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Abstract 52 

The latitudinal diversity gradient (LDG) is one of the most widely studied patterns in ecology, 53 

yet no consensus has been reached about its underlying causes. We argue that the reasons are 54 

the verbal nature of existing hypotheses, the failure to mechanistically link interacting 55 

ecological and evolutionary processes to the LDG, and the fact that empirical patterns are 56 

often consistent with multiple explanations. To address this issue, we synthesize current LDG 57 

hypotheses, uncovering their eco-evolutionary mechanisms, hidden assumptions, and 58 

commonalities. Furthermore, we propose mechanistic eco-evolutionary modeling and an 59 

inferential approach that makes use of geographic, phylogenetic, and trait-based patterns to 60 

assess the relative importance of different processes for generating the LDG. 61 

 62 

State of the art and calls for novel mechanistic approaches 63 

The increase in species diversity from the poles to the equator, commonly referred to as the 64 

latitudinal diversity gradient (LDG), is one of the most pervasive [1, 2] and widely debated 65 

biological patterns, with at least 26 listed hypotheses associated with it [3-5]. These 66 

hypotheses can be classified into three higher-level categories related to latitudinal variation 67 

in ecological limits (See Glossary), diversification rates, and time for species accumulation 68 

(Table 1). Empirical evidence seems compatible with many of these hypotheses. For example, 69 

species richness is correlated with purported proxies for ecological limits such as net primary 70 

productivity [6-8], diversification rate can vary latitudinally due to gradients in temperature 71 

[9, 10], and diversity is greatest in regions where diversification has occurred over a longer 72 

period [11-13]. These and similar studies have improved our understanding of the LDG and 73 

macroevolutionary patterns in general, but the diffuse support for different hypotheses reveals 74 

a lack of consensus and points to challenges in testing and evaluating these hypotheses. 75 

 76 
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We argue that reconciling the causes of the LDG requires moving beyond verbal chains of 77 

logic, which are inherently prone to error with respect to how assumptions result in their 78 

predicted effect [14], and towards a more formal and mechanistic framework. Verbal 79 

hypotheses often contain hidden assumptions that go untested and lack specificity with 80 

respect to the mechanistic underpinning of relevant ecological and evolutionary processes. 81 

Verbal hypotheses also tend to focus on a single driver to predict just one or a few patterns 82 

related to that driver. Consequently, these predictions alone may not be sufficient to 83 

distinguish competing hypotheses [15, 16]. A more explicit description of the processes 84 

underlying all hypotheses will generate a wider range of predictions which can be used to 85 

disentangle possibly non-mutually exclusive hypotheses and evaluate the relative importance 86 

of these processes. 87 

 88 

We, therefore, call for a transformation in the way biologists think about and study the LDG. 89 

The classification of hypotheses (Table 1) is an important first step, but it does not resolve the 90 

difficulty of identifying and quantifying the relative strength of the processes underlying the 91 

LDG. We propose moving towards a mechanistic framework, founded on key processes that 92 

describe how individual organisms interact with their biotic and abiotic environments, and 93 

how these interactions scale up to result in the LDG and other secondary biodiversity 94 

patterns. Ultimately, revealing the nature of these eco-evolutionary processes will yield 95 

more insight than continuing to argue about non-mutually exclusive LDG hypotheses. 96 

 97 

Examining the LDG through the lens of mechanistic macroecology 98 

Key processes across levels of biological organization 99 

We recognize four key processes, as defined by [17], that necessarily underpin the LDG and 100 

thus should be included as components of any LDG model that aims to capture variation in 101 
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species richness, abundance, and composition over a spatially and temporally variable 102 

environment:  1) selection, 2) ecological drift, 3) dispersal, and 4) speciation. Selection, drift, 103 

and dispersal can all influence the birth, death, and movement of individuals over small 104 

spatial and temporal scales. Selection (sensus  [17]) encompasses any process that results in 105 

the differential survival and reproduction of individuals, based on how environmental 106 

filtering [18] and biotic interactions select for specific traits. Ecological drift manifests itself 107 

via stochastic variation in the births and deaths of individuals. Dispersal of individuals is 108 

influenced by the spatial structure of the landscape as well as individual dispersal capabilities 109 

and can lead to species colonizing  new regions. Each of these individual-level ecological and 110 

microevolutionary processes is propagated throughout higher levels of biological 111 

organization, resulting in discrete patterns at the level of populations, species, and 112 

communities (Figure 1). 113 

 114 

Over longer timescales, environmental conditions have fluctuated with glacial/interglacial 115 

oscillations, cooler and warmer periods in Earth’s history, orogenic events, volcanic activity, 116 

and shifts in tectonic plates, all of which can affect diversity dynamics [19-21]. At these 117 

spatial and temporal scales selection, ecological drift, and dispersal determine where species 118 

or even whole clades are able to persist geographically and how traits evolve. Species that 119 

become poorly adapted to the environment or that are poor competitors for resources are 120 

expected to have low fitness and ultimately go extinct, reflecting critical eco-evolutionary 121 

feedbacks [22, 23]. Speciation becomes especially relevant with increasing temporal and 122 

spatial scales. The details of how speciation occurs are complex and the critical question in a 123 

LDG context becomes how and why speciation mode or rate varies along geographic 124 

gradients. All of the processes described above necessarily interact with each other and with 125 

the spatiotemporal environment, resulting in the broad range of geographic and phylogenetic 126 
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biodiversity patterns that we observe today. As highlighted below, these processes can help us 127 

compare and disentangle LDG hypotheses. 128 

 129 

Classical LDG hypotheses revisited 130 

Characterizing LDG hypotheses based on the key processes described above helps to clarify 131 

the internal logic of those hypotheses, and highlights how they differ. All hypotheses invoke 132 

an explicit driver or condition that varies latitudinally (Figure 1), but considering the 133 

processes related to this driver, often below the level of biological organization at which the 134 

hypothesis was formulated, can reveal previously unrecognized assumptions and predictions. 135 

Below we discuss four examples, chosen to represent hypotheses invoking variation in limits, 136 

rates, and time. These examples may also serve as a guide for better understanding other 137 

hypotheses. 138 

 139 

The more individuals hypothesis 140 

The “more individuals hypothesis” invokes latitudinal variation in ecological limits and a 141 

positive relationship between the number of species and resource availability [24]. If 142 

resources are finite and a zero-sum constraint on the total amount of biomass or individuals 143 

applies, any increase in diversity over time results in a decrease in average biomass or 144 

abundance per species. Extinction rates will thus be diversity-dependent and richness will be 145 

regulated around some equilibrial value that scales with the total number of individuals that 146 

can be supported [24, 25]. This hypothesis implicitly invokes interspecific competition and 147 

the resultant allocation of resources across species (Table 1). The argument does not invoke 148 

selection (Fig. 1) and can be applied equally to ecologically neutral or non-neutral species. An 149 

important and unstated assumption is that the response of the biota to environmental change is 150 

fast enough that richness is at equilibrium across the latitudinal gradient. 151 

 152 
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The seasonality hypothesis 153 

The seasonality hypothesis argues that the within-year environmental stability of the tropics 154 

results in either greater diversification rates or higher ecological limits via increased niche 155 

packing (Table 1 and Fig. 1). The first argument suggests that in the less seasonal tropics, 156 

organisms experience a smaller range of conditions and hence evolve narrower thermal niches 157 

compared to the temperate zone. The idea that “mountain passes are higher in the tropics” 158 

[26] suggests that dispersal barriers were effectively greater there, increasing the chance of 159 

population divergence and allopatric speciation [27, 28]. Selection thus dictates the 160 

environmental conditions that a species can tolerate, but it is speciation rate that varies with 161 

latitude and ultimately generates the LDG. The second version of the seasonality hypothesis 162 

suggests that stability-driven specialization promotes intense niche packing, and hence more 163 

species can coexist in the tropics [29, 30]. Species are then hypothesized to evolve narrower 164 

resource breadths rather than narrow thermal niches, assuming that resources are limited and 165 

that diversity actually emerges from niche packing [29] (Table 1, Figure 1). Implicit in both 166 

hypotheses is a performance tradeoff between specialists and generalists, such that specialists 167 

evolve and outcompete generalists in aseasonal environments. 168 

 169 

The temperature-dependent speciation rates hypothesis 170 

The hypothesis that higher temperature elevates evolutionary rates has been used to explain 171 

global diversity patterns in both land and sea [31, 32]. One version of the hypothesis [33] 172 

follows from the metabolic theory of ecology [34], stating that temperature positively affects 173 

all biological rates including mutation rates, which can lead to speciation and ultimately 174 

diversity accumulation. This assumes that speciation rates directly follow from mutation rates, 175 

which may be problematic if other factors (e.g. existence of geographic barriers, assortative 176 

mating) are limiting speciation. The hypothesis makes no specific predictions regarding 177 

selection or dispersal. Importantly, this hypothesis could be invoked in either an equilibrium 178 
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or non-equilibrium world. In a non-equilibrium world, speciation rates alone could explain 179 

variation in richness between regions if all regions were similarly old, and extinction rates 180 

were equal across regions [10]. In an equilibrium world, increased speciation rates in the 181 

tropics can lead to higher equilibrium richness, as in Hubbell [35] neutral model of 182 

biodiversity. 183 

 184 

The tropical niche conservatism hypothesis 185 

The tropical niche conservatism hypothesis [36, 37] states that diversity is higher in the 186 

tropics because of the infrequency of colonisations of the cooler temperate zone by a tropical 187 

ancestor due to strongly conserved thermal niches and tropical origins of most taxa, and hence 188 

the longer time available for diversification in the tropics. The hypothesis assumes that, 189 

barring major disturbances or climatic shifts, species richness will continue to increase 190 

unbounded over time [37]. This hypothesis has only ever been formulated at the species level, 191 

and yet it inherently implies a particular set of rules by which individuals interact with the 192 

environment and each other. Selection by the environment is by definition strong, with 193 

individuals unable to survive and reproduce under conditions different from their optima, and 194 

evolution of a new optimum is rare. Less obvious are the implications of the hypothesis for 195 

resource competition between individuals. Unbounded, or diversity-independent, 196 

diversification is only possible in the absence of an overarching zero-sum constraint [25]. The 197 

absence of such a constraint implies that while the population size of a species might be 198 

affected by the fit between the environment and environmental performance traits, it is 199 

independent of the population sizes of potential competitors and of interspecific competition 200 

more broadly. 201 

 202 

The utility of a mechanistic framework 203 
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The examples presented above illustrate three insights gained by adopting a generalized eco-204 

evolutionary framework. First, many of the fundamental rules by which organisms are 205 

assumed to interact with each other and with their environment will be qualitatively similar 206 

regardless of LDG hypothesis. For example, individual survival and reproduction must be 207 

functions of how well adapted the individuals are to their environment relative to their intra- 208 

and interspecific competitors. Second, latitudinal differences in ecological limits, 209 

diversification rates, and time for diversification may emerge via different mechanisms 210 

integrated into the same framework. For example, diversification rates may be higher due to 211 

the temperature-dependence of mutation rates [9, 38] or due to the increased reproductive 212 

isolation in aseasonal environments [27, 39]. Third, although each hypothesis invokes a 213 

primary driver or process, we have shown that these hypotheses also make unstated 214 

assumptions about other processes and mechanisms which need to be considered in concert to 215 

fully understand the emergence of the LDG and other macroecological and macroevolutionary 216 

patterns. 217 

 218 

Mechanistic eco-evolutionary models as a quantitative tool for 219 

understanding LDG patterns  220 

The mechanistic framing of processes that underpin the LDG naturally facilitates the 221 

translation from heuristic thinking to mechanistic eco-evolutionary models (Box 1). We 222 

believe that building these models will be essential to making progress on the LDG and 223 

biodiversity patterns in general because they allow quantitative analyses and predictions of 224 

the various secondary patterns. Secondary patterns are key for more powerful inference about 225 

the origin of species richness patterns. Below we provide concrete examples of components of 226 

a mechanistic LDG model and associated patterns followed by a discussion about how to use 227 

such a model for inference with the available data. 228 
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 229 

Mechanistic models for studying the LDG 230 

The spatiotemporal environmental template 231 

The basic driver of an LDG model is the spatiotemporal environmental template. It can be 232 

viewed as the theater in which the eco-evolutionary play unfolds, and the spatiotemporal 233 

variation in that template (Earth’s climatic, geologic, and tectonic history) may be as critical 234 

to emergent diversity patterns as the mechanisms and processes governing how organisms 235 

interact and evolve [40-42]. Explaining the LDG with eco-evolutionary simulation models, 236 

therefore, benefits from suitable paleoenvironmental reconstructions [43] and the integration 237 

of global data sets on continental topography and paleoshorelines [44, 45]. 238 

 239 

Trait-based local population dynamics 240 

Traits are essential for individual survival and reproduction (fitness) and mechanistic models 241 

that include interactions of organismal traits and the abiotic and biotic environment, below the 242 

level of species (i.e. at the individual, population or metapopulational level), is thus 243 

appropriate. Local population dynamics can, for example be assumed to be trait-dependent 244 

[46, 47]. One set of traits might determine an organism’s fitness dictated by the abiotic 245 

environment, a different set of traits may influence relative fitness associated with the suite of 246 

potential competitors present at any point in time [48]. Such a modeling approach requires 247 

making basic assumptions that facilitate the link between environmental conditions, available 248 

resources, and ecological interactions, and population dynamics then emerge from those 249 

assumptions. 250 

 251 

Spatial and eco-evolutionary metacommunity dynamics 252 

For modeling eco-evolutionary metacommunity dynamics, trait-based models need to be 253 

implemented in a larger spatial context, allowing individuals to disperse over geographically 254 
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relevant extents. Metacommunity dynamics will arise from eco-evolutionary feedbacks 255 

between dispersing individuals and recipient communities within the context of the 256 

spatiotemporal template [49]. Evolutionary dynamics result from natural selection by both 257 

abiotic and biotic conditions, ecological drift, dispersal, and speciation. Speciation can be 258 

modeled using a phenomenological approach or more complex allele-based models in which 259 

phenotypic trait variability is completely or partially heritable and the accumulation of genetic 260 

incompatibilities may drive differentiation of daughter species (Box 2).  Each of these 261 

modeling components is necessary for capturing the suite of processes invoked by LDG 262 

hypotheses (Box 1), they can be modeled with varying degrees of complexity and they come 263 

with a set of low-level assumptions that need to be clearly stated (Box 2). 264 

 265 

Understanding patterns and inferring processes 266 

Above we have shown that a mechanistic mindset is useful to better understand the internal 267 

logic and consequences of the different hypotheses, as well as the interactions among them. In 268 

addition, a mechanistic model can clarify the biodiversity patterns expected under different 269 

combinations of spatiotemporal environmental templates, biotic interactions, and other eco-270 

evolutionary rules [e.g. 16, 48, 50]. This ability to simulate very different worldviews of how 271 

the LDG arises (e.g., “ecological limits”, “niche conservatism”, etc.) within the same 272 

comparative framework is a critical element of our approach as different types of processes 273 

modeled with varying degrees of mechanistic detail can be explored and contrasted.  274 

  275 

Ultimately, we need mechanistic models to understand the details of the emerging eco-276 

evolutionary patterns at a sufficient resolution to be able to quantitatively confront them with 277 

data. The more secondary patterns (e.g. phylogenies, species ranges, distributions of 278 

abundance or functional traits) that can be modeled, the greater the diagnostic power of the 279 

model for exploring parameter space and for inferring the strength and interactions of 280 
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different processes. The examination of these patterns will also point to the type of data that 281 

will be most valuable for reliable inference of a given process [51]. 282 

  283 

While we believe that confronting different model scenarios with multiple observed patterns 284 

(described in Box 3) is the only way to make progress in understanding the LDG, we realize 285 

that substantial conceptual, statistical, and computational challenges are associated with this 286 

task [52]. The complexity of the suggested models often makes it difficult to understand the 287 

consequences of the underlying assumptions. Ways of overcoming such challenges are to 288 

build on known ecological models (e.g. Lotka-Volterra equations) and evolutionary theory 289 

(e.g. Adaptive Dynamics theory) that has been studied extensively. The models should also be 290 

built and analyzed in a sequential manner of increased complexity to shed light on the 291 

consequences of the key model assumptions and their interactions. While it is not our aim to 292 

detail these and other methodological challenges here, we nevertheless highlight two basic 293 

inferential approaches that seem particularly promising. First, qualitative matching of multiple 294 

patterns gives an indication of whether the modeled processes can produce the patterns that 295 

we observe [15, 25, 41, 53]. Pattern matching is conceptually straightforward and easily 296 

allows combining the LDG with multiple observed secondary patterns to compare alternative 297 

model or parameter choices. Second, models like the ones suggested above can be fitted to a 298 

range of patterns in data using simulation-based methods such as Approximate Bayesian 299 

Computation [54-57] or synthetic likelihood [58, 59]. Regardless of which inferential 300 

approach is used, any empirical patterns that a model is unable to reproduce can be instructive 301 

in the iterative process of model improvement.  302 

 303 

Concluding remarks 304 
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Progress in understanding the processes that underlie LDG patterns and associated diversity 305 

patterns has been slow (see also Outstanding Questions). We repeat calls for a transition in 306 

biodiversity research, translating verbal models into a unified mechanistic framework that can 307 

be implemented in quantitative computer simulations [52, 53, 60]. In such a framework, 308 

researchers can focus on measuring and inferring the ecological and evolutionary processes 309 

that govern the interaction of organisms with each other and their environment in time and 310 

space, which must ultimately underpin the LDG. By applying this framework, hidden 311 

assumptions in current hypotheses are exposed, revealing how the hypotheses relate to each 312 

other and how they might be distinguished (Table 1, Figure 1). More importantly, this 313 

framework is a roadmap for flexible eco-evolutionary simulation models (Box 1-2) that can 314 

generate a rich set of empirical patterns from the same underlying processes. We believe that 315 

this ability to produce multiple diagnostic patterns will be crucial for inference (Box 3), and 316 

ultimately for converting the available data into new knowledge about macroecology and 317 

macroevolution. Challenges associated with model construction and the way models are 318 

confronted with data will arise, but such challenges are inherent and inevitable to all sciences 319 

that deal with complex systems. We are confident that, with time, these challenges can be 320 

addressed, and models combining realistic spatiotemporal environmental templates with trait 321 

based eco-evolutionary implementation under an iterative procedure of model design, 322 

evaluation and improvement, will advance our understanding and quantitative inference of the 323 

processes underlying the LDG. 324 
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 333 

Box 1 (text) 334 

Box 1. An LDG simulation model in action 335 

Any simulation model of the processes that result in patterns at the biogeographic scale [e.g. 336 

52, 60] must incorporate several fundamental processes (Figure I.A). Hurlbert and Stegen [16, 337 

25] provide one example of such an eco-evolutionary simulation model in an LDG context 338 

(Figure I.B). In the model, species have different thermal optima (initially assigned randomly, 339 

but subject to selection). The difference between a species’ thermal optimum and the 340 

temperature of the region determines that species’ local population size. Species may 341 

experience implicit competition via a regional zero-sum constraint, and the probability of 342 

speciation, dispersal, and extinction are each functions of regional population size. The 343 

simulation results in spatial richness patterns, regional trait distributions, and a phylogenetic 344 

tree (Figure I.C).  345 

 346 

The simulation model was run under different parameter combinations that mimic distinct 347 

LDG hypotheses (“Niche Conservatism”, “Ecological Limits”, “Diversification Rates”), and 348 

the emergent geographic, trait and phylogenetic data were used to derive further metrics and 349 

patterns that provide diagnostic support for each hypothesis (Figure I.D, only two patterns 350 

shown). Simulated and observed patterns were compared informally. This study demonstrated 351 

the utility of comparing expectations for multiple hypotheses, confirming that many patterns 352 

like the diversity gradient itself and measures of phylogenetic tree imbalance were shared 353 

across hypotheses. Conversely, patterns like the relationship between speciation rate and 354 

latitude or mean root distance and richness were potentially diagnostic of the processes that 355 

generated them [16]. 356 

 357 
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While exemplifying many of the desirable properties of a mechanistic model for the LDG, 358 

there are several ways in which the model in Hurlbert and Stegen [16, 25] could be improved. 359 

First, the geographic representation of the model was a simple one-dimensional spatial 360 

gradient with no long-term climate dynamics. Second, the model has no means of 361 

representing a trophic niche in particular, or niche specialization in general, both of which are 362 

invoked by various LDG hypotheses (Table 1). Third, speciation is modeled as a point 363 

mutation process which may impact simulated phylogenetic patterns (Box 2). Finally, to make 364 

more quantitative inferences about the support for the respective hypotheses, a formal 365 

statistical parameter estimation, and model selection would be desirable [53, 61, 62]. We 366 

discuss methods of fitting empirical patterns to simulations in Box 3. 367 

 368 

Box 2 (text) 369 

Box 2: Modeling decisions: the example of speciation 370 

Modeling each of the components in Box 1, Figure IA requires a wealth of implementation 371 

decisions. These decisions may have consequences for how well a given hypothesis is 372 

represented, and what types of patterns emerge. As an example, we consider the case of 373 

speciation, which can be modeled with varying degrees of complexity [63], from a purely 374 

phenomenological approach to more complex allele-based models. For example, spatial 375 

processes combined with drift may induce speciation through Dobzhansky-Müller 376 

Incompatibilities [64] while abiotic and ecological factors can induce disruptive selection and 377 

speciation both in allopatry [e.g. 41, 65] or sympatry [e.g. 66, 67]. For complete divergence 378 

and the formation of proper (biological) species, mechanisms for reproductive isolation, 379 

including sexual selection and assortative mating, also adds to the complexity.  380 

 381 
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After making decisions about what speciation mode to model (e.g. sympatric versus 382 

allopatric), modelers face a range of implementation choices from purely phenomenological 383 

models of point mutation speciation as in Box 1 to more mechanistic models, where species 384 

diversification emerges from evolved trait divergence [48, 68-70], or the accumulation of 385 

genetic differences that arise as a function of vicariant events or divergent selection (Figure I). 386 

These implementation decisions can impact emergent phylogenetic patterns. For example, 387 

Davies et al [42] showed that measures of tree imbalance and branch stemminess were 388 

sensitive to whether speciation occurred via point mutation or various types of range fission. 389 

 390 

More generally, to draw a reliable inference, researchers should assess their possible 391 

implementation options and evaluate the sensitivity of the patterns of interest to these choices. 392 

Some patterns will inevitably be more sensitive to implementation decisions than the others. 393 

For example, the topology of a phylogeny captures the relative branching pattern but is 394 

agnostic about branch lengths, and so topology may be less sensitive than branch length-based 395 

metrics to decisions that affect the timing and rate of speciation events. When attempting to 396 

infer process from empirical data, patterns sensitive to those implementation decisions should 397 

either be disregarded, or the implementation decision itself can be included as alternative 398 

submodels that are then inferred by data. A more general discussion of fitting models to data 399 

is provided in Box 3. 400 

 401 

 402 

Box 3 (text) 403 

Box 3. Inference 404 

Possibly the most crucial step in using mechanistic eco-evolutionary models for inference 405 

about the origin of the LDG is the way we confront them to data,  for example, to compare 406 
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alternative parameterizations and model structures. Starting from a set of alternative model 407 

formulations (Box 1, Figure I.A), we can compare the patterns produced by the model 408 

alternatives to observed patterns (Box 1, Figure I.B). The alternative model formulations may 409 

correspond to particular hypotheses, as shown in the figure, or to different parts of parameter 410 

space independent of existing hypotheses. The fit to the different patterns can be combined 411 

and weighted, or assessed independently, to identify the support for the different alternatives, 412 

or specific model inadequacies that need to be addressed (Box 1, Figure I.C).  413 

 414 

In detail, however, there are various challenges to achieve correct inference. How to weigh 415 

the different patterns, and account for their uncertainty, is one of them [71, 72]. Another 416 

challenge is how to deal with uncertainties in parameters and subprocesses. As most model 417 

parameters cannot be measured directly, any model comparison has to account for their 418 

uncertainty, such that the support assigned to any of the model alternatives is not contingent 419 

on arbitrary parameter choices. One possibility would be to test whether output patterns are 420 

dependent on model parameters and only use patterns that are independent for inference about 421 

the model alternatives. However, that would likely severely reduce the number of patterns that 422 

can be used for inference. A better, albeit computationally more expensive alternative, is to 423 

use techniques of inverse modeling to calibrate each model alternative [e.g. 56], and then 424 

compare their support using established statistical model selection methods that account for 425 

parameter uncertainty (e.g. the Bayes factor; Figure I). This more complete approach to model 426 

comparison is also the preferred solution in other research fields dealing with comparable 427 

problems (large complex system, no replicate observation), such as cosmological models of 428 

the early Universe [73]. Another solution would be to avoid the model selection problem 429 

altogether, and instead phrase the inferential problem as a problem of parameter inference for 430 

a “supermodel” that includes all the possible pathways (i.e. model alternatives) and processes 431 
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leading to the LDG, and through which we estimate relative strength of each pathway, instead 432 

of testing fixed hypotheses. 433 

 434 

 435 

Glossary Box 436 

Approximate Bayesian Computation (ABC): a simulation-based approach to create 437 

approximate likelihoods for model selection and parameter estimation of complex models, 438 

possibly with multiple data sources. 439 

 440 

Diversification rate: the net rate of production of new lineages, i.e. the difference between 441 

origination and extinction rate. It usually applies to species (i.e. speciation minus extinction 442 

rate) but can be equally applied to higher or lower taxonomic levels. 443 

 444 

Ecological limits: a limit to the number of individuals and/or taxa that can coexist within an 445 

ecosystem due to abiotic settings and biotic interactions such as competition for limited 446 

resources. 447 

 448 

Ecological processes: interactions between individuals of the same or different species 449 

driving the dynamics of populations, communities and ecosystems within an ecological 450 

timescale, typically within a few generations of the focal organisms. 451 

 452 

Eco-evolutionary processes: the interplay of ecological and evolutionary processes that 453 

violate the assumption that timescales of ecological and evolutionary processes can be 454 

separated; ecological processes affect evolution and vice versa. 455 

 456 
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Environmental filtering: the differential establishment, persistence, or performance of a 457 

species determined by that species’ ability to tolerate a given set of abiotic conditions. 458 

 459 

Evolutionary processes: any processes leading to genetic changes in populations driving 460 

lineage divergence and persistence within an evolutionary time scale, typically spanning 461 

many generations. 462 

 463 

Mechanisms: a system of causally interacting parts or sub-processes (e.g. ecological 464 

interactions) that constitute some process (e.g. eco-evolutionary process). 465 

 466 

Mechanistic macroecology: The study of mechanisms describing how individual organisms 467 

interact with their biotic and abiotic environments, and how these mechanisms scale up to 468 

result in macroecological patterns, including the LDG and other secondary biodiversity 469 

patterns. 470 

 471 

Mechanistic model: Mechanistic models may vary in complexity and detail, but in the 472 

context of the LDG, such a model should at a minimum specify the mechanisms by which the 473 

processes of selection, dispersal, ecological drift, and speciation operate on individuals, 474 

populations, or species. 475 

 476 

Niche conservatism: the tendency for descendant lineages or species to retain their ancestral 477 

niche. 478 

 479 

Pattern-oriented modeling: a modeling approach where multiple patterns observed in real 480 

systems at different hierarchical levels and scales are used systematically to optimize model 481 

complexity and to reduce uncertainty. 482 
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 483 

Secondary biodiversity patterns: spatial, temporal, phylogenetic or trait-based diversity 484 

patterns that emerge from the same ecological and evolutionary processes as the LDG. 485 

 486 

Simulation model: a set of rules (usually formulated in a programming language) governing 487 

the dynamics of artificial entities that reflect individuals, populations, or communities. 488 
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Table 1. Overview of the main hypotheses proposed for explaining the LDG in recent reviews, categorized by the drivers, assumptions, and 489 

rationales they invoke. These hypotheses can be classified according to three categories: ecological limits, diversification rates, and time for 490 

species accumulation. Some hypotheses invoke multiple distinctive (but not mutually exclusive) mechanisms and so are repeated in multiple 491 

categories. We also distinguish the primary cause of the diversity difference between tropical (t) and non-tropical (n) regions (as parameter indices) 492 

from secondary causes that may be explicitly or implicitly stated in the hypothesis. Subfigures illustrate the three main hypotheses categories that 493 

predict the LDG (parameters: K, carrying capacity or limit on the number of individuals or species; , speciation rate; , extinction rate; c, 494 

colonization rate; t, time). 495 

Hypothesis  Drivers  Assumptions  Rationale  Parameters  Hypothesis category 

Area: carrying 
capacity [74, 75]  

Geographic area 

More individuals: 
carrying capacity 
[24, 25]  

Total amount of 

resources or 

energy 

Zero‐sum dynamics at 

equilibrium due to 

competition 

Larger area or total resource amount 

in the tropics can support more 

individuals, determining the 

maximum number of viable 

populations and therefore species. 

Primary: Kt > Kn 

Secondary:  

λt > λn, μt < μn 

Ecological limits 

Kt

Kn
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More 
specialization 
[76, 77]  

Resource 

availability 

Zero‐sum dynamics at 

equilibrium due to 

competition 

Larger niche space in the tropics can 

be partitioned more finely. 

Seasonality: 
coexistence [29, 
30]  

Seasonality 

Climatic stability:  
equilibrium [26, 
40]  

Environmental 

stability (decadal 

to millennial) 

Zero‐sum dynamics at 

equilibrium due to 

competition; trade‐offs 

between generalists 

and specialists 

Higher specialization in the more 

stable tropics allows greater niche 

packing. 

Temperature‐
dependent 
speciation [9, 33] 

Temperature 
No assumption about 

equilibrium 

Higher temperature in the tropics 

increases metabolic rates and 

mutation rates, and decreases 

generation times. 

More individuals: 
more mutations 
[75, 78] 

Geographic area 

and resource 

availability 

No assumption about 

equilibrium 

Higher resource availability in the 

tropics supports higher population 

density and hence more total 

mutations per unit time. 

Seasonality:  
speciation [27, 
28]  

Seasonality and 

topographic relief 

No assumption about 

equilibrium 

Mountain passes are “higher” in the 

less seasonal tropics leading to 

greater isolation and allopatric 

speciation. 

Biotic 
interactions  [79, 
80]  

Resource 

availability and 

environmental 

stability 

No assumption about 

equilibrium 

Stronger biotic interactions (e.g. 

competition and predation) among 

species in the more stable tropics 

increase speciation rates. 

Primary: λt > λn 

Diversification rates 

Ct-n

Cn-t

λt

λn

μt

μn
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Area:  
diversification 
[75, 81]  

Geographic area 
No assumption about 

equilibrium 

Larger tropical area increases 

opportunity for allopatric speciation 

and decreases stochastic extinction 

risk. 

Dispersal 
limitation [82]  

Environmental 

stability 

No assumption about 

equilibrium; trade‐off 

between competitive 

and dispersal ability 

More stable tropical habitats 

decrease stochastic extinction and 

select for competitive ability over 

dispersal ability, resulting in 

decreased gene flow. 

Primary: λt > λn, 

μt < μn 

Climatic stability: 
non‐equilibrium 
[26, 40]  

Environmental 

stability (millennia 

to millions of 

years) 

Equilibrium not 

reached in unstable 

environments; low 

rates of adaptive niche 

evolution 

Frequent environmental changes 

(timescale: Pleistocene glacial cycles) 

cause extinctions, range contractions 

and makes gradual speciation less 

likely. 

Primary: λt > λn, 

μt < μn , high cn‐t 

Secondary: tt > 

tn 

Time for 
speciation [83, 
84] 

Evolutionary time 

since colonization 

or origin of clades 

Longer past 

persistence of tropical 

environments 

Older tropical environments allow 

more time for more clades to 

originate or colonize. 

   

Primary: tt > tn 

Secondary: λt > 

λn 

Niche 
conservatism 
[36, 37]  

Evolutionary time 

since colonization 

or origin of clades 

Mostly tropical origin 

of clades; 

phylogenetically 

conserved niches 

Climatic preferences and 

phylogenetic niche conservatism 

limit dispersal out of the region of 

clade origin.   

Primary: tt > tn, 

low ct‐n 

Secondary: λt > 

λn 

Time for species 
accumulation 

 496 

 497 

tn

tt
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 498 

 499 
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Figure legends  500 

Figure 1 (in main text) 501 

Key processes across levels of biological organization. Illustration of our framework 502 

spanning external drivers that are associated with the spatiotemporal environment, the eco-503 

evolutionary processes that are thought to be central to the LDG, and the emergent diagnostic 504 

patterns. We consider four key eco-evolutionary processes: selection, dispersal, ecological 505 

drift (eventually resulting in extinction), and speciation [17]; they are shown relative to 506 

spatial, temporal, and biological scales (e.g. local vs. regional, population-level vs. continent-507 

level). Five example hypotheses from the three categories of LDG hypotheses are mapped 508 

onto this framework with their specific drivers, processes and emergent patterns (hypothesis 509 

names and categories as in Table 1). For each hypothesis, we show only the primary driver-510 

process pathway identified in Table 1 (see main text for more detailed explanation of the 511 

mapped examples). 512 

 513 

Figure I (in Box 1) 514 

An example of an eco-evolutionary simulation model in an LDG context. A) Process 515 

classes suggested for any eco-evolutionary model of the LDG. Text inside each wedge 516 

describes how the process was modeled in [25] and [16]. B)  A flowchart outlining the 517 

processes in  [25] and [16], with model components colored as in (A). (C) Example 518 

simulation output displaying species richness along a spatial gradient, the distribution of 519 

species’ thermal trait optima at three locations along the spatial gradient (dotted vertical lines 520 

indicate the actual temperature in those regions), and a phylogeny with branch color denoting 521 

speciation rate estimates (from low blue to high red values) from BAMM [85]. (D) Diagnostic 522 

model outputs for three different LDG hypotheses. NC - niche conservatism; EL - ecological 523 

limits; DR - diversification rates (see Table 1 for details). Patterns shown are: upper panel, 524 

temporal variation of the correlation between species richness in a region and time since the 525 
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region was colonized (simulations with tropical clade origin in red, temperate clade origin in 526 

blue); lower panel, phylogenies color-coded by instantaneous speciation rate as in (C). 527 

 528 

Figure I (in Box 2) 529 

Decisions about the implementation of speciation processes in mechanistic models. 530 

Examples of speciation models are schematically illustrated. The choice of model 531 

implementation may impact the pattern of interest. In this hypothetical example, allopatric 532 

and sympatric speciation result in different tree topologies, but the specific implementation of 533 

either speciation mode may additionally impact branch lengths. 534 

 535 

Figure I (in Box 3) 536 

Inferential cycle. (A) Theory about eco-evolutionary processes combined with data is used to 537 

build a model that can generate the observed patterns and determine its a priori support (green 538 

bars) for different combinations of eco-evolutionary processes. The models may be designed 539 

to explicitly test support for hypotheses listed in Table 1 (NC=niche conservatism, 540 

EL=ecological limits, DR=diversification rate) or some other combination of processes; (B) 541 

the competing models are parameterized and their predictions are compared to empirical data, 542 

quantifying the support lent by the model predictions for each hypothesis (pink bars) or 543 

parameter combination and providing specific information on missing or misspecified 544 

processes to be improved in further inference cycles; (C) the model can then be used for 545 

inference and prediction. The updated posterior support (blue bars) informs on the plausibility 546 

of inference given prior and empirical support and can be used as a prior in a subsequent 547 

iteration of the approach with a modified model structure and/or different input data. 548 

 549 
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B) Model details
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What concept to model?

How to model it?
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Iterative
modelling
approach

(A) Model design (B) Model Evaluation / Test

(C) Model inference and application
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