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ABSTRACT 

Global, fast and accessible monitoring of biodiversity is one of the main pillars of the efforts 

undertaken in order to revert it loss. The Group on Earth Observations Biodiversity 

Observation Network (GEO-BON) provided an expert-based definition of the biological 

properties that should be monitored, the Essential Biodiversity Variables (EBVs). Initiatives to 

provide indicators for EBVs rely on global, freely available remote sensing (RS) products in 

combination with empirical models and field data, and are invaluable for decision making. In 

this study, we provide alternatives for the expansion and improvement of the EBV indicators, by 

suggesting current and future data from the European Space Agency´s COPERNICUS and 

explore the potential of  RS-integrated Dynamic Global Vegetation Models (DGVMs) for the 

estimation of EBVs. Our non-exaustive review found that Copernicus products have similar or 

superior potential for EBV indicator estimation in relation to their NASA counterparts. DGVMs 

simulate the ecosystem level EBVs (ecosystem function and structure), and when integrated 

with remote sensing data have great potential to not only offer improved estimation of current 

states but to provide projection of ecosystem impacts. We suggest that focus on producing EBV 

relevant outputs should be priority within the research community, to support biodiversity 

preservation efforts. 
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MAIN TEXT 

 

Monitoring Essential Biodiversity Variables (EBV) 

The Group on Earth Observations Biodiversity Observation Network (GEO-BON) has 

contributed to rising consensus on the use of Essential Biodiversity Variables (EBVs) to 

monitor biodiversity around the world (Pereira et al. 2013). GEO-BON coordinates 

biodiversity monitoring efforts aiming at the United Nations Convention on Biological 

Diversity (UC-CBD) Strategic Plan for Biodiversity and the related Aichi targets for 2020. 

Six EBV classes and 21 candidates form the basis of biodiversity loss and change monitoring 

programmes. In particular, these variables focus on genetic composition, species populations, 

species traits, community composition, ecosystem structure, and ecosystem function 

(https://geobon.org/ebvs/). 

In recent years, the growth of open satellite image archives is leading to more sophisticated 

and biologically relevant remote sensing products, which we here refer to  as Remote Sensing 

Bio-Geophysical Products (RS-BGPs). Some widely used examples are the Global Forest 

Cover Change (Hansen et al. 2013; Sexton et al. 2013b), Leaf Area Index, Ocean Salinity, Net 

Primary Production (NPP) and Evapotranspiration (Fensholt, Sandholt, and Rasmussen 2004). 

Due to their global coverage and high revisit times, satellite remote sensing platforms play a 

central role in monitoring EBVs (Kissling, Ahumada, et al. 2018; Kissling, Walls, et al. 2018; 

Pettorelli 2015). One current major remote sensing approach for monitoring EBVs is the 

Global Biodiversity Change Indicator (GBCI) initiative, developed by GEO BON (GEO BON 

2015). The GBCIs, available to the community through several open access platforms (e.g. 

Map Of Life, https://mol.org/), are based on global, open access RS-BGPs (Hill, Asner, and 

https://geobon.org/ebvs/


Held 2006) and empirical models. The indicators have a global coverage, a spatial resolution 

of 1 km, and cover species distribution, population abundance, taxonomic diversity, NPP and 

ecosystem extent and fragmentation EBVs. NASA- and NOAA-produced RS-BGPs are the 

main dataset sources for the GBCIs, in particular datasets from the MODIS sensor and the 

Global Forest Cover Change dataset (Hansen et al. 2013). However, new improved global, 

open access platforms are available which could significantly improve the monitoring of 

EBVs, such as those from the Sentinel-1 (Torres et al. 2012) and Sentinel-2 (Drusch et al. 

2012) satellite missions which are part of European Space Agency´s (ESA) Copernicus 

Programme (https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus).  

In spite of recent progress in RS-BGP development, the missing link between biodiversity and 

remote sensing remains, due to the inherent difficulty of quantifying biodiversity from space 

(Pettorelli 2015). Consequently, it is unlikely that most EBVs will be only estimated using 

remote sensing, or in conjunction with simpler empirical models, which exhibit notorious 

limitations, such as the struggle to explain why high diversity (e.g. as measured by field 

studies) exists under limited resources (Weigelt et al. 2009). Recent efforts to understand 

global patterns of biodiversity have produced maps of several complex ecosystem properties, 

using remote sensing and statistical models such as Bayesian modelling of community-level 

plant traits (Butler et al. 2017), species distribution modelling (Kissling, Ahumada, et al. 

2018), many of which are EBV candidates, and some included in the development of GBCI. 

Process-based modelling approaches aim at representing eco-physiological processes, such as 

photosynthesis, autotrophic (plant) and heterotrophic respiration, whereby the target variable, 

such as total ecosystem carbon storage, is an emergent model outcome, in contrast to 

empirical models that directly relate high-level target variables to environmental factors 

(Peterson, Papeş, and Soberón 2015). These promise a significant breakthrough in the 

https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus


production of global maps of ecosystem properties (Harfoot et al. 2014). Dynamic Global 

Vegetation Models (DGVMs) are a widely used type of process-based model, which simulate 

the distribution of biomes or vegetation types, vegetation dynamics and structure, and 

biogeochemical fluxes (e.g. carbon, water and nitrogen) between the soil, vegetation and the 

atmosphere (Prentice et al. 2004; Smith et al. 2014). DGVMs include processes from the leaf 

level (e.g. photosynthesis) to the biosphere (e.g. carbon cycle) and can, thus, be used to 

simulate several EBVs. Furthermore, as well as monitoring of current states of biodiversity, 

process-based models are also capable of predicting future dynamics, providing thus a 

powerful tool for adaptive planning (e.g. Gonzalez, Neilson, Lenihan, & Drapek, 2010; Sitch 

et al., 2008). For more regional applications, the global models are commonly adapted to the 

specifics of the target region (Scheiter and Higgins 2009; Hickler et al. 2012; Seiler et al. 

2015), and some DGVMs also simulate crop yields  (Jin et al. 2018; Schaphoff et al. 2018) 

and forest management (Jönsson, Lagergren, and Smith 2013; Yue et al. 2015). Some 

DGVMs also simulate dynamic changes in plant functional trait distribution, analogous to the 

species traits EBV candidates (https://geobon.org/ebvs/what-are-ebvs/), but only at the Plant 

Functional Type (PFT) and ecosystem level (Scheiter, Langan, and Higgins 2013; 

Sakschewski et al. 2014), although DGVMs can, at least in species poor northern regions, be 

parameterized for major tree species (Hickler et al. 2012). Since DGVMs require spatially and 

temporally extensive data for model development, calibration and benchmarking as well as 

model forcing (Kelley et al. 2013), they have been frequently integrated with remote sensing 

data (e.g. (Smith et al. 2008; Forkel et al. 2017; Dietze, Lebauer, and Kooper 2013), see also 

section below). This model-remote sensing integration has therefore a great potential to 

produce new, high quality regional to global information on EBVs and additional variables 

related to biodiversity. 



 

In this review we 1) describe the range of available and soon-to-be available RS-BGPs for 

estimating EBVs, with special focus on highlighting the newly available products from ESA’s 

Copernicus program as well as additional ones from the United States agencies NASA and 

NOAA; 2.) Summarize the potential of DGVMs and their integration with remote sensing for 

estimating EBVs. 

 

Current remote sensing products used for EBV monitoring and the potential of 

existing and upcoming missions 

 

In Table 1 we list the current RS-BGP platforms variables and their platforms that provide 

products with potential for EBV estimation, in line with the requirements of the GBCI. 

MODIS and SPOT/PROBA-V from NASA and ESA platforms respectively offer similar 

products for most of the 19 selected variables. Despite redundancy, a variety of data sources 

can be useful to address uncertainties, although the demand is higher for improved versions of 

existing products. In the appendix, we have included a table (Table 1A) with studies 

comparing the RS-BGPs from NASA and ESA sources. For data produced after 2014, ESA 

offers increased spatial resolution (300m) for most vegetation-related products compared to 

NASA MODIS. This may be relevant for GBCIs that require finer spatial detail. With regards 

to temporal resolution, in most variables the MODIS products are superior in comparison with 

the SPOT/PROBA-V, offering daily, weekly or bi-weekly revisit times, while ESA offers 

products in several cases only once every 10 days. Regarding the important Global Forest 

Cover Change (GFC) variable, which several current GBCIs are based on, NASA has 

currently the superior offer, based on LANDSAT land cover data (Hansen et al. 2013). The 



ESA CGLS could potentially offer even a superior product by exploring the SENTINEL 

dataset, with higher spatial and temporal resolution than the LANDSAT platform. A 

demonstration tree cover Sentinel product has been produced, now currently only for the 

African continent (http://2016africalandcover20m.esrin.esa.int/). Indeed, the fractional 

vegetation cover, on from which GFC is based, produced by SPOT/PROBA-V should already 

be explored in place of the MODIS VCF. Also in the related Land Cover (LC) variable the 

CGLS product shows similar temporal and spatial resolution in relation to MODIS, but wider 

coverage (1992 - present). Currently. no global products for Evapotranspiration (ET) are 

offered within the ESA platforms on the CGLS data portal. However, some initiatives exist to 

estimate this key physiology-related variable, such as the Sentinels for Evapotranspiration 

(http:// http://esa-sen4et.org) which promises high-resolution (tens of meters) global 

evapotranspiration maps. In addition, prototype maps of evapotranspiration have been 

produced using PROBA-V data, which are expected to be produced on a daily temporal 

resolution (https://proba-v-mep.esa.int/success-stories/evapotranspiration-estimation-based-

proba-v). Lastly, ice monitoring is crucial due to the vulnerability of the adapted species to 

climate change. In this category, both NASA and ESA products are offered, with the MODIS 

variant having higher spatial resolution (1 km) in comparison to the 12,5 Km from SMOS. 

Improved ice products could also be produced by the Cryosat platform, which is based on 

active Synthetic Aperture Radar (SAR) technology, having also great potential for land 

applications. 

http://esa-sen4et.org/
https://proba-v-mep.esa.int/success-stories/evapotranspiration-estimation-based-proba-v
https://proba-v-mep.esa.int/success-stories/evapotranspiration-estimation-based-proba-v


Table 1. Selected bio-geophysical products (BGP) from current global, freely available remote sensing platforms, relevant for the 

development of Essential Biodiversity Variable indicators, as well as examples of DGVM studies which used these products. 

Product Provider Platform Acquisition Period Temporal 
Resolution  

Spatial 
Resolution 

(km) 

DGVMs with integration 
(Copernicus in bold) 

Albedo (A) 

NOAA AVHRR 1981 - present Daily 1 
INCCA [1], JSBACH [32], 

LPJmL [8] NASA MODIS 2000 - present Daily 0.5 

ESA PROBA-V/SPOT 1998 - present 10 Days 1 

Leaf Area Index (LAI) 

NOAA AVHRR 1981 - present Daily 1 km 
LPJ [2][3], DALEC2 [4], CLM 
[5], ORCHIDEE [30], JeDi [31] 

NASA MODIS 2000 - present 4 Days 0.5 

ESA PROBA-V/SPOT 1999 - present 10 Days 1 (0.3 after 
2014) 

fAPAR 

NOAA AVHRR 1981 - present Daily 1 km LPJ [6][8][13][38], LPX [6], 
ORCHIDEE [7],  

CCDAS/BETHY [9][10][11], 
CCDAS/JSBACH [12] 

NASA MODIS 2000 - present 4 Days 0.5 

ESA PROBA-V/SPOT 1999 - present 10 Days 1 (0.3 after 
2014) 

Vegetation Indices (VI) 

NOAA AVHRR 1981 - present Daily 1 km 
ORCHIDEE [14], VEGAS [33], 

OCN [33], LPJ [33], JULES [33], 
CLM4.5 [33] SEIB-DGVM [34] 

NASA MODIS 2000 - present 16 Days 0.25 

ESA PROBA-V/SPOT 1999 - present 10 Days 1 (0.3 after 
2016) 

Temperature (T) 
NASA MODIS 2000 - present 5 minutes 1 

ORCHIDEE [30] 
ESA PROBA-V/SPOT 1998 - present Hourly 5 

Vegetation Continuous 
Fields/Global Forest Cover 

Change (VCF/GFCC) 

NASA LANDSAT 2000 - present Yearly 0.03 
JSBACH [32] 

ESA - - - - 

Land Cover (LC) 

NASA MODIS 2001 - present Yearly 0.5 CanESM2 [39][40], GFDL-
ESM2G [39][40], HadGEM2-ES 

[39][40], Inmcm4 [39][40], 
IPSL-CM5A-MR [39][40], 

MIROC-ESM [39][40], MPI-
ESM-LR [39][40], LPJ [15], 

ESA 
MERIS, PROBA-
V, SPOT-VGT, 

AVHRR 
1992 - 2015 Yearly 0.3 



Product Provider Platform Acquisition Period Temporal 
Resolution  

Spatial 
Resolution 

(km) 

DGVMs with integration 
(Copernicus in bold) 

ORCHIDEE [30][37], JULES 
[36][37]. JSBACH [37] 

Burned Area (BA) 

NASA MODIS 2000 - present Monthly 0.5 LPJ [6][15], LPX[6], LPJmL [8], 
JSBACH-SPITFIRE[18][35], 
JULES [16][35], ORCHIDEE 

[17][30][35], CLM-DGVM 
[19][35][41], CTEM [20][35], 

LPJ-GUESS-SPITFIRE 
[21][35], LPJ-GUESS-

SIMFIRE-BLAZE [22][35] 

ESA PROBA-V 2014 - present 10 Days 0.3 

Evapotranspiration (ET) 
NASA MODIS 2001 - present 8 Days 0.5 

ORCHIDEE [30] 
ESA - - - - 

Net Primary Production 
(NPP) 

NASA MODIS 2001 - present Yearly 0.5 LPJ [6][33], LPX [6], HYBRID 
[23], JeDi [23][31], JULES 
[23][33], LPJmL [23][24], 
ORCHIDEE [23][30], SDGVM 
[23], VISIT [23], CLM [5][33], 
VEGAS [33], OCN [33] 

ESA PROBA-V/SPOT 1999 - present 10 Days 1 (0.3 after 
2014) 

Fractional Vegetation Cover 
(FVC) 

NASA MODIS (VCF) 2001 - 2017 Yearly 0.25 
LPJ [6], LPX [6], LPJmL [8] 

ESA PROBA-V/SPOT 1999 - present 10 Days 1 (0.3 after 
2016) 

Chlorophyll Fluorescence 
(SIF) 

NASA - - - - TRIF-FID [25], LPJ [25], LPJ-
GUESS [25], CLM4-CN [25], 
ORCHIDEE [25], OCN [25], 
SDGVM [25], VEGAS [25], 

BETHY/SCOPE [26], 
ORCHIDEE [27], JSBACH [28] 

ESA 
METOP-

GOME2/GOSAT-
FTS 

2009 - present 3 Days 0.5 

ESA SMOS 2010 - present Daily 30-50 

Ice Extent (IE) 
NASA MODIS 2001 - present Daily 1 

LPJ [29], ORCHIDEE [30] 
ESA SMOS 2010 - present Daily 12.5 

Carbon stock / Biomass (C) ESA BIOMASAR-2 

Envisat/ASAR 
(boreal and 
temperate, 

(Thurner et al. 
2014)) + NASA 
ICESat GLAS 

LiDAR and 

early 2000s - 2010 - 0.5-1 

CanESM2 [39][40], GFDL-
ESM2G [39][40], HadGEM2-ES 

[39][40], Inmcm4 [39][40], 
IPSL-CM5A-MR [39][40], 

MIROC-ESM [39][40], MPI-
ESM-LR [39][40], TRIF-FID 

[25], LPJ [25], LPJ-GUESS [25], 



Product Provider Platform Acquisition Period Temporal 
Resolution  

Spatial 
Resolution 

(km) 

DGVMs with integration 
(Copernicus in bold) 

MODIS and 
others (tropics) 

CLM4-CN [25], ORCHIDEE 
[25], OCN [25], SDGVM [25], 
VEGAS [25],, DALEC2 [4], 

ORCHIDEE [30] ESA GlobBiomass 
Envisat/ASAR, 
ALOS PALSAR 

and Landsat  
2010 - 0.15 

NASA 

NASA ICESat 
GLAS LiDAR 

and MODIS (only 
tropics) (Baccini 

et al. 2012) 

2003-2014 Yearly 0.463 

Model References: 

[1](Bala et al. 2007); [2] (Lucht et al. 2002) [3] (Schroder and Lucht 2003) [4](Bloom and Williams 2015) [5] (Randerson et al. 2009), [6] (Kelley et al. 2013), [7] (Ciais et al. 2005) [8] 

(Forkel et al. 2014) [9] (Kaminski et al. 2013) [10] (Kato et al. 2013) [11] (Knorr et al. 2010) [12] (Schürmann et al. 2016) [13] (Smith et al. 2008) [14] (Maignan et al. 2011) [15] 

(Poulter et al. 2015) [16] (Mangeon et al. 2016) [17] (Yue et al. 2015) [18] (Lasslop, Thonicke, and Kloster 2014) [19] (Li, Zeng, and Levis 2012) [20] (Melton and Arora 2016) [21] 

(Lehsten et al. 2016) [22] (Knorr et al. 2014), [23] (Thurner et al. 2017), [24] (Schaphoff et al. 2018), [25] (Parazoo et al. 2014), [26] (Norton et al. 2018), [27] (MacBean et al. 2018), 

[28] (Thum et al. 2017), [29] (Sitch et al. 2007) [30] (Guimberteau et al. 2018), [31] (Pavlick et al. 2013), [32] (Brovkin et al. 2013) [33] (Rafique et al. 2016) [34] (Sato, Itoh, and 

Kohyama 2007) [35] (Forkel et al. 2018) [36] (Harper et al. 2018), [37] (Hartley et al. 2017), [38] (Forkel et al. 2015), [39] (Carvalhais et al. 2014) [40] (Yang et al. 2018) [41] (Rabin et 

al. 2018) 

 



The remote sensing data currently used by the GBCI is based on the MODIS and the Landsat 

platforms, often in combination with the PREDICTS meta-analysis (Newbold et al. 2015) to 

assign environmental scores to resulting land-use classes. The MODIS sensor (Moderate 

Resolution Imaging Spectrometer, on board the NASA Terra and Aqua satellites) has been 

producing widely used products or satellite-based estimates such as fAPAR (fraction of 

Absorbed Photosynthetically Active Radiation), NPP (Net Primary Production), GPP (Gross 

Primary Production), VCF (Vegetation Continuous Fields), ET (Evapotranspiration), LST 

(Land Surface Temperature) at spatial and temporal resolutions between 1- 0.250 km. Higher 

spatial resolution products (30 meters) have been produced using the LANDSAT satellite 

program, allowing the monitoring of EBVs with higher spatial detail. The Global Forest 

Cover Change dataset, developed by Hansen et al. (2013) based on Landsat archives and is 

used extensively in the GBCI (Table 2). 



Table 2. Essential Biodiversity Variables (EBV), Global Biodiversity Change Indices (GBCI) and their related Remote Sensing Bio-

Geophysical Products (RS-BGP). 

EBV Class EBV Candidate GBCI RS-BGP used in 
GBCI 

Alternative 
Copernicus RS-BGP 

Potential Copernicus 
RS-BGP 

Genetic composition 

Co-ancestry - - - - 

Allelic diversity - - - - 
Population genetic 

differentiation - - - - 

Breed and variety diversity - - - - 

Species populations 

Species distribution SHI, BHI, SPI, 
LBII, SSII 

VCF/GFCC 
(MODIS and 

Landsat) 

FCV, LC (PROBA-
V/SPOT) FCV, LC (Sentinel) 

Population abundance LBII 
VCF/GFCC 
(MODIS and 

Landsat) 

FCV, LC (PROBA-
V/SPOT) FCV, LC (Sentinel) 

Population structure by age/size 
class - - - - 

Species traits 

Phenology - - FCV, VI (PROBA-
V/SPOT) 

VI (Sentinel), SIF 
(FLEX) 

Morphology - - - - 

Reproduction - - - - 

Physiology - - fAPAR, SIF, VI, ET, 
LAI 

VI (Sentinel), SIF 
(FLEX) 

Movement - - - - 

Community composition 
Taxonomic diversity PARCI, LBII, SSII 

VCF/GFCC 
(MODIS and 

Landsat) 

FVC (PROBA-
V/SPOT) 

VI (Sentinel), SIF 
(FLEX) 

Species interactions - - - - 

Ecosystem function 
Net primary productivity GERI 

VCF/GFCC 
(MODIS and 

Landsat), NPP, LAI, 
T, A (MODIS) 

NPP, LAI, T, A 
(PROBA-V/SPOT) 

NPP, LAI, T, A 
(Sentinel), SIF (FLEX) 

Secondary productivity - - - - 



Nutrient retention - - VI, SIF (GOME2) VI (Sentinel), SIF 
(FLEX) 

Disturbance regime - - GFCC, BA (PROBA-
V/SPOT) BA (Sentinel) 

Ecosystem structure 

Habitat structure - - 
LAI, FVC, (PROBA-
V/SPOT), IE (SMOS), 

C (BIOMASAR) 

Tree Height (SAR, 
Lidar), FVC (SAR 

Sensors), C 
(BIOMASS) 

Ecosystem extent and 
fragmentation 

SHI, BHI, PARCI, 
GERI 

VCF/GFCC 
(MODIS and 

Landsat) 
FVC, LC, IE FCV, LC (Sentinel) 

Ecosystem composition by 
functional type - - - - 



In order to expand the range of monitored EBVs (and to possibly improve the data quality of 

the current ones), current GBCI could be complemented with datasets from the European 

Space Agency´s Copernicus programme. The Copernicus Earth observation system 

(http://www.copernicus.eu), funded by the European Commission, provides global, freely 

available EO data from space, ground, sea and airborne platforms from low (~1 km) to high 

(<0.1 km) resolutions. The system currently provides 10 regular RS-BGPs of land properties, 

3 datasets of energy, 3 on the Cryosphere and 4 on Water, which can be accessed in the 

Copernicus Global Land Service (CGLS, https://land.copernicus.eu/global/), part of the  

Copernicus Land Monitoring System (CLMS). Relevant platforms for the production of 

Copernicus RS-BGPs are PROBA-V/SPOT-Vegetation and ENVISAT/MERIS.  However, 

the main backbone of Copernicus is the Sentinel constellation and especially the Sentinel 

2A/B satellites for land monitoring, which are at the cutting edge of multispectral imaging 

technology providing information in 13 spectral bands at a spatial resolution up to 10 m every 

10 days (at the equator). These features entail a significant improvement with regard to those 

provided by Landsat.  In spite of this, almost no Sentinel data is currently used for the 

production of the RS-BGP offered in CGLS. In addition, upcoming Earth Explorer missions, 

especially tailored satellites for specific environmental variables, have large potential to 

generate significant RS-BGP.  

 

 



Dynamic Global Vegetation Models and their integration with remote sensing 

 

Although remote sensing datasets are able to provide large scale estimates of several 

biological properties such as vegetation productivity, the monitoring of most proposed EBVs 

from remote sensing (or field data due to spatial and temporal scale constraints) alone is 

understood to be unfeasible (Pereira et al. 2013; Pettorelli et al. 2016). The use of DGVMs 

(consisting of processes anchored in ecophysiological and ecological theory) can contribute in 

this regard, by producing higher order biological information (e.g. Plant Functional Type 

(PFT) composition, plant functional trait distributions, and in some models, tree density and 

size structure, PFT-specific effects of disturbances such as fires) nutrient retention, taxonomic 

diversity) from limited extent (field) or simple (EO) data (Quillet, Peng, and Garneau 2009; 

Scheiter, Langan, and Higgins 2013). 

In order to produce reliable projections, DGVMs ideally require ample amount of 

observational data for testing and calibration (Sellers et al. 1995; Dietze, Lebauer, and Kooper 

2013), which should be ideally available for the targeted ecological variable at suitable spatial 

and temporal scales. Although field measurements are commonly used to validate DGVMs 

and to derive hypothesis for the mechanisms underlying an observed pattern or response (e.g. 

Medlyn et al., 2015; B. Smith et al., 2014), their acquisition cost and limited spatial extent 

constrain their effectiveness for most applications. Therefore other data sources such as 

remote sensing have been used to supply model data demands (Plummer 2000; Kelley et al. 

2013). 

The use of remote sensing data to evaluate DGVMs are the most common forms of RS-model 

integration, which seek as a rule to increase the confidence level of model results. Model 



evaluation, validation or benchmarking, of similar methodological nature and standard in 

most modelling approaches, involve the use of an independent dataset to test the model´s 

accuracy, using various error estimation methods (Plummer 2000; Zhu et al. 2015; Ito et al. 

2017; Thurner et al. 2017). Remote sensing is for this process an important data source. 

Variable datasets are commonly used in validation in a time series, in which past data is used 

to input the model and recent data as comparison dataset. In addition to measuring the 

performance of a single model, remote sensing data has also been used as a benchmark in 

order to compare different models, an increasingly popular approach (Dietze, Lebauer, and 

Kooper 2013; Dietze et al. 2014; Keenan et al. 2012; Kelley et al. 2013). Another model 

evaluation approach is to compare emergent relationships between vegetation, climate and 

socio-economic predictor variables and a DGVM output variable, here burned area, between 

satellite observations and DGVMs (Forkel et al. 2018). 

Driving DGVMs with remote sensing data increases the accuracy at which the characteristics 

of the land surface are captured by the models (Plummer 2000). Examples include driving a 

model with satellite measurements of FPAR, the fraction of incoming photosynthetically 

active radiation absorbed by vegetation, or satellite-derived estimates of tree density to better 

capture carbon forest carbon balance (Smith et al. 2008), whereby FPAR and tree density are 

commonly simulated by DGVMs without such constraints; constraining the Gross Primary 

Productivity (GPP) simulated by DGVMs with measurements of solar-induced chlorophyll 

fluorescence from the Greenhouse Gases Observing SATellite (GOSAT) (Parazoo et al. 

2014). In order to eliminate atmospheric effects, biases due to sensor characteristics and to 

increase temporal resolution, the use of multiple remote sensing sources is preferred, in a 

combined dataset (Marchetti, Soille, and Bruzzone 2016). The inclusion of Copernicus 

products in dataset production represents therefore a significant advantage.  



With the increasing relevance of RS-Model integration came relevant studies in which data 

and simulations were “fused” (i.e. integrated), making model calibration, evaluation, testing 

and structural improvement using external data essential components of simulations (Williams 

et al. 2009). In model-data fusion (MDF), model parameters are changed within each model-

data interaction according to the reference data, providing increased data-model output fits 

(Keenan et al. 2011). The MDF concept is also be considered by authors to be congruent in its 

whole or in parts with “data assimilation” or “data-model synthesis” (Scholze et al. 2017; 

Keenan et al. 2011). One prominent example is the model-integration approach described by 

(Forkel et al. 2014) in which land cover, tree cover and burnt area data from remote sensing 

was included as prescription data to constrain the model simulations, and FAPAR, albedo and 

GPP used as optimization or evaluation data for the LPJmL DGVM. A structure of this 

model-data integration approach can be seen in Figure 1 of M. Forkel et al. (2014). In 

addition, recent multi-model initiatives have increased the demand for unified driving and 

benchmarking remote sensing products, for example the FireMIP (Fire Modeling 

Intercomparison Project), which is one of the few recent approaches to use a Copernicus RS-

BGP (Burned area RS-BGP from MERIS) (Forkel et al. 2018).  

 

 

The potential of current RS-BGP and DGVMs for the development of EBV indicators 

 

Considering the improvement of the current EBV monitoring capabilities, RS-BGPs, 

DGVMs and their MDF implementations can be used to enhance existing GBCIs. The EO-

constrained or calibrated DGVMs can be used to estimate variables that cannot be directly or 



accurately measured with RS technology, such as soil carbon content, nutrient retention, 

timber production, crop yields and carbon fluxes. This can be achieved by:  

 

● The use of existing RS-BGPs to develop GBCIs. 

The current global, freely available RS product portfolio allows us potentially to 

observe the historical change of more than 35 years’ worth of biodiversity data daily 

within a minimum 1 km resolution, and keep monitoring. However, although RS-

BGPs from the ESA CGLS prove similar or in some cases superior to their 

NASA/NOAA counterparts, they have been poorly explored by both the DGVM and 

GBCI developers. To our knowledge, the few studies using data from Copernicus 

sources for evaluating DGVMs used MERIS products related to burnt area (Forkel et 

al. 2018), FAPAR (Smith et al. 2008; Forkel et al. 2015) and Land Cover 

(Guimberteau et al. 2018; Hartley et al. 2017; Harper et al. 2018; Carvalhais et al. 

2014; Yang et al. 2018). In addition the GOME2/GOSAT solar induced fluorescence 

product from the ESA contributing mission portfolio was also used in a DGVMs 

(Parazoo et al. 2014), as well as models which used in the CMIP5 project (Carvalhais 

et al. 2014; Yang et al. 2018) biomass maps (BIOMASAR, (Thurner et al. 2014)) 

developed from the ESA ASAR sensor aboard the ENVISAR.  

For the previously covered 5 EBVs by the GBCI, further datasets are also available 

from both NASA and Copernicus, offering great potential for improvement in the 

current indices. Considering that the most extensively used RS-BGP in GBCIs was the 

Global Forest Cover Change product, it is unfortunate that a similar one is not 

available from the ESA CGLS, especially considering the superior characteristics of 

SENTINEL sensors in comparison with current or even planned LANDSAT missions. 



 

Table 2 shows the relationship of the expert-agreed EBVs with the available GBCI and RS-

BGP. It shows that existing RS-BGP could cover four more EBVs, besides the 5 already 

implemented by GBCI: Phenology, e.g. through the analysis of vegetation index (VI) time 

series (N. MacBean et al. 2015); Nutrient retention, also based on VI datasets (Chambers et al. 

2007); Disturbance regime, more specifically burned area (Chuvieco et al. 2016, 2018); and 

Habitat structure, using leaf area index (LAI) or vegetation continuous fields (VCF) (Myneni 

1997; Saatchi et al. 2008; Sexton et al. 2013a).  

 

● GBCIs from DGVM outputs 

 

DGVMs directly simulate or can contribute to estimating almost all EBV candidates 

concerning ecosystem function and structure (Table 3, except secondary production, 

which can however be covered by a General Ecosystem Model (Harfoot et al. 2014)), 

in particular NPP; nutrient retention (but mostly regarding the nitrogen (Wärlind et al. 

2014; Smith et al. 2014) and the phosphorus (Wang, Law, and Pak 2010) cycles); 

several outputs from the disturbance category, most notoriously fire; habitat structure 

(representing significant improvement in relation to remote sensing platforms due to 

the geometric representation of vegetation, which in some models is based on tree 

individuals (e.g. Smith et al., 2014)); ecosystem extent (considering biome limits and 

their shifts due to edaphic and climatic factors); and composition by functional type, 

which is a very common approach within DGVMs to group species, and thus is a 

standard output.  



Considering species and trait EBV classes, at the functional level also some of the 

species traits EBV candidates are well represented, in particular phenology and 

general aspects of plant physiology. These change dynamically in some DGVMs that 

focus on representing trait variability (within PFTs, (Scheiter, Langan, and Higgins 

2013; Sakschewski et al. 2014), whereby the most successful and dominant trait 

combinations are filtered via ecological sorting. DGVMs that are individual-based for 

trees (Medvigy et al. 2009; Smith et al. 2014) also capture species population EBV 

candidates (population abundances and population age/size structure) for trees (Fischer 

et al. 2016), in a DGVM parameterized for Europe also for main tree species (Hickler 

et al. 2012). Due to their integration with remote sensing, DGVM often produce 

similar global outputs as RS-BGP, also for benchmarking purposes, but could offer 

outputs with significant advantages in relation RS-BGP alone or with simpler 

empirical models. Estimates of NPP for instance, are based on empirical models for 

RS-BGPs, while more complex process- and ecological theory- based methods are 

inherent to DGVMs, which also account for soil hydrology and nutrient limitation 

(Smith et al. 2014). These could alternatively be included directly within a RS-BGP 

workflow in order to produce superior products. Recent DGVM developments also 

include higher trophic levels (EBV secondary productivity), such as wild ungulates in 

Africa (Pachzelt et al. 2015) and livestock (Chang et al. 2013). Another interesting 

approach in this regard is the Madingley general ecosystem model, which has been 

developed to capture primary and secondary productivity, including the population 

densities of heterotroph functional types, across the world oceans and terrestrial 

ecosystems (Harfoot et al. 2014). 



Table 3. Essential Biodiversity Variables and DGVM outputs with potential to estimate indicators. 

 

EBV Class EBV Candidate DGVM output Model References 

Ecosystem function 

Net primary productivity NPP See NPP in Table 1. 

Secondary productivity  Madingley Model (GEM) 

Nutrient retention N cycle, P cycle 
LPJ-GUESS (Wärlind et al. 2014; 

Smith et al. 2014), CASACNP 
(Wang, Law, and Pak 2010) 

Disturbance regime Fire-related outputs See Burned Area (BA) in Table 1. 

Ecosystem structure 

Habitat structure fractional vegetation cover, leaf area index See FVC,VCF/GFCC and LAI in 
Table 1. 

Ecosystem extent and fragmentation Area of Ecotype/Biome See LC in Table 1, LPJ (Hickler et 
al. 2012) 

Ecosystem composition by functional 
type species/functional diversity attributes Common approach within almost all 

DGVMs 

 



Future developments in remote sensing and DGVM for EBV indicator output 

 

The current lack of means/tools/data to monitor EBVs indicators presented in this review (of 

available RS-Model methods) suggests that there is a great and urgent demand for producing 

regional to global RS-BGP for the monitoring of biodiversity, due to the current lack of 

indicators for most EBVs. Fortunately, a wealth of global, freely available remote sensing 

data, is available to fill this gap, and more importantly to provide data streams for models. 

The potential for the development of new RS-BGP from existing globally freely available 

datasets is large, in special due to the data offer from the Copernicus platform. For example, 

Sentinel-2 high resolution multispectral optical data could be used to produce improved 

versions of MODIS and PROBA-V BGPs, and water acidification measures from space could 

be extremely invaluable as a GBCI (Widdicombe and Spicer 2008). Also, Synthetic Aperture 

Radar (SAR) data from various platforms, as well as the recently launched NASA GEDI lidar, 

could be used to develop habitat structure BGP. Diversity measures from space are also 

within reach, at least on a functional level (Goodenough et al. 2002; Clark, Roberts, and Clark 

2005; Asner et al. 2011), with the use of hyperspectral sensors such as EnMAP and Hyperion. 

One noteworthy program for EBV monitoring which is carried out by ESA is the Earth 

Explorers. The Earth Explorer missions are invaluable for the monitoring of biodiversity since 

they are tailored made for the generation of BGPs, such as Biomass and SIF. 

The integration of EO data and DGVMs and other process-based models (see below), making 

more use of Copernicus products than so far, can improve EBV estimates substantially and 

enhance the EO data. The common reliance on the PFT approach limits the capabilities of 

DGVMs in covering species and genetic EBV candidates. However the DGVM developments 



concerning trait variability changes may prove invaluable for better representations of plant 

diversity and EBV monitoring. The adaptive DGVM (Scheiter, Langan, and Higgins 2013; 

Scheiter and Higgins 2009) intrinsically also captures evolution and genetic differences 

between woody individuals (at the PFT level) via their associated phenotypes. Apart from 

DGVMs, other process-based models may also provide support in monitoring EBVs. For 

instance, non-DGVM individual-based models represent and simulate the properties (size, 

age, growth rate) and interaction of individuals (competition for resources, mutualisms), 

allowing for a bottom-up understanding (e.g. local and regional scale biomass) of populations 

and communities of plants and animals (DeAngelis and Grimm 2014; Grimm et al. 2006).  

Finally, one of the most significant values of understanding the current change in biodiversity 

is being able to estimate the future states (Sitch et al. 2008; Scheiter and Higgins 2009). For 

projections of ecosystem properties, DGVMs are particularly suitable, and have been applied 

extensively especially in relation to climate change scenarios, driven mainly by increases in 

CO2 concentrations and temperature. In this regard, model intercomparison projects (MIPs) 

have been carried out to evaluate, with extensive use of remote sensing, how different models 

project environmental change in relation to e.g. increases in CO2 (Ito et al. 2017). Likewise, 

MIPs could also be applied to EBV-related model outputs, with remote sensing support, to 

test how various models predict changes in biodiversity. 

This study represents a call for action for the modelling community to produce outputs in 

accordance to the EBV requirements and in line with the GBCI approach. We also advocate a 

closer integration among RS and DGVM scientific communities. Such integration is also 

important to improve the reliability of future projections by DGVMs, e.g. as an important tool 

to assess climate adaptation and mitigation activities.  

 



 

ABBREVIATIONS 

EBV: Essential Biodiversity Variable 

DGVM: Dynamic Global Vegetation Model 

GBCI: Global Biodiversity Change Indicator 

 SHI: Species Habitat Index 

 BHI: Biodiversity Habitat Index 

 SPI: Species Protection Index 

 PARC: Protected Area Representativeness & Connectedness Index 

 LBII: Local Biodiversity Intactness Index 

 GERI: Global Ecosystem Restoration Index 

 SSII: Species Status Information Index 

RS-BGP: Remote Sensing Bio-Geophysical Product 

 A: Albedo 

 LAI: Leaf Area Index 

 FPAR: Fraction of Absorbed Photosynthetically Active Radiation 

 VI: Vegetation Indices 

 T: Temperature 

 GFC: Global Forest Change 

 LC: Land Cover 

 BA: Burned Area 

 ET: Evapotranspiration 

 NPP: Net Primary Production 

 FVC: Fraction Vegetation Cover 

 SIF: Solar Induced Fluorescence 

 IE: Ice Extent 

MDF: Model-Data Fusion 

PFT: Plant Functional Type 
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