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3 Abstract 

4 Identifying the key factors driving invasion processes is crucial for designing and implementing appropriate 

5 management strategies. In fact, the importance of (model-based) prevention and early detection was highlighted in the 

6 recent European Union regulation on Invasive Alien Species. Models based on abundance estimates for different age/size 

7 classes would represent a significant improvement relatively to the more usual models based only on species’ occurrence 

8 data. Here, we evaluate the relative contribution of different environmental drivers to the spatial patterns of abundance of 

9 several height classes (or life-stages) of invasive tree populations at the regional scale, using a data-driven hierarchical 

10 modelling approach. Before, a framework for modelling life-stages to obtain spatial projections of their potential occurrence 

11 or abundance has not been formalized before.

12 We used Acacia dealbata (Silver-wattle) as a test species in northwest of Portugal, a heavily invaded region, and 

13 applied a multimodel inference to test the importance of various environmental drivers in explaining the abundance patterns 

14 of five plant height classes in local landscape mosaics. The ensemble of height classes is considered here as a proxy for 

15 population dynamics, life-stages and age of adult trees.  In this test with A. dealbata, we used detailed field data on 

16 population height structure and calibrated an independent model for each height class. We found evidence to support our 

17 hypothesis that the distribution of height classes is mostly influenced by distinct factors operating at different scales. The 

18 spatial projections which resulted from several height class models provide an overview of population structure and invasion 

19 dynamics considering various life-stages, that is widely used in biodiversity and invasion research.

20 The approach proposed here provides a framework to guide forest management to deal more effectively with plant 

21 invasions. It allows to test the effects of key invasion factors (depending on the focal species and on data availability) and 

22 supports the spatial identification of suitable areas for invasive species’ occurrence while also accounting for the structural 

23 complexity of invasive species populations, thereby anticipating future invasion dynamics. The approach thus constitutes a 

24 step forward for establishing management actions at appropriate spatial scales and for focusing on earlier stages of invasion 

25 and their respective driving factors (regeneration niche), thereby enhancing the efficiency of control actions on major forest 

26 invaders.

27

28

29 Keywords: Acacia dealbata, biological invasions, environmental factors, multimodel inference, scale-dependence
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31 1. Introduction

32

33 Biological invasions, i.e. the spread of alien species, can cause severe ecological damages and financial costs (Vilà et al. 

34 2010). Invasive plants, particularly trees, have major implications for forest management (Silva & Marchante, 2012) and can 

35 substantially alter ecosystem and landscape processes, such as fire regimes (Brooks et al., 2004) and nutrient cycles 

36 (Marchante et al., 2008). Invasions can introduce new internal feedback mechanisms (Gaertner et al., 2014) or disrupt the 

37 balance of existing feedbacks in ecosystems (sensu Bennett et al., 2005). These effects will depend on the spatial 

38 distribution and residence time of invaders (Castro et al. 2005), and on the interplay between biotic (Martínez et al. 2010) 

39 and abiotic drivers (Herrero-Jáuregui et al. 2012;), many of which are strongly scale dependent (McGill, 2010).

40 Understanding the drivers and patterns of invasion processes is crucial for designing and implementing appropriate 

41 management strategies (Brundu & Richardson 2016). There is a growing need to predict invasions at finer spatial scales 

42 (Fernandes et al., 2014) so as to effectively support different types of intervention, from early detection to management of 

43 well-established invaders (van Wilgen et al. 2011). The importance of prevention and early detection was highlighted in the 

44 recent European Union regulation on Invasive Alien Species (IAS; EU No 1143/2014). Besides defining coarse climatic 

45 envelopes for invasive species (Brundu & Richardson 2016, Pino et al. 2005), fine-scale species distribution modelling and 

46 prediction requires including local environmental and habitat factors (Vicente et al., 2011; Fernandes et al, 2014), as well as 

47 linking correlative models to demographic variables or demography-based population models (Kueffer et al. 2013). The 

48 management of invasions will then benefit from better knowledge and more informative predictions (Chornesky et al. 2005; 

49 Genovesi & Monaco 2013). 

50 In the case of alien trees, zooming below the species level (e.g., to different management-relevant categories such 

51 as life-stages/height structures of populations/stands) could be very useful for forest invasion management, since the 

52 structural characteristics of populations of invasive species will have strong effects on invasion dynamics and on the 

53 properties of invaded ecosystems (e.g. Call and Nielsen 2003; Vilà et al., 2011; Valladares et al. 2014). Specific control 

54 treatments might be better targeted if the factors driving the presence of specific age or height classes of invasive trees are 

55 weighted. For example, predicting the distribution of young life-stages can facilitate early detection and more effective control 

56 of invasive species (Di Stefano et al., 2013, Gurevitch et al. 2011, Elith 2016, Hui & Richardson 2017). Models based on 

57 abundance estimates for different life-stages/height structure classes will therefore represent a significant improvement on 

58 the most usual models which are based on presence/absence data of species independent of age/size classes. Also, since 

59 the importance of factors influencing species distribution differs across scales (Thomas et al., 1998; Rouget & Richardson, 

60 2003; Vicente et al., 2011, 2014), models should be calibrated and tested at different spatial resolutions and extents 
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61 (Gurevitch et al. 2011, Elith 2016, Hui & Richardson 2017). This way, forest planning instruments will be an even more 

62 effective and important tool in controlling invasive trees at both the stand and the landscape levels (Sitzia et al. 2016), 

63 especially in the case of species like Acacia dealbata, whose spread seems to be reduced by maintaining or facilitating 

64 closed canopy and dense forest cover (Hernández et al. 2014; Silva and Marchante 2012).

65 The silver wattle (Acacia dealbata Link) is one of the most widespread woody plant invaders in southern Europe 

66 (Sheppard et al., 2006). The success of A. dealbata as an invader has been attributed to multiple biological and ecological 

67 characteristics of the species, including phenotypic plasticity, adaptability to disturbance and changeable conditions, positive 

68 feedbacks with fire occurrence, production of large long-lived seedbanks, and resprouting ability (Lorenzo et al., 2010; 

69 Gibson et al., 2011). As with other invasive trees, the occurrence of this species in invaded regions can range from small and 

70 localized areas in initial invasion stages, to large areas where native vegetation and managed forest stands have been 

71 entirely replaced by A. dealbata scrub or woodland (Lorenzo et al., 2012). Depending on abiotic and biotic conditions, local 

72 invasion dynamics, and management history, the species may be represented by individuals in a wide range of size and age 

73 classes in a given landscape mosaic. This makes A. dealbata a good candidate for testing the novel modelling approach that 

74 differentiates factors that influence the invasion process and their scale-dependence in different stages of the plant’s life 

75 cycle (Buhle et al. 2005; Souza-Alonso et al. 2013).

76 Species distribution models (SDMs) have a long history of applications in ecology and management (e.g., 

77 Petitpierre et al., 2012; Vicente et al., 2011). However, SDM-based studies have focused almost exclusively on the static 

78 distributions of the adult niche (i.e. adult individuals’ distribution) of the species (sensu Grubb 1977). Considering different 

79 age classes becomes particularly important for applying SDMs in a time of rapid environmental changes, including climate 

80 and land use changes, as adult trees might have regenerated under a very different climate decades ago, and possibly also 

81 under different habitat conditions. Thus, current environmental variables might explain the regeneration niche well, but not 

82 necessarily the adult niche, and adult individuals can persist across a wider range of environmental conditions than seedlings 

83 or young individuals occurring in the ‘regeneration niche’ (sensu Grubb 1977). Therefore, considering both the “adult” and 

84 the “regeneration” niches in models can more accurately identify the environmental factors underlying the potential 

85 distribution of individuals in the several age classes of long-lived organisms. 

86 Here we address this challenge by evaluating the relative contributions of different environmental drivers to the 

87 spatial patterns of abundance of several height classes of invasive tree populations at the regional scale, using a data-driven 

88 hierarchical modelling approach. We used A. dealbata as a test species in northwestern Portugal, a heavily invaded region 

89 (Vicente et al., 2010, 2011). We applied an information-theory approach (multimodel inference) to test the importance of 

90 environmental drivers in explaining the abundance patterns of several plant height classes in local landscape mosaics. To 
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91 explore the size- and scale-dependence of invasion factors, we formulated two general research hypotheses to be tested 

92 under this multimodel inference framework. The first hypothesis relates the diversity of invasion factors to Acacia life-stages. 

93 The regional distribution of various life-stages, represented by different Acacia height classes, is known to be associated with 

94 distinct sets of prevailing environmental factors (Kempes et al., 2011; Lasky et al. 2013). Since invasion patterns in the test 

95 area are strongly constrained by climate (Vicente et al., 2010, 2011), we expected that the abundance of younger life-stages 

96 would be explained by one or few major drivers (namely climate). Once established, Acacia trees can then cope better with 

97 climate conditions and their inter-annual variations, but to reach adulthood they will have to endure the effects of other 

98 survival filters throughout their establishment and growth. Thus, we expect that more factors (namely those related to habitat 

99 conditions and landscape processes) would be needed to adequately predict the abundance of older plants.

100 Our second hypothesis advocates that the main factors underlying the distribution of each height class are 

101 influenced by the extent of the study area and are scale-dependent (Vicente et al. 2014a). The effects of factors acting at 

102 different spatial scales have been demonstrated before in the study area at the species level, for the invasion by multiple 

103 alien plants (Vicente et al., 2010) and specifically by A. dealbata (Vicente et al., 2011). Building on the same rationale as for 

104 the first hypothesis and on the selective role of habitat filtering (Lasky et al., 2013, Richardson et al., 2000), we expected that 

105 regional factors (namely climate) would be more important for seedlings and saplings, especially across larger spatial 

106 extents, since younger plants are more sensitive to frost or drought than older plants. In contrast, local factors would hold the 

107 highest explanatory power for trees (e.g. due to habitat filtering; Lasky et al., 2013) as well as for smaller spatial extents 

108 (where landscape factors tend to override the effects of climate; Vicente et al., 2010).

109
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110 2. Methods

111 2.1 Study area and test species

112 The study area is located in northwestern Portugal (Fig. 1) and is heavily invaded by alien plants (Vicente et al. 2010). It 

113 covers 3,462 km2 at the westernmost transition between the Temperate-Atlantic and the Mediterranean regions of Europe 

114 (Mesquita and Sousa 2009). The area is topographically heterogeneous, with elevation ranging from sea level in the west to 

115 1,450 meters above sea level in the eastern mountains, resulting in marked variations of environmental conditions. Mean 

116 annual temperature ranges from about 9ºC to about 15ºC, and the mean total annual precipitation varies between about 

117 1,200 mm in the lowlands to about 3,000 mm in the eastern mountain tops. The topographic and climatic heterogeneity of 

118 the area leads to a wide variety of land-uses and vegetation types, ranging from annual crops and pastures to planted pine 

119 or eucalypt stands and natural oak forests.

120

121 Figure 1 The study area in northwestern Portugal, showing the main land cover categories (http://ftp.igeo.pt/e-

122 IGEO/egeo_downloads.htm) (left), its location in the Iberian Peninsula (top right), and southwestern Europe (bottom right).

123

124 Acacia dealbata (silver wattle; Fabaceae) is a tree species native to southeastern Australia and Tasmania (Lorenzo et al. 

125 2010). It can grow up to 15 meters (www.invasoras.pt), and the typical time to maturity is usually less than 4 years. It 

126 presents a long lifespan for acacia species, exceeding 20 years (Boland et al. 1984). The species was introduced to Europe 

http://ftp.igeo.pt/e-IGEO/egeo_downloads.htm
http://ftp.igeo.pt/e-IGEO/egeo_downloads.htm
http://www.invasoras.pt)
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127 around 1800 (Ellena et al. 2008) and was planted as an ornamental in the 19th century in many areas of southern Europe 

128 (Sans-Elorza and Sánchez 2004), including Portugal (Alves 1858). Since then, it has become very common in Mediterranean 

129 countries where it occurs as an invader in disturbed forests, scrublands (Lorenzo et al. 2010) and margins of roads and 

130 water courses. A. dealbata has a high colonizing ability and the capacity to produce large numbers of long-lived seeds 

131 (Gibson et al., 2011), the germination of which is stimulated by fire. Invasive populations usually form dense thickets, and 

132 have the capacity to replace native vegetation by inhibiting its regeneration after disturbance (e.g., through competition for 

133 resources, by allelopathic interference and also due to vigorous re-sprouting or coppicing after cutting; Lorenzo et al., 2010; 

134 Le Maitre et al., 2011). The species is widespread in the study area and is projected to expand its current distribution under 

135 future climate and land-use scenarios (Vicente et al. 2011).

136 2.2 Sampling strategy and Acacia population data

137 The population structure dataset for A. dealbata was collected through field surveys between January and March 2013, 

138 during the flowering period of the species. Surveys were done in 0.04 km2 (200 x 200 m) grid cells. To select the cells to be 

139 surveyed, we first used a coarse-grained occurrence dataset (Vicente et al. 2013) to calibrate a generalized linear model for 

140 A. dealbata (with 1 km2 resolution) which was projected for the study area. In this 1 km2 resolution model, climatic variables 

141 (minimum temperature of the coldest month, and summer precipitation) were used as the only environmental predictors, 

142 since these are the primary determinants of woody alien invasions at a regional scale in the study area (Vicente et al. 2010). 

143 Grid cells predicted as suitable for the species occurrence by the 1 km2  model (with binarization threshold maximizing the 

144 percentage of presences and absences correctly predicted; Liu et al., 2005) were then stratified based on the percentage of 

145 land covered by planted forest stands (3 classes obtained by natural breaks) and on landscape edge density (3 classes 

146 obtained by natural breaks) to capture the main compositional and structural landscape gradients of the area (9 final strata; 

147 see Fernandes et al. 2014; Appendix 1). We then used an equal-stratified sampling design to randomly select 21 plots of 

148 0.04 km2 size in each stratum (21*9 = 189 plots). The final dataset used for model fitting included 187 records (two plots 

149 were not surveyed due to their inaccessibility).

150 For each 0.04 km2 cell, the number of A. dealbata individuals across five height classes was calculated as the 

151 proportion of individuals per height class (summing 1 for each sampling) multiplied by the total estimated number of 

152 individuals in the population. The later was recorded based on standard abundance classes (1, 2-10, 11-50, 51-100, 101-

153 500, 501-1000, >1000) since the exact number of individuals was often impossible to estimate with a reasonable surveillance 

154 effort. The sampling was performed using a fixed-time sampling approach (about 30 minutes per cell, sufficient to fit each cell 

155 into one A. dealbata abundance class and to estimate the proportions of the several height classes). Five height classes (A-
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156 E) were established and associated to the individuals age (e.g. seedlings matches to first year regeneration and saplings to 

157 second year), seed production (e.g. only individuals with more than 2 m were able to produce seeds), on the available 

158 management options to control or eradicate the individuals, and on the plant response to different management options: A: < 

159 0.5 m (seedlings); B: 0.5 m to 2 m (saplings); C: 2 m to 5 m (small trees); D: 5 m to 10 m (medium trees); and E: > 10 m 

160 (large trees)). The numbers of individuals of the five A. dealbata height classes per cell were used as response variables for 

161 each of the five SDMs calibration. 

162

163 2.3 Predictor variables

164 Predictor variables for model calibration were selected based on the factors that have been previously reported in the 

165 literature as potential determinants of the phenology and distribution of A. dealbata, and also from previous research on alien 

166 plant invasions in the test region (Lorenzo et al. 2010; Vicente et al. 2010, 2011, 2013). To avoid multicollinearity, only 

167 predictors with a pairwise Spearman correlation lower than 0.6 (e.g., Elith et al. 2006) and generalized Variance Inflation 

168 Factor (VIF) lower than 5 (Neter et al. 1983) were considered. In the case of correlated pairs of variables, we chose the 

169 variable with the ‘a priori’ most direct ecological effect on plant species distribution.

170 These analyses yielded a final set of 25 environmental variables (at 0.04 km2 resolution) to fit the models: four 

171 climatic variables (mean annual temperature, minimum temperature of coldest month, annual precipitation, and precipitation 

172 seasonality), four land cover / landscape composition variables (percentage cover of broadleaf forests, artificial forests, built 

173 up areas, and scrub and sparse vegetation), four landscape structure variables (mean shape index, mean perimeter-area 

174 ratio, number of patches, and patch size standard deviation), four geological and soil variables (percentage of granites, 

175 schist, anthrosols, and leptosols), four variables expressing dispersal corridors (river density, road density, distance to main 

176 rivers, distance to main roads), four landscape complexity variables (local Shannon diversity of: aspect, geology, altitude, 

177 and land-use), and finally one variable expressing the fire regime (number of fires between 1990 and 2013).

178 Generalized Linear Models (GLMs) were fitted separately for the abundance of the different height classes of A. 

179 dealbata, using the R software (R Core Team 2016). The number of individuals of each class was used as the response 

180 variable in GLMs with Poisson error distribution and log link function (Vincent and Haworth, 1983; Guisan and Zimmermann 

181 2000). Up to second-order polynomials (linear and quadratic terms) were allowed for each predictor in the GLMs, with the 

182 linear term being forced in the model each time the quadratic term was retained. The procedure was adapted from Burnham 

183 and Anderson (2002) and Wisz and Guisan (2009).

184

185 2.4 Analytical framework: hypotheses and competing models
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186 Since A. dealbata is known to be sensitive to severe and prolonged frost (Lorenzo et al, 2010), we expected 

187 climate to act as a strong primary gradient determining the spatial pattern of tree individuals of each height class, masking 

188 the effect of other gradients. For this reason, we used a spatially nested approach (see Vicente et al. 2010) to assess the 

189 relative importance of locally acting environmental gradients (such as land cover, soil and geology; see also Carl et al. 2016). 

190 First, a model using the total information of A. dealbata individuals (sum of the number of individuals sampled in the field, 

191 regardless of height class, per cell) was calibrated only with climate predictors (annual mean temperature, minimum 

192 temperature of coldest month, annual precipitation, and precipitation seasonality). The spatial projection of that model was 

193 then used to sub-sample the study area. Sub-sampling was done by using the quartiles of predictions from the climate-based 

194 model, and resulted in areas that are progressively more homogeneous, smaller, and with higher predicted A. dealbata 

195 densities. In this way we tested the effects of other factors on those areas that are climatically more prone to invasion, 

196 allowing more local gradients acting in the A. dealbata height classes to be detected, as described in Vicente et al. (2010).

197 Seven models translating hypothesized effects of specific ecological factors were established for each height class 

198 based on combinations of predictor types (Table 1; see Appendix 2 for details about competing models and their ecological 

199 rationale). Assuming that all locations and all height classes have the same numbers of individuals, a null model (intercept-

200 only model) was included in all analyses (see Table 1) to test whether the selected competing models were better than a 

201 model considering the absence of effects from the environment (i.e., whether the models used as hypotheses are in fact 

202 more reliable than an intercept model; Burnham & Anderson 2002). Ranking the importance of competing models should 

203 provide insight into the specific responses of different A. dealbata height classes to environmental gradients, thereby 

204 allowing to test our general hypothesis (1). To address our general hypothesis (2), each group of predictors (and thus the 

205 associated model) was classified as coarse-, medium-, or fine-scale (Table 1) based on the resolution of its characteristic 

206 spatial structure (a proxy for the scale of influence on invasion patterns; Vicente et al. 2014).

207 This set of competing models was developed within a multimodel inference framework (MMI; Burnham & Anderson 

208 2002) to assess how well each model was supported by the data. We used a particular implementation of the Akaike 

209 Information Criterion (AIC; Akaike 1973) for small sample sizes (AICc, Shono 2000); this is recommended when the ratio 

210 between n (the number of observations used to fit the model) and K (the number of parameters in the largest model) is lower 

211 than 40 (Shono 2000, Burnham and Anderson 2002). Therefore, because of the small sample size, we limited the maximum 

212 number of predictors per model to four. To overcome dependence on sample size and allow comparability among models, 

213 we calculated the AICc difference (∆i = AICc initial – AICc minimum) for each candidate model to rank the candidate models 

214 (Burnham and Anderson 2002). From the Akaike differences (∆i), we derived Akaike weights (wi), interpreted as the 

215 likelihood that a candidate model will be the best approximating and most parsimonious model given the data and set of 
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216 models. These weights, scale between zero and one, representing the evidence for a particular model as a proportion of the 

217 total evidence supporting all models.

218

219 Table 1. Competing models, scale of predictors used in each model, and supporting literature references (M8 null model, an intercept 

220 model, assumes that all locations have the same abundance of A. dealbata individuals)

Competing models
Resolution of spatial structure

(based on Vicente et al. 2014)
Predictors References

M1 - Climate Coarse

AMT (annual mean temperature)

TMN (minimum temperature of the coldest 

month)

APR (annual precipitation)

PSE (precipitation seasonality)

Pino et al., 2005

Godoy et al., 2008

M2 – Geology/Soils Medium

pGra (percentage of granite)

pSchi (percentage of schists)

pAnt (percentage of anthrosols)

pLep (percentage of leptosols)

Rose and Hermanutz, 2004

Dufour et al., 2006

M3 – Dispersal corridors Medium

dRoad (density of roads)

dRiv (density of rivers)

distRo (distance to main roads)

distRi (distance to main rivers)

(Procheş et al. 2005, Minor 

et al. 2009, Säumel and 

Kowarik 2010)

M4 - Complexity Fine

SWIasp (local variation of aspect)

SWIlit (local variation of lithology)

SWIalt (local variation of altitude)

SWIlu (local variation of land-use)

Holmes et al., 2005

Dufour et al., 2006

M5 - Landscape 

structure
Fine

MSI (mean shape index)

MPAR (mean perimeter-area ratio)

NumP (number of patches)

PSSD (patch size standard deviation)

Le Maitre et al., 2004

Dufour et al., 2006

Foxcroft et al., 2007

M6 - Landscape 

composition
Fine

pNFo (% cover of natural forest)

pBUp (% cover of built up areas)

pAFo (% cover of forest stands)

Pino et al., 2005

Song et al., 2005
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pSSV (% cover of shrubs and sparsely 

vegetation) 

M7 - Fire regime Fine NFir (number of fire occurrences 1990-2013) Keeley et al., 2005

M8 – Null model
Burnham and Anderson, 

2002

221

222 We averaged all competing models weighted by their wi and used the averaged model for spatial prediction 

223 (Burnham and Anderson 2002). The average model of each height class was spatially implemented using the raster 

224 calculator in the ArcGIS Spatial Analyst extension (ESRI 2016). Finally, to achieve realistic predictions based on height class 

225 transitions for A. dealbata, the spatial projections from each height class were spatially overlaid with the ones for the 

226 immediately smaller class. We assumed that A. dealbata individuals of a given height class can only be present in a given 

227 area if the area was also predicted as suitable for the immediately smaller class, representing the current niche under 

228 environmental conditions where the species could complete its life cycle.

229  Therefore, for each height class, besides the projection for the whole study area (‘predicted area’), a projection is 

230 also presented for those areas predicted as suitable simultaneously for both the focal height class and the proximate smaller 

231 class (‘filtered area’).

232

233 3. Results

234

235 Height classes and A. dealbata invasion drivers (hypothesis 1)

236 The distribution of the various height classes of A. dealbata was found to be related to different sets of environmental factors 

237 (Table 2), thus confirming our hypothesis 1. Still, the most parsimonious model to explain the abundance of A. dealbata for 

238 the three classes representing smaller plants (i.e. Seedlings, Saplings, and Small trees) was the one based on climate (M1). 

239 The most important climatic variables for Seedlings and Saplings were precipitation seasonality and annual precipitation, 

240 whereas annual mean temperature and minimum temperature of the coldest month were the most important for Small trees. 

241 Conversely, geology attained the best fit for Medium trees (M2), with percentage of schists as the most important predictor. 

242 The number of Large trees was best explained by landscape composition (M6), mainly by the percentage cover of natural 

243 forest and percentage cover of shrub sparsely vegetation. The models based on landscape complexity (M4), landscape 

244 structure (M5), dispersal corridors (M6) or fire regime (M7) were not selected for any of the height classes, nor was the null 

245 model (M8). Climate, geology and land cover thus seem to explain the abundance distribution of the various height classes 



12

246 for the test species across the whole study area (Table 2). An increased model accuracy (adj.D2 – adjusted variance - Table 

247 2) was found from smaller/younger (Seedlings – 0.651, Saplings – 0.640, and Small trees – 0.643) to taller/older classes (i.e. 

248 Medium - 0.727, and Large trees – 0.797).

249 Table 2 Results of information-theoretic-based model selection and multimodel inference Akaike weights (wi) and adjusted 

250 deviance explained (adj.D2), for the five A. dealbata height classes in the full area (Full; 187 plots used to fit the model); note 

251 that the Akaike weights (wi) always sum up to 1. The best model for each height class is highlighted with grey shading. For 

252 further information see Appendices 3 to 7. 

FULL AREA

SEEDLINGS

 <0.5M

SAPLINGS

0.5 - 2M

SMALL TREES

2 - 5M

MEDIUM TREES

5 - 10M

LARGE TREES

>10M

Competing models wi adj.D2 wi adj.D2 wi adj.D2 wi adj.D2 wi adj.D2

M1 – climate 1.00 0.65 1.00 0.64 1.00 0.64 0.00 0.26 0.00 0.37

M2 - geology 0.00 0.15 0.00 0.16 0.00 0.23 1.00 0.73 0.00 0.48

M3 – dispersal corridors 0.00 0.14 0.00 0.08 0.00 0.16 0.00 0.13 0.00 0.23

M4 – landscape complexity 0.00 0.11 0.00 0.18 0.00 0.20 0.00 0.15 0.00 0.43

M5 – landscape structure 0.00 0.08 0.00 0.10 0.00 0.12 0.00 0.11 0.00 0.29

M6 – landscape composition 0.00 0.20 0.00 0.25 0.00 0.24 0.00 0.21 1.00 0.80

M7 – fire regime 0.00 0.04 0.00 0.06 0.00 0.08 0.00 0.09 0.00 0.20

M8 – null model 0.00 0.00 0.00 0.02 0.00 0.04 0.00 0.02 0.00 0.01

253

254 The spatial predictions from average models for the five A. dealbata height classes and for the full area (Figure 2) 

255 reflect the prevailing influence of distinct invasion drivers. Spatial predictions for Seedlings, Saplings and Small trees reflect 

256 the fact that they primarily respond to climatic factors (Figure 2, a-c), whereas predictions for Medium trees and for Large 

257 trees express the fact that they are more responsive to the presence of specific bedrock types or land cover classes, 

258 respectively (Figure 2, d-e). A complex spatial pattern of potential invasion emerged, with prevalence of Seedlings, Saplings 

259 and Small trees in low-mid elevation areas, where climatic conditions are more favorable (Figure 2, a-e). Medium trees 

260 prevail in areas where schist prevails, and Large trees are predominant in areas where production forest stands are the main 

261 land cover type. The number of height classes represented in each grid cell ranges from one to five, with many local 

262 landscapes (0.04 km2) across the study area hosting four or even all five classes (Figure 2, f). An increase of the predicted 

263 area and a decrease of the filtered area were observed from smaller to taller A. dealbata height classes (Figure 2).
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264

265

266 Figure 2 Spatial predictions from average models for the five response variables, i.e. abundance (number of individuals) of 

267 (a) Seedlings, (b) Saplings, (c) Small trees, (d) Medium trees, and (e) Large trees. Predictions are represented for the 

268 predicted area in all cases (color + grey scales). Color scales represent the filtered area (i.e. the area predicted as suitable 

269 for the modelled A. dealbata height class and for the immediately smaller height class) and grey scales represent areas 

270 predicted as suitable only for the modelled class. The map in (f) represents the total number of predicted height classes that 

271 coexist in each grid cell. For each height class, numerical results are presented for the predicted area and for the filtered 

272 area (number of km2) as well as the percentage (%) of the predicted area corresponding to the filtered area.
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273 Scale dependence of tree invasion factors (hypothesis 2)

274 The abundance distribution of the various height classes was explained by factors structured at different spatial scales, and 

275 those factors were often influenced by the spatial extent of model calibration (Figure 3), providing support to our hypothesis 

276 2. For smaller plants (Seedlings, Saplings and Small trees) the relative importance of invasion factors differed with the spatial 

277 extent (and total environmental heterogeneity) of the study area, with the importance of coarse- and medium-scale factors 

278 decreasing (and the importance of fine-scale factors increasing) towards smaller (and more homogeneous) study areas 

279 (Figure 3). Medium and Large trees showed consistent selection of environmental factors along all four nested areas, but 

280 they differed in terms of spatial scale: Geology (medium-scale) for Medium trees, and Landscape composition (fine-scale) for 

281 Large trees.
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282

283 Figure 3 Scales of spatial structure/influence (coarse-, medium-, and fine-scale) and associated models (M1-M6; competing models representing environmental factors) selected by multimodel inference for each A. 

284 dealbata height class (Seedlings, Saplings, Small trees, Medium trees, and Large trees) for each nested area/extent (full area, area above the first quartile, area above the second quartile, and area above the third 

285 quartile). Horizontal grey bars represent the expected patterns based on the research hypothesis and on previous research.

286
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287 Discussion

288

289 Height class dependence of tree invasion drivers

290 Modelling life-stage or size-class transitions is of foremost importance for management. Species distribution 

291 models are easy and fast to implement, calibrate and project, and are thus widely regarded as robust tools to assist in 

292 prevention and early detection of new invasive plant species (Vicente et al., 2011; Petitpierre et al., 2012; Fernandes et al., 

293 2014). Static models further allow a straightforward prediction of species occurrence areas under discrete current and future 

294 environmental conditions (Guisan and Thuiller, 2005; Elith and Leathwick, 2009).

295 However, most studies that apply species distribution models only consider and predict the occurrence of species 

296 based on presence-absence or abundance data. Even if useful for prevention measures (anticipation or early detection of 

297 invasions; e.g. Petitpierre et al., 2012), such model outputs are often of limited use in guiding local-scale management 

298 actions, as they do not consider the population dynamics of the invader. Our proposed modelling approach provides a way of 

299 approach to overcoming this key limitation. To our knowledge, a framework of modelling life-stages or size-classes to obtain 

300 spatial projections of their potential occurrence or abundance has not been formalized before. 

301 In this test with Acacia dealbata, we used detailed field data on population height structure and calibrated an 

302 independent model for each of the several height classes (a proxy for population dynamics, life-stages and age of adult 

303 trees). We found evidence to support our hypothesis that the distribution of different height classes is influenced by distinct 

304 factors (see Table 1). Also, the spatial projections of the different models for the different height classes (see Figure 2) 

305 provide an overview of population structure and dynamics in different stages of invasions, while maintaining a relatively 

306 straightforward modelling technique that is widely used in biodiversity and invasion research. By building models for the 

307 different height or age classes, our approach avoids the problem of using only presence-absence data for adult individuals, 

308 which are affected by the history of the invasion process. Moreover, combining spatial projections of size-class models to 

309 predict their potential occurrence, including those of earlier life-stages, can provide useful insights on future dynamics of 

310 invasions.

311 The increased model accuracy (adj.D2 presented in Table 2) from smaller/younger (i.e. Seedlings, Saplings, and 

312 Small trees) to taller/older classes (i.e. Medium and Large trees) may be interpreted as expressing the effect of the ‘filter’ 

313 hypothesis described by Richardson et al. (2000), in which older adult trees have to withstand the effects of a larger number 

314 of environmental filters in order to survive, compared to younger life-stages. Thus, using the same set of environmental 

315 variables to model different life-stages should result in an increase of model accuracy towards older life-stages, as those 

316 models represent better the realized niche for the species in the invaded range. It is important, however, not to neglect the 
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317 effect of the environmental data grain, since younger classes might require more precise climate data, with higher spatial 

318 resolution and from the particular year of establishment (i.e. considering year-to-year climate variability). The effects of other 

319 drivers and processes of invasion dynamics (e.g. propagule pressure, introduction history, residence time) should also be 

320 considered depending on the focal species and on data availability.

321

322 Scale dependence of tree invasion factors

323 We also found evidence to support our hypothesis that the effects of invasion factors on Acacia height classes are 

324 scale-dependent. This connection of invasion factors to spatial scales had been observed in the study area for the test 

325 Acacia species and for invasibility by multiple species (Vicente et al., 2010, 2011), but had never been tested for age/height 

326 classes of a focal species.

327 The scale-dependence was confirmed based on two sets of results. First, when analyzing the whole study area, 

328 the scale of the most important factors (Vicente et al., 2010, 2014a) differed among height classes (cf. Figure 3), with coarse-

329 scale factors being more important for younger life-stages (i.e. seedlings/saplings) and medium to fine-scale factors more 

330 important for adult trees (habitat filtering; Gonzalez et al., 2010). The fact that the distribution of young A. dealbata plants 

331 (i.e., Seedlings, Saplings and Small trees) was essentially explained by climate (coarse-scale factor) can be explained by the 

332 fact that climate is a primary environmental gradient and a fundamental driver of biodiversity patterns (García-Valdés et al. 

333 2015). It is also a major factor shaping the geographic distribution of alien invaders at a regional scale (Vicente et al. 2010, 

334 2014b; Petitpierre et al., 2012). Minimum temperatures are known to control habitat invasibility by frost-sensitive alien 

335 invaders, which is the case with A. dealbata (Pino et al. 2005). Summer drought stress is also recognized as a strong 

336 mediator alien invasions in Mediterranean ecosystems (Godoy et al. 2008). Successful establishment and growth into mid-

337 large trees then involves an additional set of environmental filters acting in climatically suitable landscapes, with geology/soil 

338 conditions (medium-scale) and landscape composition (fine-scale) holding the highest importance for A. dealbata at least in 

339 the study area. The fact that the distribution of Large trees is mostly determined by landscape composition could be related 

340 to the availability of suitable habitats and with landscape barriers to dispersal of Acacia (Torimaru et al., 2013; García-Valdés 

341 et al. 2015) of adult individuals in forest ecosystems. Overall, our results seem to suggest that models were able to assess 

342 both the “adult” and the “regeneration” niches of A. dealbata, highlighting the environmental factors underlying the potential 

343 distribution of the several age classes (Grubb 1977).

344 Second, the relative importance of the several factors was influenced by the spatial extent of the study area (cf. 

345 Figure 3; Vicente et al., 2014a). This pattern was observed for Seedlings, Samplings, and Small trees, which were mainly 

346 constrained by a coarse-scale factor (climate) across larger study areas, and by fine-scale attributes (geology, dispersal 



18

347 corridors, and landscape complexity) in when smaller (and climatically more homogeneous) areas were tested, consistently 

348 with previous research on invasion factors in the region (e.g. Vicente et al. 2010). As expected, having endured the filtering 

349 effect of a wider range of environmental factors (Richardson et al., 2000), and being influenced by factors structured at finer 

350 scales, Medium and Large trees showed no significant scale-dependence of invasion factors. 

351

352 Outlook: towards improved management of tree invasions

353 Managing alien plant invasions in forest ecosystems is a challenging endeavor due to the multiscale processes 

354 acting upon life-stages, across space and along time (Souza-Alonso et al., 2013; Caplat et al., 2014; Reyer et al., 2015; 

355 Brundu and Richardson, 2016). Prevention and early-detection at younger life-stages are the most cost-effective options, 

356 compared to species control at later life-stages and/or large invaded areas, since managers can more easily manage 

357 species with small population sizes and invasion levels. However, these life-stages are the most difficult to detect in the 

358 landscape, which means that modelling outputs become a very important tool to support early-detection by focusing search 

359 efforts. When the species is already present and has spread, populations must be managed differently according to their life-

360 stage(s); individuals with distinct sizes and phenological characteristics require different approaches to maximize 

361 management success (Buhle et al., 2005; Wilson et al., 2011). 

362 Results from the application of a novel modelling approach to address life-stage population structure of the 

363 widespread alien invasive tree A. dealbata show that management must be tailored to consider distinct life-stages, spatial 

364 scales and extents. Scale dependence of invasion factors is especially important for earlier life-stages (Seedlings, Saplings, 

365 and Small trees). Effective management at those early stages of invasion must consider the effect of regional conditions (i.e., 

366 climatic, geological) on habitat suitability, but must also give attention to major dispersal corridors (i.e. rivers and roads) 

367 which are well-known drivers of invasion (Vicente et al., 2014b). Moreover, silvicultural treatments have been suggested for 

368 the control of other invasive trees through forest management and within the EU 1143/2014 regulation framework. In the 

369 specific case of the Acacia dealbata, the spread of this invasive tree can be buffered by maintaining or facilitating closed 

370 canopy and dense forest cover (Hernández et al. 2014, Silva and Marchante 2012).

371 The approach proposed here provides a framework to guide forest management to deal more effectively with plant 

372 invasions. It provides the spatial identification of suitable areas for invasive species occurrence while also accounting for the 

373 structural complexity of invasive populations, thereby anticipating future invasion dynamics. The approach thus constitutes a 

374 step forward for focusing management actions at appropriate spatial scales (Fernandes et al., 2014) and prioritizing attention 

375 on earlier stages of invasion and their respective driving factors, thereby enhancing the efficiency of control actions targeted 

376 at major forest invaders (Pyšek and Richardson, 2010).
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377 Conclusions

378 The pilot application of a novel modelling framework to Acacia dealbata in northwest Portugal revealed that the 

379 regional distribution different height classes can be influenced by distinct sets of environmental factors (Kempes et al., 2011; 

380 Lasky et al. 2013). From the projection of our results in the geographical space it was also possible to perceive a different 

381 spatial mosaic pattern for each height class. Areas where suitable climatic conditions, geological and soil characteristics, and 

382 dispersal corridors (both rivers and roads) were present (corresponding to the central vertical belt of the study area) 

383 correspond to areas of highest concern in the study-site, because all height classes of A. dealbata were predicted to occur 

384 (cf. Figure 2). Our results also confirmed the hypothesis of scale-dependence of tree invasion factors, considering the scale 

385 of influence of those factors, density of stands and also the extent of the study area. The main factors underlying the 

386 distribution of the several A. dealbata height classes show a scale-dependent behavior reflecting the importance of different 

387 management strategies for different height classes as well as dense vs. low density Acacia stands.

388

389
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606 Appendices

607

608 Appendix 1 Sampling design stratification

609 Variables and classes used in the equal-stratified sampling design.

Variable type Variable Breaks Classes

Landscape 

structure

Edge density between land cover 

patches
Natural breaks

0.004 – 0.008 

>0.008 – 0.016 

>0.016 – 0.0215

Landscape 

composition
Percentage of artificial stands Natural breaks

0 – 20 

>20 – 60 

>60 - 100

610

611

612 Appendix 2 Ecological rational of the competing models 

613 Competing models with their ecological rationale to test the role of environmental drivers explaining different height classes 

614 of Acacia dealbata populations.

Competing models Name Rationale

M1 Climate
Minimum temperatures control habitat invasibility by frost-sensitive alien invaders (Pino et al. 2005), and 

summer drought stress controls alien invasion in Mediterranean ecosystems (Godoy et al. 2008).

M2 Geology

Susceptibility to invasion is pre-determined by bedrock geology (Rose and Hermanutz 2004), and different 

bedrock types support distinct landscape units in the region, thus providing different sets of habitats for alien 

invaders. Also, more alien invaders can find suitable conditions in landscapes with greater soil diversity 

(Dufour et al. 2006).

M3

Dispersal 

corridors

The spread of invaders is often facilitated by natural corridors as rivers (Procheş et al. 2005, Minor et al. 

2009, Säumel and Kowarik 2010)

M4

Landscape 

complexity

The local diversity of terrain morphology controls species richness, since more complex terrain usually 

provides a wider diversity of habitat types (Dufour et al. 2006). Topographic diversity is also related to local 

hydrographic networks, thus controlling alien invasion in riparian habitats (Holmes et al. 2005).
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M5

Landscape 

structure 

Landscape invasibility is controlled by patch shape and size, since these determine ecotone density and 

diversity (Le Maitre et al. 2004, Dufour et al. 2006). The density of the local hydrographic network is related 

to landscape fragmentation, which provides more opportunities for local survival and dispersal (Foxcroft et 

al. 2007). 

M6

Landscape 

composition

Land cover/-use controls alien invasion since it determines suitable habitat availability, and man-made 

habitats have been shown to provide suitable conditions for more invasive species (Song et al. 2005). Also, 

more alien invaders can find suitable conditions in landscapes with greater compositional diversity (Pino et 

al. 2005).

M7 Fire regime
Fire is a common source of disturbance in Mediterranean areas and influences population dynamics of 

invasive plants (Keeley et al. 2005).

M8 Null model
A null model was included in all procedures in order to test how the competing models are better than a 

model that considers the absence of effect (Burnham and Anderson 2002).
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616 Appendix 3 Multimodel inference results for Acacia dealbata seedlings

617 Results of information-theoretic-based model selection based on the Akaike information criterion for seedlings number (number of Acacia 

618 dealbata individuals with height < 0.5 meters), detailing number of model parameters (k; linear and polynomial terms of variables and 

619 intersect), the small-sample bias-corrected form of Akaike’s information criterion differences (∆i), Akaike weights (wi), and adjusted 

620 deviance explained (adj.D2), for each of the four areas: full area (Full; 187 plots used to fit the model), area above the first quartile (>1st Q; 

621 168 plots used to fit the model), area above the second quartile (>2nd Q; 84 plots used to fit the model), and area above the third quartile 

622 (>3rd Q; 69 plots used to fir the model). Note that the Akaike weights (wi) always sum up to 1.

Seedlings

Full area > 1st Q > 2nd Q > 3rd Q

k
adj.D

2

∆i wi
adj.D2

∆i wi
adj.D2

∆i wi
adj.D2

∆i wi

M1 – climate
1

0 0.651 0.000 1.000 0.618 0.000 1.000 0.115

1736.

547 0.000 0.636

19.96

8

4.613

E-05

M2 - geology
1

0 0.150

3138.

644 0.000 0.176

1611.

416 0.000 0.643 0.000 1.000 0.378

93.60

5

4.719

E-21

M3 – dispersal 

corridors

1

0 0.135

6529.

572 0.000 0.137

5472.

602 0.000 0.077

3059.

103 0.000 0.834 0.000 1.000

M4 – landscape 

complexity

1

0 0.107

4828.

024 0.000 0.097

3964.

408 0.000 0.188

1551.

773 0.000 0.308

116.2

26

5.778

E-26

M5 – landscape 

structure

1

0 0.082

5149.

510 0.000 0.087

4104.

417 0.000 0.182

1050.

205

8.932

E-229 0.113

137.0

18

1.766

E-30

M6 – landscape 

composition

1

0 0.198

3501.

129 0.000 0.197

2663.

454 0.000 0.125

405.0

28

1.120

E-88 0.170

137.3

52

1.494

E-30

M7 – fire regime
4 0.041

7004.

853 0.000 0.169

5909.

888 0.000 0.040

3072.

732 0.000 0.114

151.7

88

1.095

E-33

M8 – null model
4 0.002

7195.

339 0.000 0.048

4788.

511 0.000 0.022

2723.

809 0.000 0.008

147.0

86

1.150

E-32

623

624
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625 Appendix 4 Multimodel inference results for Acacia dealbata saplings

626 Results of information-theoretic-based model selection based on the Akaike information criterion for saplings number (number of Acacia 

627 dealbata individuals with height between 0.5 and 2 meters), detailing number of model parameters (k; linear and polynomial terms of 

628 variables and intersect), the small-sample bias-corrected form of Akaike’s information criterion differences (∆i), Akaike weights (wi), and 

629 adjusted deviance explained (adj.D2), for each of the four areas: full area (Full; 187 plots used to fit the model), area above the first quartile 

630 (>1st Q; 168 plots used to fit the model), area above the second quartile (>2nd Q; 84 plots used to fit the model), and area above the third 

631 quartile (>3rd Q; 69 plots used to fir the model). Note that the Akaike weights (wi) always sum up to 1.

Saplings

Full area > 1st Q > 2nd Q > 3rd Q

k
adj.D

2

∆i wi
adj.D2

∆i wi
adj.D2

∆i wi
adj.D2

∆i wi

M1 – climate
1

0 0.640 0.000 1.000 0.600 0.000 1.000 0.041

1555.

496 0.000 0.093

960.1

61

3.190

E-209

M2 - geology
1

0 0.155

2650.

665 0.000 0.168

1640.

129 0.000 0.241

906.9

95

1.118

E-197 0.177

1380.

605

1.605

E-300

M3 – dispersal 

corridors

1

0 0.085

5312.

080 0.000 0.095

4465.

241 0.000 0.170

2195.

886 0.000 0.280

688.7

33

2.777

E-150

M4 – landscape 

complexity

1

0 0.183

2236.

357 0.000 0.168

1589.

984 0.000 0.688 0.000 1.000 0.746 0.000 1.000

M5 – landscape 

structure

1

0 0.102

3597.

920 0.000 0.123

2691.

615 0.000 0.327

506.1

67

1.223

E-110 0.308

654.2

60

8.496

E-143

M6 – landscape 

composition

1

0 0.247

3372.

919 0.000 0.239

2720.

475 0.000 0.365

1461.

517

4.322

E-318 0.391

1351.

240

3.819

E-294

M7 – fire regime
4 0.058

4936.

105 0.000 0.139

4140.

491 0.000 0.126

2337.

228 0.000 0.121

2032.

230 0.000

M8 – null model
4 0.025

5879.

540 0.000 0.042

4850.

803 0.000 0.011

2732.

256 0.000 0.014

2679.

880 0.000
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633 Appendix 5 Multimodel inference results for Acacia dealbata small trees.

634 Results of information-theoretic-based model selection based on the Akaike information criterion for small trees number (number of Acacia 

635 dealbata individuals with height between 2 and 5 meters), detailing number of model parameters (k; linear and polynomial terms of 

636 variables and intersect), the small-sample bias-corrected form of Akaike’s information criterion differences (∆i), Akaike weights (wi), and 

637 adjusted deviance explained (adj.D2), for each of the four areas: full area (Full; 187 plots used to fit the model), area above the first quartile 

638 (>1st Q; 168 plots used to fit the model), area above the second quartile (>2nd Q; 84 plots used to fit the model), and area above the third 

639 quartile (>3rd Q; 69 plots used to fir the model). Note that the Akaike weights (wi) always sum up to 1.

Small trees

Full area > 1st Q > 2nd Q > 3rd Q

k
adj.D

2

∆i wi
adj.D2

∆i wi
adj.D2

∆i wi
adj.D2

∆i wi

M1 – climate
1

0 0.643 0.000 1.000 0.219

98.67

7

3.737E

-22 0.157

1384.

646

2.128

E-301 0.059

791.1

20

1.623

E-172

M2 - geology
1

0 0.227

497.4

42

9.590

E-109 0.699 0.000 1.000 0.751 0.000 1.000 0.297

149.2

06

3.983

E-33

M3 – dispersal 

corridors

1

0 0.160

2676.

412 0.000 0.170

2282.

191 0.000 0.105

1567.

971 0.000 0.185

828.6

32

1.161

E-180

M4 – landscape 

complexity

1

0 0.203

1388.

220

3.560

E-302 0.182

1136.

211

1.883E

-247 0.322

683.7

05

3.430

E-149 0.255

485.3

76

3.998

E-106

M5 – landscape 

structure

1

0 0.115

1355.

956

3.610

E-295 0.126

911.0

85

1.447E

-198 0.297

212.0

36

9.056

E-47 0.784 0.000 1.000

M6 – landscape 

composition

1

0 0.242

1453.

317

2.607

E-316 0.226

1180.

966

3.601E

-257 0.382

731.8

26

1.219

E-159 0.328

494.9

72

3.298

E-108

M7 – fire regime
4 0.083

2828.

173 0.000 0.065

2391.

751 0.000 0.114

1638.

909 0.000 0.112

1179.

555

7.293

E-257

M8 – null model
4 0.036

3588.

450 0.000 0.021

2715.

260 0.000 0.030

1273.

455

2.970

E-277 0.002

1438.

950

3.435

E-313

640

641
642
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643 Appendix 6 Multimodel inference results for Acacia dealbata medium trees.

644 Results of information-theoretic-based model selection based on the Akaike information criterion for medium trees number (number of 

645 Acacia dealbata individuals with height between 5 and 10 meters), detailing number of model parameters (k; linear and polynomial terms of 

646 variables and intersect), the small-sample bias-corrected form of Akaike’s information criterion differences (∆i), Akaike weights (wi), and 

647 adjusted deviance explained (adj.D2), for each of the four areas: full area (Full; 187 plots used to fit the model), area above the first quartile 

648 (>1st Q; 168 plots used to fit the model), area above the second quartile (>2nd Q; 84 plots used to fit the model), and area above the third 

649 quartile (>3rd Q; 69 plots used to fir the model). Note that the Akaike weights (wi) always sum up to 1.

Medium trees

Full area > 1st Q > 2nd Q > 3rd Q

k
adj.D

2

∆i wi
adj.D2

∆i wi
adj.D2

∆i wi
adj.D2

∆i wi

M1 – climate
1

0 0.256

176.2

27

5.406

E-39 0.320

512.8

60

4.304E

-112 0.120

1138.

963

4.756

E-248 0.126

758.3

59

2.111

E-165

M2 - geology
1

0 0.727 0.000 1.000 0.712 0.000 1.000 0.737 0.000 1.000 0.692 0.000 1.000

M3 – dispersal 

corridors

1

0 0.126

1703.

277 0.000 0.129

1789.

194 0.000 0.101

1205.

030

2.143

E-262 0.102

816.2

40

5.699

E-178

M4 – landscape 

complexity

1

0 0.149

1154.

109

2.446

E-251 0.128

1310.

574

2.585E

-285 0.202

860.7

14

1.254

E-187 0.227

580.9

93

6.903

E-127

M5 – landscape 

structure

1

0 0.113

1376.

919

1.014

E-299 0.140

1403.

186

2.004E

-305 0.299

656.6

90

2.521

E-143 0.273

432.5

91

1.159

E-94

M6 – landscape 

composition

1

0 0.212

1059.

074

1.059

E-230 0.195

1218.

101

3.110E

-265 0.311

597.9

91

1.406

E-130 0.334

345.2

88

1.051

E-75

M7 – fire regime
4 0.093

2057.

328 0.000 0.077

2105.

907 0.000 0.205

1397.

444

3.540

E-304 0.197

1005.

696

4.129

E-219

M8 – null model
4 0.025

2198.

718 0.000 0.004

2174.

471 0.000 0.073

1439.

988

2.045

E-313 0.026

1173.

810

1.29E-

255

650

651
652
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653 Appendix 7 Multimodel inference results for Acacia dealbata large trees.

654 Results of information-theoretic-based model selection based on the Akaike information criterion for large trees number (number of Acacia 

655 dealbata individuals with height >10 meters), detailing number of model parameters (k; linear and polynomial terms of variables and 

656 intersect), the small-sample bias-corrected form of Akaike’s information criterion differences (∆i), Akaike weights (wi), and adjusted 

657 deviance explained (adj.D2), for each of the four areas: full area (Full; 187 plots used to fit the model), area above the first quartile (>1st Q; 

658 168 plots used to fit the model), area above the second quartile (>2nd Q; 84 plots used to fit the model), and area above the third quartile 

659 (>3rd Q; 69 plots used to fir the model). Note that the Akaike weights (wi) always sum up to 1.

Large trees

Full area > 1st Q > 2nd Q > 3rd Q

k
adj.D

2

∆i wi
adj.D2

∆i wi
adj.D2

∆i wi
adj.D2

∆i wi

M1 – climate
1

0 0.374

400.8

86

8.886

E-88 0.299

437.1

13

1.207E

-95 0.106

777.6

86

1.342

E-169 0.096

731.2

25

1.646

E-159

M2 - geology
1

0 0.485

29.28

0

4.384

E-07 0.488

13.90

0 0.001 0.415

248.6

63

1.008

E-54 0.356

281.9

40

5.992

E-62

M3 – dispersal 

corridors

1

0 0.229

623.6

05

3.854

E-136 0.227

599.7

19

5.918E

-131 0.294

436.6

65

1.512

E-95 0.275

404.5

91

1.394

E-88

M4 – landscape 

complexity

1

0 0.432

152.8

70

6.378

E-34 0.451

98.13

9

4.886E

-22 0.503

84.46

5

4.556

E-19 0.502

58.41

1

2.072

E-13

M5 – landscape 

structure

1

0 0.289

485.4

78

3.799

E-106 0.287

464.3

58

1.464E

-101 0.380

291.3

66

5.378

E-64 0.361

273.6

48

3.786

E-60

M6 – landscape 

composition

1

0 0.797 0.000 1.000 0.794 0.000 0.999 0.853 0.000 1.000 0.841 0.000 1.000

M7 – fire regime
4 0.204

732.1

48

1.038

E-159 0.194

728.5

07

6.401E

-159 0.210

690.5

51

1.119

E-150 0.187

651.0

61

4.207

E-142

M8 – null model
4 0.012

1525.

913 0.000 0.007

1164.

592

1.293E

-253 0.049

672.7

12

8.366

E-147 0.017

878.3

97

1.813

E-191

660


