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Abstract 1 

Anthropogenic pressures increasingly alter natural systems. Therefore, understanding 2 

the resilience of agent-based complex systems such as ecosystems, i.e. their ability to absorb 3 

these pressures and sustain their functioning and services, is a major challenge. However, the 4 

mechanisms underlying resilience are still poorly understood. A main reason for this is the 5 

multidimensionality of both resilience, embracing the three fundamental stability properties 6 

recovery, resistance and persistence, and of the specific situations for which stability 7 

properties can be assessed. Agent-based models (ABM) complement empirical research 8 

which is, for logistic reasons, limited in coping with these multiple dimensions. Besides their 9 

ability to integrate multidimensionality through extensive manipulation in a fully controlled 10 

system, ABMs can capture the emergence of system resilience from individual interactions 11 

and feedbacks across different levels of organization. To assess the extent to which this 12 

potential of ABMs has already been exploited, we reviewed the state of the art in exploring 13 

resilience and its multidimensionality in ecological and socio-ecological systems with ABMs. 14 

We found that that the potential of ABMs is not utilized in most models, as they typically 15 

focus on a single dimension of resilience by using variability as a proxy for persistence, and 16 

are limited to one reference state, disturbance type and scale. Moreover, only few studies 17 

explicitly test the ability of different mechanisms to support resilience. To overcome these 18 

limitations, we recommend to simultaneously assess multiple stability properties for different 19 

situations and under consideration of the mechanisms that are hypothesised to render a 20 

system resilient. This will help us to better exploit the potential of ABMs to understand and 21 

quantify resilience mechanisms, and hence support solving real-world problems related to the 22 

resilience of agent-based complex systems.  23 

Keywords: agent-based models, model development, multidimensionality, review, social-24 

ecological systems, stability properties 25 
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1 Introduction 26 

In a world undergoing unprecedented change, understanding the resilience of agent-based 27 

complex systems, i.e. their ability to absorb change while maintaining functioning and thus 28 

persist, is of utmost importance (Biggs et al., 2012, 2015; Holling, 1973). Resilience has 29 

therefore become an increasingly popular concept in ecology, socio-ecology and other 30 

environmental sciences, as well as in many international bodies and conventions such as the 31 

CBD, the OECD and Wetlands International (Donohue et al., 2016). Increasing the capacity 32 

of agent-based complex systems (Grimm et al., 2005) to sustain their functioning and 33 

services under disturbances and ongoing change is of prime interest (Biggs et al., 2012; 34 

Oliver et al., 2015).  35 

However, putting resilience into practice is challenging. Inconsistent terminology 36 

keeps hampering communication and understanding among theoreticians, empiricists and 37 

policy-makers (Baggio et al., 2015; Brand and Jax, 2007; Donohue et al., 2016; Grimm and 38 

Wissel, 1997; Pimm, 1984). In particular, the meaning of the term “resilience” differs widely 39 

between social and natural sciences. In social-ecological research, “resilience” is primarily an 40 

integrated and holistic approach within sustainability science, which emphasizes social-41 

ecological feedbacks, change as inherent element of social-ecological systems, and the 42 

capacity of such systems to adapt (Biggs et al., 2015). Quantification of resilience was so far 43 

not a major issue, which might be one of the reasons why putting resilience into practice is 44 

still difficult. 45 

In contrast, in ecology “resilience” originally referred to the recovery of certain state 46 

variables to pre-disturbance levels (Pimm, 1984). More recently, ecologists use “resilience” 47 

as a multidimensional umbrella for the specific stability properties, or dimensions, recovery 48 

and resistance (Oliver et al., 2015; Standish et al. 2014), which are quantifiable (Table 1). 49 

Indeed, a few experimental studies quantified resilience by measuring its multiple dimensions 50 
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(Donohue et al., 2016; Hillebrand et al., 2018). Biodiversity research, in particular, is 51 

focussing on the (in)variability of state variables as a proxy for “stability” (Wang and Loreau, 52 

2016), because a system showing lower variation usually has higher chances that state 53 

variables remain within the ranges required for the persistence of a system. In this 54 

interpretation, resilience, defined as the ability to function and persist despite disturbances 55 

and change, is the consequence of recovery and resistance, which in turn may be determined 56 

by mechanisms such as adaptive capacity or learning which are also discussed in social-57 

ecological research. In addition to the multidimensionality of resilience, assessments of its 58 

properties also depend on the levels of organization, state variables, reference states, types of 59 

disturbance and scales considered (Biggs et al., 2012; Carpenter et al., 2001; Grimm and 60 

Wissel, 1997). Consequently, in ecology a reductionist interpretation of resilience prevails as 61 

resilience research often ends up in more or less unrelated assessments of specific properties 62 

in specific ecological situations (Grimm and Wissel, 1997).  63 

To move on in resilience research, the holistic and reductionist interpretation of 64 

resilience need to be reconciled. Although the old management slogan “If you can’t measure 65 

it, you can’t manage it” might represent a too narrow “command-and-control” notion of 66 

management, we argue that some quantification of resilience is needed to assess the state of a 67 

system in response to changes or actions, and to uncover the major resilience mechanisms. 68 

Therefore, we would ideally perform controlled experiments within entire systems and 69 

simultaneously measure recovery, resistance, and persistence, as well as (in)variability. To 70 

learn about the mechanisms underlying resilience, we would implement possible 71 

mechanisms, such as those listed by Biggs et al. (2012, 2015) or Desjardins et al., (2015), and 72 

measure the different dimensions of resilience for different levels of organization, state 73 

variables, reference states, types of disturbances, and spatial and temporal scales (Grimm and 74 

Wissel, 1997). However, except for artificial systems in ecology such as micro- and 75 
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mesocosms or extremely simplified settings such as in behavioural economics, this is hardly 76 

possible.  77 

Consequently, modelling plays an important role for understanding agent-based 78 

complex systems as it complements empirical research. Ecology in particular has a long 79 

tradition in modelling because ecological systems are complex, large, and often develop too 80 

slowly to be understood via short-term studies. Modelling also plays an increasing role in 81 

social sciences (Gilbert and Troitzsch, 2005). If a model captures multiple patterns describing 82 

the system in reality, it can be used to systematically explore resilience mechanisms. Model 83 

predictions then can be tested in targeted surveys or experiments, so that models informed by 84 

observations, and observations motivated by model predictions, are truly integrated. 85 

Accordingly, modelling could facilitate the consideration of the multidimensionality of 86 

resilience and thereby foster the integration of the holistic and reductionist approaches to 87 

resilience.  88 

Agent-based models (ABM) play a particularly important, but certainly not exclusive, 89 

role in this context because decision-making agents, for example humans, individuals of other 90 

species, or institutions, are the building blocks of agent-based complex systems such as 91 

ecological systems, land-use systems, cities, or financial markets. ABMs have been widely 92 

used to understand observed system-level patterns mechanistically, because these patterns 93 

emerge from individual variation, local individual interactions and adaptive behaviour (An, 94 

2012; DeAngelis and Grimm, 2014; Matthews and Gilbert, 2007). In social-ecological 95 

systems (SES), which are characterized by feedbacks between ecological and social processes 96 

(Biggs et al., 2015; Ostrom, 2009; Parker et al., 2008), ABMs are often used to better 97 

understand resource use and its consequences for humans and ecosystems (e.g. Rammer and 98 

Seidl, 2015; Schlüter et al., 2009; Walker and Janssen, 2002).  99 
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ABMs have a great potential but their development, testing and analysis is 100 

challenging, and the corresponding methods and strategies are complex. The corresponding 101 

methodology developed slowly but also significantly over the last two decades (Grimm et al., 102 

2010, 2005; Grimm and Berger, 2016a; Heppenstall et al., 2012; O’Sullivan and Perry, 2013; 103 

Robinson et al., 2007; Tesfatsion, 2006), but the common practice of model analysis in terms 104 

of sensitivity, uncertainty, understanding of emergence, and robustness is still quite limited 105 

(Schulze et al., 2017).  106 

Facing the high relevance of resilience research and the potential of ABMs to advance 107 

this field by integrating holistic and reductionist approaches to resilience, an overview on 108 

how resilience, and in particular its multidimensionality is operationalized in ABMs is 109 

needed. Therefore, we aimed to summarize the state of the art, identify possible knowledge 110 

gaps, and suggest ways forward for a more effective use of ABMs for resilience research. We 111 

first provide relevant definitions and concepts and then conduct a review of ABMs assessing 112 

resilience. Based on this we formulate general recommendations that might help developing 113 

and analysing ABMs in a way that delivers more comprehensive insights into resilience.   114 
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Table 1 Definitions, assessment, implications and examples of the stability properties related to resilience.  115 
Stability property Definition / assessment Implications Example 
 
Recovery 

 
Process of a state variable 
returning to the values prior to 
a disturbance. / Time needed 
until the state variable reaches 
pre-disturbance levels (dashed 
arrow Fig. 1).  

 
Measuring recovery for 
different variables may lead to 
different conclusions. 

 
Abundance after disturbance 
through a pesticide might 
recover quickly, but age and 
size structure might take much 
longer to return to pre-
disturbance levels (Galic et al., 
2017; Martin et al., 2014). 
 

Resistance The change of a state variable 
after a disturbance 
(“amplitude”, solid arrow Fig. 
1). 
 

Just referring to the amplitude 
is merely descriptive. 

 

 Comparison of amplitude with 
and without mechanisms that 
are assumed to affect 
resistance. 
 

Better understanding why 
resistance emerges. 

Productivity of a low diversity 
system might be more affected 
by species loss (Fig. 1 B) 
compared to a diverse system 
(Fig. 1 A). 
 

 Buffer mechanisms: Require 
observing the variable of 
interest and a variable that 
measures buffer capacity. 

If a buffer works, the variable 
of interest is hardly affected by 
a disturbance, but the buffering 
capacity is reduced. One 
disturbance might be buffered 
well but reduces buffer 
capacity for another 
disturbance. 

Size structure of Daphnia 
magna populations buffered 
against pesticides that mainly 
affected small individuals and 
against predators focusing on 
larger ones. Combination of 
both disturbances leads to 
extinction (Gergs et al., 2013).  
 

Persistence Existence of a system through 
time as an identifiable unit, 
described by specific state 
variables remaining within a 
certain range (shaded area Fig. 
1). 

Cannot only be directly 
assessed if a system definition 
exists and functional and/or if 
structural criteria for 
quantifying when a system has 
lost its identity are available 
(Jax et al., 1998). 
 

Savannas are characterized by 
both a tree cover of not more 
than 20% and a scattered 
distribution of trees (Calabrese 
et al., 2010). 

Variability / 
 invariability 

Change of a state variable over 
time (Arnoldi et al., 2016). 
Often used as a proxy for 
persistence, because it is 
assumed that a system showing 
lower variation has higher 
chances that state variables 
remain within the ranges 
required for the persistence of 
a system. 
 

Continuous variation might 
increase resilience, as it 
supports reconfiguration in 
response to disturbance 
(Holling and Gunderson, 
2002). 

 

  116 
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2 The multiple dimensions of resilience 117 

In ecology, the multidimensionality of resilience or stability has been acknowledged for a 118 

long time (Grimm and Wissel, 1997; Pimm, 1984), although the term “multidimensionality” 119 

has become more popular only recently (e.g., Donohue et al., 2016). Recent reviews on 120 

resilience in ecology agree that resilience per se is not quantifiable, but only its different 121 

dimensions, or components: recovery, resistance, and variability (Oliver et al., 2015; Standish 122 

et al., 2014; Table 1; Fig. 1). More generally, also the persistence of systems can, at least in 123 

microcosms or models, be quantified in terms of population persistence (e.g. Drake and 124 

Lodge, 2004), or characteristic patterns in organization or spatial structure (Cumming and 125 

Collier, 2005; Jax et al., 1998). Because these different stability properties are not always 126 

correlated (Dey and Joshi, 2013; Tung et al., 2016), just looking at one of them only gives 127 

limited insights into the emergence of resilience.  128 

 A second level of multidimensionality that is also increasingly acknowledged lies in 129 

the fact that recovery, resistance, persistence and variability can only be applied to specific 130 

situations, which are defined by the considered level of organization, state variable, reference 131 

state, disturbance, and spatial and temporal scale (Grimm and Wissel, 1997; they originally 132 

referred to “ecological situation”, but here we use the more generic term “specific situation”). 133 

The assessment of the stability properties does not only depend on the system of interest itself 134 

and its mechanisms, but also on how we observe it. Different state variables and levels of 135 

organization (e.g. individual agents vs. communities) may react differently to disturbances 136 

(Fig. 1 A, B vs. E, F). Likewise, the way we define the reference state determines how close a 137 

variable returns to its “normal” state after a disturbance. For example, comparing the state 138 

variable against a dynamic reference (temporal development of the state variable without 139 

disturbance) may indicate slower recovery and larger amplitude (Fig. 1 C, D) than when 140 

compared to a static reference (Fig. 1 A, B). Virtually all stability properties, in particular 141 
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variability and persistence, will depend on the spatial and temporal scales considered 142 

(Cumming et al., 2016). For example, in metapopulations the local existence of populations 143 

does not inform about regional persistence (Hanski and Gilpin, 1991). Disturbances of 144 

populations by toxicants or predators may affect different size classes so that consequences 145 

for resilience are not captured by only considering total abundance (Gergs et al., 2013). In 146 

mesocosm experiments addressing the response of aquatic invertebrate communities to a 147 

pulse exposure of an insecticide, species composition changed strongly while two ecosystem 148 

functions (primary production and respiration) hardly changed (Radchuk et al., 2016). In all 149 

these cases a multidimensional view, considering several state variables, levels of 150 

organization or disturbance type, provided insight into the internal organization of the system 151 

and, hence, its resilience mechanisms.  152 
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 155 

  156 

  
Fig. 1. Schematic illustration of the three stability properties recovery, resistance, and persistence assessed across the 

different dimensions of specific situations. A multidimensional view is needed to learn more about the mechanisms 

underlying resilience, i.e. the stability properties need to be assessed for different state variables, levels of organization, 

disturbances, and spatial and temporal scales. Curves show the response of a state variable to a disturbance (red line) in a 

system with (purple) and without (orange) a resilience mechanism. The dashed arrow indicates recovery time, the solid arrow 

the amplitude, which might indicate resistance. The operating space (shaded area) defines a desired range, within which a 

state variable should remain that a system persists. The green curve indicates a dynamic reference, i.e. the temporal 

development of the state variable without disturbance. The different dynamics A-E are referred to in the main text.  
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3 Literature review 157 

3.1 Methods 158 

We conducted a Web of Science Topic Search (TS) using the search term TS = ("individual* 159 

based* model*" OR "agent* based* model*") AND resilience*. Our search yielded 118 160 

articles (3 July 2017). We excluded 29 papers, because no ABM or results were presented, or 161 

because the ABM was not used to study resilience. Since we were only interested in model 162 

applications to ecological and social-ecological systems, we excluded articles investigating 163 

systems related to economy (n=10), technology and human safety (n=10), sociology (n=3), 164 

medicine (n=2) or other systems (n=3). We additionally included four articles that were 165 

reviewed in Parrott et al. (2012) and An et al. (2014), but did not appear in our topic search. 166 

We evaluated the retained 65 articles with respect to the modelled system, their 167 

operationalization of multidimensionality of resilience and the representation of resilience 168 

mechanisms. Methodological details and the definitions underlying our evaluation, and 169 

detailed results can be found in the Supplementary materials.  170 

3.2 Results 171 

Stability properties 172 

The reviewed models, mainly investigating socio-ecological systems (Fig. 2a), usually 173 

studied specific stability properties in isolation. Only 15 studies included one (n=13) or two 174 

(n=2) stability properties in addition to variability (Fig. 2b). Of all reviewed articles, 94% 175 

measured the variability of one (n=18) or more state variables (n=43), while the other three 176 

stability properties where typically quantified with only one state variable. Recovery was 177 

measured in eight studies and persistence in nine studies, while resistance was hardly 178 

quantified (n=4).  179 

Specific situations 180 
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Of the 65 studies, 46 addressed multiple dimensions of specific situations. Out of these, 38 181 

studies used different state variables corresponding to different levels of organization (Fig. 182 

2c). Around half of the studies defined static (n = 9, e.g. value of a state variable prior to a 183 

disturbance; Fig. 1 A, B) or dynamic reference states (n = 27, e.g. baseline scenario; Fig. 1 C, 184 

D), of which two included more than one reference state. While the majority of the reviewed 185 

studies explicitly modelled disturbances (Fig. 2d), only ten studies included more than one 186 

disturbance. Press disturbances, altering the system permanently, were investigated in 13 187 

studies. Most studies included a pulse disturbance which either occurred once (n = 10) or 188 

multiple times (n = 24). Of all reviewed articles, ten assessed resilience at more than one 189 

spatial scale and 13 focused on more than one temporal scale. 190 

Resilience mechanisms 191 

While the assessment of stability properties could be related to resilience mechanisms in 56 192 

articles, they were explicitly communicated in only 40 articles. About one quarter of the 193 

studies investigated potential resilience mechanisms directly, e.g. by contrasting system 194 

behaviour with and without a proposed mechanism. 195 

3.3 Discussion 196 

Our literature review shows that most existing models focus on a single dimension of 197 

resilience; i.e. they use variability as a proxy for persistence or resilience, and are limited to 198 

one reference state, disturbance type and scale. Less than one fourth of the reviewed studies 199 

varied more than two dimensions of specific situations, and only 15 studies assessed multiple 200 

stability properties. Moreover, relatively few studies explicitly test the ability of different 201 

resilience mechanisms to support resilience. Accordingly, the potential of ABMs for rigorous 202 

manipulation of relevant interactions and feedbacks across the dimensions of specific 203 

situations, and the subsequent assessment of different stability properties to identify resilience 204 
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mechanisms has been exploited to a limited degree. This confirms previous findings, e.g. 205 

regarding the lack of incorporation of alternative theories of human-decision making 206 

(Groeneveld et al., 2017) or the limited analysis of ABMs developed for social-ecological 207 

systems (Schulze et al. 2017).  208 

 209 

  210 

 
Fig. 2. (a) Overview of the systems investigated in the 65 reviewed articles. (b) The number of studies measuring the stability 
properties variability, recovery, resistance and persistence. (c) The number of dimensions of specific situations varied in each 
study. (d) The number of studies investigating no disturbance, press, pulse or multiple pulse disturbances.  
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4 Discussion and recommendations 211 

Using the concept of resilience to guide the sustainable management of complex ecological 212 

and social-ecological systems is attractive and has been called for by international 213 

organizations. However, there are two main challenges. First, resilience is a multidimensional 214 

concept necessitating the measurement of several stability properties for different state 215 

variables, reference states, disturbance types and spatio-temporal scales (Carpenter et al., 216 

2001; Grimm and Wissel, 1997). Second, measurement of several stability properties is 217 

prohibitively costly in empirical and experimental conditions. In this context, ABMs provide 218 

a solution by allowing for an extensive exploration of the multidimensionality underlying 219 

resilience at relatively low costs.  220 

Despite the suitability of ABMs to study resilience, agent-based modelling is not a 221 

panacea to resilience research and has to overcome several challenges. ABMs have been 222 

criticized for their high complexity and uncertainty, and the consequent lack of predictive 223 

power, validation and verification (Bankes, 2002; Grimm and Railsback, 2005; Lempert, 224 

2002; Matthews and Gilbert, 2007; Parker et al., 2003). ABMs and models in general cannot 225 

capture the full complexity of real agent-based systems. Therefore, reality checks with 226 

targeted empirical research and observations, narratives of events and mechanisms that are 227 

not captured in data sets, and “expert judgements” can be critical (Millington et al., 2012; 228 

Topping et al., 2015). Moreover, tools and approaches have been developed to increase rigor 229 

and comprehensiveness of agent-based modelling (Grimm et al., 2005), as well as to improve 230 

modelling practice to better inform decision making (Grimm et al., 2014; Schmolke et al., 231 

2010). 232 

Our review demonstrates that ABMs studying most dimensions of resilience and 233 

specific situations have been developed, which provides insight into the resilience of the 234 

modelled systems as well as the mechanisms underlying it. However, our review also 235 
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indicates that most of these dimensions have been studied in isolation. Therefore and based 236 

on the overall progress that has been made in agent-based modelling over the last 20 years, or 237 

so (An, 2012; Epstein, 2006; Farmer and Foley, 2009; Grimm and Berger, 2016a, 2016b; 238 

Matthews and Gilbert, 2007), we here make three recommendations to advance ABM as a 239 

tool for resilience research in ecology and socio-ecology (Table 2). These are heuristics rather 240 

than specific methods or techniques, but we nevertheless hope that they help broadening the 241 

scope of future studies.  242 

First, we recommend quantifying two or more stability properties simultaneously. The 243 

fact that resilience cannot be addressed with a single metric needs to be better addressed in 244 

ABMs because the different stability properties are not necessarily correlated (Dey and Joshi, 245 

2013; Hillebrand et al., 2018; Tung et al., 2016), and measuring only one stability property 246 

can mislead the management actions. For example, Naghibi and Lence (2012) found that the 247 

impact of high flow events due to river management on salmon population during the 248 

spawning period materialized much earlier regarding recovery than regarding resistance. 249 

Therefore, just looking at resistance would underestimate the long-term impacts of high flow 250 

events, e.g., as a result of opening a floodgate.  251 

Regarding variability, instead of only looking at the change of a variable over time, 252 

the coefficient of variation can be better compared among studies as it is independent of the 253 

magnitude and allow for a closer integration of modelling and empirical research, where this 254 

metric is commonly used (Donohue et al., 2016). On a related note, we encourage modellers 255 

to address resistance in their resilience assessments, which is often measured in empirical and 256 

experimental studies, albeit mostly in laboratories and simplified, small systems. Only 257 

combined efforts and the use of identical stability properties by empiricists and modellers 258 

will truly advance our understanding of resilience and its application. Moreover, we suggest 259 

to not only looking at the change of the state variable, but also at the behaviour of the 260 
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underlying buffer mechanisms, which has been hardly done in the reviewed studies. These 261 

buffers may typically respond slowly, but can lead to nonlinear changes or regime shifts once 262 

a certain threshold is exceeded (Biggs et al., 2012).  263 

Regarding persistence, a system definition is required. For population this is 264 

straightforward in principle, because extinction clearly defines how long a population 265 

persisted. For real populations however, quasi-extinction may be more relevant (Holmes et 266 

al., 2007), because it is usually impossible to show that a population really went extinct, so 267 

that detection thresholds need to be defined. Also for communities and ecosystems, the 268 

definition of such thresholds is required. The arbitrariness of such thresholds can be reduced 269 

by their systematic variation, while looking for abrupt changes in characteristics, functions, 270 

or services of a system. For semi-arid savannas, for example, 20% tree cover is a generally 271 

accepted threshold, because higher values indicate bush encroachment due to overgrazing, 272 

which will lead to the loss of the service “rangeland” (Jeltsch et al., 1997). 273 

Second, we propose to assess stability properties from different perspectives, i.e. 274 

under different specific situations. This is important for both an improved understanding of 275 

resilience, and the reconciliation of different management and policy objectives (Donohue et 276 

al., 2016). Our review revealed that most models only consider a few specific situations. 277 

Once a model of adequate complexity exists and has proven to be structurally realistic 278 

(Grimm and Railsback, 2012; Wiegand et al., 2003), many specific situations can be 279 

assessed, which will provide more comprehensive insights into resilience. For example, a 280 

static reference state may be appropriate for a pulse disturbance, but including a press 281 

disturbance requires a dynamic reference. Moreover, several state variables describing 282 

different levels of organization often respond differently to changes and may require different 283 

reference states. For example, Cordonnier et al. (2008) applied a management perspective to 284 

assess the protective ability of managed forests stands against avalanches and rock falls, by 285 
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measuring how long several threat-specific state variables stayed within favourable reference 286 

states. They found that only relatively low thinning intensities protect against both threats, i.e. 287 

multiple dimensions needs to be observed to guide proper management. Similarly, only a 288 

systematic combination of various disturbances, potentially acting on different scales, allows 289 

to disentangle multiplicative, synergistic and antagonistic effects (Belarde and Railsback, 290 

2016). Likewise, varying the spatial scale, in particular the size, of the modelled system is a 291 

simple but often rewarding exercise, which is often ignored. Exploring variability, recovery, 292 

or persistence for different system sizes can lead to surprises because certain mechanisms 293 

may unfold only at larger scales, or break down at smaller ones (Cumming et al., 2016).  294 

Third, we advocate starting model-based resilience analysis with hypotheses about 295 

underlying resilience mechanism and how one could quantify their effects. Many resilience 296 

mechanisms have been proposed, but if, how and when they render a system resilient remains 297 

often unclear (Biggs et al., 2012; Desjardins et al., 2015), for instance, regarding the role of 298 

biodiversity for the resilience of complex systems (Cardinale et al., 2012). Since many of the 299 

assumed mechanisms, such as learning and adaption, are related to individual variation, 300 

interactions, decision-making and feedbacks, ABMs offer a promising tool to uncover them. 301 

To this end, we manipulate, or even deactivate a given mechanism, for example 302 

recolonization, social influence on land use practices, or learning, and explore how the 303 

different dimensions of resilience change, across different situations. Ten Broeke et al. 304 

(2017), for example, found that adaption through inheritance of specific traits (harvesting and 305 

moving rates) could prevent the collapse of a stylized common-pool resource system.  306 

A stronger focus on resilience mechanisms can, in principle, reconcile the reductionist 307 

and holistic interpretations of resilience to some degree: adaptive capacity, for example, 308 

would no longer only reflect a way of thinking or dealing with agent-based complex systems, 309 
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but we could quantify the effects of adaptive capacity on resilience (measured by the three 310 

stability properties) and compare it with other possible resilience mechanisms.  311 

In conclusion, we found that that the reviewed studies typically focus on a single 312 

dimension of resilience by using variability as a proxy for persistence, and are limited to one 313 

reference state, disturbance type and scale. Moreover, only few studies explicitly test the 314 

ability of different mechanisms to support resilience. Therefore, we suggest that it is time to 315 

move on from focusing on a single attribute of resilience to reveal the multidimensionality of 316 

resilience, especially given that ABMs provide a unique opportunity for doing so backed up 317 

by increasing computational power. In particular, we propose using ABMs to systematically 318 

assess multiple stability properties for different situations, while explicitly testing the effect 319 

of potential resilience mechanisms. The recommendations presented here will hopefully 320 

promote a more systematic and comprehensive exploration of the multiple dimensions of 321 

resilience in ABMs. Such advancement will foster the understanding of the mechanisms 322 

determining resilience, which is fundamental to safeguard ecosystem services and to 323 

ultimately ensure sustainability.  324 

Table 2 Main recommendations to advance agent-based modelling as a tool for resilience research in ecology 325 
and socio-ecology.  326 
Aspect Recommendations 
 
Stability properties 
  

 
• Quantify multiple stability properties simultaneously, because they are not necessarily 

correlated 
• Consider to measure variability as coefficient of variation (ratio of standard deviation to 

mean) for better comparison among studies and closer integration of empirical research  
• Measure the behaviour of the underlying buffer mechanisms, as they can lead to nonlinear 

changes or regime shifts 
• Define systems to assess persistence, e.g. by systematically identify thresholds to measure 

quasi-extinction  
 

Specific situations 
 

• Assess stability properties for different situations to foster a more comprehensive 
understanding of resilience  

• Assess the stability properties for several state variables describing different levels of 
organizations to account for different conclusions about resilience 

• Use a dynamic reference state for press disturbances to account for long-term changes 
• Systematically combine various disturbances with different strengths and acting on different 

scales to disentangle multiplicative, synergistic and antagonistic effects  
• Explore stability properties for different temporal and spatial scales, because certain 

mechanisms may unfold only at larger scales, or break down at smaller ones  
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Resilience mechanisms 
 

• Identify potential resilience mechanisms  
• Explicitly test and manipulate mechanisms to see if, how, and under what conditions they 

render a system resilient 
 

  327 
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Supplementary materials 646 

6.1 Review methods and definitions 647 

While we included some additional articles (see main text), we did not attempt a full “snow 648 

ball search”, i.e. checking the reference lists of all articles found for further relevant 649 

publications. The list of all evaluated and excluded papers is provided in the Supplementary 650 

material. For the purpose of this review we define scenarios as various instances of the same 651 

model used to assess system’s response to targeted changes (e.g. contrasting policies, 652 

structural and procedural changes, and targeted parameter changes). We disregarded 653 

scenarios only varying disturbances, to clearly distinguish scenarios and disturbances. 654 

Regarding disturbance, we differentiate pulse disturbances following Pickett and White 655 

(1985, p. 7), multiple pulse and press disturbances. A pulse disturbance has a beginning and 656 

an end, is short relative to the typical time scale of change of the system considered, and has 657 

consequences beyond its duration. Multiple pulse disturbances overlap with “disturbance 658 

regimes” (e.g. continuous vs. rotational grazing), which are characterized by the frequency 659 

and spatial extent of disturbances in a certain region (Turner, 2010). Contrastingly, a press 660 

disturbance permanently changes system drivers or structure. For all disturbance types, we 661 

only considered physical changes, while socioeconomic changes (e.g. price shocks, policy 662 

changes) were considered in scenarios. 663 
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6.2 Supplementary results 664 

Stability properties 665 

If excluding variability, only two studies investigated more than one stability property. 666 

Naghibi and Lence (2012), for example, assessed different properties of fish population size; 667 

population variability, the time until the initial population recovered after a high flow event, 668 

and the population differences between the disturbed and undisturbed state (amplitude, which 669 

may indicate resistance). Recovery was quantified mostly via return time to pre-disturbance 670 

conditions, except for Balbo et al. (2014), who quantified the maximum amplitude allowing 671 

for recovery of hunter-gatherer populations under climatic changes. Resistance was measured 672 

as the amplitude between a disturbed and non-disturbed state (Naghibi and Lence, 2012), as 673 

the reaction time relative to the appearance of a disturbance (Dressler et al., 2016), as the 674 

deviance from a baseline scenario under different mechanisms potentially enhancing 675 

resistance (Rasch et al., 2016; Smith, 2014), or as economic buffer capacity (Rasch et al., 676 

2016). Persistence was typically determined by the rate or probability of extinction of the 677 

population of interest in the entire system, except Cordonnier et al. (2008), who measured the 678 

time spend within favourable ranges of different state variables (“permanence”), and Johnson 679 

(2009), who interpreted changes in characteristic length scales as range shifts. 680 

Specific situations 681 

In total, 30 studies varied two dimensions of specific situations, typically the level of 682 

organization and state variable (n=24). Only 14 studies varied three dimensions, of which all, 683 

except two, included level of organization and state variable. Four and five dimensions were 684 

varied in one study each. Johnson (2009) used different window sizes to assess natural length 685 

scales of complex systems (landscape level) and species composition (community level) 686 

across two different disturbances (patch clearing and species invasion). Cordonnier et al. 687 

(2008) defined different reference states for three different state variables on different levels 688 
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of organization, which were used to assess the response of forests to two different 689 

disturbances (random and gap thinning) acting on different spatial extents.  690 

In 74% of the studies, at least two state variables were quantified. Most studies 691 

considered demographic (e.g. population size, sex ratio), ecological (e.g. diversity, plant 692 

cover, biomass) and economic (e.g. income, yield) variables. In total, 38 studies assessed 693 

more than one level of organization. Fujii et al. (2009), for example, investigated the 694 

resilience of subtropical forests on three different levels. They measured diameter at breast 695 

height (individual level), species diversity and composition (community level), and biomass 696 

(ecosystem functioning).  697 

Reference states were not defined in almost half of the studies (n=29). Eight studies 698 

defined static reference states (e.g. landscape configuration before a disturbance), one study 699 

included static and dynamic states, while the remaining 27 studies compared the simulations 700 

against a dynamic reference (e.g. baseline scenario). Only two studies included more than one 701 

reference state; Cordonnier et al. (2008) defined favourable value ranges of three indicators 702 

in addition to a dynamic baseline scenario, while Jenkins et al. (2017) compared eight 703 

experiments of insurance schemes and technical protection measures to reduce flood damage 704 

under future climatic conditions against the respective experiments under current climate 705 

(baseline).  706 

Of the reviewed studies, 43 explicitly modelled disturbances, but only ten studies 707 

included more than one disturbance (nine studies included two and one study three). For 708 

example, Rammer and Seidl (2015) studied the impacts of multiple forest thinning, a single 709 

clear cut and global warming on timber production. Press disturbances, altering the system 710 

permanently, were investigated in 13 studies, such as climatic changes (Balbo et al., 2014; 711 

Janssen, 2010; Jiang et al., 2012; Perez et al., 2016; Rammer and Seidl, 2015; Rebaudo and 712 

Dangles, 2015; Reed et al., 2011; Smith, 2014), the exclusion of fish (Doropoulos et al., 713 
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2016; Mumby et al., 2016), invasion of a new species (Johnson, 2009), and exposure to 714 

chemicals and salt (Bi and Liu, 2017; Gabsi et al., 2014). Most studies assessed multiple 715 

pulse disturbances, e.g. multiple natural disasters (Charnley et al., 2017; Jenkins et al., 2017; 716 

Naghibi and Lence, 2012; Vincenzi et al., 2008; Vogt et al., 2014), climatic shocks (Dieguez 717 

Cameroni et al., 2014; Rogers et al., 2012), clearing or thinning (Cordonnier et al., 2008; 718 

Fujii and Kubota, 2011; Johnson, 2009; Kubicek et al., 2012; Rammer and Seidl, 2015; 719 

Soussana and Lafarge, 1998; Wakeford et al., 2008; Wild and Winkler, 2008), and fishing 720 

events (Kubicek and Reuter, 2016; Lindkvist and Norberg, 2014; Morrison and Allen, 2015; 721 

Piou et al., 2015; Schlüter and Pahl-Wostl, 2007; Vergnon et al., 2008).  722 

Of the reviewed articles, only ten assessed resilience at more than one spatial scale. Of 723 

these studies, five varied the spatial extent of disturbances, for example, Kubicek et al. (2012) 724 

studied the effects of different diameters of a mechanistic disturbance on a coral reef 725 

community. Four studies applied the same model to different study sites (Dressler et al., 726 

2016; Fujii et al., 2009; León and March, 2014; Vincenzi et al., 2008). In contrast, Ye et al. 727 

(2013) tested the effect of the configuration and number of habitat patches on population 728 

dynamics in fragmented landscapes. Johnson (2009) used different window sizes to assess 729 

natural length scales of complex systems.  730 

Temporal scales were varied in 13 studies, of which eleven tested various durations of 731 

disturbances. Kanarek et al. (2008), for example, introduced a climatic disturbance leading to 732 

resource degradation for one, five or ten years to study its effects on foraging behaviour of 733 

geese. In contrast, Balbo et al. (2014) used precipitation models on different temporal scales 734 

to investigate scale-dependent disappearance of hunter-gatherers, and Christie and Knowles 735 

(2015) tested if different time scales affect their conclusions regarding the resilience of 736 

habitat corridors. Three studies combined both spatial and temporal scales. Wild and Winkler 737 
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(2008), for example, systematically varied the proportion and interval of krummholz removal 738 

to study its coexistence with grassland.  739 

Resilience mechanisms 740 

Resilience mechanisms could be identified in 56 articles, but were explicitly communicated 741 

in only 40 articles. Only about one quarter of the studies investigated potential resilience 742 

mechanisms directly. Bohensky (2014), for example, found that learning improved the 743 

success of water management strategies under variable water availability. Decelles et al. 744 

(2015) showed the importance of geographical connectivity for successful transportation of 745 

larvae transport. Schlüter et al. (2009) and Schlüter and Pahl-Wostl (2007) found that the use 746 

of multiple ecosystem services (response diversity) increased the economic and ecological 747 

performance of a river ecosystem providing fish and irrigation for agriculture. ten Broeke et 748 

al. (2017) revealed that adaption through inheritance of specific traits (harvesting and moving 749 

rates) could prevent the collapse of a common-pool resource system.  750 
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