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Climate shapes the protein abundance of dominant soil bacteria 1 

Abstract 2 

Sensitive models of climate change impacts would require a better integration of multi-omics 3 

approaches that connect the abundance and activity of microbial populations. Here, we show 4 

that climate is a fundamental driver of the protein abundance of Actinobacteria, Planctomycetes 5 

and Proteobacteria, supporting the hypothesis that metabolic activity of some dominant phyla 6 

may be closely linked to climate. These results may improve our capacity to construct microbial 7 

models that better predict the impact of climate change in ecosystem processes. 8 

 9 

1.Introduction 10 

Soil microorganisms mineralize the soil organic matter thus playing a pivotal role in nutrient 11 

biogeochemical cycles. Because they also produce gaseous metabolites with potential 12 

greenhouse effects, they are also able to modify both the local and global climate (Bradford et 13 

al., 2016). In recent years, considerable efforts have been made to understand the factors 14 

governing soil microbial community composition through DNA sequencing approaches (Bastida 15 

et al., 2016; Delgado-Baquerizo et al., 2018). However, soil microbes are often not active and a 16 

large percentage of soil DNA can belong to non-living cells (Carini et al., 2016). Consequently, 17 

conventional sequencing approaches (i.e. 16S rRNA gene amplicons) can be limited in their 18 

capacity to predict the connections between microbial populations and ecosystem functioning. 19 

While genomic information provides a wealth of important information about the potential 20 

molecular machinery that might be employed for life processes, proteins are the direct 21 

catalyzers of cellular and environmental processes (Hettich et al., 2013). 22 

As a result, soil metaproteomics (the direct identification of proteins in soil) has been proposed 23 

as a promising new approach for the evaluation of the active component of the soil microbiome 24 

at local scales (Hultman et al., 2015; Bastida et al., 2016; 2017). However, until now, 25 

metaproteomics have yet to be used to examine how the activity of soil microbes varies across 26 

broad spatial scales. Here, we use a comprehensive cross site investigation of soil 27 
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metaproteomes in order to examine the abiotic factors that determine the global variability in the 28 

protein abundance of dominant bacterial phyla. Given that climate regulates the metabolic 29 

activity of soil bacteria and climate events can cause changes in the composition of soil 30 

microbial communities (Bell et al., 2014; Evans and Wallenstein, 2014), we hypothesize that 31 

climate factors will shape more the protein abundance of bacterial phyla than their abundance 32 

evaluated by phylogenetic gene markers. 33 

2. Materials and methods 34 

In order to span a large environmental gradient with strong climatic differences, soils from 35 

boreal, temperate and semiarid ecosystems were collected within a five-year period from 2010 36 

to 2015 (Table S1, Supplementary Information). Soils were sampled from Long-term Ecological 37 

Research Stations in North-America and South-Europe. These soils are included in the studies 38 

of Crowther et al. (2014) and Bastida et al. (2016, 2017). Soils were collected using a sampling 39 

design entender to maximize variation in climatic conditions and biome types. Sites included: 40 

Bonanza Creek, Alaska 64.85 °N, -147.84 °E (BNZ); Coweeta LTER, North Carolina 35 °N, -41 

83.5 °E (CWT); Hubbard Brook Experimental Forest, New Hampshire 43.94 °N, -71.75 °E 42 

(HBR); Konza Prairie Biological Station, Kansas 39.09 °N, -96.57 °E (KNZf); pre-desertic 43 

semiarid grassland, Murcia 37° 54’ N, 1° 24’ °W (GEB); pre-desertic semiarid forest Murcia 37° 44 

54’ N, 1° 24’ °W (GEP); Mediterranean forest  Albacete 38° 22’ N, 2° 20’ °W (ALB); and 45 

Mediterranean forest, Granada 38° 0’ N, 2° 2’ °W (MOJ). Three soil samples were collected in 46 

each of the sites. Each sample was a replicate. Soil samples were sieved (2 mm) and 47 

immediately preserved at -20ºC. The following parameters were determined for each site: 48 

content of clay, silt, salt, organic C, and total N, C-to-N ratio, pH, soil moisture, mean-annual 49 

temperature (MAT) and mean-annual precipitation (MAP) (Supplementary Information). The 50 

ratio between MAT and MAP was utilized as an aridity indicator: the higher the ratio, the higher 51 

the aridity. Soil organic C ranged between 0.5 and 15.5%; total N between 0.05 and 0.84%; pH 52 

between 4.2 and 8.6 (Table S1) and C/N ratio between 9 and 20. MAT ranged between -2.94ºC 53 

and 18ºC. MAP varied between 260 mm to 1400 mm. The bacterial community composition 54 

(16S rRNA gene amplicon sequencing) of studied samples was obtained from the 55 

abovementioned studies and compared to metaproteome data obtained here. Proteins were 56 

extracted and processed as described elsewhere (Chourey et al., 2011; Supplementary 57 
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Information). Genomics and metaproteomics were analyzed in each replicate and utilized as 58 

individual replicate in the statistical analyses. The mass spectrometry data have been deposited 59 

in the PRIDE partner repository with the dataset PXD003572, PXD005447 and PXD009773.  60 

Pearson correlation coefficients between the abundance of each phylum given by 61 

metaproteomics and that retrieved by 16S rRNA sequencing were obtained (Table S2, 62 

Supporting Information). These results revealed signficant correlation coefficients in the case of 63 

Acidobacteria, Actinobacteria and Cyanobacteria, but not in the case of Bacteroidetes, 64 

Firmicutes, Planctomycetes and Proteobacteria. 65 

Since not all variables were linearly related to soil abiotic variables, we first selected the best 66 

fitting approach (linear, quadratic, exponential or inverse fit) for each abiotic variable based on 67 

an Akaike information criterion (AIC) approach (Burnham and Anderson, 2002). AIC is an 68 

estimator of the relative quality of statistical models for a given dataset and provides a statistical 69 

method to select the best model among different ones. To do this, for each bacterial phyla or 70 

cellular functionality separately and each abiotic variable as the non-dependent variable we 71 

constructed all four possible models (linear, quadratic, exponential or inverse fit) and selected 72 

the best fitting approach using the AIC (Burnham and Anderson, 2002). The best fitting 73 

approach for each individual abiotic variable was selected on the basis of the lowest AIC for 74 

each set of four models containing this variable. Once the best fitting approach for each abiotic 75 

variable was selected, we tested which abiotic variable best explained the abundance of phyla 76 

through 16S rRNA sequencing or metaproteomics, as well as the abundance of proteins 77 

involved in cellular functionalities. To do this, we constructed all possible models with each 78 

abiotic variable as the non-dependent variable (12 models in total for the abundance of each 79 

bacterial phylum studied by sequencing and metaproteomics, and for the abundance of proteins 80 

involved in cellular functionality). The abiotic variable that best explained the abundance of 81 

bacterial phyla through 16S rRNA gene sequencing or metaproteomics, and the abundance of 82 

proteins involved in different cellular functionalities was selected on the basis of the model with 83 

the lowest AIC. We then calculated the adjusted R
2
 and P values and extracted the regression 84 

equation coefficients for each best univariate model. Statistical analyses were done using the R 85 

software (version 3.3.2, R Development Core Team, 2016). 86 
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3.Results and discussion 87 

Metaproteomics revealed that the abundance of the dominant bacterial phyla was best 88 

explained by pH and MAT/MAP (Table 1). In contrast, climatic factors were not selected in the 89 

univariate models that explained the abundance of bacterial phyla, studied by 16S rRNA gene 90 

sequencing. Previous studies based on 16S rRNA gene sequencing have highlighted the 91 

paramount role of pH on shaping the composition and diversity of soil microbial community 92 

(Fierer and Jackson 2006), as we also observed here (Fig. 1). The protein abundance of 93 

Acidobacteria and that of Actinobacteria and Cyanobacteria were contrarily shaped by pH. 94 

There is a need for accurately forecasting the ecological consequences of global change in soil 95 

microbial communities (Delgado-Baquerizo et al., 2018a). The protein abundance of 96 

Actinobacteria, Planctomycetes and Proteobacteria, as well as the abundance of proteins 97 

involved in the production and conversion of energy, were best explained by MAT/MAP (Table 98 

1). Proteobacterial protein content was negatively related to MAT/MAP and was higher in 99 

temperate and boreal sites (lower MAT/MAP) than in semiarid sites (higher MAT/MAP), while 100 

actinobacterial protein abundance was favored in arid environments (Fig. 1). This phylum has 101 

been suggested to be adapted to harsh conditions such soil drying through their peptidoglycan 102 

layer (Battistuzzi and Hedges, 2009). Indeed, a sequencing study revealed that Actinobacteria 103 

can outcompete other dominant groups such Acidobacteria under arid conditions (Delgado-104 

Baquerizo et al., 2018b). Considering the proposed univariate models, the increase in 105 

MAT/MAP, as predicted by climate change models in many areas of boreal, temperate and 106 

semiarid ecosystems (IPCC 2013), will likely enhance the protein abundance of Actinobacteria 107 

and Planctomycetes, and decrease that of Proteobacteria. Moreover, the abundance of proteins 108 

related to cellular energetic processes (among them the F-type H+-transporting ATPase was 109 

dominant) increased linearly with MAT/MAP (Table 1). These findings suggest an acceleration 110 

of energetic metabolic processes in soil (i.e. greater soil organic matter mineralization) induced 111 

by global warming (Bond-Lamberty and Thomson, 2010) and which is in line with the patterns of 112 

carbon losses occurring at a global scale (Crowther et al., 2016). 113 

 114 
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In despite the limitations of metaproteomics due to the absence of genome databases (Starke 115 

et al., 2017), the complicated protein extraction due to their interaction with humic substances 116 

and soil particles (Giagnoni et al., 2011), and the reduced number of analyzed samples, climatic 117 

conditions and biome types, our study provides the first tentative distribution of soil microbial 118 

proteins at broad spatial scales. As revealed by the univariate models, climate is a fundamental 119 

determinant of the protein abundance of Actinobacteria, Planctomycetes and Proteobacteria, 120 

yet not their genomic abundance, suggesting that their metabolic activity could be more closely 121 

linked to climate than community composition. Our findings have potential implications within a 122 

global change scenario and suggest that the metabolic activity of such bacterial phyla, as well 123 

as the amount of proteins involved in cellular energetic processes, could be sensitive to the 124 

forecasted increase in aridity and warming (Huang et al., 2016). These initial results are the first 125 

in what is likely to be a blossoming field in microbial ecology, which may transform our capacity 126 

to construct microbially-explicit biogeochemical models that better predict the cellular 127 

functionalities of soil microbial communities under current and future climate scenarios. 128 

 129 
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 194 

Figure 1. The relative abundance of bacterial phyla studied by 16S rRNA amplicon sequencing 195 

(A) and metaproteomics (B), and the abundance of proteins involved in functional processes 196 

(C). Figure 1A is based on earlier data from Crowther et al. (2014) and Bastida et al. (2016, 197 

2017). 198 

 199 
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Climate shapes the protein abundance of dominant soil bacteria 1 

Abstract 2 

Sensitive models of climate change impacts would require a better integration of multi-omics 3 

approaches that connect the abundance and activity of microbial populations. Here, we show 4 

that climate is a fundamental driver of the protein abundance of Actinobacteria, Planctomycetes 5 

and Proteobacteria, supporting the hypothesis that metabolic activity of some dominant phyla 6 

may be closely linked to climate. These results may improve our capacity to construct microbial 7 

models that better predict the impact of climate change in ecosystem processes. 8 

 9 

1.Introduction 10 

Soil microorganisms mineralize the soil organic matter thus playing a pivotal role in nutrient 11 

biogeochemical cycles. Because they also produce gaseous metabolites with potential 12 

greenhouse effects, they are also able to modify both the local and global climate (Bradford et 13 

al., 2016). In recent years, considerable efforts have been made to understand the factors 14 

governing soil microbial community composition through DNA sequencing approaches (Bastida 15 

et al., 2016; Delgado-Baquerizo et al., 2018). However, soil microbes are often not active and a 16 

large percentage of soil DNA can belong to non-living cells (Carini et al., 2016). Consequently, 17 

conventional sequencing approaches (i.e. 16S rRNA gene amplicons) can be limited in their 18 

capacity to predict the connections between microbial populations and ecosystem functioning. 19 

While genomic information provides a wealth of important information about the potential 20 

molecular machinery that might be employed for life processes, proteins are the direct 21 

catalyzers of cellular and environmental processes (Hettich et al., 2013). 22 

As a result, soil metaproteomics (the direct identification of proteins in soil) has been proposed 23 

as a promising new approach for the evaluation of the active component of the soil microbiome 24 

at local scales (Hultman et al., 2015; Bastida et al., 2016; 2017). However, until now, 25 

metaproteomics have yet to be used to examine how the activity of soil microbes varies across 26 

broad spatial scales. Here, we use a comprehensive cross site investigation of soil 27 
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metaproteomes in order to examine the abiotic factors that determine the global variability in the 28 

protein abundance of dominant bacterial phyla. Given that climate regulates the metabolic 29 

activity of soil bacteria and climate events can cause changes in the composition of soil 30 

microbial communities (Bell et al., 2014; Evans and Wallenstein, 2014), we hypothesize that 31 

climate factors will shape more the protein abundance of bacterial phyla than their abundance 32 

evaluated by phylogenetic gene markers. 33 

2. Materials and methods 34 

In order to span a large environmental gradient with strong climatic differences, soils from 35 

boreal, temperate and semiarid ecosystems were collected within a five-year period from 2010 36 

to 2015 (Table S1, Supplementary Information). Soils were sampled from Long-term Ecological 37 

Research Stations in North-America and South-Europe. These soils are included in the studies 38 

of Crowther et al. (2014) and Bastida et al. (2016, 2017). Soils were collected using a sampling 39 

design entender to maximize variation in climatic conditions and biome types. Sites included: 40 

Bonanza Creek, Alaska 64.85 °N, -147.84 °E (BNZ); Coweeta LTER, North Carolina 35 °N, -41 

83.5 °E (CWT); Hubbard Brook Experimental Forest, New Hampshire 43.94 °N, -71.75 °E 42 

(HBR); Konza Prairie Biological Station, Kansas 39.09 °N, -96.57 °E (KNZf); pre-desertic 43 

semiarid grassland, Murcia 37° 54’ N, 1° 24’ °W (GEB); pre-desertic semiarid forest Murcia 37° 44 

54’ N, 1° 24’ °W (GEP); Mediterranean forest  Albacete 38° 22’ N, 2° 20’ °W (ALB); and 45 

Mediterranean forest, Granada 38° 0’ N, 2° 2’ °W (MOJ). Three soil samples were collected in 46 

each of the sites. Each sample was a replicate. Soil samples were sieved (2 mm) and 47 

immediately preserved at -20ºC. The following parameters were determined for each site: 48 

content of clay, silt, salt, organic C, and total N, C-to-N ratio, pH, soil moisture, mean-annual 49 

temperature (MAT) and mean-annual precipitation (MAP) (Supplementary Information). The 50 

ratio between MAT and MAP was utilized as an aridity indicator: the higher the ratio, the higher 51 

the aridity. Soil organic C ranged between 0.5 and 15.5%; total N between 0.05 and 0.84%; pH 52 

between 4.2 and 8.6 (Table S1) and C/N ratio between 9 and 20. MAT ranged between -2.94ºC 53 

and 18ºC. MAP varied between 260 mm to 1400 mm. The bacterial community composition 54 

(16S rRNA gene amplicon sequencing) of studied samples was obtained from the 55 

abovementioned studies and compared to metaproteome data obtained here. Proteins were 56 

extracted and processed as described elsewhere (Chourey et al., 2011; Supplementary 57 
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Information). Genomics and metaproteomics were analyzed in each replicate and utilized as 58 

individual replicate in the statistical analyses. The mass spectrometry data have been deposited 59 

in the PRIDE partner repository with the dataset PXD003572, PXD005447 and PXD009773.  60 

Pearson correlation coefficients between the abundance of each phylum given by 61 

metaproteomics and that retrieved by 16S rRNA sequencing were obtained (Table S2, 62 

Supporting Information). These results revealed signficant correlation coefficients in the case of 63 

Acidobacteria, Actinobacteria and Cyanobacteria, but not in the case of Bacteroidetes, 64 

Firmicutes, Planctomycetes and Proteobacteria. 65 

Since not all variables were linearly related to soil abiotic variables, we first selected the best 66 

fitting approach (linear, quadratic, exponential or inverse fit) for each abiotic variable based on 67 

an Akaike information criterion (AIC) approach (Burnham and Anderson, 2002). AIC is an 68 

estimator of the relative quality of statistical models for a given dataset and provides a statistical 69 

method to select the best model among different ones. To do this, for each bacterial phyla or 70 

cellular functionality separately and each abiotic variable as the non-dependent variable we 71 

constructed all four possible models (linear, quadratic, exponential or inverse fit) and selected 72 

the best fitting approach using the AIC (Burnham and Anderson, 2002). The best fitting 73 

approach for each individual abiotic variable was selected on the basis of the lowest AIC for 74 

each set of four models containing this variable. Once the best fitting approach for each abiotic 75 

variable was selected, we tested which abiotic variable best explained the abundance of phyla 76 

through 16S rRNA sequencing or metaproteomics, as well as the abundance of proteins 77 

involved in cellular functionalities. To do this, we constructed all possible models with each 78 

abiotic variable as the non-dependent variable (12 models in total for the abundance of each 79 

bacterial phylum studied by sequencing and metaproteomics, and for the abundance of proteins 80 

involved in cellular functionality). The abiotic variable that best explained the abundance of 81 

bacterial phyla through 16S rRNA gene sequencing or metaproteomics, and the abundance of 82 

proteins involved in different cellular functionalities was selected on the basis of the model with 83 

the lowest AIC. We then calculated the adjusted R
2
 and P values and extracted the regression 84 

equation coefficients for each best univariate model. Statistical analyses were done using the R 85 

software (version 3.3.2, R Development Core Team, 2016). 86 
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3.Results and discussion 87 

Metaproteomics revealed that the abundance of the dominant bacterial phyla was best 88 

explained by pH and MAT/MAP (Table 1). In contrast, climatic factors were not selected in the 89 

univariate models that explained the abundance of bacterial phyla, studied by 16S rRNA gene 90 

sequencing. Previous studies based on 16S rRNA gene sequencing have highlighted the 91 

paramount role of pH on shaping the composition and diversity of soil microbial community 92 

(Fierer and Jackson 2006), as we also observed here (Fig. 1). The protein abundance of 93 

Acidobacteria and that of Actinobacteria and Cyanobacteria were contrarily shaped by pH. 94 

There is a need for accurately forecasting the ecological consequences of global change in soil 95 

microbial communities (Delgado-Baquerizo et al., 2018a). The protein abundance of 96 

Actinobacteria, Planctomycetes and Proteobacteria, as well as the abundance of proteins 97 

involved in the production and conversion of energy, were best explained by MAT/MAP (Table 98 

1). Proteobacterial protein content was negatively related to MAT/MAP and was higher in 99 

temperate and boreal sites (lower MAT/MAP) than in semiarid sites (higher MAT/MAP), while 100 

actinobacterial protein abundance was favored in arid environments (Fig. 1). This phylum has 101 

been suggested to be adapted to harsh conditions such soil drying through their peptidoglycan 102 

layer (Battistuzzi and Hedges, 2009). Indeed, a sequencing study revealed that Actinobacteria 103 

can outcompete other dominant groups such Acidobacteria under arid conditions (Delgado-104 

Baquerizo et al., 2018b). Considering the proposed univariate models, the increase in 105 

MAT/MAP, as predicted by climate change models in many areas of boreal, temperate and 106 

semiarid ecosystems (IPCC 2013), will likely enhance the protein abundance of Actinobacteria 107 

and Planctomycetes, and decrease that of Proteobacteria. Moreover, the abundance of proteins 108 

related to cellular energetic processes (among them the F-type H+-transporting ATPase was 109 

dominant) increased linearly with MAT/MAP (Table 1). These findings suggest an acceleration 110 

of energetic metabolic processes in soil (i.e. greater soil organic matter mineralization) induced 111 

by global warming (Bond-Lamberty and Thomson, 2010) and which is in line with the patterns of 112 

carbon losses occurring at a global scale (Crowther et al., 2016). 113 

 114 
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In despite the limitations of metaproteomics due to the absence of genome databases (Starke 115 

et al., 2017), the complicated protein extraction due to their interaction with humic substances 116 

and soil particles (Giagnoni et al., 2011), and the reduced number of analyzed samples, climatic 117 

conditions and biome types, our study provides the first tentative distribution of soil microbial 118 

proteins at broad spatial scales. As revealed by the univariate models, climate is a fundamental 119 

determinant of the protein abundance of Actinobacteria, Planctomycetes and Proteobacteria, 120 

yet not their genomic abundance, suggesting that their metabolic activity could be more closely 121 

linked to climate than community composition. Our findings have potential implications within a 122 

global change scenario and suggest that the metabolic activity of such bacterial phyla, as well 123 

as the amount of proteins involved in cellular energetic processes, could be sensitive to the 124 

forecasted increase in aridity and warming (Huang et al., 2016). These initial results are the first 125 

in what is likely to be a blossoming field in microbial ecology, which may transform our capacity 126 

to construct microbially-explicit biogeochemical models that better predict the cellular 127 

functionalities of soil microbial communities under current and future climate scenarios. 128 
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 194 

Figure 1. The relative abundance of bacterial phyla studied by 16S rRNA amplicon sequencing 195 

(A) and metaproteomics (B), and the abundance of proteins involved in functional processes 196 

(C). Figure 1A is based on earlier data from Crowther et al. (2014) and Bastida et al. (2016, 197 

2017). 198 

 199 



Table 1. Best univariate models explaining the abundance of bacterial populations through 16S rRNA gene sequencing and metaproteomics, 

and the abundance of proteins involved in cellular functionality 

 Dependent variable Non-dependent Variable Model type AIC Adjusted R
2
 P value a b c 

Genomics Acidobacteria pH Linear 156.03 0.82 <0.001 84.77 -9.04  
 Actinobacteria pH Exponential 69.79 0.67 <0.001 0.14 0.60  
 Bacteroidetes C/N Linear 171.73 0.17 0.0014 16.19 -0.50  
 Cyanobacteria C Inverse fit 98.44 0.88 <0.001 -0.48 5.12  
 Firmicutes pH Exponential 41.43 0.68 <0.001 9.84 -0.14  
 Planctomycetes Silt Linear 52.22 0.34 <0.001 4.25 -0.023  
 Proteobacteria C/N Linear 172.82 0.29 0.0014 17.65 0.69  
          
Metaproteomics Acidobacteria pH Linear 259.08 0.64 <0.001 23.09 -2.35  
 Actinobacteria MAT/MAP Quadratic 168.59 0.17 0.003 6.77 1.79 -0.22 
 Bacteroidetes pH Linear 128.46 0.50 <0.001 -4.09 1.13  
 Cyanobacteria pH Exponential 21.60 0.62 <0.001 0.14 0.60  
 Firmicutes Clay Inverse fit 103.56 0.10 0.049 0.84 4.02  
 Planctomycetes MAT/MAP Linear 191.97 0.42 <0.001 6.36 1.68  
 Proteobacteria MAT/MAP Linear 219.13 0.64 <0.001 68.97 -4.05  
          
 Carbohydrate metabolism Silt Linear 124.67 0.22 0.0053 6.76 -0.055  
 Energy production and 

conversion 
MAT/MAP Linear 131.18 0.59 <0.001 6.36 0.85  

 Transcription C/N Quadratic 121.14 0.39 <0.001 -10.19 1.69 -0.043 
 Translation-ribosome C/N Linear 136.36 0.29 0.0014 -3.01 0.37  

Results show the best model among all possible models with each abiotic variable (lowest Akaike information criteria, AIC, see Supplementary material). For all variables, AIC> 2 for 

the best fit model. Equation parameters (a,b,c) are given for linear (y = a + bx), quadratic (y= a +bx + cx
2
), inverse fit (y= a + (1/x)) and exponential (y=a*e

bx
) models. MAT/MAP is the 

ratio between mean annual temperature (MAT) and mean annual precipitation (MAP) and C/N is the total carbon:nitrogen ratio. The dependent variables were the relative abundance 

of bacterial phyla studied by 16S rRNA amplicon sequencing and metaproteomics. 
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