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ORIGINALITY-SIGNIFICANCE STATEMENT 

 

A major challenge in microbial ecology is to identify its functional members 

and understand how their functional and phylogenetic dynamics ultimately 

influence human physiology and health. Critically important are the initial stages of 

microbiota colonization and maturation in the gut because early dysbiosis has been 

shown to affect human health later in life. Though a high number of papers have 

described community membership in gut microbiota, few studies have attempted to 

provide insight into the dynamics of functional and metabolic processes associated to 

gut microbial evolution and maturation. In this study, we reasoned that a  

metaproteome analysis would provide biological information on the relative 

importance of gut microbial taxa in ecosystem functioning, their collective functional 

pattern and the network topology in relation to host physiology during human early 

life.  

 

The new findings are the following: 

 

First, we assessed the metaproteomes of 56 infants from 6- and 18-months of age, 

where the transition from weaning to solid food consumption occurs, to obtain an 

extensive catalogue of 9,173 bacterial proteins groups compressed into 1,117 COG 

functions that were assigned to 134 genera. Bifidobacterium was the genus to which 

the highest number of distinct protein groups were assigned. 

Second, we observed a high number of significant differences between 16S rRNA 

gene sequences (community membership) and origin of peptides (biologically active 

members) at all taxa levels. 
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Third, age had a major impact on early gut microbiota assembly and function. 

Fourth, the functional community was more similar among individuals than the total 

community. 

Fifth, the early gut microbiota acquired a significant capacity to transport bicarbonate, 

ion metals, amino acids and inorganic oxides. 

Sixth, our results underscore the role of host and dietary glycan degradation, central 

carbon metabolism and short chain fatty acid fermentation in the progression to a 

mature profile in the gut microbiota, providing insights into the metabolic strategies of 

gut microbiota taxa. 

Seventh, our results show that the maturation of the gut microbiota is a non-random 

process where two mutually exclusive modules of functional families, built around 

Bifidobacteriaceae and Lachnospiraceae respectively, metabolically succeeded each 

other. 

Our results contribute to this field because there is a need to understand the 

functional maturation of the gut microbiota which may constitute an important 

research tool for indicators of future healthy or diseases states and for the design of 

microbiota-targeted health-promoting strategies early in life. 
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SUMMARY 

The evolutional trajectory of gut microbial colonization from birth has been 

shown to prime for health later in life. Here, we combined cultivation-independent 

16S rRNA gene sequencing and metaproteomics to investigate the functional 

maturation of gut microbiota in faecal samples from full-term healthy infants 

collected at 6 and 18 months of age. Phylogenetic analysis of the metaproteomes 

showed that Bifidobacterium provided the highest number of distinct protein groups. 

Considerable divergences between taxa abundance and protein phylogeny were 

observed at all taxonomic ranks. Age had a profound effect on early microbiota where 

compositional and functional diversity of less dissimilar communities increased with 

time. Comparisons of the relative abundances of proteins revealed the transition of 

taxon-associated saccharolytic and fermentation strategies from milk and mucin-

derived monosaccharide catabolism feeding acetate/propanoate synthesis to complex 

food-derived hexoses fuelling butanoate production. Furthermore, co-occurrence 

network analysis uncovered two anti-correlated modules of functional taxa. A low-

connected Bifidobacteriaceae-centred guild of facultative anaerobes was succeeded 

by a rich club of obligate anaerobes densely interconnected around Lachnospiraceae, 

underpinning their pivotal roles in microbial ecosystem assemblies. Our findings 

establish a framework to visualize whole microbial community metabolism and 

ecosystem succession dynamics, proposing opportunities for microbiota-targeted 

health-promoting strategies early in life.   
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INTRODUCTION 

 The human gut is a bioreactor with a microbiota that consists of hundreds or 

thousands of bacterial species-level taxa, dominated by the phyla Firmicutes and 

Bacteroidetes with the less abundant phyla Proteobacteria, Actinobacteria and 

Verrumicrobia (Harmsen and de Goffau, 2016). The composition of the gut 

microbiota is influenced by genetic and environmental factors starting early in life 

(Charbonneau et al., 2016; Milani et al., 2017). Considerable efforts have focused on 

cataloguing the composition of the infants’ gut microbiota (Palmer et al., 2007; Qin et 

al., 2010; Gosalbes et al., 2011; Koenig et al., 2011; Franzosa et al., 2014; Valles et 

al., 2014; Backhed et al., 2015; Asnicar et al., 2017; Cerdó et al., 2017) because the 

evolutional trajectory of gut microbiota from birth has been shown to prime for health 

later in life (Cryan and Dinan, 2012; Cox et al., 2014; Cerdó et al., 2016; Tamburini et 

al., 2016). These studies have shown that the initial microbiota evolves over time, 

increasing diversity and adapting to the anaerobic environment and nutrient 

availability. 

 However, current knowledge on infants’ gut microbiota has been almost 

exclusively obtained from 16S rRNA gene sequencing, metagenomics and 

metatranscriptomics analyses. A major limitation of these DNA-based studies is that 

they infer potential functions, providing limited insight into the metabolic landscape 

and dynamic interplay of the gut microbiota. Because protein abundance is a 

reflection of specific microbial activities in a given ecosystem, metaproteomics 

exploits the power of high performance mass spectrometry (MS) to simultaneously 

address composition and function in microbial communities (Hettich et al., 2013). So 

far, three intestinal metaproteomics studies on preterm neonates and one on term 

infants have been carried out (Klaassens et al., 2007; Brooks et al., 2015; Young et al., 
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2015; Zwittink et al., 2017), leaving the dynamics of microbial functional maturation 

during early life largely unexplored. Here, we combined cultivation-independent 16S 

rRNA gene sequencing and metaproteomics to investigate the functional 

differentiation of gut microbiota in faecal samples from full-term healthy infants 

collected at 6 and 18 months of age. We used the metaproteomics data in a systematic 

comparative strategy to provide direct evidence of active microbial taxa, functional 

signatures and topological architecture of gut microbial interactions characteristic to 

each chronological state.   
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RESULTS AND DISCUSSION 

Considering the metaproteome analysis as indicators of current metabolic 

activity and physiological adaptation provides microbial ecologists with a robust 

framework, facilitating a closer understanding of the complex dynamics that drive 

ecosystem functional and compositional responses to environmental pressures (Hettich 

et al., 2013). Our hypothesis is that the metaproteome provides insight about the 

relative importance of its members in ecosystem functioning, their collective 

functional pattern and the network topology in relation to host physiology. Our goal 

was to address those questions during early human life. 

Taxonomic profiling of gut microbiota and their proteins 

We collected faecal samples from healthy infants of 6- and 18-months of age 

(Supporting information Table S1) to characterize the gut microbial composition by 

16S rRNA gene sequencing and the expressed proteins by shotgun metaproteomics. 

The phylogenetic composition and categorical breakdown of identified OTUs and 

proteins in our samples are presented in the supporting material (Supporting 

information Table S2). After quality filtering, 7,890,853 read sequences rendered a gut 

microbial profile consisting of 679 species-level bacterial operational taxonomic units 

(OTUs) that narrowed to 89 distinct genera belonging to 40 families after high 

confidence phylogenetic annotation (Fig 1A). In total, 11,901 peptides were identified, 

of which 9,173 bacterial protein groups were assigned and unambiguously quantified. 

These protein groups were assigned to 134 genera belonging to 61 families (Fig 1A). 

This is the highest number of distinct proteins groups identified in human gut 

metaproteomics studies published so far, but indicate the high variability thorough the 

investigated cohorts. Moreover, taxonomic analysis of metaproteomics data showed 

that protein coverage and abundances within each phylum were highly diverse 
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(Supporting information Fig. S1). In Actinobacteria, Bifidobacterium accounted for 

most protein group abundances. Notably, the greatest number of distinct protein 

groups annotated to a genus belonged to Bifidobacterium, which emphasizes its 

functional significance in the gut during early life (Charbonneau et al., 2016). 

Akkermansia within Verrucomicrobia accounted for 2.7% of total protein groups. 

Parabacteroides, Prevotella and Alistipes had the highest number of protein groups in 

Bacteroidetes. We were able to identify protein groups across sixty-six different 

genera in Firmicutes and forty-five genera in Proteobacteria. Bins of groups that 

represented more than 50% of proteins in Firmicutes were assigned to 

Faecalibacterium, Ruminococcus, Veillonella, Roseburia and Eubacterium. In 

Proteobacteria, Pseudomonas, Parasuterella, Haemophilus, Bilophila, Escherichia, 

and Desulfovibrio were the highest contributors to protein group abundances. Our 

results are in agreement and further extend previous reports on the phylogenetic 

diversity of microbial proteins within the human gut (Klaassens et al., 2007; 

Verberkmoes et al., 2009; Rooijers et al., 2011; Kolmeder et al., 2012; Ferrer et al., 

2013; Perez-Cobas et al., 2013; Juste et al., 2014; Brooks et al., 2015; Kolmeder et al., 

2016; Tanca et al., 2017; Zwittink et al., 2017). 

Comparison of metaproteomics and compositional data derived from 16S rRNA 

analysis 

Kolmeder In human gut microbial ecology, a major challenge is to identify its 

active members whose response to environmental factors or disease-induced dysbiosis 

ultimately influence host homeostasis (Mao and Franke, 2015). Conventional DNA-

based approaches inform about gene content and metabolic potential but do not 

inform about biological activity since all microbial DNA will be sequenced 

(Cangelosi and Meschke, 2014). Metaproteomics offers large-scale functional and 
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phylogenetic profiling of expressed proteins and, thus, a feasible approximation to 

characterize biological activity within microbial ecosystems (Hettich et al., 2013). To 

estimate the biological activity of the members of the gut microbial community, we 

compared the log ratio of abundances between organism-origin of protein groups and 

16S rRNA gene abundances. Though previous studies reported good correlations 

between 16S rRNA gene abundances and microbial source of protein groups (Rooijers 

et al., 2011; Kolmeder et al., 2016), our analysis yielded a high number of deviations 

even at upper taxonomic ranks (Fig. 1B), suggesting discordance between microbial 

membership and biological activity. The deviations were in a many cases of an order-

of-magnitude (highly significant absolute fold change >10) either lower or higher than 

expected from 16S rRNA gene abundances of their corresponding taxa (Supporting 

Information Table S3). The most significant deviation was the high relative 

proportion of protein groups identified for Verrucomicrobia versus its null detection 

by 16S rRNA gene sequencing. Actinobacteria showed a very high log ratio with 

Bifidobacterium accounting for high protein abundance, suggesting a high activity of 

this taxon in early life microbiota. Despite Bacteroides was the most abundant genus, 

most protein groups were assigned to Parabacteroides, Prevotella and Alistipes. 

Significant differences in the ratios for Lachnospiraceae and Ruminococcaceae in 

Firmicutes were also observed. The strongest negative ratios were observed in 

Streptococcus, Veillonella, Enterococcus and Blautia whereas the positive ratios 

observed for Faecalibacterium, Flavonifractor and Oscillibater suggested high 

biological activity. Thus, our metaproteomics data revealed that the gut microbiota 

harbours a distinctive subset of biologically active microorganisms as consistently 

shown in other reports (McNulty et al., 2011; Ferrer et al., 2013; Maurice et al., 2013; 

Maurice and Turnbaugh, 2013; Perez-Cobas et al., 2013). While we cannot exclude 
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analytical biases in DNA and protein extraction methods, these discordances suggest 

that using bacterial taxa as input information to build predictive theoretical models of 

microbial activity and contribution to community functioning in human gut microbial 

ecosystems may be highly misleading. 

Temporal patterns of qualitative diversity in the gut microbiota 

We initially calculated the proportion of variance (coefficient of 

determination, R
2
) in microbiota composition and function that was explained by 

study variables and individuals (Supporting information Table S4A-B). In microbiota 

composition, age and individuality explained 7% and 11% of the total variation in 

agreement with previous reports (Zoetendal et al., 2011; Goodrich et al., 2014; 

Salonen et al., 2014; Backhed et al., 2015; Falony et al., 2016). Mode of delivery or 

pre-pregnancy mother’s body mass index did not influence microbial composition in 

our dataset. Age was the single significant variable explaining a relevant proportion 

(13.5%) of total variation in microbiota function. The unprecedented impact of age 

upon microbiota function is remarkable, given the high variation assigned to 

individuality and/or mode of delivery consistently reported in compositional studies 

of gut microbiota. β-diversity metrics of total (phylogeny of OTUs) and functional 

(phylogeny of proteins) gut microbial communities confirmed that samples clustered 

by age (Fig. 2A-C). We observed increased -diversity but reduced -diversity as a 

function of time, suggesting that both total and functional communities accumulated 

diversity into less heterogeneous structures (Fig. 2D). Despite taxonomic divergence, 

Bray-Curtis dissimilarity metrics showed that the functional community was 

increasingly more conserved among infants than the total community (Fig. 2E). This 

result is in line with the hypothesis suggesting that gut microbiota is assembled 

around a between-subject more conserved consortium of biologically active 
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microorganisms (Turnbaugh et al., 2009; Burke et al., 2011; Consortium, 2012; 

Franzosa et al., 2014; Moya and Ferrer, 2016; Ruiz et al., 2017). We used LEfSe, a 

tool for metagenomic biomarker discovery (Segata et al., 2011) to further explore age-

associated shifts in total and functional gut microbiota.  Many taxa at multiple 

phylogenetic depths were found at significantly different relative abundances between 

time points (Fig. 2F-G and Supporting information Table S5). Firmicutes dominated 

the total community and its functional subset that enriched in Bacteroidetes and 

Firmicutes and depleted in Proteobacteria and Actinobacteria with time. In total gut 

microbiota, signature highly abundant genera (>1% mean relative abundance) at 6-

months were Enterococcus, Lactobacillus, Erysipelotrichaceae_Incertae_Sedis, 

unclassified_Veillonellaceae and unclassified_Enterobacteriaceae while the 18-

month’s total gut microbiota was significantly enriched in obligate anaerobes from the 

genera Bacteroides, Anaerostipes, Blautia, Fusicatenibacter, 

Lachnospiraceae_incertae_sedis, Roseburia, Ruminococcus2, Faecalibacterium and 

unclassified_Clostridiales. The functional gut microbiota was characterized by few 

signature genera due to the high inter-individual variability. In 6-month’s functional 

gut microbiota, signature highly abundant genera were Bifidobacterium and 

Veillonella while Eubacterium and Faecalibacterium were enriched at 18 months. In 

agreement with previous studies (Koenig et al., 2011; Valles et al., 2014; Backhed et 

al., 2015), our findings reflected the shift of gut microbiota towards an adult-like 

structure and composition as infants grew, possibly associated to physiological fitness 

to persist in increasingly lower oxygen levels. 
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Enrichment analysis identifies age-specific functional signatures in the gut 

microbiota  

To determine how the functional capacity of the gut microbiota developed 

during early life, we analysed the metaproteome using Clusters of Orthologous 

Groups (COG) categories, hierarchically organized in 3 tiers where each tier is 

increasingly a more specific functional assignment (main, secondary and function 

categories). Due to the functional redundancy of orthologous proteins in our 

metaproteomics dataset, 9,173 protein groups narrowed to 1,117 COG functions 

(Supporting information Table S6). The mean number of protein groups per sample 

was 895±49. Overall distribution exhibited a rather even pattern across the samples 

where the most abundant secondary COGs belonged to ‘Metabolism’ category: 

‘Carbohydrate Transport and Metabolism’, ‘Amino Acid Transport and Metabolism’, 

‘Energy Production and Conversion’ and ‘Inorganic Ion Transport and Metabolism’ 

(Fig. 3A). This result is consistent with previous reports on the functional profile of 

protein groups expressed by gut microbiota (Verberkmoes et al., 2009; Rooijers et al., 

2011; Ferrer et al., 2013; Perez-Cobas et al., 2013; Kolmeder et al., 2016). A group of 

30 COG functions were identified in the gut microbiota of 90% of the subjects and 

may represent a functional core of biological processes (Supporting Information Table 

S6). Interestingly, seven of these core functions were enzymes also identified in adults 

(Verberkmoes et al., 2009; Kolmeder et al., 2012) suggesting a high stability of these 

proteins across human metaproteomes. These enzymes were glutamine synthetase and 

glutamate dehydrogenase in ‘Amino acid transport and metabolism’, and enolase, 

glyceraldehyde-3-phosphate dehydrogenase and fucose, glucuronate and xylose 

isomerases in ‘Carbohydrate Transport and Metabolism’. 
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To look for significantly over- and under-represented COG functions in the 

gut metaproteomes of 6- and 18-months old infants, a comparative analysis was 

performed. The mean number of COG functions per sample was significantly higher 

in the 18-months metaproteome (1118±94) than in the 6 months one (767±59), 

indicating enrichment in microbial functionalities with age (p<0.01). Principal 

component analysis based on COG functions plot revealed a clear segregation 

between the two time points, with 40.6% of variance explained by the first component 

(Fig. 3B). These results indicated that functional complexity increased with time to 

create more similar inter-individual functional communities. 

Metaproteomics analyses revealed significant differences between the sampled 

time points (Fig. 3C and Supporting Information Table S7). In the 6 months’ gut 

microbiota, we observed over-representation of COGs classified into the main COG 

category ‘Cellular processes and signalling’, distributed within ‘Cell wall membrane 

envelope biogenesis”, “Cell motility”, “Intracellular Trafficking Secretion and 

Vesicular Transport” and “Signal transduction mechanisms”. The 18-month 

metaproteome was enriched in COGs classified into the main COG category 

‘Metabolism’, distributed within ‘Lipid transport and metabolism” and “Nucleotide 

transport and metabolism”. The most significant COG functions within ‘Cell wall 

membrane envelope biogenesis” were a protein translocase and a S-

ribosylhomocysteine lyase mostly assigned to Bifidobacterium, involved in the 

control of gut colonization and protection against pathogens during early life 

(Christiaen et al., 2014). Significant abundances of an outer membrane adhesion 

protein involved in -lactam resistance, an attachment invasion locus protein and a 

lipopolysaccharide transport and assembly protein binned to Enterobacteriaceae, and 

an autotransporter adhesin assigned to Veillonellaceae were observed. In addition, we 
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identified significant abundances of a Dps/Dpr ferritin-like protein involved in iron 

incorporation and six ABC-type transporters for bicarbonate, ion metals (nickel), 

amino acids (arginine, lysine, histidine and glutamine), dipeptides (cationic peptide) 

and inorganic oxides (phosphate, molybdate and tungstate) (Supporting Information 

Fig S2). According to its central role, these transporters were assigned to multiple taxa 

within Actinobacteria (Bifidobacteriaceae), Firmicutes (mostly Ruminococcaceae), 

and Proteobacteria (mostly Enterobacteriaceae). In contrast, only two COG functions 

involved in transport were enriched in the 18-months’ microbiota, an oligopeptide 

ABC transporter binding lipoprotein binned to Bifidobacteriaceae and 

Ruminococcaceae, and a C4-dicarboxylate-transport protein assigned to 

Ruminococcaceae. The identification of proteins involved in cellular transport is 

consistent with the observations of previous metaproteomes (Kolmeder et al., 2012). 

Different taxa within Clostridia were responsible for the abundance of lysozyme and 

carbon starvation protein A involved in cell defence, motility and agglutination. 

Taken together, this pattern of COG functions suggested that surface and signalling 

proteins of the gut microbiota were highly abundant at early stages since they regulate 

gut colonization and interaction with host cells. 

Metabolic signatures differentiate chronological states of infants’ gut microbiota  

An interesting finding was that 32 COG functions within “Metabolism” with 

relevant roles in polysaccharide catabolism, central carbon metabolism and 

fermentation were differentially abundant between 6- and 18-months gut microbiota. 

To facilitate the understanding of these differences, we manually parsed and 

illustrated these functions into a hierarchically clustered heatmap and a 

comprehensive model of carbon metabolism (Fig. 4). The phylogenetic assignment of 

the functions at phylum level is provided (Supporting information Table S7). 
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(I) Polysaccharide catabolism: In an initial step, primary fermenters provide 

the cocktail of glycoside hydrolases (GH) or glycosidases to breakdown host glycans 

and dietary polysaccharides. Several metagenomic studies have determined the 

diversity of GH encoding genes in the infant and adult gut microbiota that ranged 

from fourteen to twenty-five GH families according to the carbohydrate-active 

enzymes database (CAZy) (Cantarel et al., 2009; Tasse et al., 2010; Cecchini et al., 

2013; El Kaoutari et al., 2013; Backhed et al., 2015). We detected abundances of 24 

GH COGs that belong to 20 GH families. To the best of our knowledge, 

metaproteomics results on the GH repertoire of gut microbiota have not been reported 

in such detail. The most abundant GH COG was -galactosidase/-glucuronidase, 

consistent with its high activity in gut microbiota (Hernandez et al., 2013), to which 

the largest number of peptides could be mapped in GH family. The mean number, 

protein abundance and catalytic activities of GH increased with age (Fig. 4A). These 

results reflected the high GH potential of the gut microorganisms metabolically 

prepared to degrade human mucin, milk oligosaccharides, plant and animal 

polysaccharides, even in exclusive breast-fed infants and before the introduction of 

solid foods (Koenig et al., 2011; Flint et al., 2012; Tailford et al., 2015). This is not 

surprising since mucin-adapted resident mutualists can alternatively forage on dietary 

plant polysaccharides to ensure gut microbial stability as the infant diet transitions to 

solid food (Marcobal et al., 2013). Consistent with the contribution of human and 

formula milk to infant diet, the microbiota of 6-months infants was enriched in -

galactosidase and arabinogalactan endo-1,4--galactanase, mostly expressed by 

Actinobacteria. Additionally, Actinobacteria and Firmicutes expressed an -

glucoside phosphotransferase IIC subunit, involved in the phosphorylative transport 

of glucose, glucosamine and n-acetylneuraminic acid while Proteobacteria expressed 
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maltoporin involved in maltose and maltodextrin transport. In contrast, the higher 

diversity and complexity of dietary carbohydrates in 18-months’ infants resulted in a 

significant enrichment in -amylase, -glucosidase and -glucosidase that were 

expressed by multiple taxa within Bacteroidetes and Firmicutes. Endo--N-

acetylglucosaminidase D involved in the hydrolysis of branched oligosaccharides was 

expressed only by Bacteroidetes while cellobiose phosphorylase involved in the 

phosphate-dependent hydrolysis of cellulose was assigned to Firmicutes. The 

determination of gut microbial -galactosidase, -glucosidase and -glucosidase 

activities in 6- and 18-monts infants confirmed their enrichment in the metaproteomes 

(Supporting Information Figure S3). Taken together, these results indicated that the 

gut microbiota used the proper upper glycolytic pathways depending on the 

availability of the carbohydrate source in a diet shifting from breast milk or formula to 

solid foods.  

(II) Central carbon metabolism: Once a monosaccharide enters a cell, it flows 

through the Embden-Meyerhoff-Parnas (EMP), the pentose phosphate (PP) and the 

Entner-Doudoroff (ED) pathways that convert monosaccharides into 

phosphoenolpyruvate (PEP) (Fig. 4B). As expected, all COG functions in the EMP 

pathway were detected in the metaproteomes due to its central metabolic role. We 

observed very little abundance of pyruvate kinase, indicating that synthesis of PEP 

was the main outcome of EMP pathway in gut microbiota. Instead, PEP carboxylase 

was expressed in both metaproteomes because it allows bacteria to extract the second 

equivalent of ATP and generate oxaloacetate in an anaerobic environment (Macy and 

Probst, 1979). In EMP, two COG functions were significantly enriched in the 6 

months’ gut microbiota, glyceraldehyde-3-phosphate dehydrogenase assigned to taxa 

within Bacteroidetes, Firmicutes and Proteobacteria, and enolase binned to taxa in 
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Actinobacteria, Firmicutes and Proteobacteria. Glyceraldehyde-3-phosphate 

dehydrogenase and glutamate dehydrogenase were the COG functions to which the 

largest number of distinct peptides could be mapped in central carbon metabolism. 

While glyceraldehyde-3-phosphate dehydrogenase bridges PP and ED pathways to the 

lower EMP pathway, glutamate dehydrogenase has been shown to link the nitrogen 

and the carbon-cycle and to act as an electron sink in strict anaerobes (Kengen and 

Stams, 1994). The 6-month’s metaproteome was also enriched in transketolase, an 

enzyme of PP pathway necessary for the Bifidobacterium shunt of glycolysis that 

yields acetate, glyceraldehyde-3-phosphate and ATP (de Vries et al., 1967). Finally, 

the null-detection of citrate synthase and the enrichment in citrate lyase in TCA cycle, 

assigned to Firmicutes and Proteobacteria, and isocitrate dehydrogenase, expressed 

by Actinobacteria, suggested that, in an environment that does not support aerobic 

respiration, bacteria may use the glut of PEP and the high availability of amino acids 

and CO2 in a reverse TCA cycle to synthesise oxaloacetate (Macy et al., 1978). 

With age, the 18-months metaproteome was also enriched in 

phosphoglyceromutase in EMP, mainly assigned to Firmicutes. In TCA cycle, we 

observed the increased abundances of two structurally and functionally-related 

membrane-bound enzymes, succinate dehydrogenase (SDH) and fumarate reductase 

(FRD). SDH, the enzyme that catalyses succinate oxidation, was mainly assigned to 

Firmicutes while Bacteroidetes used FRD. Fumarate reduction by FRD is the most 

used electron transport chain that generates ATP and succinate as a metabolic end 

product (Lu and Imlay, 2017). The fact that the subsequent step, succinyl-CoA 

synthesis, was very low abundant in Bacteroidetes is in line with the hypothesis of 

metabolic cross-feeding between Bacteroidetes and Firmicutes (Fischbach and 

Sonnenburg, 2011). An unexpected finding was the lack of detection of succinyl-CoA 
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synthetase (SCS). Rather, our metaproteomics data suggested that taxa within 

Firmicutes and to a minor extent in Bacteroidetes, Proteobacteria and Verrumicrobia 

employed a variation of the classical TCA cycle based on an unorthodox enzyme, 

acetate:succinate CoA-transferase (ASCT) to synthesize succinyl-CoA. Kwong et al. 

recently showed that ASCT genes were widespread in prokaryotic genomes and 

functionally replaced SCS in TCA cycle of human microbial commensals (Kwong et 

al., 2017). In a carbon-rich anaerobic gut ecosystem, this strategy may be a result of 

niche specialization where gut microbiota may use acetyl-CoA, the keystone molecule 

of central metabolism produced from monosaccharides, amino acids, fatty acids and 

other secondary metabolites, as driver of a reverse TCA cycle to maintain redox 

balance and obtain energy for growth. These results indicated that the gut microbial 

community displayed distinct strategies for central carbon transformations for PEP 

synthesis and biosynthetic reactions. 

(III) Fermentation: Depending on the carbohydrate source and oxygen 

concentration, gut microbiota use distinct pathways of monosaccharide catabolism 

that end in the production of the main non-gaseous products of microbial 

fermentation: lactate and the short-chain fatty acids (SCFA) acetate, propanoate and 

butyrate (Fig. 4B). The profile of COG functions revealed distinct pathways of 

monosaccharide catabolism in the infant gut at the sampled time points. In particular, 

the enrichment in galactokinase, galactose mutarotase, gluconate/galactonate 

dehydratase, N-acetyl-glucosamine 6-phosphate 2-epimerase, 2-dehydro-3-deoxy-

rhamnonate aldolase (KDRA) and fucose dehydrogenase suggested active catabolism 

of milk and mucin-derived monosaccharides by early gut microbiota. The 

phylogenetic assignments of these enzymes showed that Proteobacteria expressed 

KDRA suggesting that Proteobacteria may contribute to propanoate fermentation by 
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the propanediol pathway in early life microbiota. Actinobacteria was the major 

contributor to the catabolism of galactose via EMP, gluconate and galactonate via ED, 

and the unique taxa to catabolize mucin-derived n-acetylneuraminic acid to acetate 

and fucose to lactate. Since we did not detect lactoyl-CoA dehydratase in the acrylate 

pathway, the fact that lactate dehydrogenase was highly abundant and 

phylogenetically assigned to all phyla suggested that fucose-derived lactate may be a 

central substrate for metabolic cross-feeding in early life microbiota (Pham et al., 

2016). Moreover, we observed enrichment in acetate kinase that produces ATP and 

acetate as end product, a strategy mainly used by Actinobacteria. This result 

highlighted the importance of Bifidobacteria metabolic contribution in a gut that is 

starting to be colonized where they may benefit host physiology by fermenting host-

derive glycans to provide acetate that reduces faecal pH and protects host epithelial 

cells from enterotoxins (Fukuda et al., 2011).  

With age, the action of GH on solid foods with a high diversity in glycan 

compositions generates a richer repertoire of released monosaccharides available for 

microbial metabolism. Accordingly, the 18-months metaproteome was enriched in 

glucuronate isomerase, 5-dehydro-4-deoxy-glucuronate ketol-isomerase and 2-

dehydro-3-deoxygluconokinase that channel these acid hexoses to pyruvate and 

glyceraldehyde-3-phosphate synthesis by 2-dehydro-3-deoxy-phosphogluconate 

aldolase (KDPGA) in a semi-phosphorylative ED pathway. KDPGA was the enzyme 

with the highest protein abundance in our metaproteomes suggesting that this 

catabolic pathway is metabolically important for Firmicutes and Bacteroidetes. In 

SCFA metabolism, the enrichment in succinyl-CoA reductase, acetyl-CoA 

acyltransferase, enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase, 

suggested that gut microbial metabolism shifted towards butyrate fermentation. The 

This article is protected by copyright. All rights reserved.



fact that these protein groups were mainly assigned to Clostridia support their 

important role in the metabolic welfare of colonocytes by releasing butyrate as a 

fermentation end-product (Lopetuso et al., 2013). The enrichments in ASCT and 

succinyl-CoA reductase suggest a link between succinate fermentation to butyrate and 

acetate production, as has been observed in Clostridium (Sohling and Gottschalk, 

1996). Butyrate kinase protein group was not detected, confirming that butyril-

CoA:acetate-CoA transferase pathway is preferred by gut microbiota (Flint et al., 

2012). Notably, our metaproteome revealed an alternate route for acetate synthesis in 

18-months gut microbiota. We observed an enrichment in ethanolamine ammonia-

lyase that catalyzes the adenosylcobalamin (AdoCbl)-dependent conversion of 

ethanolamine to acetaldehyde and ammonia (O'Brien et al., 1985). Ethanolamine is 

abundant in the human gut because the constant renewal of the intestinal epithelium 

daily releases 25% of enterocytes whose membranes are rich in 

phosphatidylethanolamine (Snoeck et al., 2005). Thus, our data suggested that 

ethanolamine may be used as a source of carbon and energy under aerobic and 

anaerobic conditions by gut microbiota. Taken together, our metaproteomics revealed 

the gut microbial age-associated maturation of fermentative strategies to harvest 

energy from diverse carbon resources in a shifting glycobiome environment.  

Bifidobacteriaceae and Lachnospiraceae are the hubs of succeeding anti-

correlated functional co-occurrence modules in infant’s gut microbiota 

Analysis of microbial contributions to overall community activity indicated 

that the ecological network was remodelled as the functional gut microbiota of infants 

evolved with time. The topology of the co-occurrence networks of active taxa 

collapsed at family level determined by Pearson’s correlation coefficient showed two 

mutually exclusive modules clustered by age (Fig. 5A). A low connected module built 
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by six families (20% of total nodes, 6.8% of total edges with a mean of 2 edges/node) 

evolved to a more complex and enriched one (80% of total nodes, 93% of total edges 

with a mean of 6.8 edges/node). It is plausible that these modules are built around 

ecologically relevant taxa whose pattern of functional interactions has a greater-than-

average influence on network architecture. We calculated node parameters to identify 

families with the highest centrality in the modules (Supporting information Table S8). 

Bifidobacteriaceae was the node with the largest fraction of shortest edge paths and 

highest betweenness centrality in 6-months microbiota. These node properties defined 

Bifidobacteriaceae as a gatekeeper, cooperating simultaneously with different nodes 

of the module (Freeman, 1980). Its removal resulted in the fragmentation of this co-

occurrence module, indicating that Bifidobacteriaceae was crucial for ecological 

module structure and persistence (Pocock et al., 2012). Eight Bifidobacterium species 

have been consistently identified in the human gastrointestinal tract (Bifidobacterium 

adolescentis, B.breve, B.longum, B.pseudolongum, B.bifidum, B.pseudocatenulanum, 

B.dentium and B.animalis) of which protein affiliation in our metaproteomes ruled out 

B.dentium but included other twenty Bifidobacterium species, suggesting that 

functional diversity in the Bifidobacteriaceae family may be richer than taxonomic 

one (Turroni et al., 2009). This low connected Bifidobacteriaceae-centred module 

anti-correlated with the highly connected (324 edges) and richer one (48 nodes) 

observed in 18-months’ microbiota, suggesting competition or diversifying selection 

among modules. Lachnospiraceae was the hub (highest degree) in this cooperative 

module where Desulfovibrionaceae, Ruminococcaceae, Rikenellaceae, 

Eubacteriaceae and Porphyromonadaceae had a great importance in cooperative 

interactions in this module. Lachnospiraceae, Eubacteriaceae and Clostridiaceae may 

play a role in the transfer of biological information because these nodes shared the 
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highest betweenness centrality values in this module. At the genus level, Veillonella, 

Escherichia, Bifidobacterium and Pseudomonas were mutually exclusive with 

Eubacterium, Ruminococcus, Faecalibacterium, Alistipes, and Bilophila. Facultative 

anaerobes were not only more abundant but also were more positively correlated with 

obligate anaerobes in 6-months microbiota while showing many negative correlations 

in 18-months microbiota.  

Further analysis revealed the succession of metabolic functions between taxa 

in these mutually exclusive consortia, suggesting a high level of functional 

redundancy between taxa to (Moya and Ferrer, 2016; Ruiz et al., 2017). Taxa within 

Bifidobacteriaceae, Enterobacteriaceae and Veillonellaceae constituted a functional 

consortium responsible for an important proportion of amino acid, carbohydrate, 

coenzyme, energy, inorganic, nucleotide and secondary metabolisms in 6-months 

microbiota (Fig. 5B). Age-related maturation restructured the contributions of taxa to 

metabolic performance where key co-occurrent families assembled an evolved 

functional consortium to fulfil overall gut microbial ecosystem requirements. These 

data supported that the maturation of the human microbiota during early life may be 

proposed as an example of ecological succession, in which communities undergo 

consecutive compositional and functional transitions in dominant taxa to establish 

physiological syntrophy among microbiota for niche adaptation (Koenig et al., 2011; 

Lozupone et al., 2012). Due to the variety of available nutrients, energy substrates and 

oxygen levels in the gut, it is reasonable to hypothesize that gut microbial taxa with 

diverse functional traits cooperate syntrophically to maximize energy yield and 

growth, as has been shown in other ecosystems (Morris et al., 2013). Comprehensive 

mathematical analysis of the characteristics of network edges between all genera pairs 

and their expressed functions will shed light on community-wide interactions via 
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primary degradation, resource competition and interspecies cross-feeding between gut 

microbes.  
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Concluding remarks 

Although comparisons between individual children showed great differences 

in the dynamics of colonization, functional changes occurred more similarly across 

individuals, highlighting the non-stochastic nature of the bacterial functional 

community succession. Our results showed that considerable discordance existed 

between microbial composition and phylogenetic origin of proteins at all taxonomic 

levels. Age was the major driver of the rewiring of networks around succeeding key 

functional taxa and of the restructuring of community metabolic performances. Taken 

together, the detailed reconstruction of the gut microbial carbon metabolism presented 

here, including the assignment of enzymes to microbial taxa, revealed alternate 

temporary microbial and metabolic configurations where community-wide metabolic 

relationships to harvest energy by fermentation of prevailing dietary and host-derived 

carbon substrates, mainly glycans, differentiated chronological states. Our data 

provide a proteomic catalogue of the functional maturation of early gut microbiota, 

which may constitute an important research tool for indicators of future healthy or 

diseases states and for the design of microbiota-targeted health-promoting strategies 

early in life.  
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EXPERIMENTAL PROCEDURES 

Subjects, experimental design and ethical guidelines 

In the present study, full-term healthy infants aged 6- and 18-months, who did 

not present any intestinal disorders and had not taken antibiotics, were chosen from 

the panel of infants that belonged to PREOBE study cohort (Berglund et al., 2016). In 

this period of life, the transition from weaning to solid food consumption occurs. 

Characteristics of the study population are shown in Supporting information Table S1. 

In this project, pregnant women were recruited between 2007 and 2012 at San Cecilio 

and Mother-Infant University Hospitals in Granada, Spain. The study exclusion 

criteria for mothers were: simultaneous participation in any other research study, any 

kind of drug treatment, diagnosed diseases (e.g. pre-gestational diabetes, hypertension 

or preeclampsia, intrauterine growth retardation, maternal infection, 

hypo/hyperthyroidism, hepatic or renal disease), and vegan diet. Fresh stools were 

collected at 6- and 18-months after delivery and were immediately stored at -80ºC, 

until processing. The study included anthropometric measurements, health 

questionnaires and medical assessments of the child. This project followed the ethical 

standards recognized by the Declaration of Helsinki (reviewed in Hong-Kong 1989 

and in Edinburgh 2000) and the EEC Good Clinical Practice recommendations 

(document 111/3976/88 1990), and current Spanish legislation regulating clinical 

research in humans (Royal Decree 561/1993). The study was explained to the 

participants before starting, and the parents signed an informed consent. 

DNA extraction from stool samples 

Genomic DNA was extracted from faecal bacteria of 6-month (n =68) and 18-

month (n =72) old infants as previously described (Ferrer et al., 2013). Briefly, faecal 

samples were resuspended in 1mL of TN150 buffer (10mM Tris-HCl pH 8.0 and 
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150mM NaCl). Zirconium glass beads (0.3g) and 150µL of buffered phenol were 

added and bacteria were disrupted with a mini bead beater set to 5000rpm at 4°C for 

15s (Biospec Products, USA). After centrifugation, genomic DNA was purified from 

the supernatant using phenol-chloroform extraction. Quality was checked by agarose 

gel electrophoresis and quantified with Quant-iT PicoGreen dsDNA assay kit 

(Invitrogen, Darmstadt, Germany). 

16S rRNA gene sequencing and data processing 

Genomic DNA from faecal bacteria was used as templates for 16S rRNA gene 

amplification using 27F and 338R universal primers and two consecutive PCR 

reactions to integrate Illumina multiplexing sequences as previously described 

(Camarinha-Silva et al., 2014). The library was prepared by pooling equimolar ratios 

of amplicons and was sequenced using an Illumina MiSeq platform (Genetic Service, 

University of Granada). Reads were demultiplexed and sorted, and paired ends were 

matched to give 240nt reads. Data set was filtered and OTUs were defined at 99% 

similarity with MOTHUR programs unique.seqs and pre.cluster (Schloss et al., 2009). 

Taxonomic classifications of OTUs were assigned using the naïve Bayesian algorithm 

CLASSIFIER of Ribosomal Database Project (Wang et al., 2007). OTUs were 

considered unassigned when confidence value score was lower than 0.8, and were 

annotated using upper taxonomic ranks. 

Protein extraction, separation, identification and data processing 

Protein extraction was performed from faecal bacteria of 6-months (n =29) 

and 18-months (n =27) old infants as previously described (Ferrer et al., 2013). Faecal 

samples (0.5g) were thawed and diluted in 1mL of 0.05% L-cysteine phosphate saline 

buffer solution (PBS) under anaerobic conditions. After differential centrifugation, 

faecal bacteria were disrupted by mechanical lysis in BugBuster Protein Extraction 
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Reagent (Novagen) for 30 min at room temperature, followed by sonication for 

2.5min on ice. Protein extracts were centrifuged for 10min at 12.000rpm to separate 

cell debris. Protein concentrations were determined with the Bradford assay 

(Bradford, 1976). For 1-DE analysis, two 75-μgprotein samples (technical replicates 

denoted by a or b) were precipitated with five-fold volumes of ice-cold acetone and 

separated on a 12% acrylamide separating gel with the Laemmli buffer system 

(Laemmli, 1970). 

After electrophoresis, protein bands were stained with Coomassie Brilliant 

Blue G-250. Entire protein lanes were individually cut into one band prior to 

performing in-gel tryptic digestion. Peptide lysates were desalted using C18 ZipTip 

prior to MS analysis. Peptides were analysed by nano-HPLC system Advion 

NanoMate and Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific). The 

peptides were eluted over 115 min with a gradient of 2 to 55% solvent (acetonitrile, 

0.1% formic acid). MS scans were measured at a resolution of 120,000 in the scan 

range of 400-1600 m/z, MS2 in the Iontrap (rapid mode). Raw data files were 

searched with Proteome Discoverer (v1.4, Thermo Fisher Scientific) using the 

SequestHT algorithm against a database containing protein-coding entries of bacterial 

taxa selected via 16S rRNA gene sequencing. Only rank 1 peptides were considered 

to be identified with a threshold of FDR <1%. The mass spectrometry proteomics data 

have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaino et 

al., 2016) partner repository with the dataset identifier PXD009056. Higher protein 

abundance is represented by a higher number of MS/MS spectra acquired from 

peptides of the respective protein. Thus, protein abundances were calculated based on 

normalized spectral abundances that allow relative comparison of protein abundances 

over different samples (Bantscheff et al., 2012; Ferrer et al., 2013; Guazzaroni et al., 
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2013). “PROteomics results Pruning & Homology group ANotation Engine” 

(PROPHANE) (Schneider et al., 2011) was used to assign proteins to their taxonomic 

and functional groups using the functional annotation of COGs. For KEGG pathway 

reconstructions, a BLASTP v2.2.27 search of the original protein sequences against 

NCBInr to retrieve KEGG Orthology identifiers was performed (Kanehisa et al., 

2014). The use of a metaproteome-specific database containing fully sequenced 

genomes from closely related genera to the sample’s strains and other documented gut 

genera in the database of proteomes together with the specificity of the identification 

procedure resulted in a high proportion of taxonomic and functional annotation 

(Denef et al., 2007). 

Measurement of glycosidase activities  

Glycosidase activities were quantified in protein extracts from purified faecal 

bacteria by measuring the release of p-nitrophenol--D-glucoside, p-nitrophenol--D-

glucoside and p-nitrophenol--D-galactoside (Sigma Chemical Co., St. Louis, MO, 

USA) at 410 nm. One unit (U) of enzyme activity was defined as the amount of 

protein producing 1 mol of reducing sugars in 1 min under the assay conditions.  

Statistical and data analysis 

Statistical analyses were carried out using SPSS version v19.0 (IBM, IL) and 

R statistical package (Team, 2014). Sankey flow chart was created with 

SankeyMATIC web tool (http://sankeymatic.com/).  KEGG Mapper was used to 

visualize metabolic pathways. To quantify the amount of variability explained by each 

variable and subject in our different data sets, we calculated the coefficient of 

determination (R
2
). For the response of composition and function of the microbiota, 

multivariate analysis of variance using distance matrices was performed, based on 

Bray-Curtis distance metrics. The matrices were partitioned in sources of variation 
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with subject and characteristics of the study population as explanatory variables. 

Significance of the pseudo-F ratios was assessed by permutation test (999 

permutations, using the adonis function from the R package vegan) (Oksanen, 2011 ). 

-diversity for compositional data was calculated as Unifrac distance with GUnifrac 

package. Permanova analysis of the distance between different time points was 

calculated with adonis function from vegan package. Bray-Curtis dissimilarity 

measures were calculated with vegan package and anosim test was used to establish 

significant differences between time points. Statistical Analysis of Metagenomic 

Profiles v2.0 was used to compare the abundances of taxa, COG categories and 

subcategories between time points (Parks et al., 2014). -diversity indices were 

calculated with PAST software (Hammer et al., 2001). Significant differences were 

identified with the White’s non-parametric t test. Benjamini & Hochberg FDR method 

was used to correct for multiple comparisons, and results with a q-value (corrected p-

value <0.05) were retained. Pearson’s correlation network analysis and visualization 

were carried out using Calypso v8.20 (Zakrzewski et al., 2017). Network node 

parameters were calculated using Cytoscape v3.1.1 (Shannon et al., 2003). 
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FIGURE LEGENDS 

Figure 1. Taxonomic distribution and comparison of 16S rRNA sequences and 

protein groups characterized in faecal samples from the studied cohort of infants. (A) 

Phylogeny at phylum (circular graph) and family (bar graph) levels of total (16S 

rRNA gene sequences, top plots) and functional (organism-origin of protein groups, 

bottom plots) gut microbiota. Results for the same sample are lined up in bar plots. 

(B) Comparisons between the phylogeny of total (right) and functional (left) gut 

microbiota are tracked and confronted using a Sankey plot. To reduce the size of the 

Sankey plot, only highly abundant genera (mean relative abundance >1%) are shown. 

The heights of the rectangles indicate mean relative abundances in the datasets. Full 

description of the differences is shown in Supporting Information Table S3. 

Figure 2. Total (16S rRNA gene sequences) and functional (organism-origin of 
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protein groups) gut microbial communities clustered according to age. (A, B) 

Scatterplot from principal coordinate analysis using weighted and unweighted Unifrac 

metrics in 6-months (red) and 18-months (green) old infants. p value for 

PERMANOVA test with 999 permutations. (C) Principal component analysis based 

on the phylogeny at phylum level of protein groups according to Bray-Curtis 

dissimilarity metrics in 6-months (red) and 18-months (green) old infants. (D) -

diversity and -diversity of total and functional gut microbiota determined by Rao’s 

diversity at phylum level. (E) -diversity (Bray-Curtis dissimilarity metrics) of total 

and functional gut microbiota at phylum level. (F, G) Differentially abundant 

microbial taxa in total and functional gut microbiota of 6-months (red) and 18-months 

(green) old infants. Significantly discriminant taxon nodes are coloured and branch 

areas are shaded according to the highest ranked community for that taxon. If the 

taxon is not significantly different between sample communities, the corresponding 

node is coloured in yellow. For simplicity, only taxa meeting a linear discriminant 

analysis significant threshold >2 are shown. Full description of discriminant genera is 

shown in Supporting Information Table S5. 

Figure 3. Comparison of metaproteomics profiles between 6-months (red) and 18-

months (green) old infants. (A) COG distribution of the protein groups detected in the 

metaproteomes of 6-months and 18-months old infants (B) Principal component 

analysis based on COG function patterns according to Bray-Curtis dissimilarity 

metrics in 6-months and 18-months old infants (C) Differences in functional 

comparisons of metaproteomes from 6-months and 18-months infants at main (top 

plot) and secondary (bottom plot) COG hierarchy levels. Left: histogram: relative 

mean proportions and deviations; right plot: differences between proportions and 

significances. 
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Figure 4. Metabolic signatures that differentiate between the metaproteomes of 6-

months and 18-months old infants. (A) Hierarchical clustering and heatmap of the 

abundances (log10 values) of glycoside hydrolases (GH) characterized in the 

metaproteomes of 6-months and 18-months old infants. CAZy families (right) and 

summation of GH abundances (bottom) in samples are shown. Values are indicated by 

colours ranging from orange to blue in log10 (bottom, -14 to 4) and absolute scales 

(top, 0 to 80). GH names with significant differences between infant groups are 

highlighted in bold. Each vertical line corresponds to one sample, identified at the 

bottom of the bar plot by a code that specifies the corresponding time-point (red, F24 

for 6 months; green, F72 for 18-months) (B) Enzymes with significantly different 

abundances between the metaproteomes of 6-months (red arrows) and 18-months 

(green arrows) old infants are highlighted over a schematic carbon metabolism 

summary based on KEGG pathway maps. Semi-transparent boxes delimitate major 

central metabolic pathways (Embden-Meyerhoff-Parnas, EMP; pentose phosphate, 

PP; Entner-Doudoroff, ED) and short-chain fatty acids. Black arrows indicate 

enzymes detected in both metaproteomes with no differential abundance. Orange and 

purple boxes mark starting carbon substrates. Enzymes are indicated in the map as 

follows: 1 glyceraldehyde-3-phosphate dehydrogenase. 2 phosphoglyceromutase. 3 

enolase. 4 transketolase. 5 citrate lyase. 6 isocitrate dehydrogenase. 7 succinate 

dehydrogenase. 8 fumarate reductase. 9 acetate:succinate CoA-transferase. 10 

galactokinase. 11 galactose mutarotase. 12 gluconate/galactonate dehydratase. 13 N-

acetyl-glucosamine 6-phosphate 2-epimerase. 14 2-dehydro-3-deoxy-rhamnonate 

aldolase. 15 fucose dehydrogenase. 16 acetate kinase. 17 glucuronate isomerase. 18 2-

dehydro-3-deoxy-phosphogluconate aldolase. 19 succinyl-CoA reductase. 20 acetyl-

CoA acyltransferase. 21 enoyl-CoA hydratase. 22 3-hydroxyacyl-CoA 
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dehydrogenase. 23 ethanolamine ammonia-lyase. 

Figure 5. Age-driven remodelling and functional succession of co-occurrent taxa in 

the metaproteomes. (A) Co-occurrence network of taxa at family level in the 

metaproteomes of 6-months and 18-months old infants. The nodes represent families 

connected by significantly positive (thick brown lines) and negative (thin blue lines) 

and the node colour denotes association to each chronological state, both defined by 

the Pearson’s correlation coefficient, set to a minimum of 0.6. The numbers in nodes 

refer to families’ names shown in Supporting Information Table S5. Phylogenetic 

assignment at phylum level of the nodes is coloured by rings in blue for 

Actinobacteria, orange for Bacteroidetes, black for Fusobacteria, purple for 

Firmicutes, yellow for Proteobacteria, and light blue for Verrumicrobia. Bif, 

Bifidobacteriaceae; Clo, Clostridiaceae; Des, Desulfovibrionaceae; Enb, 

Enterobacteriaceae; Eno, Enterococcaceae; Eub, Eubacteriaceae; Lac, 

Lachnospiraceae; Ox, Oxalobacteraceae; Por, Porphyromonadaceae; Pse, 

Pseudomonadaceae; Rik, Rikenellaceae; Rum, Ruminococcaceae; Vei, 

Veillonellaceae. (B) Mean relative abundances of COGs involved in metabolism 

expressed by key co-occurrent families in the modules. Data are expressed as log10 

values. [C] Energy production and conversion. [E] Amino acid transport and 

metabolism. [F] Nucleotide transport and metabolism. [G] Carbohydrate transport and 

metabolism. [H] Coenzyme transport and metabolism. [I] Lipid transport and 

metabolism. [P] Inorganic ion transport and metabolism. [Q] Secondary metabolites 

biosynthesis, transport, and catabolism. 

Supporting Information Figure S1. Phylogeny of the functional gut microbiota 

(organism-origin of protein groups) at genus level. 
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Supporting Information Figure S2. Transport functions with differential abundance 

between the metaproteomes of 6- and 18-months old infants. 

Supporting Information Figure S3. Gut microbial glycosidase activities in 6- and 

18-months old infants. Mean enzymatic specific activities (units per gram of total 

protein) ± SEM from faecal microbiota are represented.  
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