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Abstract

A decomposition of the urban heat island (UHI) intensity (∆T ) into its

contributing processes is suggested for the neighbourhood scale. The ap-

proach translates individual terms of the energy balance (radiation, evapo-

transpiration, heat storage, and convection) into temperature increments.

It is exemplified using micrometeorological simulations (ENVI-met) for the

quarter “Bayerischer Bahnhof” in Leipzig, Germany, under different wind

conditions. In result heat storage and convection provide the principal con-

tributions to UHI. The mapping of ∆T -contributions in a neighbourhood is

a new tool facilitating the development of tailored measures for reduction of

and adaptation to urban heat. For instance, the respective ∆T -contributions

within a courtyard were -6.8 K, -2.6 K, -9.2 K and 15.7 K showing the mu-

tual compensation effect which can be enhanced if suitable measures will

be taken into action. At each individual location, considering the trade-offs

of all ∆T -contributions can support a cost-benefit analysis creating optimal

recommendations for city planners.
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1. Introduction

The urban heat island (UHI) effect, where urban areas have higher tem-

peratures than the rural surrounding, embodies one of the most significant

human-induced alterations to Earth’s surface climate (Zhao et al., 2014).

The modifications comprise changes in meteorological variables such as mois-

ture availability (e.g.: Lee, 1991; Kuttler et al., 2007; Sailor, 2011) and ur-

ban - rural water vapour differences (Holmer & Eliasson, 1999), temperature

(e.g.: Arnfield, 2003), heat fluxes (e.g.: Grimmond & Oke, 2002) and turbu-

lence (e.g.: Roth, 2000; Arnfield, 2003). Given this UHI phenomenon and

the observed increase in frequency and persistence of heat waves in european

cities after 1997 (e.g.: Christidis et al., 2015; Morabito et al., 2017), there is

urgent need for heat mitigation and adaptation actions. The development

of targeted strategies requires knowledge about the local UHI structures in

order to minimise costs and efforts, maximise heat reduction and avoid ad-

verse health effects on the inhabitants. We define the UHI effect as surface

temperature difference between an urban region and the same area without

built-up structures. With this local UHI intensity ∆T we can assess excess

heat directly on a scale where adaptation is needed, namely within the living

environment of urban residents.

So far, small-scale spatio-temporal variability of ∆T (x, t) in space (x)

and time (t) has been hardly examined by observations at the neighbourhood

scale, because a sufficient density of measurements is very expensive and dif-

ficult to realise. Micrometeorological models, such as MISKAM (Eichhorn,

J., 2011), MUKLIMO (Sievers & Zdunkowski, 1986; Sievers, 2012), AS-

MUS (Gross, 2012) or ENVI-met (http://www.envi-met.com) might help

to close this knowledge gap. Also, these tools provide the opportunity to
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improve the understanding about underlying mechanisms of ∆T formation.

Following processes contribute to urban warming compared to rural land

use (Brazel & Quatrocchi, 2005):

⇒ Net Radiation Flux (Rn = (1 − a)S↓ + L↓ − εσT 4 + QAH): Radi-

ation absorption (positive; S↓ + L↓) and reflection as well as emission

(negative; −aS↓ and −εσT 4, respectively) of the surface are influenced

by the urban geometry

⇒ Anthropogenic Heat Flux (QAH): Anthropogenic heat released

(positive) from buildings, vehicles, metabolism and industries

⇒ Sensible Heat Flux (QH): Turbulent vertical transport (positive ↑)

is reduced in an urban canopy layer

⇒ Latent Heat Flux (QLE): Availability of water that can evaporate

(positive ↑) from vegetation or/and from other surfaces is reduced

⇒ Storage Heat Flux (QS): Heat is stored (positive, daytime) and

released (negative, night) from urban building materials having higher

heat capacities than rural land

and result in the surface energy balance (SEB)

Rn +QAH = QH +QLE +QS (1)

for an urban neighbourhood.

When developing adaptation strategies, city planners have to quantify all

the thermal impacts, which raises the question of how each of the SEB terms

can be converted into its respective ∆T contribution. Micrometeorological

models are based on the SEB so that ∆T contributions cannot be directly
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obtained from simulation results. Therefore, this paper aims at converting

the energy-terms of eq. 1 into temperature differences ∆T related to the

energy flux differences between rural and urban land use. We also provide

an interpretation of the individual contributions to ∆T . The developed de-

composition procedure of ∆T is guided by a previously suggested technique

(Lee et al., 2011) on mesoscale and we demonstrate how this approach can

be applied to an urban neighbourhood. In particular, our study aims to

• investigate the processes contributing to ∆T in a typical Central Eu-

ropean mid-size city in order to improve the development of climate

adaptation strategies,

• develop spatial maps for each ∆T contribution to identify areas par-

ticularly demanding for climate adaptation measures,

• analyse whether convection efficiency is also for neighbourhoods (mi-

croscale) the dominant ∆T driver as was stated for whole cities and

metropolitan regions (mesoscale; Zhao et al. (2014)),

• assess how the chosen initial wind direction influences the ∆T contri-

butions.

2. Case Study Area

The case study was realised for Leipzig, a Central European mid-size

city with 595.952 inhabitants (reference: Stadt Leipzig (2018)). The city is

situated in a lowland in Eastern Germany (51◦20’N, 12◦22’E) and classified

as Cfb (warm temperate with warm summers, fully humid) climate after

Köppen-Geiger (Kottek et al., 2006) with mean annual temperature 9.1 ◦C

and mean annual precipitation 584.6 mm at the German Weather Service
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(DWD) station Leipzig-Holzhausen. Because of the usually dense building

structure in the urban core it is very difficult to adapt such areas to climate

change. A good chance for interventions arises during the planning process

to revitalise urban brownfields. Leipzig has some of these areas, whereby

one amongst them, the quarter around the “Bayerischer Bahnhof”, was used

in this study (Fig. 1). The area encompasses 455625 m2.

Figure 1: City region of Leipzig. The white box denotes the quarter around “Bayerischer

Bahnhof”; the small red box shows a brownfield where revitalising is planned and the big

red box (dashed line) characterises the simulation area which is described in section 3.

(source: DOP c© Staatsbetrieb Geobasisinformation und Vermessung Sachsen 2014)

3. Methodological framework

Our framework consists of a 3-step process: Firstly, we calculated the

spatio-temporal development of environmental parameters by means of an

ENVI-met simulation (version 3.1). Secondly, a procedure for the De-

composition of ∆T was developed and applied. Thirdly, the results were

visualised and comparatively discussed.
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3.1. Micrometeorological simulations for urban and rural states

ENVI-met is a 3D micrometeorological model and a state–of–the–art

tool for microscale simulations (evaluated by e.g.: Yang et al., 2013; Chen

et al., 2014; Elnabawi et al., 2015; Lee et al., 2016; Roth & Lim, 2017; Liu

et al., 2018) with very accurate representation of microphysical processes

inside the ”urban boundary layer“ (e.g.: Huttner, 2012; Simon, 2016). It in-

corporates, fluid–mechanical, hydrological, atmospheric and thermodynamic

processes. The local thermal conditions are determined through the built-up

structure so that ENVI-met is particularly suitable to investigate microscale

interactions between buildings, vegetation, soils and the atmospheric bound-

ary layer. ENVI-met is classified to the group of non - hydrostatic models

including, with respect to the interactions, a vegetation model and a one-

dimensional soil model (Soil-Vegetation-Atmosphere-Transport (SVAT) in-

teractions), and an atmosphere model including radiative transfer model

(Bruse & Fleer, 1998).

In the past, numerous studies with ENVI-met have been undertaken but

primarily about impacts of urban structures on the microclimate (e.g.: Mid-

del et al., 2014; Skelhorn et al., 2014) and human thermal comfort (e.g.:

Ali-Toudert & Mayer, 2007; Salata et al., 2015; Taleghani et al., 2015; Lee

et al., 2016) as well as possible mitigation/adaptation strategies (e.g. green

infrastructure: Ng et al., 2012; Zoelch et al., 2016) for urban heat reduction

(Middel et al., 2014; Skelhorn et al., 2014). Although some studies incorpo-

rate UHI mitigation analyses (e.g.: Emmanuel & Fernando, 2007; O’Malley

et al., 2015; Wang & Akbari, 2016) they do not consider the physical causes

of ∆T formation in detail.

The characteristics of the neighbourhood simulated in our study are used as

input for ENVI-met and comprise the ”area-input-file“ (Tab. 1) as well as
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the ”configuration file“ (Tab. 2). To assess the impact of urban land use on

∆T , two different scenarios were simulated. The ”urban state“ represents

the current land use and real structure of buildings in the study area. These

simulations were compared with a reference scenario that is the ”rural state“

characterised by grassland without any urban structure. Trees, hedges and

bushes remain unchanged for both scenarios.

a) “Urban state”

The neighbourhood “Bayerischer Bahnhof” was used for the ENVI-met sim-

ulations (specifications can be found in Tab. 1, visualisation in Fig. 2) and

characterises the so-called “urban state”. The area consists of a variety of

different land use types to analyse urban impacts in detail. All land use data

have been defined for each grid cell in the model area by help of a satellite

image which was uploaded to the ENVI-met editor as an underlying bitmap.

A cell can only be comprised of one object type (building OR vegetation)

and surface type (e.g.: asphalt, concrete,...). The height of the objects is

derived from a 3D urban model (Sachsen, 2012).

For our analysis, we chose a warm and cloudless day (21 July 2015) to

simulate a definitive UHI effect. The output was stored during 48 h at each

full hour. The first 18 h have to be considered as initialization phase after

which a steady state is reached (see preliminary tests in Fig. S11 in the

supplementary material). Therefore only the second day was used for the

∆T decomposition. The statistical analysis of the frequency of typical wind

speeds depending on wind directions showed that high wind speeds are as-

sociated with south westerly directions and low wind speeds with easterly

- south easterly directions (Fig. S12 in supplementary material). In order

to cover the whole range we considered three different wind scenarios (103◦-
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Table 1: Specifications of the ENVI-met area input file

variable value

number of grids in each dimension (x,y,z) 225,225,29

horizontal grid size 3 m x 3 m

vertical grid size 1 m

telecoping factor 20 %

starting z-level for telecoping 5 m

model rotation out of grid north 16.3◦

number of nesting grids 12

soil profile nesting grids loam

name of location Bayerischer Bahnhof

position on earth (latitude, longitude) 51.25, 12.20

name of reference time zone CET/UTC+1

definition longitude of time zone 15.00

geographical projection system Gauss – Krueger

east wind, 193◦- south wind and 283◦- west wind) to analyse differences in

∆T contributions for typical wind directions. Since numerical models can-

not calculate reliable values near their borders, an additional grid, the so

called “nesting cells”, was introduced outside of the modelled area. Several

experiments with different numbers of nesting cells suggested that 12 cells

resulted in stable simulations.

The horizontal and vertical grid sizes are constant over the core model

area (Tab. 1) except the first vertical cell which is divided up into 5 single

cells. The vertical grid size of the soil model is 0.015 m near the surface

and up to 0.5 m in deeper layers. Boundary surfaces (roofs, walls, soils) are

treated separately from the prognostic differential equations and subgrid-

scale processes (microphysics) are parameterised. We selected a horizontal
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Table 2: Configuration of ENVI-met (meteorological data provided by the Leipzig Institute

for Meteorology)

variable value

start simulation (day, time) 20.07.2015, 00:00:00

total simulation time 48 h

save model state each 60 min

wind speed (10 m above ground) 4.0 m/s

wind direction 103◦(193◦, 283◦)

roughness length at reference point 0.1

initial temperature atmosphere 293 K

specific humidity in 2500 m 5.5 g/kg

relative humidity in 2 m 38 %

grid size of 3 by 3 m and a vertical one of 1 m according to the size of the

objects to be resolved (e.g. trees, streets or buildings).

To provide more realistic values for the model input, we used the ENVI-

met setting of an averaged solar input. This option copies the shading effect

of the built-up structure onto the nesting area, simulating the presence of a

similar urban structure.

b) “Rural state”

For the reference scenario all urban structures (buildings, sealed surfaces

such as asphalt or concrete) were replaced by grass representing rural condi-

tions. Further, to get spatially constant values for the simulated parameters,

they were averaged over all grid cells for each time step of the rural simula-

tion. On the one hand such a mean rural state can not represent localised

effects as for instance microscale turbulence or a homogenisation of the wind
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flow influencing just the local thermal characteristics. On the other hand,

we achieve representative rural conditions not influenced by a subjective

definition of rural model cells.

Finally, for each grid cell ∆T ensues from the temperature difference

between the ”urban state“ simulation and the mean of the rural scenario

without any urban structures.

Figure 2: ENVI-met simulation area for the urban state (visualised with LEONARDO

software).

3.2. Decomposition of ∆T

Here we use a decomposition approach described in detail in Hertel &

Schlink (2018) and guided by Lee et al. (2011) and Zhao et al. (2014), who

considered meso-(cities) and continental scales. For the neighbourhood scale

we obtain a SEB (eq. 1)

(1− a)S↓ + L↓ − εσT 4︸ ︷︷ ︸
Rn

+QAH =

(
1 +

1

β

)
ρcp
ra

(T − Ta) +QS (2)
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(a = Albedo, S↓ = incoming short-wave radiation, L↓ = incoming long-

wave radiation, ε = surface emissivity, T = surface temperature, ρ = air

density, cp = specific heat of air at constant pressure, ra = aerodynamic

resistance to heat diffusion). QLE (eq. 2) is substituted by QH/β involving

the dimensionless Bowen ratio β.

Assuming that Ta is the temperature at a reference height, spatially

constant, and not influenced by the urban structure, we can linearise the

long-wave radiation term and receive

T − Ta =
λ0

1 + f
(Rn −QS +QAH) , (3)

with

f =
λ0ρcp
ra

(
1 +

1

β

)
, λ0 =

1

4εσT 3
a

.

f is an energy redistribution factor and λ0 coincides with the definition of

the local climate sensitivity parameter (Roe, 2009).

Eq. 3 is applied to the temperature difference between an urban and

a rural state, assuming T ≡ Tu and Ta ≡ Tr, and using Tu = Tr + ∆T

(with analogue replacements for Rn, ra, β, QS and QAH ; “u”-urban state,

“r”-rural state ). ∆ represents small perturbations generated by the urban

structure. Inserting these replacements into eq. 3 allows for calculating the

derivatives of all quantities associated with ∆ resulting in the UHI intensity

(∆T ) of an urban neighbourhood. Neglecting higher order terms, it follows
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for ∆T

∆T ≈ λ0,r

1 + fr
∆Rn︸ ︷︷ ︸

∆TRn

+
−λ0,r

(1 + fr)
2 (Rn,r −QS,r +QAH) ∆f1︸ ︷︷ ︸

∆Tf1

+
−λ0,r

(1 + fr)
2 (Rn,r −QS,r +QAH) ∆f2︸ ︷︷ ︸

∆Tf2

+
−λ0,r

1 + fr
∆QS︸ ︷︷ ︸

∆TQS

+
λ0,r

1 + fr
∆QAH︸ ︷︷ ︸

∆TQAH

, (4)

with

∆f1 =
−λ0,rρcp
ra,r

(
1 +

1

βr

)
∆ra
ra,r

, ∆f2 =
−λ0,rρcp
ra,r

∆β

β2
r

.

All required quantities can be gathered from either the “urban simula-

tion” output, the “rural simulation” output or in the case of physical con-

stants from the literature (table 3). In this case study we neglected ∆TQAH

(QAH vanishes in all other terms) which describes the effect of anthropogenic

heat and can not be calculated from ENVI-met. As the storage heat flux is

not directly provided by ENVI-met, we calculated ∆QS(x, t) applying eq. 4

to the modelled temperature difference between urban and rural simulations

∆Tmodel = Tu − Tr.

λ0,r

1 + fr
∆QS ≈

λ0,r

1 + fr
∆Rn +

−λ0,r

(1 + fr)
2 (Rn,r −QS,r) ∆f1

+
−λ0

(1 + f)2 (Rn,r −QS,r) ∆f2

−∆Tmodel, (5)

QS,r(x, t) was derived as residual of the urban surface energy balance (eq.

2) for the rural state

QS,r = (1− ar)Sr↓ + Lr↓ − εrσT 4
r −QH,r −QLE,r. (6)
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Table 3: Attribution of ENVI-met output to ∆T partitions. The overline represents

spatial mean quantities.

∆T partitions

quantities

derived from

“urban

simulation”

quantities

derived

from “rural

simulation”

physical

constants

changes in Rn,u Rn,r ra,r ρ, cp

radiation balance βr, λ0,r

(∆TRn)

changes in Q, ra,u Rn,r, QS,r, ρ, cp

convection

efficiency
ra,r, βr, λ0,r

(∆Tf1)

changes in Q, βu Rn,r, QS,r, ρ, cp

evapotranspiration ra,r, βr, λ0,r

(∆Tf2)

changes in QS,u QS,r, ra,r, ρ, cp

storage heat βr, λ0,r

(∆TQS
)

3.3. Visualisation

As a result of the ∆T decomposition we achieved maps of the study area

for each partition of ∆T . To identify dominant contributions to urban heat

and to give recommendations for local adaptation actions, the ∆T (x, t)’s

were visualised and, for specific locations, comparatively discussed.
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4. Results and discussion

The hottest surface temperature was simulated for 2 p.m., when we can

expect most pronounced UHI effects (Fig. 3).

Figure 3: a) Satellite image of “Bayerischer Bahnhof” with the exact dimensions as the

ENVI-met area input file (created with the “ENVI-met EagleEye v5.0” software).

b) Total UHI intensity for an east wind scenario composed from the sum of ∆TRn , ∆Tf1 ,

∆Tf2 and ∆TQS (eq. 4). Bluish contours denote cooling, reddish a warming compared

with the rural state and darkgreyish buildings. The red boxes are selected locations where

all contributions are discussed together in terms of adaptation opportunities (section 4.6).

4.1. Total UHI intensity: ∆T

Strong warming (reddish contours in Fig. 3b) occurs at locations with-

out vegetation in inner courtyards, asphalt streets and most parts of the

brownfield. Cooling (bluish) is mostly associated with trees, bushes/hedges

and heavily shaded places. White contours (see Figs. 4 - 7) are outside the

scale range and represent following critical cases.

14

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784



First, if fr → −1 eq. 4 diverges and white countours are plotted in

the ∆T maps. Negative values of fr are only possible if βr < 0 (ra,r > 0,

λ0,r > 0 for physical reasons; ρ as well as cp are positive material constants).

A negative β denotes the so-called ”oasis“ effect where a small area evapo-

rates more than its surroundings and this is typically found within a desert

or over lakes. Warm and dry air flows over a very wet surface resulting in a

large latent heat flux directed upwards to the atmosphere. This evaporation

cools the surface and generates a sensible heat flux directed downwards. To

a lesser extent such a phenomenon can be found near single trees, small veg-

etated areas or irrigated surfaces surrounded by very dry areas (e.g. sealed

surfaces).

Second, if QLE → 0, which happens quite often over dry surfaces, β

becomes very large. As a result, ∆f2 becomes very small, fr very large and

so especially ∆Tf2 would be close to 0 which looks like a ”0 contour“ in

Fig. 6 and cannot be resolved. This goes along with areas where no or less

evapotranspiration take place. Often, this is the case over, e.g., urbanised

regions with a high percentage of impervious soils and especially at night

due to the absence of solar radiation.

Third, for ra → 0 and/or β → 0, fr, ∆f1 and ∆f2 give infinite solutions

(”poles“). As a result, ∆T → 0.

4.2. Changes in radiation balance: ∆TRn

The temperature increase arising from the radiation balance (Fig. 4)

responds to shading effects of buildings and vegetation. Shading within veg-

etation is primarily determined by the leaf area density (LAD). Therefore,

greatest cooling was found under very dense tree crowns and hedges, espe-
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cially within inner courtyards (e.g. Fig. 4 left side, residential area) and next

to high buildings. A slight warming occurs at concrete surfaces (e.g. main

Figure 4: ∆TRn caused by changes in the radiation balance. Colours are the same as in

Fig. 3b. The simulation was done for an east wind scenario.

road in the south of the brownfield) which can absorb more short-wave radi-

ation than natural surfaces. Asphalt and the open built-up structure causes

a warming although, as soon as the road reaches a narrow street canyon in

the residential area, shadowing is created by the surrounding buildings. Due

to sun height (53.23◦) and azimuth angle (206.39◦), preferably radiation can

laterally penetrate into south-north oriented street canyons and produces a

surplus of heat (shadows in Fig. 3a indicate the sun position).

The wind direction slightly modifies ∆TRn since turbulent fluxes are de-

termined by the flow field and are incorporated in f . Differences occur in
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the magnitude of both warming and cooling while the principal patterns are

the same. South as well as west wind scenarios (in supplementary material

Figs. S1 and S6, respectively) are only a few hundredth till tenths of a

degree cooler or warmer than the east wind scenario.

4.3. Changes in convection efficiency: ∆Tf1

Zhao et al. (2014) observed that, in humid climate zones, convection

efficiency in cities was lower (ra higher) than in their rural surroundings.

This is likewise valid for Leipzig in temperate climate (Fig. 5). Convection

efficiency slightly depends on the wind scenario and the built-up structure.

For example, in the residential area on the left side in Fig. 5 there is a SSW

- NNE oriented street affected by cooling. The same street shows a slight

warming under south wind conditions (Fig. S2 in supplementary material)

and a change between warming and cooling under west wind conditions

(Fig. S7 in supplementary material) due to the nature of convection effi-

ciency. The higher ra the more turbulence with tendency to small eddies can

be produced. In contrast, in the rural area without any buildings turbulence

produces larger convection cells and therefore ra is reduced. Large eddies

are more effective in removing heat from the surface than smaller ones.

Under east wind conditions the flow field is nearly perpendicular ori-

ented to the buildings along the above considered street and this causes lee

eddies inside the street canyon. In the south and west wind scenario the

orientation of the obstacles is more various which causes more small eddies.

This reduces the heat removing efficiency which in turn ends up in warm-

ing. Besides building orientation also the wind speed controls the convection

efficiency since ra (interpreted as resistance of the interface against the tem-

perature gradient) decreases with increasing wind speed because of enhanced
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Figure 5: same as Fig. 4 but for ∆Tf1 due to convection efficiency

mixing of air masses. The lower ra the higher QH resulting in a higher heat

removing efficiency. In case of channelling effects between buildings or no

blocking obstacles in wind direction, the wind speed is high and causes cool-

ing. For instance, near some objects and street canyons directly behind the

inflow edge the flow is slowed but, on the other hand, accelerated within the

canyons. The shape and dimension of the cooling contours depend on these

effects which can be seen by comparing the three wind scenarios (Figs. 5,

S2 and S7 in supplementary material). Anyway, the temperature differences

are very small and again the spatial patterns are quite similar.
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4.4. Changes in evapotranspiration: ∆Tf2

Evapotranspiration is restricted to vegetation and unsealed surfaces.

Sealed surfaces are impervious to water. Therefore at, e.g., asphalt roads,

concrete surfaces and buildings, no value can be calculated by the decom-

position scheme described (darkgrey contours in Fig. 6).

The transpiration of vegetation depends on the LAD and, consequently,

the greatest cooling effect can be identified in the surrounding of trees with

very dense crowns and hedges with high LAD. Sand surfaces (e.g. around a

Figure 6: same as Fig. 4 but for ∆Tf2 due to evapotranspiration (darkgreyish contours

denote buildings and sealed surfaces).

sports ground), as used in ENVI-met, are situated above wet soil resulting

in a constant humidity; and since such a soil type is very pervious to water

it produces strong cooling (Fig. 6). The propagation of the cooling effect
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into surrounding cells depends on wind direction and turbulent humidity

transport. Places with a strong cooling behind the respective inflow edge

are warmer for another wind scenario.

Warming due to ∆Tf2 is dominated by surfaces with low percentage of

dense vegetation. Only a few scrubs and bushes or grass (see brownfield)

are situated at such locations. Often, e.g. in inner courtyards, vegetation is

completely missing. In total, the differences are small (≈ ±1K).

4.5. Changes in storage heat: ∆TQS

Over annual periods the average storage heat flux vanishes. For our

study with a temporal resolution of 1 hour the storage heat can reach sig-

nificant magnitudes. The amount of stored heat primarily depends on the

Figure 7: same as Fig. 4 but for ∆TQS due to storage heat
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surface material and its specific heat capacity. Thus, e.g., asphalt roads

show a strong warming (Fig. 7) while most vegetated areas, loamy and

sandy soils in the brownfield or around the sports ground are cool.

The warming within some tree groups (e.g. right inflow edge, south of

the sports ground in Fig. 7) is somewhat surprising. Cool air produced

above vegetation canopies (e.g. tree crowns) can sink downwards because

of its higher density and mix up with the underlying warmer air masses.

The denser the vegetation is, the more heat can be stored under the vegeta-

tion canopy and can be used for mixing with cold air. For that reason the

“canopy surface” can be seen warmer than one would expect and creates a

warming compared with the rural state.

The propagation of warming or cooling effects into surrounding cells de-

pends on the wind direction where the strongest warming can be found in

the main streets under east and west wind conditions (Figs. 7 and S5 in

supplementary material).

4.6. Decomposition of ∆T at selected locations

As a check of plausibility of the decomposition procedure we discuss the

individual UHI contributions at four exemplary positions (Table 4, locations

marked in Fig. 3b).

At location 1 there is a hot spot (∆T = +19.2 K). The dominant driver

with ≈ 18.4 K is storage heat due to high heat capacity of the asphalt sur-

face. Although this place is surrounded by buildings, a radiation surplus

leads to a slightly positive UHI contribution (∆TRn ≈ +0.7 K). According

to the sun position (paragraph 4.2) shading is not effective since a street is

crossing this place from south west to north east. Because of scattering at

surrounding objects, this orientation allows for more radiation reaching the
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surface compared to the rural state. The sky-view factor is higher (0.65)

than for position 2 and 4. For cooling more shading is desirable. Because

of an impervious asphalt surface, evaporation is negligible (∆Tf2 = 0). As

a consequence, at location 1 an adequate strategy for climate adaptation

would be to enable evaporation, e.g. by using pervious asphalt materials

(e.g. with organic binding materials) or by unsealed surfaces. Additionally,

this would reduce the large contribution to ∆TQS
.

Location 2 is situated inside a courtyard under tree crowns which pro-

duce cooling (∆T = −2.9 K). Both the shadow and enhanced transpiration

of vegetation are responsible for that (∆TRn < 0,∆Tf2 < 0) and the sky-

view factor has by far the lowest value (0.01). Nearly the complete sky is

obstructed. Convection is inefficient and provides the most dominant contri-

bution (∆Tf1 ≈ 15.7 K) because of low wind speed inside the courtyards and

a small QH (≈ 5.4 W/m2). The other processes overcompensate this effect

so that, nevertheless, cooling develops. This example highlights how cooling

can be achieved in a dense urban quarter and that it is, a priori, not obvious

which contribution is dominant. This requires detailed investigation.

Location 3 is in a schoolyard with loamy soil and shows slight warming.

Interestingly, here the convection efficiency is increased and causes cooling

(∆Tf1 ≈ −2 K). The schoolyard is not completely enclosed with buildings

so that the wind can flow undisturbed through the area (high wind speed).

The dominant contribution to warming is the lack of evapotranspiration

as the entire schoolyard has no or less vegetation (∆Tf2 ≈ +8.8 K). Al-

though this place has an open space characteristic (sky-view factor = 0.66

is highest), radiation plays only a minor role due to shadowing by buildings.

This discussion highlights the strengths of the described approach in order

to decide which adaptation measure is feasible in terms of a cost–benefit
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assessment. At this specific location it is clearly recommendable using irri-

gated grass surfaces. On the one hand, they can reduce surface temperatures

and on the other hand pupils could use these areas for relaxing, talking and

playing with their friends during summertime.

Location 4 shows warming. Because of the position next to a build-

Table 4: Total ∆T and its contributions at 4 locations in the quarter including sky-view

factor.

position ∆T ∆TRn ∆Tf1 ∆Tf2 ∆TQS sky-view

[K] [K] [K] [K] [K] factor

1 (junction) 19.2 0.7 0.1 0 18.4 0.65

2 (courtyard) -2.9 -6.8 15.7 -2.6 -9.2 0.01

3 (schoolyard) 2.4 0.9 -2.0 8.8 -5.3 0.66

4 (near building) 6.5 0.6 1.3 1.3 3.3 0.57

ing, inside a courtyard and without vegetation all contributions provide a

warming (even radiation because of the sun position (although the sky-view

factor is relatively high (0.57)); see section 4.2). The dominant contribution

is ∆TQS
with ≈ 3.3 K. The best option at this location is irrigated grass to

enhance evapotranspiration and to increase albedo that reduces radiation

absorption and the resulting stored heat. For instance, the 2-m air temper-

ature at daytime can be reduced by up to 4 K (Morini et al., 2018) within

single neighbourhoods and on average 0.8 and 0.4 K at urban/rural areas

(Jandaghian & Akbari, 2018), respectively. It is to be expected that the

reduction for the surface temperature will be even more pronounced.
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5. Limitations

225 by 225 cells were available for the simulation. To get reasonable re-

sults and to include local structures (e.g. streets or single trees) a grid size

smaller than 5 by 5 m is needed to dissolve such small objects, which are

important for the local UHI formation. This limits the possible modelling

area to approx. 1125 by 1125 m.

Local heat occurs mainly in an autochthonous weather situation as we

assumed in our study. To simulate this stable atmosphere, initial wind speed

was low (4 m/s). This might cause inaccurate simulations.

Generally, UHI intensity is strongly affected by the surface material. Since

flux divergences (e.g.: radiation) from surrounding cells into the actual

model cell are not taken into account by the present approach, the tran-

sitions between contours are quite sharp.

An additional restriction is that, although ENVI-met (version 3) considers

shadows for radiation calculation, inclination and exposition of surfaces are

not included. Anthropogenic heat was neglected but studies like Ichinose

et al. (1999) showed that anthropogenic heat at high resolutions can reach

800 W/m2 (downtown Tokyo) which is why future modelling approaches

should incorporate such fluxes. Since anthropogenic heat is originally in-

volved in ∆Tf1 and ∆Tf2 , only their magnitudes can be influenced but not

the principal spatial patterns. Another issue are large values of the Bowen

ratio β through QLE → 0. This problem cannot be neglected at the neigh-

bourhood scale (grid size within a few metres).
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6. Conclusions

We suggested an approach for the decomposition of urban warming ∆T

and applied it to a neighbourhood in Leipzig, Germany. The resulting maps

of the individual UHI contributions as well as their discussion at places of

interest demonstrated that:

• There is no overall dominating UHI contribution; nevertheless storage

heat and convection efficiency dominate most parts of the quarter.

• The greatest warming was found in streets with no or less trees, over

impervious surfaces such as asphalt or concrete and in general over

unshaded areas with no or less vegetation (brownfield, parts of inner

courtyards and street canyons).

• Convection efficiency (that was previously presumed to be responsible

for UHI in humid climates (Zhao et al., 2014)) proved to be not al-

ways the dominant driver for local UHI intensity. Often storage heat

contributes the most to UHI.

• The dynamical production of turbulent kinetic energy (TKE) and

their dissipation is highly influenced by wind speed and direction

which in turn depends on the orientation of obstacles within the flow

field. Therefore, the convection efficiency slightly differs for the three

wind scenarios (east, south, west). Pronounced differences were found

for the storage heat where east and west wind scenarios showed the

strongest warming effect. For the south wind scenario the warming at

most areas is considerably smaller but in a few streets perpendicular

to the wind direction it is stronger.
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Our study demonstrated that this approach can be a valuable contribution

for a targeted development of mitigation and adaptation strategies to urban

climate change.

7. Software and technical notes

For micrometeorological simulations the model ENVI-met (http://www.

envi-met.com/) was used. To avoid inconsistencies in the results by using

different model versions we used version 3.1 for all applications. Input data

are achieved from a 3D city model (buildings; Sachsen (2012)) and a meteo-

rological measurement site (Institute for Meteorology – Leipzig; data: http:

//meteo.physgeo.uni-leipzig.de/de/wetterdaten/index.php). Visu-

alisation, conversion of ENVI-met output data (from binary format), de-

composition of ∆T and the analysis were done with programs developed in

R (R Core Team, 2015). The code also implements eq. 4 - 6 and is available

on request from the authors.
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