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An Exact Algorithm for Sorting by Weighted
Preserving Genome Rearrangements

Tom Hartmann, Matthias Bernt, and Martin Middendorf

Abstract—The preserving Genome Sorting Problem (pGSP) asks for a shortest sequence of rearrangement operations that
transforms a given gene order into another given gene order by using rearrangement operations that preserve common intervals, i.e.,
groups of genes that form an interval in both given gene orders. The wpGSP is the weighted version of the problem were each type of
rearrangement operation has a weight and a minimum weight sequence of rearrangement operations is sought. An exact algorithm –
called CREx2 – is presented, which solves the wpGSP for arbitrary gene orders and the following types of rearrangement operations:
inversions, transpositions, inverse transpositions, and tandem duplication random loss operations. CREx2 has a (worst case)
exponential runtime, but a linear runtime for problem instances where the common intervals are organized in a linear structure. The
efficiency of CREx2 and its usefulness for phylogenetic analysis is shown empirically for gene orders of fungal mitochondrial genomes.

Index Terms—genome rearrangements, transposition, inversion, tandem duplication random loss, mitochondria, fungi, common
interval

F

1 INTRODUCTION

DURING evolution the arrangement of the genes on the
genomes of species has been shaped by various types

of mutations that modify the order of the genes and/or their
orientation. Such mutations are called rearrangement opera-
tions, genome rearrangements, or (simply) rearrangements.
Inversions (I), transpositions (T ), and inverse transpositions
(iT ) are important types of rearrangements for unichromo-
somal genomes with an equal gene content. These three
types of rearrangements plus the tandem duplication ran-
dom loss (TDRL) rearrangement are assumed to be major
evolutionary mechanisms for the evolution of metazoan
mitochondrial gene orders [1], [2], [3]. Gene order analysis
aims to infer phylogenetic information by explaining differ-
ences in the gene orders of contemporary species [4]. Two
central problems in this research area are the sorting prob-
lem and the distance problem. Whereas the sorting problem
asks for a parsimonious sequence of rearrangements, called
a scenario, that transforms one given gene order into an-
other given gene order, the distance problem aims to deter-
mine only the number of rearrangements in such a scenario.
The computational complexity of these problems depends
on the types of the considered rearrangements (see [4] for an
overview), e.g., for I as well as for TDRL polynomial time
algorithms are known [5], [6], whereas for transpositions the
problems are NP-hard [7] and approximation algorithms [8]
or greedy heuristics [9] are available.

In order to compute realistic reconstructions in a parsi-
mony framework it can be helpful to employ a weighting
scheme that reflects the likelihood of the occurrence of
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different rearrangements during the evolution of different
taxa. For inversions efficient algorithms are available that
employ weights which depend on the length of the in-
verted segment [10]. Weighting with respect to the type
of rearrangement (I , T , and iT ) as well as weighting with
respect to the rearrangement length have been explored in
[9]. In [11] the authors present a polynomial sized Integer
Linear Program, called GeRe-ILP, that solves the sorting
problem for I , T , and iT with predefined weights. The
weighted TDRL rearrangement problem has been studied
in [6], where the weight of a TDRL has been defined as αk,
where α is a parameter and k ∈ N is the number of genes
that are influenced by the TDRL. For α = 1 and α ≥ 2
algorithms have been presented in [6]. In addition, it has
been shown for α = 1 that it is sufficient to consider TDRLs
that influence the whole genome, because the weight of
every TDRL is the same in this case.

To find realistic reconstructions it might be useful to
consider conserved gene clusters, i.e., groups of genes that
are in close proximity in all the given gene orders. The
rationale is that gene clusters which have been preserved
during evolution, e.g., due to functional constraints or evo-
lutionary inertia, are most likely present also in the ancestral
genomes. Therefore, algorithms should enforce scenarios
that preserve gene clusters in all intermediate gene orders.
Such scenarios and the corresponding rearrangements are
called preserving. Rearrangement problems that account
for conserved gene clusters, which are usually modeled as
common intervals [12], have already been studied in the
literature. The idea to make use of common intervals for
the comparison of gene orders has been presented in [12],
[13]. In particular, the distance problem and the sorting
problem for preserving inversions was studied intensively,
e.g., see [14], [15], [16], [17], [18]. The main idea of the
presented algorithms, e.g., [19], [20], is to use a generating
subset of the common intervals. For a recent overview on
sorting algorithms that use preserving inversions see [21].
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In [16] the distance problem for preserving inversions was
shown to be NP-hard. Nevertheless, by using the strong
interval tree data structure [19], which encodes all common
intervals efficiently, an FPT algorithm with linear runtime
for all instances where the common intervals are organized
in a linear structure has been proposed in [22], [23]. In [24]
it was shown that the algorithm has polynomial average
case runtime for general problem instances. For the DCJ
rearrangement operation (a generalization of I , T , and iT ,
see [25]) algorithms for preserving genome rearrangements
have been developed that are efficient for problem instances
where the common intervals are organized in a nonlinear
structure [26]. By detecting patterns in the strong interval
tree two algorithms have been described that heuristically
compute rearrangement scenarios: one algorithm in [27] and
algorithm CREx in [28]. The latter algorithm is more general
and considers rearrangements of types I , T , iT , and TDRL.

In this paper, we study the weighted sorting problem for
two given gene orders, which contain the same set of (undu-
plicated) genes, for the following types of rearrangements:
I , T , iT , and TDRL. It is assumed that each rearrangement
has to preserve the common intervals for the two given gene
orders and that each type of rearrangement has an assigned
weight. We present an exact algorithm, called CREx2, that
improves the CREx heuristic in the following aspects: i)
CREx2 allows the incorporation of rearrangement weights,
and ii) CREx2 provides an exact solution even when the
common intervals are organized in a nonlinear structure.
CREx2 has a linear runtime if the common intervals are or-
ganized in a linear structure and a (worst case) exponential
runtime otherwise.

The paper is organized as follows. Definitions are given
in Section 2. Theoretical results are shown in Section 3 and
Section 4. CREx2 is presented in Section 5. Experimental
results for CREx2 when applied to mitochondrial gene order
data of fungi are presented in Section 6. A conclusion is
given in Section 7.

2 PRELIMINARIES

A signed permutation λ of length n, denoted by λ =
(λ(1) . . . λ(n)), is a bijection λ : [1 : n] → [1 : n], where
each element λ(i) has a sign (+ or −). Signed permutations
are used as a formal model for gene orders in which each
element represents a gene and the sign represents its orien-
tation [29]. When the context is clear a signed permutation is
simply denoted as a permutation and the + sign of elements
is omitted. The set of all signed permutations of length
n is denoted by sPn. The signed permutations (1 2 . . . n)
and (-n . . . -2 -1) are denoted by ι and -ι, respectively. An
interval of a permutation λ is a non-empty set of (unsigned)
elements that are consecutive in λ. I(λ) is the set of all
intervals of λ.

Let λ be a permutation. A rearrangement ρ for λ is an
operation that, when applied to λ, changes the position or
sign of some of the elements of λ. The resulting permutation
is denoted by ρ ◦ λ. The rearrangements that are considered
in this paper can be characterized by the intervals that they
influence as described in the following (see also Figure 1).
An inversion ρI for λ is an interval X of λ containing the
elements whose order is reversed and the sign of every

affected element is switched in ρI ◦ λ. A transposition ρT
for λ is a pair (X,Y ) of disjoint intervals X , Y of λ that are
consecutive, i.e., X,Y,X ∪ Y ∈ I(λ), such that the order of
both intervals is switched in ρT ◦ λ. An inverse transposition
ρiT for λ is a pair (X,Y ), where X , Y are two disjoint and
consecutive intervals, i.e., X,Y,X ∪ Y ∈ I(λ), such that in
ρiT ◦ λ the order of X and Y is switched and in addition
the order of the elements in X is reversed and their signs
are inverted. In this work two special cases of inverse trans-
positions are considered: prefix inverse transpositions (piT ),
where X = {λ(1), . . . , λ(n − 1)}, Y = {λ(n)} and suffix
inverse transpositions (siT ), where X = {λ(2), . . . , λ(n)} and
Y = {λ(1)}. A tandem duplication random loss is a duplication
of an interval of λ, such that the duplicated interval is
placed adjacently, followed by a loss of one copy of each
redundant gene. Formally, a TDRL ρTDRL for λ is a pair
(X,Y ) containing two disjoint subsets X , Y of [1 : n] such
that X ∪ Y is an interval in λ, X (respectively Y ) contains
the elements that are kept in the left (respectively right)
copy in ρTDRL ◦ λ, and ρTDRL ◦ λ 6= λ (see Figure 1
for an example). A TDRL (X,Y ) for λ is called minimal
if for all proper subsets X ′ ⊂ X , Y ′ ⊂ Y it holds that
(X ′, Y ) ◦ λ 6= (X,Y ) ◦ λ 6= (X,Y ′) ◦ λ. It is not hard to see
that for each TDRL (X,Y ) there exists a uniquely defined
minimal TDRL (X ′, Y ′) with X ′ ⊆ X and Y ′ ⊆ Y , see
Example 1.

A sequence for a λ ∈ sPn is a series of rearrangements
(ρ1, . . . , ρl) such that ρi is a rearrangement for ρi−1 ◦ . . . ◦
ρ1 ◦ λ, i ∈ [1 : l]. Let S = (ρ1, . . . , ρl) be a sequence for λ,
then (ρi, . . . , ρj) with 1 ≤ i ≤ j ≤ l is called a subsequence of
S. The application of sequence S to λ is denoted by S ◦ λ. If
a sequence S for λ transforms λ into π, i.e., S ◦ λ = π, then
S is called a scenario for λ and π.

Let R be the set of rearrangements for all λ ∈ sPn. The
weight of a rearrangement inR is given by a weight function
ω : R → R>0. In the case that the weight of a rearrange-
ment is determined by its type X ∈ {I, T, iT, TDRL} the
corresponding weight is denoted by ωX . If the type X of a
rearrangement ρ is ambiguous, i.e., X ⊂ {I, T, iT, TDRL}
and |X| ≥ 2, then the weight of ρ is defined as ω(ρ) :=
min({ωY : Y ∈ X}). Note that every minimal TDRL is a
TDRL and therefore the weight of a minimal TDRL is also
denoted by ωTDRL, if it is not a transposition. The weight of
a sequence (scenario) S for λ (and π) is given by the sum
of the weights of its rearrangements. A scenario for λ and π
with minimal weight is called parsimonious.

A common interval of a set of permutations is an interval
that occurs in each permutation of the given set [12]. The
set of all common intervals of a set Π ⊆ sPn is denoted by
C(Π). A permutation λ ∈ sPn is consistent with Π if C(Π) =
C(Π∪λ). Let λ be consistent to Π, then a rearrangement ρ for
λ is preserving for Π if ρ ◦λ is consistent with Π. A sequence
(scenario) (ρ1, . . . , ρl) for λ (and π) is preserving for Π if for
all i ∈ [1 : l] the permutation ρi ◦ · · · ◦ ρ1 ◦ λ is consistent
with Π. A scenario for λ and π that is preserving for Π
and has a minimum weight is called parsimonious preserving
scenario for λ and π. A common interval I ∈ C(Π) is strong
if every other common interval J ∈ C(Π) is either disjoint,
included in I , or includes I , i.e., I ∩ J = ∅, J ⊆ I , or I ⊆ J .
See Example 1 and Figure 2 for examples of common and
strong intervals.
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Figure 1. Rearrangements for ι considered in this work (from left to right): ρI = {2, 3, 4}; ρT = ({2, 3}, {4, 5}); ρiT = ({1, 2}, {3, 4}); ρpiT =
({1, 2, 3, 4}, {5}); ρsiT = ({2, 3, 4, 5}, {1}); ρTDRL = ({2, 4}, {1, 3, 5}). Bright and dark gray squares illustrate the sets X and Y , respectively.

Example 1. Consider Π = {(1 −2 4 3 −6 5), ι}. The
permutation λ = (1 2 3 4 −6 5) is consistent with
Π, since C(Π) = C(Π ∪ λ), where the common inter-
vals of Π are {1, 2, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {1, 2, 3, 4},
{3, 4, 5, 6}, {2, 3, 4}, {1, 2}, {3, 4}, {5, 6}, {1}, {2}, {3},
{4}, {5}, and {6}. The strong common intervals of Π
are {1, 2, 3, 4, 5, 6}, {1, 2}, {3, 4}, {5, 6}, {1}, {2}, {3},
{4}, {5}, and {6}. One sequence for (1 −2 4 3 −6 5) is
(ρI = {5, 6}, ρT = ({2}, {3, 4})). For equally weighted
rearrangements, e.g., 1 = ωI = ωiT = ωT = ωTDRL,
a parsimonious scenario for (1 −2 4 3 −6 5) and ι
that is consistent for Π is S = (ρT = ({3}, {4}), ρI =
{2}, ρiT = ({6}, {5})) and ω(S) = 3. A TDRL for
λ is ({1, 2, 4, 5}, {3, 6}) and the corresponding minimal
TDRL is ({4, 5}, {3, 6}).

Since every two strong intervals are either disjoint or one
includes the other, the strong intervals of Π form a hierarchy,
which is captured by the strong interval tree. Strong interval
trees [19], [22] are an important data structure for genome
rearrangement analysis [22], [27], [28], since it can encode
all O(n2) common intervals of a set of permutations with
O(n) nodes [22]. Formally, for Π ⊆ sPn and λ ∈ sPn
that is consistent with Π a strong interval tree of Π and λ
is an ordered and rooted tree where the node set is the set
of strong common intervals of Π, the edge set is defined
by their minimal inclusion relation, and the child nodes
of a node are ordered as the corresponding intervals in λ,
see Figure 2. Observe that the following facts hold for a
strong interval tree: i) each node is an interval in λ since λ
is consistent with Π, ii) the leaves are the single elements
1, . . . , n, and iii) the root is the set {1, . . . , n}.

The degree of a node N , denoted by deg(N), of a rooted
tree is the number of its child nodes. Let N be an inner node
of the strong interval tree of Π and λ, permutation π ∈ sPn
be consistent with Π, and N1, . . . , Ndeg(N) be the child
nodes of N in this order. The quotient permutation of N (with
respect to π) is the permutation π|N which satisfies that
π|N (i) precedes π|N (j) if and only if the interval Ni is to left
of the interval Nj in π for i 6= j. A quotient permutation π|N
is linear increasing (linear decreasing) if π|N = (1 . . . deg(N))
(respectively π|N = (deg(N) . . . 1)) holds. Permutation π|N
is prime if it is neither linear increasing nor linear decreasing.
Node N is linear (prime) with respect to π if π|N is linear
increasing or linear decreasing (respectively prime).

Let Π ⊆ sPn and λ, π ∈ sPn be consistent with Π.
The signed strong interval tree (SIT) of Π, λ, and π, denoted
by T λ(π,Π), is the strong interval tree of Π and λ, where
nodes that are linear with respect to π and leaves have an
additional sign that is determined as follows: i) a linear inner
node N gets the sign + (respectively −) if π|N is linear

-

+

+

-

+- ---

(a)

+- - -+

+

(b)

Figure 2. (a): Linear SIT T λ(ι, {λ, ι}) with λ = (−2 1−5−3−4). Linear
(prime) vertices are represented by rectangles (respectively ellipses).
The sign of a node is shown at the top of the rectangles. The common
intervals of {λ, ι} are {1, 2}, {3, 4}, {3, 4, 5}, {1, 2, 3, 4, 5}, {1}, {2},
{3}, {4}, and {5} and each of these intervals is strong as well. The
node {5, 3, 4} is linear decreasing since ι|{5,3,4} = (2 1) and the node
{3, 4} is linear increasing since ι|{3,4} = (1 2). For equally weighted
rearrangements, a parsimonious preserving scenario for λ and ι is
S = (ρT = ({3}, {4}), ρI = {3, 4, 5}, ρpiT = ({2}, {1})). (b): Prime
SIT T λ′

(ι, {λ′, ι}) with λ′ = (−2 4 −1 3 −5). The interval {1, 3, 4} is a
prime-sibling. For equally weighted rearrangements, one parsimonious
preserving scenario for λ′ and ι is S = (ρI = {1, 2, 4}, ρiT =
({4}, {2, 3}), ρI = {5}).

increasing (respectively decreasing) with respect to π, ii)
a leaf node gets the sign + if the corresponding element
has the same sign in π and λ and the sign − otherwise.
Note that no sign is assigned to a prime node. If all inner
nodes of a SIT are linear (with respect to π), then the SIT is
called linear. Otherwise, the SIT is called prime. Both types
of SITs are considered in this paper because both occur in
biological applications. Whereas pairwise comparisons of
metazoan mitochondrial gene orders often correspond to
instances with linear SITs [30], this is different for fungal
mitochondrial gene orders where our investigation shows
that instances with linear SIT occur in less than 5% of the
cases (for details see Section 6).

The sign of a linear node or leaf node N is denoted by
S(N) and −S(N) is the opposite sign of N , i.e., −S(N) =
+ (respectively −S(N) = −) if S(N) = − (respectively
S(N) = +). An interval X of λ is called a prime-sibling
with respect to π and Π if X is a union of child nodes of
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a prime node in T λ(π,Π). Figure 2 gives examples for the
definitions related to SITs.

The weighted preserving Genome Sorting Problem (wpGSP)
is to find for a set of rearrangements R, a weight function
ω : R → R>0, and signed permutations λ, π ∈ sPn a
parsimonious preserving scenario for λ and π. Figure 3
illustrates a parsimonious preserving scenario for a given
wpGSP.

3 GENERALIZED PRESERVING REARRANGE-
MENTS

In this section some theoretical results for preserving scenar-
ios are shown. In the following, let Π ⊆ sPn and let λ ∈ sPn
and π ∈ sPn be consistent with Π.

The following proposition is adapted from [22] and it
is one reason for the success of the SIT data structure for
computing preserving rearrangements.

Proposition 1 ([22]). Let I be an interval of a permutation
π′ ∈ Π. Then, I ∈ C(Π) if and only if I is a node of
T λ(π,Π) or the union of consecutive child nodes of a
linear node of T λ(π,Π).

Proposition 1 is the foundation for specifying rearrange-
ments that preserve common intervals in terms of the SIT.
Such a specification has been presented for inversions in [22]
and the following theorem generalizes this specification.

Theorem 1. Let S = (ρ1, . . . , ρl) be a sequence for λ, λi :=
ρi ◦ . . . ◦ ρ1 ◦ λ with i ∈ [1 : l], and λ0 := λ. Then, S is
preserving for Π if and only if for all j ∈ [0 : l − 1] each
linear node in T λj (π,Π) is a linear node in T λj+1(π,Π).

Proof:⇒) Assume that S is preserving for Π, i.e., for
all j ∈ [1 : l] the permutation λj is consistent with Π. Let
I ∈ C(Π) be a node in T λj (π,Π) with j ∈ [0 : l − 1].
Then, by the definition of the SIT the strong interval I is
also a node in T λj+1(π,Π), since the nodes in T λj (π,Π)
and T λj+1(π,Π) are the strong intervals of Π. Now, let
I ∈ C(Π) be a linear node in T λj (π,Π) with child nodes
I1, . . . , Ideg(I) in that order. Then, the order of the child
nodes of I in T λj+1(π,Π) is either I1, . . . , Ideg(I) or its
reverse, i.e., Ideg(I), . . . , I1. This can be seen by the following
argumentation. For a contradiction assume that the order of
the child nodes of I in T λj+1(π,Π) is neither I1, . . . , Ideg(I)
nor Ideg(I), . . . , I1. Then, there exist two child nodes Ii and
Ii+1 of I that are not consecutive in T λj+1(π,Π), whereas
they are consecutive in T λj (π,Π). By Proposition 1 the
set Ii ∪ Ii+1 is a common interval of Π ∪ λj , since it is
a union of consecutive child nodes of a linear node, i.e.,
Ii∪Ii+1 ∈ C(Π∪λj). On the other hand, by Proposition 1 it
holds that Ii∪Ii+1 /∈ C(Π∪λj+1), since Ii and Ii+1 are nei-
ther consecutive child nodes of a linear node in T λj+1(π,Π)
nor Ii ∪ Ii+1 is a node in T λj+1(π,Π). The first fact holds,
since Ii and Ii+1 are not consecutive in T λj+1(π,Π). The
latter fact holds, since Ii∪Ii+1 is not a node in T λj (π,Π) and
since both T λj (π,Π) and T λj+1(π,Π) have the same nodes,
i.e., the same strong common intervals of Π. Therefore,
Ii ∪ Ii+1 ∈ C(Π ∪ λj) and Ii ∪ Ii+1 /∈ C(Π ∪ λj+1), which
contradicts the assumption that S is preserving for Π, since
C(Π) = C(Π ∪ λj) 6= C(Π ∪ λj+1) = C(Π), i.e., λj+1

is not consistent with Π. Consequently, the order of the

child nodes of I in T λj+1(π,Π) is either unchanged, i.e.,
I1, . . . , Ideg(I), or reversed, i.e., Ideg(I), . . . , I1. In both cases,
I is linear in T λj+1(π,Π), which proves the result.
⇐) Assume that for all j ∈ [0 : l − 1] it holds

that each linear node N in T λj (π,Π) is a linear node in
T λj+1(π,Π). Consider a common interval I ∈ C(Π ∪ λj)
with j ∈ [0 : l − 1]. By Proposition 1 strong interval
I is a node in T λj (π,Π) or I is a union of consecutive
child nodes of a linear node of T λj (π,Π). If I is a node
in T λj (π,Π), then I is also a node in T λj+1(π,Π), since
by the definition of a SIT the nodes of a SIT T σ1(σ2,Σ),
with Σ ⊆ sPn and σ1, σ2 ∈ sPn consistent with Σ, are the
strong common intervals of Σ, which are not influenced by
σ1 or σ2. If I is a union of consecutive child nodes of a
linear node N in T λj (π,Π), then I ∈ C(Π ∪ λj+1), since
consecutive child nodes of a linear node in T λj (π,Π) are
also consecutive in T λj+1(π,Π). This can be seen by the
following argumentation. Since N is linear in T λj (π,Π)
and T λj+1(π,Π) the order of the child nodes of N is
either unchanged, i.e, N is linear increasing (respectively
decreasing) in T λj (π,Π) and T λj+1(π,Π), or reversed, i.e.,
N is linear increasing (decreasing) in T λj (π,Π) and linear
decreasing (respectively increasing) in T λj+1(π,Π). Note
that no other case satisfies that N is linear in T λj (π,Π) and
T λj+1(π,Π). If the order of child nodes of N is unchanged,
then obviously consecutive child nodes of N in T λj (π,Π)
are also consecutive in T λj+1(π,Π). If the order of child
nodes of N is reversed, then each two child nodes N1, N2

of N that are consecutive in T λj (π,Π) (in that order) are
consecutive in T λj+1(π,Π) in the reversed order. In both
cases it holds that I ∈ C(Π ∪ λj+1). Consequently, for all
j ∈ [0 : l−1] λj is consistent with Π, i.e., S is preserving for
Π.

For the interested reader, the proofs of the following two
corollaries of Theorem 1 are given in the supplementary
material. The following corollary of Theorem 1 shows that a
preserving sequence for λ retains the consecutiveness of the
child nodes of linear nodes of T λ(π,Π).

Corollary 1. Let S = (ρ1, . . . , ρl) be a sequence for λ that is
preserving for Π, λi := ρi ◦ . . . ◦ ρ1 ◦ λ with i ∈ [1 : l],
and λ0 := λ. Then, for each linear nodeN in T λj (π,Π) it
holds that consecutive child nodes of N are consecutive
in T λj+1(π,Π), where j ∈ [0 : l − 1].

By Corollary 1 a preserving rearrangement can change
the SIT only as follows: i) the order of the child nodes of
a linear node N is reversed and the sign of N is switched,
ii) the sign of a leaf node is switched, and iii) the order of
the child nodes of a prime node is permuted. In case iii) the
consequences for a prime node N are that either N becomes
linear and gets a corresponding sign or N remains prime
(and therefore has no sign).

The following corollary of Theorem 1 specifies the pre-
serving rearrangements for several types of rearrangements
in terms of the SIT.

Corollary 2. Let ρ be a rearrangement for λ of type I , T ,
iT , or minimal TDRL. Then ρ is preserving for Π if and
only if one of the following holds:

i) ρ = X is of type I where X is a prime-sibling with
respect to π and Π or ρ = (X,Y ) is of type T , iT ,
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Figure 3. Parsimonious scenario (ρTDRL = ({4, 5}, {2, 3}), ρI = {2, 3, 4, 5}) for λ = (1 −3 −5 −2 −4) and ι that is preserving for {λ, ι}. This
scenario is a solution of the wpGSP defined by all rearrangements of type X ∈ {I, T, iT,minimal TDRL}, ω(ρ) = 1 for all rearrangements ρ, and
λ and ι. Illustrated are from the left to the right T λ(ι, {λ, ι}), T ρTDRL◦λ(ι, {λ, ι}), and T ρI◦ρTDRL◦λ(ι, {λ, ι}). Observe that ρTDRL transforms
the prime node {2, 3, 4, 5} in T λ(ι, {λ, ι}) into a linear node in T ρTDRL◦λ(ι, {λ, ι}) that has a − sign.

or minimal TDRL where X and Y are prime-siblings
with respect to π and Π;

ii) ρ = X is of type I , where X is a linear node in
T λ(π,Π);

iii) ρ = (X,Y ) is of type T , where X and Y are the only
child nodes of a linear node X ∪ Y in T λ(π,Π);

iv) ρ = (X,Y ) is of type iT , where Y is the first or last
child of a linear node X ∪ Y in T λ(π,Π).

To describe the consequences of Corollary 2 for finding
parsimonious preserving scenarios the following definition
is needed. Consider a rearrangement ρ that is preserving for
Π and of type I , T , iT , or minimal TDRL. Then ρ = X or
ρ = (X,Y ). Rearrangement ρ acts on a node N of T λ(π,Π)
if X (respectively X ∪Y ) is a node in T λ(π,Π) or is a union
of child nodes of a node N in T λ(π,Π). Corollary 2 shows
that each of the considered rearrangements acts on a node of
T λ(π,Π). A consequence of Corollary 2 is that a preserving
rearrangement of type X ∈ {I, T, iT,minimal TDRL} that
acts on a linear node N is uniquely determined, i.e., if there
exist two rearrangements ρ and ρ′ of type X that act on
N , then ρ = ρ′. Note that uniqueness does not necessarily
hold for rearrangements that act on a prime node of the SIT.
Figure 4 illustrates the effects of preserving rearrangements
of types I , T , piT , siT , and minimal TDRL that act on a
node of a SIT. The figure illustrates also the effect on the
signs of the nodes.

The following proposition shows that there exist parsi-
monious preserving scenarios that have a specific structure.
Proposition 2. Consider scenarios for λ and π that consist

only of rearrangements of types I , T , iT , and minimal
TDRL and that are preserving for Π. There exists such
a scenario S = (ρ1, . . . , ρk) that is parsimonious and
where each rearrangement ρi, i ∈ [1 : k], acts on a
node of T λ(π,Π) and for each node N of T λ(π,Π)
the rearrangements that act on N are a subsequence of
S. Moreover, for each order of the nodes of T λ(π,Π)
there exists such a parsimonious scenario were the sub-
sequences of rearrangements that act on the different
nodes have the same relative order as their nodes.

Proof: Observe, there exists always a scenario for
λ and π that is preserving for Π and consists only of
rearrangements of the type I . Hence, there exists also a
parsimonious scenario for λ and π that is preserving for
Π. Let S′ = (ρ1, . . . , ρk) be such a parsimonious scenario. It
follows from Corollary 2 that each rearrangement acts on a
node in T λ(π,Π). Now, consider two rearrangements ρi and

Figure 4. Preserving rearrangements of type I, T , piT , and siT that act
on a linear node N and an example of a preserving rearrangement of
type TDRL that acts on a prime node N ′, which is illustrated by an
ellipse. Node N , its child nodes N1, . . . , Ndeg(N), and the child nodes
N ′1, . . . , N

′
5 of N ′ are represented by their signs. Illustrated is the case

where all child nodes of N and N ′ are linear. If a child node is prime,
then it has no sign. A pentagon illustrates that the node N ′ can either
remain prime or it becomes linear (and gets a corresponding sign) by
the application of the TDRL. Observe that the rearrangement of type
TDRL does not change the signs of the child nodes of N ′.

ρi+1, i ∈ [1 : k − 1], of S′ that act on different nodes Ni and
Ni+1 of T λ(π,Π). Then, it holds that a parsimonious pre-
serving scenario S′′ := (ρ1, . . . , ρi−1, ρ

′
i+1, ρ

′
i, ρi+2, . . . , ρk)

for π and λ exists such that i) either ρ′i = ρi or ρ′i and ρi
are of the same type, ρ′i = (Y,X), and ρi = (X,Y ) and ii)
either ρ′i+1 = ρi+1 or ρ′i+1 and ρi+1 are of the same type,
ρ′i+1 = (Y,X), and ρ′i = (X,Y ). This can be seen by the
following argumentation. Since the nodes Ni and Ni+1 are
different it holds that either Ni ∩ Ni+1 = ∅, Ni ⊂ Ni+1, or
Ni+1 ⊂ Ni.

Consider first the case Ni ∩ Ni+1 = ∅. Due to the
hierarchical structure of the nodes of T λ(π,Π), it is easy
to see that ρi (respectively ρi+1) changes only the order of
nodes in a subtree rooted at Ni (respectively Ni+1). Since
Ni∩Ni+1 = ∅ both subtrees are disjoint. Therefore, the order
of the child nodes ofNi (respectively Ni+1) is unchanged by
the application of ρi+1 (respectively ρi). Consequently, ρi+1

is a rearrangement for λi−1 and ρi is a rearrangement for
ρi+1 ◦ λi−1 and ρi+1 ◦ ρi ◦ λi−1 = ρi ◦ ρi+1 ◦ λi−1. Since
ρi+1 ◦ ρi ◦ λi−1 = ρi ◦ ρi+1 ◦ λi−1, in this case it holds that
S′′ is a scenario for λ and π.

Now consider the case Ni ⊂ Ni+1. Assume that Ni
is a child node of Ni+1. Since ρi+1 acts on Ni+1 it can
only change the relative order of its child nodes or it can
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inverse some of its child nodes. If ρi+1 does not inverse
Ni then clearly both sequences of rearrangements (ρi, ρi+1)
and (ρi+1, ρi) have the same effect. Now consider the case
that ρi+1 inverses node Ni. If ρi is of type T , I , or iT it
is clear that both sequences (ρi, ρi+1) and (ρi+1, ρi) have
the same effect. If ρi = (X,Y ) is a minimal TDRL then
the sequences (ρi, ρi+1) and (ρ′i+1, ρi) have the same effect
were ρ′i+1 = (Y,X), i.e., the elements that are kept in the
left copy and in right copy have been exchanged. If Ni is a
successor of Ni+1 but not a child node the proof is similar.
The remaining case Ni+1 ⊂ Ni can be done analogously to
the case Ni ⊂ Ni+1.

It is not hard to see that the proposition follows by an
iterative application of the described interchange of to pairs
of neighboured rearrangements that act on different nodes.

Proposition 2 proves the existence of parsimonious pre-
serving scenarios that consists of consecutive subsequences
that act on different nodes. Algorithm CREx2, which is
presented in Section 5, computes for given λ and π such
a parsimonious scenario for λ and π that is preserving for
{π, λ} such that the subsequences that act on different nodes
of the SIT have the same relative order as the bottom-up
order of the nodes of T λ(π, {π, λ}).

4 WEIGHTED PRESERVING REARRANGEMENTS

The various types of rearrangements occur during the evo-
lution of diverse taxa with different likelihoods. In order to
compute realistic scenarios it is useful to employ a weight-
ing scheme for the different types of rearrangements. In this
section we investigate the problem to calculate the weights
of preserving parsimonious scenarios of rearrangements
that are weighted by their type.

Let Π ⊆ sPn, π, λ ∈ sPn consistent with Π, N be a node
of T λ(π,Π), and R|N be the set of rearrangements that are
of type I , T , iT , or minimal TDRL and act onN . ForN and
a sign s ∈ {+,−} let κ(N, s) denote the minimum weight of
a preserving scenario S for λ and S ◦λ such that all nodes in
the subtree rooted at N in T S◦λ(π,Π) have sign s. Observe
that when N is the root of the SIT, the value κ(N,+) is the
minimal weight of a scenario for λ and π. In the following
we show that the values κ(N, s) can easily be calculated if
N is a leaf node or a linear node and otherwise, i.e., N is a
prime node, the calculation of κ(N, s) is NP -hard.

Consider first the case that N is a leaf node. By Corol-
lary 2 the sign of a leaf node can only be modified by a
rearrangement of type I . Therefore, in this case κ(N, s) = ωI
if s 6= S(N) and, otherwise, κ(N, s) = 0.

Consider now the case that N is a linear node. In the
following it is shown that if N is a linear node, then only
a small constant number of different weight values for
preserving scenarios have to be considered. This is due to
the fact that every type of preserving rearrangement which
acts on a linear node N is uniquely determined (Corol-
lary 2) and that (under the set of considered rearrangements)
a preserving scenario with more than 3 rearrangements
cannot be parsimonious, which is shown in the following
Proposition 3.

Let κi(N, s), for i ∈ [0 : 3], be auxiliary weight functions
which give the minimum weight of a scenario S with exactly

i rearrangements acting on a node N such that all nodes in
the subtree rooted atN in T S◦λ(π,Π) have sign s. In the fol-
lowing some specific κi(N, s), i ∈ [0 : 3], are described and
Proposition 3 shows that the minimum of these weight func-
tions is κ(N, s). The corresponding (possibly parsimonious)
scenarios are illustrated in the supplementary figures S3-S5.

Recall that κ(Ni,±), i ∈ [1 : deg(N)], denotes the
minimum weight of a preserving scenario for the child
node Ni of N and that S(N) is the sign of node N .
Further, let s ∈ {−,+} be the desired sign. Note that any
rearrangement ρ from R|N switches the sign of the linear
node N , since ρ acts on N . Therefore, for the application
of an even (respectively odd) number of rearrangements it
cannot hold that the sign ofN in T S◦λ(π,Π) is s if S(N) 6= s
(respectively S(N) = s). Hence, if i ∈ {1, 3} and S(N) = s,
then κi(N, s) = ∞, and if i ∈ {0, 2} and S(N) 6= s, then
κi(N,−s) =∞.
No rearrangement: If S(N) = s, then one option is to apply
no rearrangement that acts on N and apply rearrangements
only to its deg(N) child nodes N1, . . . , Ndeg(N) in order to
adjust their signs to s. The weight of such a scenario is
given by κ0(N, s) =

∑deg(N)
i=1 κ(Ni, s). If S(N) 6= s then

κ0(N, s) =∞.
One rearrangement: If S(N) 6= s, then one possibility
is to apply one rearrangement that acts on N satisfying
that N and all its child nodes have the sign s. By Corol-
lary 2, the weight κ1(N, s) has to consider the weight of
every type of preserving rearrangement plus the weight
to realize the corresponding signs of the child nodes.
Thus, κ1(N, s) = min{K1,1,K1,2,K1,3}, where K1,1 =

ωI +
∑deg(N)
i=1 κ(Ni,−s) is the weight of applying an I ,

K1,2 = ωT + κ(N1, s) + κ(N2, s) is the weight of applying
a T if deg(N) = 2 and otherwise K1,2 = ∞, and K1,3 =

ωiT + min{κ(N1, s) +
∑deg(N)
i=2 κ(Ni,−s), κ(Ndeg(N), s) +∑deg(N)−1

i=1 κ(Ni,−s)} is the weight of applying an iT . If
S(N) = s then κ1(N, s) =∞.
Two rearrangements: If S(N) = s, then instead of applying
rearrangements only to the child nodes of N (no rear-
rangement case), there is also the possibility to apply two
rearrangements that act on N in order to change the signs
of its child nodes simultaneously. Therefore, κ2(N, s) =
min{K2,1,K2,2,K2,3}, where the weight of applying an I
and a T is given by K2,1 = ωI + ωT + κ(N1, -s) + κ(N2, -s)
if deg(N) = 2 and otherwiseK2,1 =∞, the weight of apply-
ing two successive iT of the same type is given by K2,2 =

2ωiT + κ(N1,−s) +
∑deg(N)−1
i=2 κ(Ni, s) + κ(Ndeg(N),−s),

and the weight of applying a T and an iT is given byK2,3 =
ωT +ωiT +min{κ(N1,−s)+κ(N2, s), κ(N1, s)+κ(N2,−s)}
if deg(N) = 2 and otherwise K2,3 = ∞. If S(N) 6= s then
κ2(N, s) =∞.
Three rearrangements: If S(N) 6= s, only an application
of one T and two iT can be parsimonious. Therefore,
κ3(N, s) = ωT + 2ωiT +κ(N1,−s) +κ(N2,−s) if deg(N) =
2, deg(N1) > 2, deg(N2) > 2, and ωI > ωT + 2ωiT holds.
Otherwise κ3(N, s) =∞. If S(N) = s then κ3(N, s) =∞.

The following proposition shows that it is sufficient to
consider only κ0(N, s), . . . , κ3(N, s) for different weight
values for preserving scenarios.
Proposition 3. Let Π ⊆ sPn, π, λ ∈ sPn consistent with Π,

and N be a linear node of T λ(π,Π). The set of possible
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rearrangements are all rearrangements of type I , T , iT
that are preserving for Π with given positive weights ωI ,
ωT , respectively ωiT . Let s ∈ {+,−} be a given sign.
Then the total weight for a parsimonious (preserving)
scenario S that transforms λ into a permutation S ◦ λ
such that all nodes within the subtree with root N in
T S◦λ(π,Π) are linear nodes with sign s is

∑
ρ∈S ω(ρ) =

min(κ0(N, s), κ2(N, s)) if s = S(N) and
∑
ρ∈S ω(ρ) =

min(κ1(N, s), κ3(N, s)) otherwise.

Proposition 3 can be proven by showing that all other
sequences with different weights than κi(N, s), i ∈ [0 : 3],
of successive rearrangements cannot lead to a parsimonious
scenario. As an example for a scenario that cannot be
parsimonious, observe that the successive application of
two preserving T that act on the same linear node cannot
be a subsequence of a parsimonious scenario, since they
neutralize each other (see supplementary Figure S1(b)). A
straightforward proof of Proposition 3 is given in the sup-
plementary material.

Now, consider the case that N is a prime node. In
this case a preserving rearrangement that acts on N can
arbitrarily change the order of the child nodes of N . There-
fore, the set of possibly parsimonious scenarios cannot be
reduced as it is done in the linear case. To calculate κ(N, s)
a weight-minimum scenario, which may include weighted
rearrangements of the type I , T , iT , and TDRL, for the
signed quotient permutation of N and ι (respectively -ι) has
to be calculated. Thereby, the signed quotient permutation
of N is the quotient permutation of N where every element
is assigned to either + or − depending of the sign of the
corresponding child node ofN . If a child node ofN is prime
(and therefore has no sign), then all possible sign combina-
tions for this node have to be considered. Note that in this
case the calculation of κ(N, s) is an NP-hard optimization
problem [7]. Algorithm CREx2, which is presented in the
following section, solves this problem by an Integer Linear
Programming.

5 DYNAMIC PROGRAMMING ALGORITHM CREX2

In this section algorithm CREx2 is presented that solves the
wpGSP problem for the set R of rearrangements of type I ,
T , iT , or minimal TDRL that are weighted with respect to
their type and λ, π ∈ sPn.

CREx2 is a dynamic programming algorithm that com-
putes the weights κ(N, s) with three different routines de-
pending on whether a node N is a leaf, linear, or prime.
For leaf nodes and linear nodes N the weights κ(N, s) are
calculated directly and the weights for prime nodes are
handled with an adjusted version of algorithm GeRe-ILP
[11]. Algorithm 1 shows the pseudocode of CREx2. In the
following we describe how CREx2 determines κ(N, s) and
implicitly also a corresponding scenario.

CREx2 is called for the root node of the SIT
T λ(π, {π, λ}). Recursive function calls (Line 3) for each
child node Ni, i ∈ [1 : deg(N)], of a node N pre-compute
the necessary weights κ(Ni,±). The base case of the recur-
sion are the leaf nodes (lines 4-7). Note that in the considered
rearrangement model the sign of a leaf node N can only be
modified by a rearrangement of type I (Corollary 2). Hence,

Algorithm 1: Pseudocode of CREx2 algorithm.

Data: node N of T λ(π, {π, λ})
Result: κ(N,+), κ(N,−)

1 κ(N,+)←∞; κ(N,−)←∞;
2 for Ni ∈ {N1, . . . , Ndeg(N)} do // recursively
compute child weights

3 κ(Ni,+), κ(Ni,−)← CREx2(Ni);
4 if N is a leaf node then // base case
5 κ(N,S(N))← 0;
6 κ(N, -S(N))← ωI ;
7 return (κ(N,+), κ(N,−));
8 if N is linear then // case linear node
9 κ(N,S(N))← min(κ0(N,S(N)), κ2(N,S(N)));

10 κ(N, -S(N))←min(κ1(N, -S(N)), κ3(N, -S(N)));
11 else // case prime node
12 κ(N,±)← GeRe-ILP(π|N ,±ι);
13 return (κ(N,+), κ(N,−))

for a leaf N κ(N, s) = ωI if s 6= S(N) and κ(N, s) = 0
otherwise (see lines 5-7).

For an inner node N (lines 8-12) the value of κ(N, s) can
be computed from a parsimonious preserving scenario S
that transforms N to a linear node with sign s. In addition,
the weight of S plus the weight to change the signs of the
child nodes of N to s (using preserving scenarios) must be
minimum. The cases of a linear node N (lines 8-10) and
a prime node N (lines 11-12) are handled differently by
CREx2. This is described in more detail in the following.

Consider first the case that N is a linear node. By
Proposition 3 the minimum weight κ(N, s) for a linear node
N can be computed as: κ(N, s) = min(κ0(N, s), κ2(N, s)) if
s = S(N) and κ(N, s) = min(κ1(N, s), κ3(N, s)) otherwise
(see lines 9-10).

Now, consider the case that N is a prime node. CREx2
handles this case with an adjusted version of GeRe-ILP
[11]. For given λ ∈ sPn, π ∈ sPn, and weights ωI , ωT , and
ωiT , GeRe-ILP calculates a parsimonious scenario for λ and
π using rearrangements of types T , I , and iT . In order to be
used by CREx2, the ILP formulation of GeRe-ILP has been
adjusted as follows:

1) The set of rearrangements considered in GeRe-ILP was
extended by type minimal TDRL. This was done by
adding O(n2) binary variables and O(n3) constraints
to the ILP formulation.

2) GeRe-ILP calculates κ(N, s) and therefore it assigns
signs to child nodes of N such that the signed per-
mutation π|N can be sorted into ι if s = + or into
-ι if s = − with a parsimonious scenario. Therefore,
the values κ(Ni,±) of the child nodes N1, . . . , Ndeg(N)

of N , which have been pre-computed by recursive
function calls, are used. The objective of GeRe-ILP has
been adjusted to find a parsimonious scenario for π|N
and ±ι and the corresponding signs.

3) In order to handle the exponential runtime behaviour
of GeRe-ILP, a time limit L can be set by the user of
CREx2. If the runtime of GeRe-ILP reaches L either
the best so-far found solution is returned or, if no
solution has been found, heuristic CREx [28] is applied
to give an approximate fallback solution. In this case,
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the signs of the elements of the quotient permutation
are chosen such that the sum of the weights to sort
the corresponding child nodes of the prime node are
minimum. Note that this choice is locally the optimal
decision. However, in some cases this decision might be
unfavourable. Clearly, in both cases the solution might
not be exact. Note, if L is used the total runtime of
CREx2 can exceed L since L is a runtime bound only
for handling a single prime node N .

In summary, the adjusted version of GeRe-ILP computes
the minimum weight κ(N, s) for a prime node N when
using rearrangements of types T , I , iT , and minimal TDRL
which are weighted by their type (see Line 12) (For detailed
information on the adjustments of GeRe-ILP see the sup-
plementary material).

For a runtime analysis of CREx2 let λ, π ∈ sPn and
T λ(π, {π, λ}) be a SIT of {π, λ}, λ, and π. By recursion,
Algorithm 1 is called once for each of the at most O(n)
nodes of T λ(π, {π, λ}). For a leaf node the weights κ(N,±)
can be computed in constant time. For linear nodes at most
a small constant number of weight values are evaluated
using only the given weights and the weights of the subtrees
rooted at the child nodes. Therefore, in the case that the SIT
is linear, only a constant amount of time is necessary per
node of the SIT. Hence, the CREx2 algorithm has a runtime
of O(n) for solving the wpGSP if the given SIT is linear.
If the SIT is prime, the runtime of CREx2 is dominated by
the runtime of the introduced variant of GeRe-ILP which
is exponential in the worst case.

Algorithm CREx2 is implemented in C++ using Gurobi
Optimizer 7.0 and is freely available from http://pacosy.
informatik.uni-leipzig.de/crex2.

6 EXPERIMENTS

Algorithm CREx2 has been applied to analyze the gene
orders of the protein coding genes and the ribosomal RNA
genes of the mitochondrial genomes of all fungi species
that are available in NCBI RefSeq release 77 [31]. The gene
orders were obtained with an improved version1 of MITOS
[32], which is the standard tool for gene annotation of
mitochondria. All 160 obtained gene orders that contain the
metazoan standard set of 13 protein coding genes and two
ribosomal RNA genes were used. This data set contains 79
unique gene orders and each gene order contains exactly 15
genes. All computations were performed on a single core of
an AMD Opteron 2435 with 2.6 GHz.

All 6162 (directed) pairwise comparisons between the 79
fungi gene orders were calculated by CREx2 with equally
weighted rearrangements and a time limit of L = 300 sec-
onds. Out of the 6162 pairwise comparisons only 292 (4.7%)
have a linear SIT. Within the time limit 3657 (60.97%) com-
parisons were solved exactly. The remaining (possibly not
exact) 2505 comparisons were recomputed with L = 600.
Thereby, the results were improved for 318 comparisons and
305 of them have been solved exactly. In summary, 4280
(69.46%) of all pairwise comparisons were solved exactly
using L = 600.

1. unpublished http://mitos2.bioinf.uni-leipzig.de

In the following, we discuss the results separately for
three subsets of pairwise comparisons: A) instances for
which exact solutions were computed, B) instances with
solutions where exactness is not guaranteed, and C) all
instances.

The median runtime to compute a solution for an in-
stance in set A, B, and C, is 62.5s, 1405.8s, and 505.8s,
respectively. As expected, the median runtime for set A is
much smaller than the median runtime for B. Whereas the
median runtime is relatively small for sets A and C, the
average runtimes are 472.9s and 887.4s, respectively. This
indicates that both sets contain outliers with a very large
runtime. The average runtime to compute a solution in set
B is 1830.1s. The supplementary Figure S2 shows box plots
of the runtimes needed to compute the solutions for each of
the sets A, B, and C.

Since the runtime of GeRe-ILP increases significantly
with an increasing length of the scenarios, one would as-
sume that the average number of rearrangements in the
constructed scenarios is greater in set B than in set A.
However, the distributions of the number of preserving
rearrangements in the constructed scenarios are not substan-
tially different, see Figure 5(a). The average number of rear-
rangements for instances in B (4.9) is even slightly smaller
than the average number of rearrangements for instances
in A (5.0). This could indicate that the fallback solutions
of heuristic CREx – which are used if GeRe-ILP finds
no solution – or the potentially inexact solutions returned
by GeRe-ILP are actually exact or close to it. However,
the fraction of TDRLs within the constructed scenarios is
significantly higher for instances in B than for instances in
A, see Figure 5(b). The relatively small average number of
rearrangements for instances in B can also be explained by
the high number of prime nodes, since a prime node allows
the application of TDRLs which can mimic a sequence of
transpositions.

In a second experiment the results of CREx2 on the
complete data set are compared to the results of CREx. For
all sets A, B, and C, Figure 6 illustrates the fractions of
instances for which one of the algorithms yields a smaller, an
equal, or a larger distance. The figure shows that in the 6162
pairwise comparisons (i.e., set C) the resulting distances of
CREx and CREx2 are equal for 3124 (50.69%) instances, for
72 (1.16%) instances CREx provides smaller distances than
CREx2, and for 2966 (48.13%) instances CREx2 provides
smaller values than CREx. For instances in C, this results
in an average distance of 5.6 and 4.9 for the results of CREx
and CREx2, respectively. It is worth to point out that (despite
the simplicity of its heuristical approach) 50.69% of the
solutions obtained by CREx are exact for the given data set.
Figure 7 also shows that the fraction of instances for which
both algorithms generate the same solutions is twice as big
in instance set B than in instance set A, which is due to the
fallback procedure to use CREx for prime nodes in the case
that GeRe-ILP is unable to find a solution within the time
limit. Figure 7 shows box plots for the distances obtained
by both algorithms for the sets A, B, C, and the set A′ of
all instances of A for which CREx2 found better solutions
than CREx. It can be seen that the median distances for
instances inC are 6 and 5 for the results of CREx and CREx2,
respectively. The results of both algorithms for instances in
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set B are almost equivalent. In particular, the box plots
in Figure 7 and the fact that CREx (respectively CREx2)
produces smaller distances than CREx2 (respectively CREx)
in 3.82% (respectively 20.13%) of all instances in B indicate
that if a result of CREx is smaller than the result of CREx2,
then their difference is relatively large. However, in the
case that CREx2 finds an exact solution, it is likely that the
solution is smaller than the solution provided by CREx. For
instances with a linear SIT the comparison showed that for
144 (49.3%) instances both algorithms obtained solutions
with an equal scenario lengths and for 148 (50.7%) instances
CREx2 produced shorter scenarios than CREx. For these 148
instances, the scenarios obtained by CREx2 are in average
shorter by 1.44 rearrangements than the scenarios obtained
by CREx. Supplementary Figure S7 illustrate the comparison
of CREx and CREx2 for instances with linear SIT.

In a third experiment the phylogenetic information that
can be obtained from a gene order analysis with CREx2 is
investigated. In particular, it was investigated if there exists
a linear correlation between the length of a scenario for
two gene orders and the similarity of their gene sequences.
For each pair of genomes and each protein coding gene a
global alignment was computed for the corresponding two
nucleotide sequences. This was done with the Biopython
[33] implementation of the Needleman-Wunsch algorithm
[34] (match 1, gap and mismatch 0). The result is that
for set A a negative linear correlation of medium strength
(r < −0.4) exists between the length of the scenarios and
the alignment scores for the genes atp8, nad4, nad4l, nad6,
nad3. For the remaining protein coding genes there exists
a weak negative linear correlation (−0.4 ≤ r < −0.14, p-
value < 0.01), see Figure 8 and supplementary Figure S7.
This shows that relevant phylogenetic information can be
obtained from the lengths of the scenarios that are obtained
with CREx2. For set B a weak negative linear correlation
was obtained only for the nad3 gene, see supplementary
Figure S8. This could be caused by the approximative nature
of the solutions, unsuitable weights, or unconsidered types
of rearrangements.

CREx2 provides the possibility to weight preserving re-
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Figure 8. Normalized alignment score of the atp8 gene for pairs of
genomes and their corresponding number of rearrangements in the
exact scenarios for set A. Pearson’s correlation test gives a correlation
coefficient of −0.61 (see regression line) within the 95% confidence
interval [−0.63,−0.58]. A t-test shows that the linear correlation is
significantly not equal to 0 with a p-value smaller than 2.2 ∗ 10−16.

arrangements by their type. To study how the weighting in-
fluences the fraction of the different types of rearrangements
in the solutions, the 146 pairwise comparisons with a linear
SIT were solved with CREx2 for different weightings. Fig-
ure 9 shows the fraction of different types of rearrangements
for the tested weightings. The Figure 9(a) shows how strong
a decreasing weight for inversions increases their fraction
within the solutions. The fraction varies between 10% (e.g.,
ωI = 0.9, ωT = ωiT = 0.05) and 100% (e.g., ωI = 0.1,
ωT = ωiT = 0.45). The reason why the fraction of inversions
does not reach 0% for weightings with a large weight for
an inversion is that only inversions can be applied to leaf
nodes of the SITs. Figure 9(b) and Figure 9(c) show a smaller
variability of the corresponding fractions for T and iT , re-
spectively. In addition, Figure 9(b) shows that variability of
the fraction of transpositions is smaller than for inversions
and inverse transpositions. This is comprehensible, since
transpositions can be applied to a linear node N only if
deg(N) = 2.

7 CONCLUSION

We have considered the problem to compute parsimonious
pairwise rearrangement scenarios that regard conserved
gene sets that are formalized as common intervals [12].
An algorithm where weights are determined by the type
of a rearrangement has been presented for I , T , iT , and
(minimal) TDRL. The presented method is based on signed
strong interval trees [19], [22] and has a (worst case) expo-
nential runtime, but can compute an exact solution in linear
runtime for problem instances where the strong interval tree
is linear. Thereby a significant improvement of the heuristic
algorithm CREx [28] is provided. An empirical evaluation of
the algorithm has been conducted on fungal mitochondrial
gene orders. Parsimonious rearrangement scenarios can be
computed for most pairs of gene orders even if only a
small fraction has a linear strong interval tree. A comparison
of CREx and CREx2 on fungal mitochondrial gene orders
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Figure 9. Average fraction of I (a), T (b), and iT (c) on all scenarios of
comparisons with linear SIT for different weightings. Each dot denotes a
weighting and its grey value the corresponding fraction of inversions.

indicates that exact solutions obtained by CREx2 are likely
to improve the solutions of the CREx heuristic. It has been
shown that exact solutions provide a valuable phylogenetic
signal. Finally, it has been shown how different weightings
for the types of rearrangements influence the fractions of
these types in the constructed solutions.

For future work it is planned to incorporate variants
of block interchange genome rearrangement [35] to CREx2
such that tRNA remolding [36] is considered in the construc-
tion of a parsimonious scenario. Further, it is interesting
to study the influence of incorporating an inverse TDRL
rearrangement, which is a TDRL where the duplicated
sequence is inverted.
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