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Abstract 13 

Pools of chloroethenes are more recalcitrant in the transition zone between aquifers and basal aquitards 14 

than those elsewhere in the aquifer. Although biodegradation of chloroethenes occur in this zone, it is a 15 

slow process and a remediation strategy is needed. The aim of this study was to demonstrate that 16 

combined strategy of biostimulation and in situ chemical reduction (ISCR) is more efficient than the two 17 

separated strategies. Four different microcosm experiments with sediment and groundwater of a selected 18 

field site where an aged perchloroethene (PCE)-pool exists at the bottom of a transition zone, were 19 

designed under i) natural conditions, ii) biostimulation with lactic acid, iii) in situ chemical reduction (ISCR) 20 

with zero valent iron (ZVI) and under iv) a combined strategy with lactic acid and ZVI. Biotic and abiotic 21 

dehalogenation, terminal electron acceptor processes and evolution of microbial communities were 22 

investigated for each experiment. The main results where: i) limited reductive dehalogenation of PCE 23 

occurs under sulfate-reducing conditions; ii) biostimulation with lactic acid promotes a more pronounced 24 

reductive dehalogenation of PCE in comparison under natural conditions, but resulted in an accumulation 25 

of cis-dichloroethene (cDCE); iii) ISCR with zero-valent iron (ZVI) facilitates a sustained dehalogenation of 26 

PCE and its metabolites to non-halogenated products, however, the iv) combined strategy results in the 27 

fastest and sustained dehalogenation of PCE to non-halogenated products in comparison of all four set-28 
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ups. These findings suggest that biostimulation and ISCR with ZVI are the most suitable strategy for a 29 

complete reductive dehalogenation of PCE-pools in the transition zone. 30 

Key words: anaerobic microcosm experiment; transition zone to the basal aquitard; zero-valent iron (ZVI); 31 

compound specific isotopic analysis (CSIA); terminal restriction fragment length polymorphism (T-RFLP). 32 

 33 

 34 

1. Introduction 35 

Chloroethenes are chlorinated solvents that belong to the group of dense non-aqueous phase liquids 36 

(DNAPLs) and have been detected in numerous contamination events (Tiehm and Schmidt, 2011). These 37 

compounds have an elevated toxicity (Moran et al., 2006), and in the case of perchloroethene (PCE), 38 

trichloroethene (TCE) and vinyl chloride (VC), the risk of cancer increases under exposure (USEPA, 2009). 39 

Parker et al. (2003) described transition zones between granular aquifers and basal aquitards as a 40 

reasonable paradigm for the DNAPL source area architecture in granular aquifers. Transition zones are 41 

made up of numerous thin silty-clay layers interstratified with coarser-grained layers (i.e., sands and 42 

gravels), which decreases the contaminant mobility. Therefore, the higher recalcitrance of DNAPL sources 43 

in these zones has far-reaching implications for the environment. 44 

Chloroethenes may be recalcitrant under certain conditions over long periods (several decades or longer). 45 

However, they can be degraded under anoxic conditions by biotic reductive dehalogenation (Bradley, 46 

2003; Bradley and Chapelle, 2011; Wiedemeier et al., 1998) carried out by organohalide-respiring bacteria 47 

(OHRB, Adrian and Löffler, (2016)). Reductive dehalogenation of chloroethenes occurs sequentially from 48 

PCE to TCE to 1,2-cis-dichloroethene (cDCE), which is the most common metabolite in TCE biodegradation 49 

(Bouwer, 1994), to VC, and to ethene (Tiehm and Schmidt, 2011; Vogel et al., 1987). Reductive 50 

dehalogenation of PCE and TCE to cDCE can be carried out by a wide range of microorganisms such as 51 

Dehalococcoides, Geobacter, Dehalobacter, Desulfitobacterium, Sulfurospirillum, Anaeromyxobacter, 52 

Desulfomonile, Desulfovibrio, Desulfuromonas and Dehalogenimonas spp. (Atashgahi et al., 2016; 53 
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Nijenhuis and Kuntze, 2016). However, only Dehalococcoides spp. have been described as capable of the 54 

complete reductive dehalogenation of PCE/TCE (Maymó-Gatell et al., 1997; Zinder, 2016). 55 

The reductive dehalogenation of PCE and TCE may occur under nitrate- (van der Zaan et al., 2010), Mn- 56 

and Fe-reducing conditions as well as under sulfate-reducing and methanogenic conditions (Bouwer, 57 

1994; Bradley, 2003; Bradley and Chapelle, 1996), especially if an excess of electron donors is supplied to 58 

achieve substantial dehalogenation (Aulenta et al., 2007). The reductive dehalogenation may be wholly 59 

or partially inhibited by competition for electron donors depending on environmental conditions. This 60 

competition occurs between OHRB and anaerobic hydrogenotrophic (including reducers of NO3
-, Mn4+, 61 

Fe3+ and SO4
2-), autotrophic methanogenic, and homoacetogenic microorganisms (Wei and Finneran, 62 

2011). 63 

High concentrations of chloroethenes in the contaminant source may inhibit microbial activity (National 64 

Research Council, 1999; Philips et al., 2013), causing a decrease in the microbial richness of the population 65 

due to their toxicity (Haack and Bekins, 2000). This potential inhibition of microbial activity does not affect 66 

all chloroethene-biodegrading microorganisms equally, inducing a specialization in the microbial 67 

community, which decreases the microbial richness of the population (Sleep et al., 2006). For example, 68 

Dehalobacter restrictus PER-K23 (Holliger et al., 1998), Desulfuromonas chloroethenica TT4B (Krumholz, 69 

1997), Sulfurospirillum halorespirans DSM 12446 T (Luijten et al., 2003), and Dehalococcoides mccartyi 70 

(Maymó-Gatell et al., 2001) are completely inhibited by high concentrations of PCE. By contrast, other 71 

species such as Desulfitobacterium Y51 (Suyama et al., 2001), Clostridium bifermentans DPH-1 (Chang et 72 

al., 2000), Enterobacter agglomerans MS-1 (Sharma and McCarty, 1996), and Desulfuromonas 73 

michiganensis BB1 and BRS1 can dehalogenate PCE and/or TCE even at saturation concentrations (Sung 74 

et al., 2003). In addition, high concentrations of chloroethenes may inhibit the activity of microorganisms 75 

that potentially compete with OHRB, such as, for example, methanogenic populations (Yang and McCarty, 76 

2002). 77 

In situ chemical reduction (ISCR) with zero-valent iron (ZVI) has been proven as an efficient strategy to 78 

dehalogenate chloroethenes (Gillham and O’Hannesin, 1994; VanStone et al., 2004). The reaction 79 

mechanisms of ZVI to reductively dehalogenate chloroethenes are complex and produce different end-80 
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products depending on the conditions (Elsner et al., 2008; VanStone et al., 2004; Vogel et al., 1987). For 81 

example, Orth and Gillham (1996) found that 80% of TCE was mainly dehalogenated to ethene and ethane 82 

(in a ratio of 2:1), but with additional products, such as methane, propane, propene, 1-butene and butane. 83 

Other researchers detected other products during abiotic reductive dehalogenation of PCE and TCE with 84 

ZVI (Campbell et al., 1997), e.g. VC, cDCE, 1,1DCE, methane, chloroacetylene, ethine, ethene, ethane. The 85 

great variety of abiotic degradation pathways by ZVI potentially avoids the accumulation of toxic 86 

byproducts (such as VC), in contrast with biodegradation, that may build-up in the aquifer (Brown, 2010). 87 

Each remediation strategy presents several limitations. For example, the accumulation of metabolites in 88 

the case of biostimulation and the relatively long time of application in the case of monitored natural 89 

attenuation (MNA) and ISCR with ZVI. Consequently, different remediation strategies can be applied 90 

sequentially (Brown, 2010) or combined (Henry, 2010). It is common to sequentially apply a remediation 91 

strategy in the source (such as biostimulation or injection of chemical products) and subsequently apply 92 

a MNA in the plume. In other cases, when the biostimulation of chloroethenes with lactic acid lead to an 93 

accumulation of cDCE (Lorah et al., 2008), a second strategy is needed to completely dehalogenate this 94 

compound, such as bioaugmentation (Ellis et al., 2000), ISCR or oxidative biostimulation. Otherwise, ISCR 95 

technologies are usually applied in an organic emulsion, which increases the disponibility of ZVI (Quinn et 96 

al., 2005); therefore, it also increases the abiotic dehalogenation of chloroethenes, while OHRBs are 97 

stimulated. Recent studies are proving the efficiency of combined injection of ZVI and an organic 98 

substrate. For instance, Peng et al. (2017) proved the efficiency of nZVI and biochar injection for p-99 

nitrophenol degradation under anoxic conditions. Also, Kocur et al. (2016) proved that combined injection 100 

of nZVI and carboxymethyl cellulose positively impacted remediation of chloroethenes by promoting 101 

growth of anaerobes and dechlorinating bacteria. 102 

For a better understanding of the processes affecting the fate of chloroethenes, an integrative set of 103 

chemical and biological monitoring tools is needed. For instance, there is a need to monitor the different 104 

terminal electron acceptor processes (TEAPs; Puigserver et al. (2016b)). Moreover, compound-specific 105 

stable isotope analysis (CSIA) has been applied efficiently as direct proof of the biological degradation of 106 

chlorinated solvents and to distinguish the different processes affecting the fate of these pollutants 107 

(Elsner, 2010; Hunkeler et al., 2008; Hunkeler and Aravena, 2010; Wiegert et al., 2013). CSIA is based on 108 
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the evidence that bonds formed by heavy isotopes (13C) are slightly more stable and, consequently, 109 

cleaved slower than bonds between lighter isotopes (12C). As a result, the remaining fraction of the 110 

substrate becomes isotopically enriched as a reaction proceeds.  Different molecular techniques have 111 

been used to investigate the complexity of the reductive dehalogenation processes in microbial systems. 112 

To characterize the microbial consortia in the presence of chlorinated solvents, terminal restriction 113 

fragment length polymorphism (T-RFLP) has been used efficiently in laboratory experiments (Flynn et al., 114 

2000; Mészáros et al., 2013; Révész et al., 2006) and in field studies (Lendvay et al., 2003; Macbeth et al., 115 

2004; Rahm et al., 2006; Richardson et al., 2002).  116 

The aim of this article was to define an efficient bioremediation strategy to treat a source of chloroethene 117 

in sand layers interbedded with silts (i.e. the transition zone to the basal aquitard). Therefore, a 118 

combination of biological and chemical strategies to achieve better efficiency was investigated. Four 119 

different microcosm experiments were designed under i) natural conditions, ii) biostimulation with lactic 120 

acid, iii) in situ chemical reduction (ISCR) with ZVI and under iv) a combined strategy with lactic acid and 121 

ZVI. Microcosm experiments have been successfully used to choose the most efficient remediation 122 

strategy (ITRC, 2004; Morse et al., 1998; Wiedemeier et al., 1998) and to determine how geochemical 123 

conditions would change and microbial communities would adapt (Lu et al., 2009; Puigserver et al., 2016b) 124 

The working hypothesis of this investigation was, that the main limiting factors of biological reductive 125 

dehalogenation of chloroethenes in the presence of DNAPL are toxicity and electron donor availability. 126 

 127 

2. Methods 128 

2.1. Site description and  129 

The area under study is a confined aquifer made up of Pliocene prograding alluvial fan deposits. The site 130 

is located in an industrial area in Vilafant (Alt Empordà, NE Spain), approximately 150 km to the north of 131 

Barcelona. PCE contamination was detected at the site in 1980 by the Catalan Water Agency (ACA), but it 132 

is not known when this originated. The main contaminant is PCE, which was used as a degreaser of vehicle 133 

parts at a nearby industrial plant serving the automotive industry. Puigserver et al. (2016a) located the 134 
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source of the PCE in a transition zone to a basal aquitard (lower section of the aquifer between the depths 135 

of 5.60 and 7.50 m). Although there is evidence that reductive dehalogenation is active, it has been proven 136 

that natural attenuation is not a viable strategy in the middle term and that the source should be treated 137 

(Puigserver et al., 2016a). 138 

2.2. Design of microcosm experiments 139 

Four remediation strategies were studied: natural attenuation, biostimulation with lactic acid, in situ 140 

chemical reduction (ISCR) with ZVI and a combined strategy with lactic acid and ZVI. Each experiment 141 

consisted of two live (biotic) and two abiotic (autoclaved) controls. An autoclave (Selecta Model Autester 142 

75 E DRY-PV) was used (for four periods of 30 minutes reaching a temperature of 121 °C, a pressure of 1 143 

atm, and saturated vapor conditions) to sterilize the control microcosm bottles containing 1200 mL of 144 

groundwater, 250 mL of sediment, and 50 mL of stock solution with 147 mM HgCl2 (Riedel-de Haën, CAS 145 

7487-94-7) as a bactericide, following Trevors (1996). The remaining materials were cleaned and sterilized 146 

with methanol (MeOH, Merck, ISO Pro analysis). Experiments were conducted in an anaerobic chamber 147 

(Glove-type box, Coy Laboratory Products Inc.). 148 

The sediment used in the experiments was from transition zone to a basal aquitard (borehole B-F2UB, 149 

between 6.77 and 7.46 m) made up of sand layers and interbedded silts that are rich in organic matter, 150 

Fe and Mn (foc = 0.016%, Mn = 5.7 mmol/g and Fe = 174.1 mmol/g; Puigserver et al., 2016)). Groundwater 151 

for the experiments was pumped from conventional well S3 (located 3 m from B-F2UB) and collected in 152 

Pyrex bottles (1 L). Sediment and groundwater were stored in a cold room at 4 °C in total darkness until 153 

use. Groundwater initially showed oxidizing conditions, with dissolved oxygen, NO3
- and SO4

2- 154 

concentrations of 1.55, 100 and 60 mg/L, respectively, and concentrations of Mn2+ and Fe2+ below 155 

detection (Puigserver et al., 2016a). Dissolved oxygen content was reduced to <0.1 mg/L by purging with 156 

N2 gas (as described by Chen et al. 2008) for 60 min to promote the most favorable conditions for the 157 

reductive dehalogenation of chloroethenes.  158 

Each bottle was filled with 850 g of homogenized sediment and 1100 mL of groundwater, which 159 

represents 17% for sediment and 55% for groundwater of the total volume of the bottle. No injection of 160 

exogenous microorganisms has been made. As the bottles had a capacity of 2000 mL, the remaining 28% 161 
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was the anaoxic atmosphere of the chamber (95% N2 and 5% H2). In ISCR and the combined strategy 162 

microcosm experiments, a total of 5 g of granular ZVI (Panreac Quimica, iron metal fine granulated QP 163 

99% 10-40 mesh) was added. Due to the loss of PCE during the purge of dissolved oxygen, 10 μL of of PCE 164 

(Sigma-Aldrich, reagent grade, 99.9%) was added at a final concentration of 130 mM. Bottles were sealed 165 

with Mininert® valves (SUPELCO analytical) and insulating tape. Furthermore, in the anaerobic chamber, 166 

all bottles were arranged horizontally on shelves and covered by a thick black cloth to be preserved in 167 

complete darkness until usage. 168 

Periodically, 2 mL of lactic acid (Sigma-Aldrich, 85%) was injected in the microcosm experiments of 169 

biostimulation and combined strategy. Additionally, periodically, 8 mL of stock solution 6% HgCl2 (Riedel 170 

– de Haën, 99.5%, 31005) was injected in all control experiments. 171 

Water samples from the microcosm experiments were collected to study the time evolution of 1) 172 

concentrations of the main inorganic electron acceptors (SO4
2-, NO3

- and NO2
-), acetate, chloroethenes 173 

(PCE, TCE, isomers of DCE, and VC), ethine, ethene, ethane, methane, Mn2+ and Fe2+; 2) carbon isotope 174 

values of chloroethenes; and 3) microbial communities. Sodium azide (N3Na Fluka, purum pa) was added 175 

to the microcosm water samples immediately after being collected to inhibit bacterial activity. Before 176 

analysis, vials containing water and gas samples were stored at 4 °C in total darkness. In the case of 177 

microbial analysis, a total of 20 mL of aqueous phase was taken with a sterile syringe. Then, water was 178 

filtered with a filter system (Swinnex, Millipore) and 0.2 μm filters (IsoporeTM membrane filters, 179 

Millipore). Filters were kept in sterile Eppendorf cones and stored at - 20 °C until further extraction and 180 

analysis. 181 

Characterization of microbial communities was based on only one of the duplicates of the active 182 

experiments. To assess the reproducibility of the experiments, duplicates of natural attenuation and ISCR 183 

experiments were performed. The bacterial community of time 0 (8 days from the beginning of the 184 

experiments) of the natural attenuation experiment was taken as the initial bacterial community. 185 

Subsequently, four bacterial communities were sequenced by clone library to characterize the 186 

dehalogenating bacterial community. 187 

 188 
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2.3. Chemical analysis 189 

All chemical analyses were conducted in the laboratories of Scientific-Technical Services at the University 190 

of Barcelona. Gas chromatography-mass spectrometry (GC-MS) was used to determine chloroethenes in 191 

water samples by head-space analysis. The limits of quantification of PCE, TCE, cDCE, tDCE, 1,1-DCE and 192 

VC were 2.16, 1.92, 1.68, 1.68, 1.62 and 1.31 µg/L, respectively (i.e., 0.0130, 0.0146, 0.0173, 0.0173, 193 

0.0167 and 0.0210 µmol/L). Carbon isotope analyses on chloroethenes were performed using gas 194 

chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS, Delta Plus XP model, Thermo 195 

Fisher Scientific) to determine δ13C values in the chloroethenes of the water samples. These analyses were 196 

performed in duplicate and followed a protocol that involved removal of VOCs by direct adsorption from 197 

the aqueous phase (Palau et al., 2007). Extraction of each sample was performed by inserting an 198 

adsorbent fiber (Supelco; SPME Fiber Assembly 75 µm Carboxen PDMS) into 20 mL of water stored in a 199 

glass vial (SUPELCO analytical) closed with a septum of silicone and with the water sample in continuous 200 

agitation for 30 min to adsorb the VOCs on the fiber. The standards used were PCE, TCE, and cDCE (Sigma-201 

Aldrich) determined using Elemental Analyzer Flash EA 1112 coupled to an IRMS delta C Thermo Fischer 202 

Scientific. The carbon isotope composition is reported in δ-notation (‰) relative to the Vienna Pee Dee 203 

Belemnite standard (Coplen et al., 2006). The isotope fractionation was calculated by application of the 204 

Rayleigh-eq (eq 1) where R represents the isotope ratio (R =13C/12C), C expresses the chloroethene 205 

concentration, subscripts 0 and t refer to the beginning and a later time point t of the degradation process, 206 

and ε is the enrichment factor, correlating changes in concentration to changes in isotope composition. 207 

The weighted average of the chloroethenes (CEs) isotope signature or isotope mass balance, δ13CΣ(CEs) (eq 208 

2), is used to assess if sequential reductive dehalogenation ends in chlorinated or non-chlorinated 209 

products (Aeppli et al., 2010), where χ represents the mole fraction. As a consequence of the incomplete 210 

sequential reductive dehalogenation, δ13CΣ(CEs) remains constant. On the other hand, δ13CΣ(CEs) increases 211 

beyond the source δ13C-value of PCE in the case of dehalogenation to nonchlorinated products.ln(Rt/R0) 212 

= ε × ln(Ct/C0)  (1) 213 

δ13C∑(CEs) = δ13CPCEχPCE + δ13CTCEχTCE + δ13CcDCEχcDE + δ13CtDCEχtDCE + δ13C1,1DCEχ1,1DCE + δ13CVCχVC (2) 214 
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NO3
-, NO2

- and SO4
2- were analyzed using ion chromatography (IC) following EPA protocol 9056, with a 215 

limit of quantification of 0.1 mg/L. Fe2+ and Mn2+ were analyzed using absorbance spectrophotometry 216 

(Reactive tests 14761 and 14770 for Fe2+ and Mn2+, respectively, using Spectroquant NOVA60, Merck), 217 

with a limit of quantification of 0.005 mg/L. Acetate was analyzed using HPLC (Agilent 1100) following the 218 

protocol for organic acids, with a limit of quantification of 1 mg/L. CO2 was removed by a CaCO3 trap to 219 

determine the concentrations of methane, ethane, ethene and ethine. Semiquantitative concentration of 220 

gases was determined using gas chromatography (GC). 221 

 222 

2.4. Molecular analysis 223 

Molecular analyses were conducted to verify the presence of bacterial communities in water samples and 224 

to analyze their role in the biotransformation of chloroethenes. The analyses were performed at the 225 

laboratories of Helmholtz Centre for Environmental Research–UFZ (Leipzig-Germany). Genomic DNA was 226 

extracted from filters using Kit Ultra Clean Soil DNA (MoBio) following the manufacturer’s protocol to 227 

perform terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. 228 

PCR was used to amplify part of the 16S rRNA genes from Eubacteria. The PCR mix per reaction contained 229 

10 μL de GoTaq® Green Master Mix (Promega), 0.5 μL (each) forward and reverse primers (10 μM, 230 

Promega), 1.5 μL from the template and 7.5 μL molecular-grade water (Promega, Madison, WI, USA). 231 

Eubacterial primers 27f (Lane, 1991) and 1492r (Lane, 1991) were used to amplify nearly the complete 232 

16S rRNA gene using the following scheme: 95 °C (15 min); followed by 25 cycles of 95 °C (45 s), 52 °C (45 233 

s) and 72 °C (120 s); and completed with an additional 15 min at 72 °C. If there was a positive signal, the 234 

same conditions of PCR were repeated with fluorescent primer 27FAM in order to perform T-RFLP 235 

analysis. If there was a negative sign, a second round of PCR for T-RFLP analysis employing universal primer 236 

1378r (Heuer et al., 1997) and fluorescent primer 27FAM was completed. The same master mix was used 237 

with the addition of 1 μL from the PCR product. The PCR scheme was 95 °C (15 min); followed by 30 cycles 238 

of 95 °C (45 s), 52 °C (45 s) and 72 °C (120 s); and completed with an additional 15 min at 72 °C. The PCR 239 

product was purified using purification Kit Wizard® for Genomic DNA (Promega). A total of 50 ng of 240 

purified DNA was restricted twice for each sample with three different restriction enzymes (HaeIII, HhaI 241 
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and MspI, Thermo Scientific) and their respective buffers. Dry DNA was dissolved with Hi-DiTM Formamid 242 

(Applied Biosystems) using the standard GeneScan™ 500 ROX™ and was analyzed using an ABI 3100 243 

Genetic Analyzer (Applied Biosystems) and the Genemapper 3.7 Software (Applied Biosystems). 244 

Clone libraries of four water samples were established to analyze the bacterial community. Clones of four 245 

water samples were sequenced to characterize the microbial communities responsible of reductive 246 

dehalogenation. These samples correspond to a 1) bacterial community of a natural attenuation 247 

experiment of T5 after 267 days at which time point reductive dehalogenation of PCE and TCE was 248 

detected; 2) a bacterial community of ISCR with a ZVI experiment of T5 at which time point reductive 249 

dehalogenation of PCE and TCE was detected (267 days); 3) a bacterial community of the combined 250 

strategy experiment of T1 at which time point reductive dehalogenation of PCE and TCE was detected (22 251 

days); and 4) a bacterial community of a combined strategy experiment of T5 at which time point 252 

reductive dehalogenation of cDCE and VC was detected (267 days). These four samples were chosen to 253 

distinguish the bacterial community responsible for the reductive dehalogenation of chloroethenes and 254 

to identify restriction fragments (RFs) from T-RFLP. The PCR products obtained with primers 27f and 1492r 255 

and extracted genomic DNA as previously described were ligated into the pGEM-TEasy™ vector (Promega, 256 

Madison, WI, USA) and were transformed into competent E. coli JM109 cells. Procedures of plasmid 257 

extraction, amplification, grouping into OTUs, purification, and sequencing were performed following the 258 

protocol from Imfeld et al. (2010). 259 

 260 

2.5. Molecular data treatment 261 

T-RFLP results were used to determine the microbial diversity (microbial richness). Microbial diversity was 262 

assessed with the number of RF greater than 50 bp and greater than 1% of the total area. From the three 263 

different results obtained (one for each restriction enzyme), the larger was taken as valid. The actual 264 

microbial diversity is 3 or 4 times higher than the number of RFs, according to Liu et al. (1997) and Marsh 265 

et al. (2000).  266 

The density of the microbial community (degree of development) was estimated qualitatively by checking 267 

the presence or absence of a signal in the first round of PCR with primers 27f-1492r. Therefore, bacterial 268 
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communities were characterized by a high degree of development if there was a sign in the first round 269 

and with a low degree of development if there was only a sign in the second round of PCR. 270 

Sequences from clone library analysis were compared to sequences from databases using the BLASTN 271 

search tool (http://www.ncbi.nlm.nih.gov/blast/) and mapped onto the NCBI taxonomic hierarchy using 272 

the metagenome analyzer (MEGAN) to define the most likely ancestor for each query sequence (version 273 

5.2.3; Huson et al., 2011). Sequences were virtually digested with restriction enzymes HaeIII, HhaI and 274 

MspI. When there was a 100% positive match between T-RFLP results and virtual digestion, RFs were 275 

positively identified. If there was no positive match, RFs were identified through the T-RFLP database or 276 

remained as unknown RF. 277 

3. Results and discussion 278 

3.1. Natural attenuation 279 

Biotic reductive dehalogenation processes were active from day 106, with a decrease in PCE concentration 280 

(from 130 to 66 μM) and a respective increase in TCE, cDCE and 1,1DCE concentration (Figure 1.2A) and 281 

a slight shift to more positive values of δ13CPCE (from -26.5‰ to -22.7‰) and δ13CTCE (from -31.2 ‰ to -282 

26.5 ‰) (Figure 1.3A). These reductive dehalogenation processes seem to be most efficient under sulfate-283 

reducing conditions (Figure 1.1A, from day 185). Biotic reductive dehalogenation led to a small isotopic 284 

fractionation of PCE (ε < -1‰, Table 1), similar to carbon isotope fractionation measured at the studied 285 

site (Herrero et al., n.d.) as well as to the literature (Hunkeler and Morasch, 2010). Further products of 286 

biotic reductive dehalogenation of cDCE (e.g. VC and ethene) were not detected (Figure 1.2A and Table 287 

1) and chloroethenes remained balanced (Table 1). Abiotic controls show no variation in PCE, nitrate and 288 

sulfate concentrations, absence of TCE, cDCE and other metabolites of PCE and an increase of Mn2+. 289 

Bacterial communities associated with the sulfate reduction and reductive dehalogenation of PCE and TCE 290 

are characterized by a well-developed bacterial community (291 
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292 

Figure 2.1A), a mid-to-high richness (293 
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294 

Figure 2.1A) and the predominance of the Firmicutes phylum (295 
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296 

Figure 3.A). Specifically, these bacterial communities were characterized by the presence of fermenting 297 

microorganisms of the Peptococcaceae family (298 



15 
 

299 

Figure 2.1B) (Patil et al., 2014) and bacteria related to P. propionicus (Boga et al. 2007 and Shelobolina et 300 

al. 2007), sulfate reducers D. lacus and D. adipica (Robertson et al., 2001) and Fe reducers in the 301 

Gallionellaceae family (Hallbeck and Pedersen, 1991). No OHRBs were detected; thus, it can be assumed 302 

that these microorganisms were a proportionally smaller part of the bacterial community (as described 303 

by Sercu et al., 2013), although some of the sulfate-reducing bacteria may degrade TCE and PCE, as 304 

described by Bagley and Gossett (1990), Löffler et al. (2003) and Mohn and Kennedy (1992). 305 

The biotic reductive dehalogenation process does not occur or is not significant prior to sulfate reduction 306 

because NO3
-, Mn4+ and Fe3+ compete with PCE and TCE as electron acceptors. PCE concentration 307 

decreases and TCE and cDCE concentration increases (Figure 1.2A) only when sulfate reduction is detected 308 

from day 185 (Figure 1.1A). Therefore, denitrification and Fe and Mn reduction processes are 309 
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thermodynamically more favored than the reductive dehalogenation process. During denitrification and 310 

the reduction of Fe and Mn, bacterial communities are well developed (high degree of development from 311 

day 185,312 

313 

Figure 2.1A), and several populations have been identified whose functions are unknown, with the 314 

exception of the fermenting bacteria of the Peptococcaceae family (315 
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316 

Figure 2.1B). Subsequently, a bacterial community undergoes a lag phase (a less-developed bacterial 317 

community, 318 
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319 

Figure 2.1A), with a variation in its structure and a predominance of metal-reducing Gallionellaceae and 320 

sulfate-reducing D. lacus (321 
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322 

Figure 2.1B). 323 

3.2. Biostimulation 324 

In the microcosm experiments where lactic acid was added, reduction processes such as denitrification, 325 

iron, manganese and especially sulfate reduction occurred very quickly (Figure 1.1B). The evolution of 326 

methane (Table 1) as well as acetate confirmed methanogenic and acetogenic conditions, respectively. 327 

In comparison to the natural attenuation set-up the reductive dehalogenation of PCE and TCE started 328 

already at day 22 with a rapid reduction in the concentration of dissolved PCE (from 130 μmol/L to values 329 

of 1 μmol/L), transitory formation of TCE that reaches values of 4 μmol/L and a final formation of cDCE of 330 

130 μmol/L, which was not further degraded. Isotopic fractionation were observed for PCE, TCE and cDCE 331 
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(Figure 1.3B), with an enrichment factor of PCE of -2.0‰ ± 0.3 (Table 1),, which is in the range of carbon 332 

isotope enrichment factors previously published (Hunkeler and Morasch, 2010). Both TCE and cDCE 333 

started with a lighter isotopic composition than the initial value of δ13CPCE followed by a shift towards 334 

more positive values in which the 13CcDCE-value reached the initial value of δ13CPCE confirming the 335 

inhibition in cDCE-degradation (Figure 1.3B and chloroethenes isotopically balanced, Table 1). Due to the 336 

absence of reductive dehalogenation of cDCE, VC, ethane, ethene and ethine were absent (Figure 1.2A 337 

and Table 1).  338 

Abiotic controls of biostimulation experiments, show the same results as natural attenuation 339 

experiments, with no variation in PCE, nitrate and sulfate concentrations, absence of metabolites of PCE 340 

and an increase of Mn2+. 341 
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A dehalogenating bacterial community was characterized by a high degree of development (342 

343 

Figure 2.2A), low microbiological richness (344 



22 
 

345 

Figure 2.2A) and the dominance of bacteria related to Desulfovibrio putealis (346 
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347 

Figure 2.2B). D. putealis is a sulfate reducer tolerant of high concentrations of PCE and a producer of H2 348 

from the oxidation of lactic acid (preferred substrate for these microorganisms, Heidelberg et al. (2004)). 349 

This microorganism acts as facultative OHRB (Löffler et al., 2003). This finding is consistent with 1) a low 350 

proportion of fermenting microorganisms (Bacteroidetes and P. propionicus, Figure 4) as D. putealis is able 351 

to use lactic acid as a carbon source and 2) a low presence of OHRB because at the same time, these 352 

bacteria could use PCE and TCE as electron acceptors.  353 

The final concentration of cDCE was equivalent to the initial PCE concentration, and therefore there is no 354 

evidence for degradation beyond cDCE. During this period, a bacterial community can have a high degree 355 

of development and low richness (356 
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357 

Figure 2.2A) due to the prevalence of fermenting bacteria related to P. propionicus (358 
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359 

Figure 2.2B) (Boga et al., 2007; Shelobolina et al., 2007). This phenomenon can be explained either by a 360 

potential inhibition of Dehalococcoides spp.  due to the toxicity of high concentrations of cDCE or due to 361 

the absence of Dehalococcoides spp. capable of dehalogenating cDCE and VC ISCR under natural 362 

attenuation conditions 363 

3.3. ISCR under natural attenuation conditions 364 

There were two different dehalogenation processes occurring in this set-up: chemical reduction of PCE 365 

conducted by ZVI and biotic reductive dehalogenation of PCE and TCE. The reductive dehalogenation of 366 

PCE in this set-up (Fig. 1.2C), was more pronounced than natural attenuation set-up (Fig. 1.2A) and less 367 

pronounced than biostimulation set-up (Fig. 1.2B). This was confirmed by the comparison of biotic and 368 

abiotic controls, in which the biotic controls reveal a higher removal of PCE (83%), than the control 369 
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experiments (48%), in which only the abiotic reduction of PCE was present. In addition, the higher 370 

percentage of degradation in the active experiments is not only because of biotic reductive 371 

dehalogenation but also because of the presence of TEAP (e.g., denitrification and Mn, Fe and sulfate 372 

reduction, Figure 1.1C) that allow ZVI to react preferably with chloroethene.  373 

Biotic reductive dehalogenation of PCE is continuous during the experiment (Figure 1.2C) with a significant 374 

increase in TCE and cDCE (Figure 1.2C). In addition, in control experiments, there is a progressive decline 375 

in PCE, with an increase in TCE concentrations up to 10 μmol/L and the presence of tDCE (data not shown). 376 

In the active experiments, the production of methane, ethane and ethene occurred (Table 1). Otherwise, 377 

ethene and methane were not detected in control experiments, instead, there was production of ethine 378 

(Table 1). Active experiments showed a similar enrichment factor (ε value of -3.6‰ ± 0.7) to control 379 

experiments (ε value of -3.2‰ ± 0.5, Table 1). Moreover, δ13C∑(CEs) (Table 1) supported that the production 380 

of non-chlorinated products was higher in active experiments than in control experiments.  381 

The evolution of bacterial communities showed, in a similar way to the natural attenuation experiments 382 

(s. 3.1), two periods of high bacterial activity, separated by a lag phase (383 
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384 

Figure 2.3A). The first period is characterized by high microbial activity, denitrification and Fe and Mn 385 

reduction (Figure 1.1C) and a co-dominance and/or alternate dominance of Methylobacillus sp., β-386 

Proteobacteria (387 
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388 

Figure 2.3B). The second period with high bacterial activity is characterized by biotic reductive 389 

dehalogenation of PCE and TCE (Figure 1.2C), potentially acetogenic and methanogenic metabolism 390 

(Figure 1.1C and Table 1), as well as the dominance of D. lacus.  391 

The bacterial community present during sulfate reduction and reductive dehalogenation of PCE and TCE 392 

has, similar to that of the natural attenuation experiment (s. 3.1), 1) a high degree of development; 2) an 393 

increase in richness; 3) a dominance of Firmicutes phylum (394 
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395 

Figure 3.A); and 4) the presence of D. lacus, Peptococcaceae and Gallionellaceae (Figure 4), which have a 396 

fermenting, sulfate-reducing and metal-reducing metabolism, respectively (Hallbeck and Pedersen, 1991; 397 
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Patil et al., 2014; Tischer et al., 2013). In addition, both set-ups have an unidentified strain related to 398 

Methylobacillus sp., which, despite being described as a strict aerobic species (Yordy and Weaver, 1977), 399 

must have at least facultative metabolism and an important role as it remained until the end of both 400 

experiments. 401 
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There is a greater diversity of phyla in ISCR experiments (402 

403 

Figure 3.A) than natural attenuation experiments, caused by the presence of ZVI and higher degradation 404 
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of chloroethenes. This suggests that Acidobacteria and Chlorobi (Figure 4) are favored by the oxidation of 405 

ZVI. In addition, there is the presence of Desulfitobacterium (Figure 4) as a potential reductive 406 

dehalogenator of PCE and TCE (Rouzeau-Szynalski et al., 2011). 407 

3.4. ISCR with biostimulation conditions 408 

Similar to the biostimulation experiments (s. 3.2), redox conditions pass quickly to acetogenic and 409 

methanogenic (at day 22, concentration of NO3
- and SO4

2- was practically zero, the concentration of Mn2+ 410 

and Fe2+ was already high and the concentration of acetate was near 1200 mg/L, Figure 1.1D) in the 411 

ISCR/biostimulation set-up. Therefore, these conditions promote the reductive dehalogenation of PCE to 412 

TCE, and later to cDCE and 1,1DCE, to be fast in comparison to the other set-ups (Figure 1.2D). However, 413 

unlike the biostimulation experiments (s.3.2), there is further transformation to non-chlorinated 414 

products, higher in biotic conditions (δ13C∑(CEs) = - 21.3 ‰ ± 0.6) than in abiotic conditions (δ13C∑(CEs) = - 415 

24.4 ‰ ± 0.7). The shift in the isotopic composition of PCE (εPCE value of -2.5‰ ± 0.5, Table 1) is in between 416 

the εPCE of biostimulation and ISCR experiments. Therefore, dehalogenation processes affecting PCE are 417 

potentially a mixture of the processes occurring in Biostimulation and ISCR set-ups.  418 

The bacterial community responsible for the reductive dehalogenation of PCE and TCE is characterized by  419 

low richness and a high degree of development (420 
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421 

Figure 2.4A), and Proteobacteria was a predominant phylum (422 
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423 

Figure 3.C). This bacterial community has a predominance of sulfate-reducing bacteria related to 424 

Desulfovibrio putealis (Figure 4) and the presence of several microorganisms, among them, metal and 425 
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sulfate reducer (and potential OHRB) Geobacter spp., fermenting bacteria Propionicimonas paludicola, 426 

Pelosinus propionicus and uncultured Bacteroidetes (Figure 4). This microbial community shares the same 427 

characteristics as the dehalogenating bacterial community of PCE and TCE described in section 3.2. 428 

Once the major fraction of chloroethenes is cDCE (Figure 1.2D), abiotic dehalogenation and biotic 429 

reductive dehalogenation of cDCE and VC simultaneously occur and are not differentiable. Nevertheless, 430 

and similar to the ISCR experiments with ZVI (s.3.3), there is a presence of ethene, ethane and methane 431 

in the active experiments (Table 1), while in the control experiments, ethine and methane are present 432 

(Table 1). During dehalogenation of cDCE, the bacterial community evolves, similar to the biostimulation 433 

experiments (s. 3.2), to a fermenting bacterial community formed exclusively by the Firmicutes phylum (434 
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435 

Figure 3.D) and dominated by bacteria related to P. propionicus (436 
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437 

Figure 2.4B and Figure 4), but it has a lower degree of development (438 
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439 

Figure 2.2A and 4A) and a lower prevalence of this microorganism (440 
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441 

Figure 2.2B and 4B). This can be related to the fact that lactic acid is consumed more quickly during these 442 

experiments than that of the biostimulation experiments, and therefore, there is an exhaustion of lactic 443 

acid and a displacement of fermenting microorganisms. Moreover, there is the presence of the sulfite 444 

reducer and potential OHRB Desulfitobacterium sp. (Figure 4). 445 

The presence of ZVI has a positive and differential effect on the stimulation of the dehalogenating 446 

bacterial community. For example, the presence of D. lacus (447 
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448 

Figure 2.4B) highlights that the presence of ZVI modify the bacterial community, and these 449 

microorganisms perform a fermentative metabolism due to the absence of sulfate. However, lactic acid 450 

is the most important conditioning factor according to the degree of similarity between the bacterial 451 

communities of the biostimulation and combined strategy experiments. The results demonstrate that 452 

combined strategy of adding ZVI and lactic acid is the most efficient, as there is a fast reductive 453 

dehalogenation of PCE and TCE and substantial decrease in cDCE and increase of VC and ethene in 454 

comparison to the other set-ups. Limiting factors on dehalogenation processes 455 

The main factors limiting reductive dehalogenation that have been characterized are competition on 456 

electron donors, lack of bioavailable electron donors, toxicity and displacement of a potentially 457 

dehalogenating bacterial community by a fermenting bacterial community. 458 
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The OHRBs characterized in natural attenuation and biostimulation experiments act under sulfate-459 

reducing conditions; although the processes of denitrification and Fe and Mn reduction are energetically 460 

more favorable than reductive dehalogenation and sulfate reduction, as has been seen in other site 461 

studies, such as those of Bouwer (1994), Bradley (2003) and Bradley & Chapelle (1996). Although this 462 

statement is generally true, if the amount of electron acceptors is small, the available energy will 463 

decrease. 464 

Another limiting factor is the lack of organic substrate. This limitation means that denitrification; Mn, Fe 465 

and sulfate reduction; and PCE reductive dehalogenation are slower and start later in the natural 466 

attenuation experiments than in the biostimulation experiments. 467 

Injection of lactic acid in biostimulation experiments resulted in substantial dehalogenation of PCE/TCE 468 

but with an accumulation of cDCE and a bacterial community with exclusive acetogenic and fermenting 469 

metabolism (s. 1.1.2). This is a common problem for dehalogenating bacterial communities (Maymó-470 

Gatell et al., 1997; Sung et al., 2003; Yoshida et al., 2007). The absence of reductive dehalogenation of 471 

cDCE may be either to toxicity of high concentration of cDCE, although it is possible that there is strong 472 

competition between acetogenic microorganisms and OHRBs for the use of H2 or the absence of cDCE-473 

degraders, e.g. Dehalococcoides spp.. 474 

One possible limiting factor that occurs in many dehalogenating bacterial communities is the absence of 475 

OHRBs capable of the complete dehalogenation of PCE to non-chlorinated products (Dowideit et al., 476 

2010). This seems not to be the case here because Dehalococcoides and complete reductive 477 

dehalogenation (based on the presence of VC) have been detected in the pollutant source of the study 478 

area (Puigserver et al., 2016a). 479 

 480 

4. Conclusions 481 

Natural attenuation is not an efficient strategy. In the presented study, microcosm experiments showed 482 

that the main limiting factors are the lack of electron donors and toxicity of PCE in the source area. 483 

However, OHRBs capable of complete dehalogenating PCE seems to be present. 484 
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D. putealis is an OHRB capable of reductively dehalogenating PCE and TCE in high concentrations when 485 

electron donors are supplied to the environment. However, no OHRB have been detected capable of 486 

dehalogenate cDCE. Therefore, there is a need to use a second strategy to reduce the total amount of 487 

chloroethene. Under stable reductive conditions, there was an increase in the proportion of fermenting 488 

bacteria, and it was higher in the experiments in which lactic acid was injected. These fermenting bacteria 489 

have a key role in supporting reductive dehalogenation. ZVI is a reducing reagent that effectively reduces 490 

all chloroethenes. Biotic and abiotic reductive dehalogenation processes were coupled, producing TCE, 491 

cDCE, ethene, ethane and methane. The addition of ZVI demonstrated that, under a lower total amount 492 

of chloroethenes, OHRBs can dehalogenate reductively all chloroethenes more efficiently. This finding is 493 

in line with evidence of dehalogenation in the source area, where, in areas with lower concentrations due 494 

to heterogeneities, OHRBs can degrade cDCE and VC. However, this approach is not optimal, due to the 495 

difficulty to monitor products of abiotic dehalogenation, the potential inhibition of microbial communities 496 

by ZVI and the complexity to deliver ZVI in aquifers. 497 

A combined strategy of biostimulation with lactic acid and ISCR with ZVI is proposed to be the most 498 

efficient strategy to completely remediate the source area. In this strategy, D. putealis rapidly 499 

dehalogenates PCE and TCE to cDCE, and ZVI slowly reduces the total amount of chloroethenes, reducing 500 

the toxicity and allowing other OHRBs to dehalogenate the rest of chloroethenes. Additionally, the 501 

injection of lactic acid promotes the reach of methanogenic conditions and the addition of lower amount 502 

of ZVI does not inhibit microbial communities. 503 
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Figure 1: Shifts of concentration of NO3
-, NO2

-, Mn2+, Fe2+, SO4
2-, acetate (1) and chloroethenes (2) and isotopic 758 

composition (in 13C) of chloroethenes (3) during incubation of the four microcosm experiments of natural 759 
attenuation (A), biostimulation with lactic acid (B), ISCR with ZVI (C) and combined strategy (D) for 267 days. Error 760 
bars represent standard deviation of replicate microcosms.  761 

 762 

763 
Table 1: Synthesis of evidence related to dehalogenation processes. +: presence. -: absence. Initial δ13C∑(CEs) is -26.2 764 
‰. δ13C∑(CEs) of time 265 days given as average ± standard deviation of two experiments. ε given with ± Interval of 765 
confidence of 95%. 766 

 767 
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768 
Figure 2: Evolution of the degree of development and richness of the microbial communities (A) and evolution of the 769 
different microbial populations detected using T-RFLP and identified with clone library (B) for experiments of 770 
microcosm of natural attenuation (1), biostimulation (2), ISCR with ZVI (3) and combined strategy (4). 771 

 772 
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773 
Figure 3: Phyla fraction for each of the sequenced samples. A: sample from natural attenuation experiment at 267 774 
days (T5). B: sample from ISCR experiment at 267 days (T5). C: sample from combined strategy experiment at 22 days 775 
(T1). D: sample from combined strategy experiment at 267 days (T5). 776 

 777 
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778 
Figure 4: Phylogenetic tree of the sequenced samples. Percentage refers to the similitude degree with database 779 
sequences. NA-T5 (A): sample from natural attenuation experiment at 267 days (T5). ISCR-T5 (B): sample from ISCR 780 
experiment at 267 days (T5). B&ISCR-T1 (C): sample from combined strategy experiment at 22 days (T1). B&ISCR-T5 781 
(D): sample from combined strategy experiment at 267 days (T5). 782 
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