applications of toxicogenomics, which will be discussed in the following.

robustness and reproducibility There are concerns about
high variation and low reproducibility in omics experiments. Inter-
laboratory studies by Vidal-Dorsch et al. (2016) and Feswick et al.
(2017), comparing transcriptome measurements, showed that there can
be significant differences between the results of different laboratories,
even when analyzing aliquots of the same tissue sample. Certainly,
omics measurements reflect biological variance between individuals, and
the choice of array or sequencing technology, as well as differences in
laboratory practices may add additional sources of variation. However,
our analyses showed an overall concordance in transcript regulation be-
tween independent experiments, which were conducted several months
apart. Distinct toxnode regulations could be recovered in independentRobustness of

toxicogenomic
profiles could be

increased by
clustering similar

responding
transcripts and

establishing time
and concentration

response
relationships.

experiments. Strikingly, our extrapolation efforts with the help of re-
gression modeling could correctly predict gene regulation for lower expo-
sure concentrations. A potential gain of robustness can be achieved by
clustering the transcripts (e. g., as performed here with self-organizing
maps, in principle other methods are conceivable too and future re-
search might come up with even better methods). Due to the cluster-
ing, outlying measurements have less weight in the analysis. It should
be subject of further research, whether clustering approaches like SOMs
could also lead to more robust results across different laboratories.

Another important step to increase robustness is the establishment
of concentration (and time) response relationships. Thereby one adds
biological significance to a mere statistical one, when assembling gene
lists based on statistical tests. In this work, a regression model was sug-
gested, which is suitable to establish exposure concentration and time
dependent response relationships for single genes or gene sets (here,
toxnodes). From evaluating the certainty of the fitted model parame-
ters we can conclude that the experimental design used here should
be adapted to assess more concentrations. Anyway, the experimental
design and analysis pipeline, which was suggested here, demonstrates
an approach to infer robust toxicogenomic profiles.

generality Closely connected to the issue of robustness is the one
of generality. If we want to follow the vision of diagnosing environmental
health with the help of omics techniques, this implies a categorization
of pharmacological or toxicological effects (e.g., COX inhibitor, estro-
genic, cyp P450 inducer). This categorization will only be possible if
we can identify general patterns in transcriptome responses. Primarily,
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the answers to two questions need to be found: a) What do all toxicoge-
nomic profiles/landscapes within a group of similar acting compounds
have in common?; and b) what is the difference from compounds with The elucidation of

commonalities in
toxicogenomic
profiles is a
prerequisite for the
application in
effect
categorization.

other MOAs? At the same time we will have to differentiate between
patterns indicating a specific molecular response and patterns which
are more general or dependent on other factors, e.g. toxicokinetic prop-
erties of substances. In other words, we should identify the points at
which different molecular AOPs converge.

In my perception, the issue of generality was no major focus in toxi-
cogenomic studies published so far. Here, it was a central goal to eval-
uate common responses in published datasets (Chapter 2) and develop
an experimental design and analysis pipeline improving our ability to
compare responses between compounds (Chapter 3).

If we want to use toxicogenomic patterns to categorize biological
effects, a challenge lies in an incomplete reference grouping. While for
compounds applied as pharmaceuticals usually the therapeutic target
(in mammals) is known, there might be additional unknown targets. For
other compounds and other organisms there might be no MOA known at
all (such as for the effects of diuron in the ZFE). Therefore, the definition
of characteristic patterns probably has to be tackled from two ends: On
the one hand, we should find common characteristics for compounds
with known common MOA; on the other hand we should use a sufficient
data set of toxicogenomic profiles to group compounds according to
their toxicogenomic effect profile in an unsupervised manner.

complexity of gene regulation and combination ef-
fects Given the complex interactions between elements of molecu- Regulation of gene

transcription is
complex – however,
patterns can be
described by simple
regression
modeling.

lar regulatory networks, it may be suspected that regulation of genes
or gene sets is hardly predictable and governed by emergent proper-
ties (especially when evaluating mixture effects). This was suspected
by Bluhm et al. (2014), for example, who speculated that the toxi-
cogenomic profile of a mixture might not resemble the profiles of its
components. However, in our case study the opposite was true. The
regulation of most genes (respectively toxnodes in the context of our A boolean mixture

concept proved to
be too simplistic to
describe mixture
effects on
transcriptome, CA
describes mixture
effects sufficiently
in many cases.

analysis pipeline) was well predictable also in the context of a mixture
exposure. Additionally, the majority of combination effects, which oc-
curred in the mixture exposure, could be predicted by applying the
concept of concentration addition (CA).

On the other hand, some studies oversimplify expected mixture ef-
fects by assuming boolean mixture effects (Perkins et al., 2017; Schroeder
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et al., 2016; Schroeder et al., 2017), which turned out to give very im-
precise expectations in our case study. To be able to account for combi-
nation effects in mixture predictions, toxicogenomic profiles should in-
clude concentration dependence in future studies. The encouraging find-
ings of our case study regarding the predictability of mixture and com-
bination effects should be deliberately extended to multi-component
mixtures in future.

interpretation of regulated genes One of the greatest
remaining challenge for the application of omics techniques in (eco)toxi-
cological sciences is the functional interpretation of the identified (sig-
nificantly) regulated genes. To functionally interpret gene expression
data, Subramanian et al. (2005) established the method of gene set
enrichment analysis (GSEA). Recently, Dean et al. (2017) suggested
to combine GSEA with benchmark dose modeling to retrieve compound
specific dose ranges leading to the activation of enriched signaling path-
ways. Additionally, commercial software tools like Ingenuity Pathway
Analysis provide extensive curated knowledge bases integrated with so-
phisticated analysis tools (Krämer et al., 2014). However, there are alsoThe interpretation

of regulated genes
remains

challenging. The
establishment of

reference databases
including

concentration (and
time) dependent
toxicogenomic

exposure and effect
patterns would be

helpful for the
application of

toxicogenomics in
environmental

monitoring.

doubts about the guilt-by-association strategy to predict gene functions,
and despite all annotation efforts it is still not trivial to derive a func-
tional interpretation from a toxicogenomic profile. This is partly due to
the multi-functionality of many genes (Gillis and Pavlidis, 2011), but
also to the lack of concentration response relationships. These would
support functional association of genes and allow differentiating be-
tween specific and more general toxnodes. In this work, the functional
interpretation of affected gene sets was not the main focus and only
exemplarily performed. However, the COX-inhibitor pattern in the tox-
icogenomic landscape, which was identified here, provides a good start-
ing point for mechanistically evaluating the effect of inhibiting COX in
the ZFE.

With regard to the development of a non-target bioanalytical tool,
I would recommend the establishment of reference profiles for a set of
representative compounds, for which we have knowledge about their
molecular action. Subsequently, the regulation of specific gene clusters
(e.g., toxnodes) may be connected to the exposure to a specific com-
pound group.

Additionally, toxicogenomic patterns should be connected to expected
adverse outcomes. This could either be achieved by direct correlation
between toxicogenomic patterns and adverse effects ("phenotypic an-
choring", Paules, 2003) or by retrieving information about disturbed
molecular processes from a toxicogenomic profile and subsequently pre-
dicting higher level effects with the help of adverse outcome path-
ways (AOPs) (compare Brockmeier et al., 2017).
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To make the establishment of a reference database of toxicogenomic
exposure and effect patterns economically feasible, one could consider
the application of reduced arrays (see below).

In the long term, the usefulness of functional annotation databases
like Gene Ontology (GO, Ashburner et al., 2000), Molecular Signatures
Database (MSigDB, Liberzon et al., 2011), or Comparitive Toxicoge-
nomics Database (CTD, Davis et al., 2017), would significantly increase
with the inclusion of quantitative exposure information and concentra-
tion response relationships.

embryo development While the zebrafish embryo offers sev-
eral advantages as model organism, it poses the challenge that it un-
dergoes quite drastic changes during the course of the exposure. While
we could successfully describe the changes in gene regulation induced
by compound exposure, we neglected (i.e., normalized) the changes of
gene expression due to embryo development. To get closer to a mech-
anistic understanding of compound action, a future goal should be to
describe regulation of each gene (or toxnode) in normal development
and then model the deviations induced by chemicals.

economic costs A major confounding factor for establishing ex-
tensive toxicogenomic datasets is the price of omics measurements. Reduced arrays

may facilitate high
throughput
transcriptome
profiling.

Therefore, there have been efforts to use reduced arrays implying much
lower costs, which allows to establish extensive data sets (compare Sub-
ramanian et al., 2017). Recently, a reduced array for the zebrafish tran-
scriptome was suggested (Wang et al., 2018) including representative
genes for a range of biological pathways. However, this selection was
not based on zebrafish experimental data, but focused on orthologues
of genes known to be important in mammalian toxicology. Therefore,
as an alternative approach to design a reduced zebrafish array we would
suggest to select a representative gene for each toxnode of the Zebrafish
Embryo Toxicogenomic Universe (ZETU).

First, it might be necessary though to derive whole transcriptome tox- SOMs could guide
the design of
efficient reduced
arrays.

icogenomic profiles of a broader range of chemicals. The experimental
design applied here could be used as a guidance for such experimenta-
tion. After updating the ZETU, representative genes for each toxnode
might be chosen for a reduced array.

big data paradigm In the field of high-content methodologies,
where massive amounts of data are generated, there has been a paradigm
shift in scientific methodology, which has been described as a shift
from theoretical science ("second paradigm") and computational science
("third paradigm") to exploratory science ("fourth paradigm") (Bell
et al., 2009; Kitchin, 2014). This shift has let scientists declare the
"end of theory" and propose to let "the numbers speak for themselves"
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(Anderson, 2008). Indeed, the approaches taken in many (eco)toxicoge-
nomic studies seem to follow this envisioned change in scientific meth-
ods, such that explicit study hypotheses are rarely stated or falsified.
Rather, the classical approach in ecotoxicogenomics is the measurement
and analysis of an omics profile after a more or less arbitrarily chosen
compound exposure. Subsequently the data are screened for somewhat
interesting patterns or structures. This leads to findings what happens,
but rarely it can be resolved why something happens. While in some ar-
eas data might indeed be rich enough to be used in a solely exploratory
fashion, in my perception toxicogenomics is far from this point. In spite
of over 2× 106 gene expression profiles in the Gene Expression Om-
nibus (GEO) database, this still represents a quite strict selection ofHigh content data

in toxicogenomics
does not supersede

careful
experimental

design based on
theoretical
concepts.

biological instances, and as Leonelli (2014) states, the selection "is not
the result of scientific choices, which can therefore be taken into ac-
count when analyzing the data. Rather, it is the serendipitous result of
social, political, economic and technical factors". In this work I tried to
demonstrate from different ends that application of high-content data
can (and should) be combined with theoretical reasoning to progress
and apply our understanding of biological processes. Only careful ex-
perimental design and "ancient" mixture theory allowed to make a step
forward in omics mixture toxicology. This supports the notion of Maz-
zocchi (2015), who stated that with the big data era "there is no ’end
of theory’ but only new opportunities".

In summary, it can be concluded that transcriptome analyses bear
the potential as a non-target bioanalytical tool. Many of the previously
identified drawbacks and hurdles can be overcome by conducting more
strategic experiments and establishing valid toxicogenomic concentra-
tion response profiles. My dissertation is meant to be a step into this
direction. It offers a strategy how to acquire and analyze time and con-
centration resolved toxicogenomic data as well as a strategy to predict
and validate combination effects, which may be a valuable improvement
when aiming at diagnosing chemical mixtures with the help of omics
analyses.
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a.1 quality control, normalization

All studies included in the meta-analysis followed MIAME-Guidelines
meaning that raw data and sufficient sample and array annotation was
supplied by the authors for a reanalysis (Brazma et al., 2001). If avail-
able, the processed signal intensity was taken as transcription measure,
for other arrays background subtraction was applied. For Affymetrix
arrays the package "oligo" was used to extract transcription measures
from the raw data (Carvalho and Irizarry, 2010). As quality control
the inter-quartile ranges (iqr) of each array was compared within each
dataset. If the iqr of a single array diverged for more than 3 stan-
dard deviations from the median iqr in one dataset, this array was
not further considered in the analysis (see figure S2 for an example).
If duplicate probe spots were present on the array the median signal
was taken as probe value. Probes that did not show a signal above the
negative control probes in most samples (0.9*(Number of Samples in
Dataset/Number of Contrasts in Dataset)) were removed from analysis.
If no negative control probes were present on the array, the 5% quan-
tile of all arrays in the dataset was taken as negative control cutoff.
If batch information was available for a dataset, batch correction was
applied using the empirical Bayes based method "ComBat" (Johnson
et al., 2007), with compound name, concentration and measurement
time (hpf) given as covariates. This method has outperformed other
batch correction methods in comparison studies (Chen et al., 2011).

a.2 annotation

The platform information files were downloaded from GEO or ArrayEx-
press in *.soft format when available, otherwise probe sequence informa-
tion was directly downloaded from the manufacturer homepage. From
each platform file the probe IDs and corresponding nucleotide sequences
were extracted and stored in FASTA format. The probes were then
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mapped against the Danio rerio genome (DanRer10/GRCz10, Septem-
ber 2014) using stand-alone BLAT (Kent, 2002) with maximum Intron
size set to 380000 (which is the maximum known intron size for Danio
rerio according to Moss et al. (2011)), the minimum Identity to 95%
the tileSize to 9 and stepSize to 5, the minimum Score to 19. These
settings were chosen for a fine mapping, also allowing for shorter probe
sequences (as it is the case for Affymetrix Arrays). Only hits uniquely
mapping to a certain region of the zebrafish genome were further consid-
ered. The mapped regions were subsequently annotated with Ensembl
Gene IDs. If a probe "exon" showed overlap of at least one nucleotide
with an annotated exon or UTR in the Ensembl Database (Ensembl
Release 80, May 2015), it was considered a valid annotation. If no anno-
tation was found in the Ensembl Database, the RefSeq-Database was
queried additionally (RefSeq annotation of GRCz10, 26.09.2014).

In parallel to genome mapping of the probes, the probes were mapped
to the Danio rerio cDNA database (Ensembl Release 80, May 2015)
using BLAT (maximum Intron size = 0, remaining parameters as in
genome mapping), as in genome annotation only unique hits were con-
sidered. If there was conflicting information between genome and cDNA
annotation the corresponding probes were not considered for analysis.
Only probes with explicit annotation were considered in further anal-
ysis. If several probes existed for one gene, the probe with the highest
IQR was taken for analysis.

For Affymetrix Arrays annotation of single probes were summarized
on probeset level. If more than 50% of probes in a probeset were
uniquely annotated with the same Gene ID, the respective Gene ID
was considered a valid annotation for the probeset.

a.3 retrieval of genesets for functional annota-
tion

For functional annotation a manually combined library of gene sets
was created from selected databases deemed to be most relevant for
zebrafish gene annotation. All genes annotated with a common an-
notation term were grouped together in one gene set. Usually each
gene is member of several different gene sets. Only gene sets con-
taining more than 10 and less than 400 genes were considered for
analysis. Annotation of KEGG zebrafish pathways was retrieved us-
ing the R package "KEGGREST" (Tenenbaum, 2015), ZFIN annota-
tion was directly downloaded from the ZFIN database (www.zfin.org/
downloads). Gene Ontology and Interpro-Domain annotation was re-
trieved using the R package "biomaRt" (Durinck et al., 2005, 2009).
Zebrafish WikiPathways were directly downloaded from the WikiPath-
ways database (www.wikipathways.org).

Additionally, gene sets containing genes with common transcription
factor binding sites as defined in the TRANSFAC database (version 7.4,

www.zfin.org/downloads
www.zfin.org/downloads
www.wikipathways.org
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http://www.gene-regulation.com/) were retrieved from the Molecu-
lar Signatures Database (v5.2) (Subramanian et al., 2005). For enrich-
ment analysis of transcription factor binding sites, zebrafish genes were
converted to their human orthologues using the HGNC Database (Gray
et al., 2015).

a.4 supplemental figures

http://www.gene-regulation.com/
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Figure A.2: Boxplot of signal intensity distribution within samples of one
dataset. The interquartile range of Sample 2 (red) is more than
three standard deviations smaller than the median iqr in the
dataset. It is not further considered in the analyis.
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Figure A.3: Coverage of the recent Danio rerio transcriptome (dan-
Rer10/Ensembl v80) by the microarray platforms used in the an-
alyzed studies. (A) Bars represent the number of unique genes
covered on the array. Red lines show the number of genes in
the Ensembl Database, and the number of gene covered on all
arrays. The plot shows that many platforms only reliably cover
roughly 50% of all genes in the database. Consequently, no more
than 12,000 genes can be compared across 50% of all contrasts.
If one wants to compare across all contrasts, this is only possi-
ble for roughly 5,000 genes. (B) Coverage of database genesets
wikipahtways, KEGG, GO, ZFIN and Interpro by the microarray
platforms used in the analyzed studies. Bars represent the num-
ber of pathways of which a minimum of 30% of genes are covered
on the respective array. Red lines show the number of pathways
in all databases, and the number of pathways covered on all ar-
rays. The plot shows that nearly all gene sets are covered by a
significant amount of genes on all arrays.
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Figure A.5: Top 10 occuring differentially expressed genes (DEGs) across all
treatments. Red = differentially expressed, blue = not differen-
tially expressed, white = no information.
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Figure A.6: Top 10 occuring differentially expressed genes (DEGs) across early
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Figure A.7: Top 10 occuring differentially expressed genes (DEGs) across mid-
dle treatments (exposure end before 50 hpf). Red = differentially
expressed, blue = not differentially expressed, white = no infor-
mation.
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Figure A.8: Top 10 occuring differentially expressed genes (DEGs) across late
treatments (exposure end after 50 hpf). Red = differentially ex-
pressed, blue = not differentially expressed, white = no informa-
tion.
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Figure A.9: Top 10 occuring differentially expressed genes (DEGs) across no-
effect treatments (applied concentration had no reported pheno-
typic effect in the experiment). Red = differentially expressed,
blue = not differentially expressed, white = no information.
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Figure A.11: Top 10 occuring differentially expressed genes (DEGs) across EC
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entially expressed, white = no information.



A.4 supplemental figures 165

D
ecabrom

odiphenyl ether 29

P
araquat 24

T
hioacetam

ide 24

2,3,7,8−
tetrachlorodibenzo−

p−
dioxin 22

tert−
butylhydroquinone 40

2,3,7,8−
tetrachlorodibenzo−

p−
dioxin 40

P
erchloroethylene 6

B
enz_a_anthracene 10

D
initrophenol 5

E
thanol 26

A
ll−

trans−
retinoic acid 17

E
thanol 23

P
entachlorophenol 13

A
ll−

trans−
retinoic acid 27

slc1a4

pfkfb3

mcl1b

slc25a25a

gclc

slc16a9a

zgc:85866

tspan36

pvalb8

cbx7a
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Figure A.13: Top 10 occuring differentially expressed genes (DEGs) across
neuroactive treatments. Red = differentially expressed, blue =
not differentially expressed, white = no information.
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(e) LOEC concentrations
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Figure A.15: Volcaonplot of summary effect sizes. Each tested gene is repre-
sented by a dot, red dots represent genes with FDR smaller than
0.05 and an absolute effect size larger than 1. Dotted lines depict
cutoffs.
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Figure A.16: Heatmap of single effect sizes of top 100 "meta-genes" (= genes
significantly differentially expressed in a subgroup as indicated
by effect size analysis) detected in early measurements (exposure
end before 24 hpf). Values above 0 = increased expression after
chemical exposure, values below 0 = decreased expression after
chemical exposure. Values above 5 and below -5 are clipped.
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Figure A.17: Heatmap of single effect sizes of top 100 "meta-genes" (= genes
significantly differentially expressed in a subgroup as indicated
by effect size analysis) detected in middle measurements (expo-
sure end before 50 hpf). Values above 0 = increased expression
after chemical exposure, values below 0 = decreased expression
after chemical exposure. Values above 5 and below -5 are clipped.
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Figure A.18: Heatmap of single effect sizes of all significant "meta-genes" (=
genes significantly differentially expressed in a subgroup as indi-
cated by effect size analysis) detected in late measurements (ex-
posure end after 50 hpf). Values above 0 = increased expression
after chemical exposure, values below 0 = decreased expression
after chemical exposure. Values above 5 and below -5 are clipped.
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Figure A.19: Heatmap of single effect sizes of all significant "meta-genes" (=
genes significantly differentially expressed in a subgroup as indi-
cated by effect size analysis) detected in no-effect experiments
(applied concentration had no reported phenotypic effect in the
experiment). Values above 0 = increased expression after chemi-
cal exposure, values below 0 = decreased expression after chem-
ical exposure. Values above 5 and below -5 are clipped.
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Figure A.20: Heatmap of single effect sizes of top 100 "meta-genes" (= genes
significantly differentially expressed in a subgroup as indicated
by effect size analysis) detected in LOEC experiments (applied
concentration was lowest observed effect concentration or some
not precisely defined low effects up to EC10). Values above 0
= increased expression after chemical exposure, values below 0
= decreased expression after chemical exposure. Values above 5
and below -5 are clipped.
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Figure A.21: Heatmap of single effect sizes of top 100 "meta-genes" (= genes
significantly differentially expressed in a subgroup as indicated
by effect size analysis) detected in EC experiments (applied con-
centration reported to induce visible or lethal effects). Values
above 0 = increased expression after chemical exposure, values
below 0 = decreased expression after chemical exposure. Values
above 5 and below -5 are clipped.
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Figure A.22: Heatmap of single effect sizes of all significant "meta-genes" (=
genes significantly differentially expressed in a subgroup as indi-
cated by effect size analysis) detected in exposures to reactive
compounds. Values above 0 = increased expression after chemi-
cal exposure, values below 0 = decreased expression after chem-
ical exposure. Values above 5 and below -5 are clipped.
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Figure A.23: Heatmap of single effect sizes of top 100 "meta-genes" (= genes
significantly differentially expressed in a subgroup as indicated
by effect size analysis) detected in exposures to neuroactive com-
pounds. Values above 0 = increased expression after chemical
exposure, values below 0 = decreased expression after chemical
exposure. Values above 5 and below -5 are clipped.
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Figure A.24: Heatmap of single effect sizes of top 100 "meta-genes" (= genes
significantly differentially expressed in a subgroup as indicated
by effect size analysis) detected in exposures to endocrine com-
pounds. Values above 0 = increased expression after chemical
exposure, values below 0 = decreased expression after chemical
exposure. Values above 5 and below -5 are clipped.
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Figure A.25: Clusterplot of significantly enriched gene sets in meta-genes (=
genes significantly differentially expressed in a subgroup as indi-
cated by effect size analysis) of early experiments (measurement
not later than 24 hpf). Gene sets with overlapping genes are
connected Several functional/anatomical clusters were found.
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b.1 exposure

Wild-type adult zebrafish, originally received from OBI petshop (Leipzig,
Germany) were kept in 120 L fish tanks containing carbon-filtered tap
water at 26(1) ◦C under a 12h:12h dark-light cycle. Eggs were collected
approximately 1 hour after light onset and inspected using a light mi-
croscope. Fertilized eggs were incubated at 26(1) ◦C, while unfertilized
eggs were discarded. For lethality experiments, which were conducted to
find adequate exposure concentrations for transcriptome experiments,
nine embryos per replicate were distributed into three 7.5 mL glas vials,
each containing 6 mL exposure or control medium. Vials were sealed
and incubated in a climate chamber shaking (Edmund Bühler SM-30
Control, 26(1) ◦C, 75 rpm, 12h:12h light:dark) till 96 hours post fertil-
ization (hpf). At 48 hpf, 72 hpf and 96 hpf sublethal and lethal effects
were recorded. For transcriptome experiments 20 embryos per repli-
cate were transfered to two 20 mL GC-glas vials at 24 hpf. A volume
of 18 mL of exposure medium was added to each vial and vials were
sealed and incubated in a climate chamber (same settings as above)
until sampling. Embryos were exposed to a range of 5 different concen-
trations of toxicant and RNA was extracted at 6 different timepoints
(see figure 3.3). Exposure medium for all experiments was prepared by
dissolving the substance in freshly prepared ISO-water (pH 7.4, oxy-
genized) (Diclofenac, Naproxen) or in 0.1 % methanol as solubilising
agent (Diuron).

b.2 rna extraction and isolation

At observation time points (specified above), two vials of embryos (20 in
total) were transfered into 150 µL Eppendorf tubes. RNA was extracted
by addition of 150 µL of Trizol and homogenization using a T10 basic
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Ultra-Turrax (IKA, Werke GmbH & Co. KG, Germany) for 20 sec at
maximum speed. RNA isolation was performed using a pipetting robot
(Microlab Star, Hamilton Life Science Robotics, Germany) following
the manual provided for Total RNA Extraction Kit MagMAX 96 for
microarrays and conducted in a 96-well plate. Quality of isolated RNA
was assesed using a Bioanalyzer (Agilent 2100 Technologies, Waldborn)
and the Agilent RNA 6000 Nano Kit. RNA samples were used for fur-
ther processing if RIN values derived from ribosomal RNA absorption
adopted values > 7 and calculated concentrations exceeded 100 ng µL−1.
RNA samples were diluted to a concentration level of 25 ng µL−1 by ad-
dition of RNAse free water.

b.3 measurement of transcript abundance (ta)

Procedure for transcriptome measurement is described in detail in (Agilent,
2012) and will be outlined here in brief only. To measure transcript
abundance RNA was first transcribed into complementary DNA. Af-
terwards, the cDNA was transcribed and amplified into cRNA, while
incorporating fluorescently labeled cytidine nucleotides. The cRNA was
fragmented and hybridized with Oaklabs ArrayXS Zebrafish microar-
ray slides. All these steps were applied according to the manufacturer’s
protocol (Agilent, 2012) and using the equipment recommended in the
protocol.

Microarray slides were scanned with the Agilent High-Resolution Mi-
croarray Scanner (settings: Area 61 mm× 21.6 mm, image resolution
3 µm, intensity 100 %, modus single pass). Intensity values were ex-
tracted from captured images using Agilent Feature Extraction Soft-
ware (Version 11.5.1.1).

RNA samples in the Diclofenac experiment were partly processed by
Oaklabs GmbH (Berlin, Germany). Potential batch effect, caused by
handling the samples in two different laboratories was accounted for
during data analysis.

b.4 removal of batch effect

Due to technical reasons, parts of the arrays of the Diclofenac expo-
sure were hybridized and measured by Oaklabs GmbH (Hennigsdorf,
Germany).

b.5 parameter boundaries

The maximum slope we can unravel depends on the spacing of our
concentrations. It would describe a change of effect from approximately
1% to 99% in between two measured concentrations. This implies an
effect of 99% in the X50 multiplied by the square root of the dilution
factor (DF):
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Effect =
maxFC

1 + exp (−slope ∗ (log c− logX50))

(B.1)

⇔ =
maxFC

1 + exp
(
log (c−slope)− log

(
X−slope50

))
(B.2)

⇔ =
maxFC

1 + exp
(

log
(
c−slope

X−slope
50

)) (B.3)

⇔ =
maxFC

1 +
(

c
X50

)−slope insert values

(B.4)

0.99 ∗maxFC =
maxFC

1 +
(
X50∗

√
DF

X50

)−slope (B.5)

⇔
√
DF

−slope
=

1
0.99 − 1 (B.6)

⇔ slope = −
log

(
1

0.99 − 1
)

log
(√

DF
) (B.7)

For the minimum slope the calculation is the similar. Here we expect,
that a minimum slope that still can be unraveled by our measurements
would describe a change of 1% effect across the measured concentra-
tion range. This implies an effect of 50.5% at a concentration of EC50
multiplied by the square root of the concentration range.

The lowest σ we can measure depends on the spacing of our time-
points. If an effect occurs only at one time point, there should be less
than 1% effect at the preceding/succeeding measured time points. In
our setting the smallest factor between two time points is 2/3 (between
48 and 72h):

Sensitivity = maxS50 ∗ exp
(
−0.5 ∗

( log t− logµ
σ

)2
)

(B.8)

0.01 ∗maxS50 = maxS50 ∗ exp
(
−0.5 ∗

( log 2/3
σ

)2)
(B.9)

⇔ log (2/3)
σ

=
√
−2 ∗ log 0.01 (B.10)

⇔ σ =
log (2/3)√
−2 ∗ log 0.01

(B.11)

This implies that the term exp (−0.5 ∗ ( log(48/72)
σ )2), which describes

the time dependence of the sensitivity should be 0.01.
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Table B.1: Parameter boundaries for Hill-Gauss-model (Equation 3.5). Concrange: Ratio between
highest and lowest concentration applied for respective substance. DF: Smallest dilution
factor between applied concentrations for respective substance.

parameter min max reasoning

slope − log ( 1
0.505−1)

log√concrange − log ( 1
0.99−1)

log
√
DF

Minimum slope
would imply a max-
imum increase in
effect across the
tested range of 1%.
Maximum slope
would imply a max-
imum increase in
effect of 98% be-
tween two tested
concentrations.

maxSen 1
concrange∗max(appl. concentration)

concrange
min(appl. concentration) X50 can be below or

above tested concen-
trations. It is not dis-
crimibable from the
data, if it is just
above or well above
(resp. below)

σ log 1.5√
−2∗log 0.01

log 72/3√
−2∗log 0.99 Minimum sigma

would imply a 1% ef-
fect in the timepoint
succeeding the max-
imum; Maximum
sigma would imply a
99% effect at most
distant time point

µ 3 72 the highest (mea-
sured) sensitivity
of a gene can only
be in the range
of measured time
points
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Table B.2: Parameter boundaries for Gauss-Gauss-model (Equation 3.6). Concrange: Ratio between
highest and lowest concentration applied for respective substance. DF: Smallest dilution
factor between applied concentrations for respective substance.

parameter min max reasoning

sconc logDF√
−2∗log 0.01

logConcrange√
−2∗log 0.99 Minimum slope

would imply a max-
imum increase in
effect across the
tested range of 1%.
Maximum slope
would imply a max-
imum increase in
effect of 98% be-
tween two tested
concentrations.

mconc 1
concrange∗max(appl. concentration)

concrange
min(appl. concentration) X50 can be below or

above tested concen-
trations. It is not dis-
crimibable from the
data, if it is just
above or well above
(resp. below)

σ log 1.5√
−2∗log 0.01

log 72/3√
−2∗log 0.99 Minimum sigma

would imply a 1%
effect in the time
point succeeding the
maximum; Maxi-
mum sigma would
imply a 99% effect
at most distant time
point

µ 1.5 75 the highest (mea-
sured) sensitivity of
a gene can only be
in the range of mea-
sured time points.
The limits are set a
bit wider to avoid
boundary effects
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b.6 supplemental figures
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Figure B.1: Histogram of AICc-weights compared to spline. The spline is preferred over the regression
model for a majority of the toxnodes. However for roughly 25% of the nodes the regression
models are preferred over the much more flexible spline.
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Figure B.2: Histogram of AICc-weights compared to spline. The spline is preferred over the regression
model for a majority of the toxnodes. However for roughly 25% of the nodes the regression
models are preferred over the much more flexible spline.
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(a) minEC50 (b) µ (c) sigma (d) hillslope

Figure B.3: Uncertainty of parameter estimates (Hill-Gauss model, diuron) across all toxnodes. Each
blue line represents the 50% confidence interval for one toxnode.

(a) minEC50 (b) µ (c) sigma (d) hillslope

Figure B.4: Uncertainty of parameter estimates (Hill-Gauss model, diclofenac) across all toxnodes.
Each blue line represents the 50% confidence interval for one toxnode.

(a) minEC50 (b) µ (c) sigma (d) hillslope

Figure B.5: Uncertainty of parameter estimates (Hill-Gauss model, naproxen) across all toxnodes.
Each blue line represents the 50% confidence interval for one toxnode.
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(a) mconc (b) µ (c) sigma (d) sconc

Figure B.6: Uncertainty of parameter estimates (Gauss-Gauss model, diuron) across all toxnodes.
Each blue line represents the 50% confidence interval for one toxnode.

(a) mconc (b) µ (c) sigma (d) sconc

Figure B.7: Uncertainty of parameter estimates (Gauss-Gauss model, diclofenac) across all toxnodes.
Each blue line represents the 50% confidence interval for one toxnode.

(a) mconc (b) µ (c) sigma (d) sconc

Figure B.8: Uncertainty of parameter estimates (Gauss-Gauss model, naproxen) across all toxnodes.
Each blue line represents the 50% confidence interval for one toxnode.
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b.7 supplemental tables

Table B.3: Top ten toxnodes regulated by diuron given by Gauss-Gauss model. Ratio Lethal:
min(LC50)/min(EC50)Toxnode; Ratio Sublethal: min(EC50)apical/min(EC50)Toxnode.
Parameter estimates given as ranges of 95% confidence interval.

to
xn

od
e
#

Membergenes ra
tio

Le
th
al

ra
tio

Su
bl
et
ha

l

m
co
n
c

sc
on
c

µ si
g
m
a

er
r

su
m
(C

I-
di
ffe

re
nc
e)

3567 cyp1a 15.8 15.8 45.1
85.2

2.0
2.6

12.4
16.8

2.08
2.83

0.25
0.37

76.3

1303 cyp1b1 10.1 10.1 22.0
131.7

1.2
2.6

1.5
3.6

1.95
2.87

0.43
0.66

21.8

3568 cyp1c2, cyp1c1, NA 9.4 9.4 31.3
81.1

1.3
2.1

18.7
21.9

0.83
1

0.59
0.74

12

3507 sult6b1 7.9 7.9 55.9
267.4

1.7
3.1

6.5
12.2

1.19
1.96

0.22
0.34

8.3

1362 crybb1l3, NA, NA, si:ch1073-
82l19.1

0.5 0.5 3.5
27.1

1
11.2

1.8
3.6

0.28
0.67

0.62
0.77

3.6

1117 saga, arr3a 0.5 0.5 0.7
200.3

0.7
15.2

1.7
3.6

0.17
0.68

0.64
0.87

3.2

1115 crygm5, si:dkey-57a22.15 19.2 19.2 8.3
21.2

0.7
3.5

1.9
4

0.28
0.75

0.76
1.02

3

1243 tecrl2b, aglb, NA 11.8 11.8 10.8
14.7

0.7
1

1.6
3.2

0.73
1.26

0.56
0.7

2.9

1380 srgn, hspb2, capn3a 0.4 0.4 3.8
53.4

0.9
14.9

2.1
3.4

0.14
0.4

0.57
0.73

2.3

651 prss59.2 0.7 0.7 0.2
250.2

1.8
17.2

18.6
30.5

0.13
0.22

0.59
0.88

-2.2
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Table B.4: Top ten toxnodes regulated by Diclofenac given by Gauss-Gauss model. Ratio Lethal:
min(LC50)/min(EC50)Toxnode; Ratio Sublethal: min(EC50)apical/min(EC50)Toxnode.
Parameter estimates given as ranges of 95% confidence interval.
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1260 cyp2k18 2 1.9 3.7
10.4

0.5
2.5

46.5
54.6

0.18
0.3

0.82
1.21

12.1

1259 si:zfos-411a11.2 1.9 1.8 3.7
10.5

0.4
2.5

55.1
56.7

0.15
0.19

0.23
0.34

8.5

1079 lepa, pth1a 1.9 1.7 3.7
10.4

0.4
2.5

49.4
55.8

0.17
0.29

0.71
0.94

4.9

1500 crygm3, crygm2d12, crygm1,
crygm2d13, crygm2d7,
crygm2d3

2 1.8 4.1
10.2

0.2
2.5

5.1
7.3

0.13
0.2

0.42
0.49

-4.5

3446 ugt1a4, ugt1a5, ugt1a6,
ugt1a7, ugt1a2, ugt1a1,
ugt1ab

2.1 1.9 3.6
10.3

0.4
2.5

47.2
55.1

0.17
0.29

0.17
0.27

3.8

1968 si:dkey-1c7.3 1.9 1.7 3.8
10.3

0.4
2.5

41.8
51

0.13
0.24

0.52
0.79

-3.6

1137 fosab 1.6 1.5 4.0
10.5

0.2
2.4

46.3
56.6

0.16
0.35

0.75
1.14

3.4

1440 crygmxl2 1.2 1.1 3.7
10.4

0.4
2.5

4.8
7.7

0.13
0.2

0.42
0.64

-3

1002 grapb 1.3 1.2 3.6
5.7

0.1
0.5

1.9
6.5

0.46
1.43

0.71
1.04

2.7

1199 nfe2l2b 1.1 1 3.8
10.3

0.3
2.5

38.9
53.1

0.19
0.43

0.43
0.65

2.4
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Table B.5: Top ten toxnodes regulated by Naproxen given by Gauss-Gauss model. Ratio Lethal:
min(LC50)/min(EC50)Toxnode; Ratio Sublethal: min(EC50)apical/min(EC50)Toxnode.
Parameter estimates given as ranges of 95% confidence interval.
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1260 cyp2k18 5.8 2.8 89.7
662.5

1.5
5.8

60.2
63.9

0.32
0.4

0.28
0.44

33.6

3312 serpinh1b 5.4 2.7 475.6
707.1

1.4
2.3

49.4
74.2

0.88
1.24

0.27
0.42

23.7

1139 slc25a38a, c7b 2.7 1.3 378.1
595.9

0.8
1.2

65.9
74.8

0.24
0.36

0.32
0.44

16.5

1259 si:zfos-411a11.2 5.7 2.8 61.4
699.7

1.5
5.7

62.5
74.7

0.24
0.48

0.21
0.32

15.6

1320 si:rp71-80o10.4 3 1.5 466.3
706.8

1
1.6

65
74.9

0.52
0.84

0.39
0.59

15.6

1140 si:ch1073-165f9.2, isg15 2.4 1.2 387.9
629.6

0.7
1.2

65.6
74.9

0.3
0.54

0.59
0.8

14.5

1078 mmp13a 3.6 1.8 336.2
702.7

0.8
1.8

64.5
74.9

0.18
0.32

0.38
0.6

13.7

3493 slc16a9a 4.2 2.1 261.9
702.5

0.8
2.7

62.9
74.9

0.2
0.43

0.38
0.6

12.5

1080 LOC557301, LOC101885512,
NA, bmb

3.3 1.6 528.8
707.1

1.2
1.7

70.2
75

0.6
0.77

0.45
0.56

12.4

3477 ahsg2 3.9 1.9 64.7
686.5

0.9
5.7

67.3
74.9

0.13
0.18

0.98
1.53

-
12.4
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c.1 Biphasic concentration addition 193
c.2 Supplemental Figures 194

c.1 concentration addition for biphasic concentra-
tion response relationships

In Chapter 3 we showed that the concentration dependence of some tox-
nodes are biphasic. Martin-Betancor et al. (2015) suggested an exten-
sion of the concentration addition concept for biphasic concentration re-
sponse relationship, which we exemplary applied for our toxicogenomic
dataset. Martin-Betancor et al. suggest to represent the effective doses
by a two-dimensional vector consisting of Ep, and Dp. Dp represents
the dose leading to an effect Ep, with −100 < p < 100, representing
the fraction of a maximum effect Emax. For p < 0 the effects for the
increasing part of the biphasic curve are retrieved, p > 0 describes the
decreasing part of the curve, p = 0 implicates the maximum effect.
Combination effects can be predicted by applying the concept of con-
centration addition separately to Ep (equation C.1) and Dp (equation
C.2).

E(p)mix =

(
n∑
i=1

ji
E(p)i

)−1

(C.1)

D(p)mix =

(
n∑
i=1

ji
D(p)i

)−1

(C.2)
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c.2 supplemental figures
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Figure C.1: Concentration response relationships for apical effects induced by
mixture of diuron (11%), diclofenac (2.6%), and naproxen (86.4%).
Vertical lines illustrate exposure concentrations for transcriptome
experiments. Curves illustrate best fit model for lethality, colours
indicate different exposure durations. Lethal effects: 24-48hpf (◦);
24-72hpf (4); 24-96hpf (+).



C.2 supplemental figures 195

−4

−2

0

2

4
logFC

LC25/df6 = LC0.5 LC25/df4 LC25/df LC25
exposure concentration

ho
ur

s 
af

te
r e

xp
os

ur
e 

st
ar

t

3

6

12

24

48

72

Figure C.2: In silico predicted toxicogenomic landscapes for mixture. All logFCs for toxnodes not
predicted as significantly regulated by CA were set zero.

−4

−2

0

2

4
logFC

LC25/df6 = LC0.5 LC25/df4 LC25/df LC25
exposure concentration

ho
ur

s 
af

te
r e

xp
os

ur
e 

st
ar

t

3

6

12

24

48

72

Figure C.3: Measured toxicogenomic landscapes for mixture. All toxnodes not identified as signifi-
cantly affected in the mixture experiment were set to zero.
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Figure C.4: Difference between predicted and measured toxicogenomic panorama for mixture
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Figure C.5: Distribution of prediction ratios for combination of qualitative and quantitative pre-
diction. CA (�);IA (�); EA (�). Predictive ratios above 1 indicate underestimation of
toxnode sensitivity by the prediction, ratios below 1 indicate overestimation.
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(a) Toxnode 1136
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(b) Toxnode 1137
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(c) Toxnode 1138
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(d) Toxnode 1139
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(e) Toxnode 1140
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(f) Toxnode 1259
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(g) Toxnode 1260
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(h) Toxnode 3314
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Figure C.6: Effect of mixture and single substances (modeled) for toxnodes showing distinct combi-
nation effect. Effect and 95% CI of single substance (�); Effect and 95% CI of mixture
(�)
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(a) Toxnode 1136

●

●

●

●

●

●●

●

●

●

●
● ●

●●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3 hpe 6 hpe 12 hpe 24 hpe 48 hpe 72 hpe

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

−1

0

1

2

3

exposure concentration [µM]

lo
gF

C

1137 hill−gauss

(b) Toxnode 1137
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(c) Toxnode 1138
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(d) Toxnode 1139
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(e) Toxnode 1140

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

3 hpe 6 hpe 12 hpe 24 hpe 48 hpe 72 hpe

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

0

1

2

3

exposure concentration [µM]

lo
gF

C

1259 hill−gauss

(f) Toxnode 1259

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

3 hpe 6 hpe 12 hpe 24 hpe 48 hpe 72 hpe

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

43
.1

67
.1

10
4.

4

0

2

4

exposure concentration [µM]

lo
gF

C

1260 hill−gauss

(g) Toxnode 1260
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Figure C.7: Effect of mixture and single substances (modeled) for toxnodes showing distinct combi-
nation effect: measured effect (•); modeled effect ( ); CA ( ); IA ( ); EA ( ).
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