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Inverse modelling of snow depths

Uwe Schlink1, Daniel Hertel
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Permoserstr. 15, D-04318 Leipzig, Germany

Abstract

For inclusion into operational snow forecasting we suggest a Bayesian procedure estimating from 
past observations site-specific parameters with confidence intervals, based on a snow surface model, 
and extended by a parameterization scheme for the often not routinely registered incoming long-
wave radiation. This inverse model is validated with simulated data. Simultaneous estimation of all 
parameters proved to be less biased. Performance is assessed for data gathered at three 
meteorological stations during a 2.5-year-period and also for a period of 51 years.

We found that snow albedo was 0.94, 0.89, and 0.56, snow emissivity was 0.88, 0.92, and 0.99, and 
snow density (in ) was 0.14, 0.05, and 0.11 for the stations Wasserkuppe, Erfurt-Weimar, and ³/ cmg
Artern, respectively. The soil heat flux estimation was very poor; quality of snow density estimates 
was best. The inverse approach is recommended for snow forecasts at sub-alpine stations with more 
or less urban impact.

Key words: Bayesian estimation; operational snow forecasting; prediction performance; sub-alpine 
snow cover
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1 Introduction

A physically based point snow surface model (Energy balance Snow Cover Integrated Model - 
ESCIMO) has been developed (Strasser et al., 2002) and implemented in a spreadsheet 
(ESCIMO.spread; (Strasser and Marke, 2010)) as an easy-to-use and portable software tool for the 
hourly simulation of the energy balance, the water equivalent and melt rates of a snow cover. This 
one-dimensional approach assumes the snow cover to be a single and homogeneous pack and solves 
the energy and mass balance equations for the snow surface assuming simple parameterizations of 
the relevant processes.

ESCIMO simulations require the specification of parameters. While some of them are physical 
constants (such as the specific heat of snow or the melting heat of ice), others strongly refer to the 
situation that is under consideration. The latter comprise (Strasser and Marke, 2010) the soil heat 
flux, snow albedo, emissivity of snow, clear sky emissivity, density of snow, a recession factor 
characterizing the albedo changes during ageing of snow, the threshold snowfall needed for the 
albedo to switch from old (aged) to new snow, a temperature threshold for the detection of the 
precipitation phase (liquid or solid), and two parameters relating the sensible and the latent heat flux 
to wind speed (Kuchment and Gelfan, 1996).

Many of the model parameters can be derived from site measurements or from remote sensing data, 
applying the AMUNDSEN (Alpine Multiscale Numerical Simulation Engine) software tool, for example 
for the specification of the snow albedo (Strasser et al., 2004). Such specification procedures involve 
tentative simulations that are evaluated by a comparison with observations. Best consistency of 
simulations and observations indicate an adequate value of a parameter. Parameters specified at a 
certain site are often transferred to other sites for want of better information.

Environmental data science can provide a remedy to the scarcity in site-specific parameters. The 
integration of data routinely gathered and delivered by monitoring systems (such as weather 
observations including snow depths) with data analysis tools facilitates the estimation of the wanted 
parameters for many locations and time periods. The results of the estimation procedure find their 
way into the operational snow forecasting for the benefit of the public. So far, in this chain of data 
flow there is a gap because of the lack of an adequate technique providing the site-specific 
parameters.

Taking advantage of the ESCIMO software code, here we suggest an inverse model for the estimation 
of model parameters from routinely observed snow data. Due to the complexity of the ESCIMO 
model, straightforward estimation techniques (e.g. maximum likelihood) are difficult to apply, and 
therefore we suggest Bayesian inference that provides interval estimates for the model parameters. 
In the following we explain the development, application and evaluation of this approach for the 
parameters snow density, snow albedo, snow emissivity, and soil heat flux. Compared to all other 
model parameters, these parameters are most influenced by the considered site. Parameters 
representing threshold values can weaken the convergence of the Markov Chain Monte Carlo 
simulations applied for the Bayesian inference. For that reason these threshold parameters will need 
special consideration and we did not include them here.

In our approach, the ESCIMO model was implemented, for parameter estimation, in OpenBUGS 
(Lunn et al., 2009) and, for simulations, also in R (R Core Team, 2014). In an extensive validation 
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study with simulated data we investigated the performance of the Bayesian parameter estimation 
and assessed bias and uncertainty of the estimates. Finally, the estimation procedure was applied to 
snow depth data observed at three different stations for a comparison of the estimated parameter 
values.

Our study region is Thuringia situated in the Central German Uplands. Analyzing meteorological data 
measured at the stations in Erfurt-Weimar (316 m a.s.l.), Artern (164 m a.s.l.), and Wasserkuppe (912 
m a.s.l.), we probe ESCIMO at sub-alpine levels and with urban influences. All data were provided by 
the German Weather Service (DWD, Regionales Klimainformationssystem ReKIS). As the 
ESCIMO.spread model works with longwave radiation measurements in the energy balance and 
these data were unavailable from the considered stations, here we additionally suggest a 
parameterization scheme for the longwave radiation. The contribution of longwave radiation to the 
energy balance is parameterized by the snow emissivity, which is one of our estimated parameters. 
For compatibility with the observed meteorological data, for which hourly data were not available, 
we also modified the time-basis of ESCIMO from hourly to daily time-steps.

Exploring the capabilities and limitations of ESCIMO, in our study we hypothesize that:
- site-specific model parameters can be estimated by means of inverse modelling; they vary between 

sites and can differ from values given in the literature,
- for sub-alpine sites, the estimated parameters can improve the performance of ESCIMO compared 

to the default parameter values suggested with ESCIMO.spread in the alpine context,
- routinely gathered meteorological data are suitable for snow depth predictions based on ESCIMO 

utilizing parameter estimates derived from past snow observations, and this procedure of inverse 
modelling can be included into operational weather forecasting systems,

- site-specific parameter estimates suggest that the accumulation of snow depends on the altitude,
- ESCIMO is applicable to both hourly and daily meteorological data.

2 Model setup and inverse modelling

The energy balance ( ), equ.( 5), of a snow pack is modelled considering the soil heat flux ( ), EB B
advective energy (  and , respectively) supplied by solid ( ) or liquid ( ) precipitation, aS aR S R
sensible ( ) and latent ( ) heat fluxes, as well as short- ( ) and longwave ( ) net radiation. H E G)1(  L
On the basis of the individual terms given in detail by (Strasser and Marke, 2010) the energy balance 
is applied to melting (if air temperature ≥ 273.15K) and no melt (air temperature < 273.15K) and 
eventually predicts the snow water equivalent (  in mm). Here the model was reformulated for SWE

the random variable snow depth (  in cm with the density of water ) that involves 
o
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The expectation value of snow depth ( ) results from the sum of precipitation, sublimation and 
melting depending on whether there was snow cover on the previous day (eq. 2). For days without 
snow cover both sublimation and melting disappear (eqs. 3+4). In case of snow cover the water 
equivalent of sublimation ( , eq. 3) is determined by the available latent heat ( , eq 10) which in Sub E
turn depends on the relative humidity ( ) and convection due to wind speed ( ). Equation (3) relHum u
couples the latent heat (in W/m²) to the amount of sublimated snow (in mm/(86400 s)) by help of 
the sublimation heat of water (283550 Ws/kg). Likewise, eq. (4) couples the energy balance (eq. 5) to 
the amount of melted snow by help of the melting heat of snow (337500 Ws/kg). While eq. (2) 
represents the mass balance, eq. (5) is the energy balance and both are linked via sublimation and 
melting (eqs. 3 and 4). Melting (eq. 4) occurs only when the energy balance ( , eq. 5) is positive, EB
i.e. the energy flux is directed to the surface (all energy flux densities are expressed in W/m²). 
Melting is limited either by the available amount of snow or by the available energy (eq. 4).

In the model ESCIMO.spread a constant soil heat flux of  was assumed (eq. 6), as soil ²/2 mWB 
heat flux measurements are scarcely available. The advective energy supplied by snow or by rainfall 
on snow is proportional to the amount of precipitation, the air temperature, and the specific heat of 
snow ( )   or water ( ), respectively (see eqs. 7+8, 112100  KJkgcs

114200  KJkgcw
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86400 representing the number of seconds per day). The sensible heat flux ( ) is expressed with H
wind speed ( ) in eq. (9) and, accordingly, the latent heat flux ( ) is calculated in eq. (10) smu /in E
where (  in hPa) is the water vapor partial pressure calculated using the Magnus formula ( ), e )(E
and  likewise for the snow surface (Kuchment and Gelfan, 1996). The last but one term in the Se

energy balance (eq. 5) represents the amount of shortwave radiation (global radiation,  in G
) which is absorbed by the snow surface with the parameter snow albedo ( ).²/64.8²/ mWcmJ  

Extending the ESCIMO model that requires measurements of the incoming longwave radiation, here 
we assess this term using the clear sky emissivity ( ) for the fraction of sky not covered by clouds cl

(eq. 11). For the clear sky emissivity we use an empirical formula (see Prata (1996)). The cloud 
fraction is estimated by help of the solar index ( , eq. 12) that is the ratio between measured global s
radiation and theoretical shortwave radiation ( ) for clear sky conditions. This effective solar tI

constant tI  involves the solar constant , corrections by zenith angle ( , with ²)/1370( mWIo  Z
, )cos()ndeclinatiocos()latitudegeographiccos()ndeclinatiosin()latitudegeographicsin()cos( hZ 

hour angle , , ) and   )12/ tth noon   ))80(sin(4102.0ndeclinatio 365
2  DoY Year theofDay DoY

transmission coefficients (Crawford and Duchon, 1999): . (13)awpgRot TTTTZII )cos(

For the transmission coefficients we have (Atwater and Brown, 1974; McDonald, 1960; Meyers and 
Dale, 1983):

, , (14))051.000949.0(084.0021.1  pmTT pgR 1)²(cos1224)cos(35  ZZm

,    with (15)3.0)(077.01 mwTw  m
aT 935.0

air pressure  in , optical air mass  at , precipitable water   for  as p kPa m kPa101.3 w Te /4650 e
vapor pressure in  and  as air temperature in . In the longwave radiation balance (eq. 11), kPa T K
incoming radiation is complemented by outgoing radiation parameterized by snow emissivity ( ).S

A second extension of the ESCIMO model, which calculates the snow water equivalent (  in SWE
mm), is the conversion into snow depth ( ) that involves the station-specific snow density (for new SD
snow an approximation is , see glossar at www.dwd.de). This is taken into account ³/05.00 cmg
in eq. (2). Thirdly, while the original ESCIMO was working on an hourly basis (  in ), here we used t h
the model for daily observations (for that purpose the 86400 s (representing one day) were included 
in eqs. 3, 4, 7, and 8) and the meaning of all quantities changed accordingly (  in ). In the t d
calculation of the effective solar constant (eq. 13) we used .noontt 

The ESCIMO model was implemented in R for the calculation of simulations and, additionally, in 
OpenBUGS (Lunn et al., 2009) applying an MCMC (Markov Chain Monte Carlo) scheme (based on the 
Gibbs sampler) for Bayesian inference. Table 1 summarizes all observational variables, the 
parameters and the constants of the ESCIMO model (eqs. 1-12). For the inverse modelling of the 
parameters snow density, snow albedo, snow emissivity, and soil heat flux we utilized flat priors of 
uniform, uniform, uniform, and exponential distributions, respectively.
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Table 1: Variables, parameters, and constants of ESCIMO (eqs. 1-12) used for simulations and validation.

variable symbol unit

Snow depth SD cm
Precipitation as snow S mm
Precipitation as rain R mm

Wind speed u sm /
Air temperature  C

Relative air humidity relHum %
Global radiation G 2mW

parameter symbol default Wasserk. Erfurt-W. Artern unit
Albedo  0.90 0.90 0.90 0.90 --

Density of snow o 0.05 0.18 0.13 0.10 ³/ cmg

Emissivity of snow S 0.99 0.99 0.99 0.99 --
Soil heat flux B 2.00 2.00 2.00 2.00 2mW

Threshold temperature for 
precipitation phase detection wT 275.16 K

constant symbol value unit
Stefan-Boltzmann constant  81067.5  42  KmW

Specific heat of snow (at 0°C) ssc 31010.2  11  KkgJ
Specific heat of water (at 5°C) swc 31020.4  11  KkgJ

Melting heat of ice ic 510337.3  1kgJ
Sublimation/resublimation heat 

of snow (at -5°C) sl 6108355.2  1kgJ

3 Design of the study

In a first step, daily snow depths were simulated for different values of the considered four 
parameters (snow density in a range of , snow albedo in a 2.0)01.0(1.0  srMo

range of , snow emissivity in a range of , and soil heat flux in a 9.0)1.0(1.0 99.0)01.0(90.0s

range of ) and using real meteorological data at three sites (Erfurt-Weimar, Artern, 5.2)1.0(5.1B
Wasserkuppe) for a 2.5-year period (August 2010 – December 2012).

Applying the Bayesian inversion procedure (see OpenBUGS code in supporting material) to these 
simulated data, we calculated estimates for the specified four parameters. Finally, we compared the 
estimates with the original parameter values used in the simulations. From this validation the 
precision of the estimates and the occurrence of biases become obvious. Biases can result from 
dependencies between parameters. As most of the parameters are tied in with eq. (5) we speculate 
that the parameter estimates might be biased in some combinations and for some values. Analyzing 
the mutual interaction of parameters, we estimated them in all 32 different combinations 
(  in combination with others: ;  ),,,();,,();,,();,,();,();,();,();(  BBBB ssss

 in combination with others: ;  ),,,();,,();,,();,,();,();,();,();(  BBBB ssss

 in combination with others: ; B ),,,();,,();,,();,,();,();,();,();(  ssss BBBBBBBB

 in combination with others: ) s ),,,();,,();,,();,,();,();,();,();(  BBBB ssssssss
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keeping the other parameters constant, respectively. For the constant parameters we used the 
ESCIMO default values (Table 1). The MCMC procedure run for 100.000 updates (thinning 100) with 
rapid convergence (Fig. 1) for . For  the convergence was much poorer. All results were s ,, B
robust against variations in the start values.

Figure 1: Convergence of MCMC iterations for an estimation of albedo and snow density with 
OpenBUGS (using data at Erfurt-Weimar; results are similar for the other stations).

After model validation we applied the approach to observational data gathered routinely at three 
weather stations (Erfurt-Weimar, Artern, Wasserkuppe) and estimated the four parameters 

 well as their uncertainty for different parameter combinations. All results were robust ),,,(  Bs

against variations in the start values. The performance of the estimation procedure was finally 
assessed from the quality of forecasts calculated with observed data for a 51-years period (sect. 4.3).

4 Results

4.1 Model validation

Validating the suggested inverse modelling procedure we compared parameter estimates with the 
parameter values used for simulating the data. This comparison also considered joint estimations of 
different parameter combinations for an assessment of mutual bias effects (See Fig. 2 for 
Wasserkuppe; results are similar for stations Erfurt-Weimar and Artern).

A feature that is obvious for all three stations is the occurrence of a strong bias towards larger albedo 
estimates if the albedo is estimated together with the snow emissivity. In contrast, snow density and 
soil heat flux do not bias the albedo estimate. The dependence between the estimates  and  is a ̂ s̂
consequence of eq. (5) where the albedo is a coefficient of global radiation (G) and snow emissivity is 
a coefficient of the surface temperature ( , see eq. 11). A quantitative comparison of the terms in S
eq. (5) reveals that for large albedo ( ) the short- and the longwave energies are similar. 9.0
During clear sky conditions the radiation and surface temperature data are collinear and this 
generates an association between the estimates  and . Further, we find that the bias of  is ̂ s̂ ̂
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largest for Wasserkuppe and smallest for Artern. This might be caused by different ageing of snow 
due to differences in altitude (ca. 800m) and shortwave radiation.

Figure 2: Estimated albedo at station Wasserkuppe (for ) ³/18.0²,/0.2,99.0 cmgmWBs  
depending on the albedo used for snow depth simulation and on the combination of 
parameter estimates. Dark lines represent the median; grey areas range from 25th to 75th 
percentile; red line indicates exact correspondence. All estimates cluster in two distinct 
groups of error ranges; the group involving snow emissivity is strongly biased to larger 
albedo estimates. The asterisk represents the median albedo estimated for a simulation 
using .6.0,9.0   s

In our validation study we simulated snow depth data for , which is too large (compared 99.0s
with the real snow emissivity estimated for Wasserkuppe; see below) and therefore the albedo is 
overestimated. Testing a more realistic value of  for simulations, the bias of the estimated 90.0s
albedo (jointly estimated with ) is clearly reduced (cf. asterisk in Fig. 2). This finding suggests that s
for subalpine regions the default  in ESCIMO might have to be replaced by a more adequate 99.0s
value. Later on we will recommend values for  on the basis of a joint estimation of albedo and s
snow emissivity from observational data (see below).

Another clear and general feature is that the error range of the albedo estimate decreases with 
increasing albedo. Estimations become more precise with the availability of more data that means 
for long spells of snow, which can be generated by repeated snow fall. In this way, long spells 
represent the large albedo of fresh snow ( , (Kraus, 2008)). Conversely, short spells of 9.08.0 
snow-cover can represent aged snow ( , (Kraus, 2008)).90.045.0 

Comparing the different stations we observed that the albedo estimates equal the theoretical albedo 
only for values larger than approximately . For  the error increases and for very small 5.0 5.0
albedo values the estimate is nearly independent on the albedo used for the simulations (this is 
obvious for the stations Erfurt-Weimar and Artern; not shown here). This can be understood as a 
consequence of the differences in the number of days without snow that is  in the %75%,89%,92
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considered time period for Artern, Erfurt-Weimar, and Wasserkuppe, respectively. For large albedo 
values ( ) the bias vanishes for all stations, even for the albedo estimated jointly with snow 90.0
emissivity, and the error range diminishes to about 1%. For small albedo values ( ) the 50.0
estimation is strongly biased and therefore useless.

Though the estimates of the snow density ( ) tend to be slightly biased by a joint estimation 
together with snow emissivity (Figure 3), this bias is not significant because the error range includes 
the exact agreement between theoretical and estimated values. There is a general (but also not 
significant) tendency to overestimate the snow density. As Wasserkuppe has more days with snow 
cover, the precision of the estimated snow density is higher, compared with the other stations.

Figure 3: Estimated snow density at station Wasserkuppe (for ) ²/0.2,99.0,90.0 mWBs  
depending on the snow density used for snow depth simulation and on the combination of 
parameter estimates. Dark lines represent the median; grey areas range from 25th to 75th 
percentile; red line represents exact correspondence.

The estimation of snow emissivity ( ) has diverse results (Fig. 4). For Wasserkuppe all estimates s
cluster in three distinct groups (Figure 4a). A joint estimation of  with albedo generates an s
overestimation and an estimation jointly with snow density (but not with albedo!) generates an 
underestimation of the snow emissivity in the range . For Erfurt-Weimar just those 96.095.0  s
estimations involving the albedo, are biased towards larger snow emissivity and all others are 
unbiased (Figure 4b). For the station Artern all estimations of snow emissivity are nearly not biased 
(Figure 4c).

In result, for values  the estimation of snow emissivity is free of bias. Our simulations 92.0s
confirm the above observation that estimates of albedo and snow emissivity interact. Therefore the 
accuracy of snow emissivity estimations might be improved for other values of the albedo.

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531



10

(a)            

(b)            

(c)            

Figure 4: Estimated snow emissivity at Wasserkuppe (a, for ), Erfurt-Weimar (b, for ³/18.0 cmg
), and Artern (c, for ) (all with ) ³/13.0 cmg ³/10.0 cmg ²/0.2,90.0 mWB 

depending on the snow emissivity used for snow depth simulation and on the combination 
of parameter estimates. Dark lines represent the median; grey areas range from 25th to 
75th percentile; red line represents exact correspondence.
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To illustrate an advantage of the Bayesian approach over the maximum likelihood method we used 
the latter for the estimation of the parameter snow emissivity ( ). For the estimation of this s

parameter and the situation of snow cover ( ) and without any snow or rain precipitation 0SD
( ) the ESCIMO equations can be reformulated to a generalized regression. This regression 0 RS
with offset involves an exponential distribution of the snow depth . Given )exp(~ ttSD 

 and the daily values of , an estimate of the snow emissivity can be ³/1.0 cmg tttt urelHumSD ,,,

calculated e.g. in R using glm (with Gamma distribution as generalization of the exponential and with 
inverse link function) and results in  for the station Wasserkuppe. This  25.1,97.014.011.1ˆ s

interval estimate overlaps with the Bayesian estimate , but does not comply with the 01.099.0 

restriction , as maximum likelihood estimators approximately follow a normal distribution.10  s

The estimation of the soil heat flux ( ) is rather poor (Figure 5) for all stations. There is not only bias B
but also a very large error range. The latter fact corresponds to the poor convergence of the MCMC 
procedure (not shown here) that has extremely extended the computing time. Considering the 
magnitude of the energy terms in the balance eq. (5), we find that  is smaller than all other terms B
by a factor of 1/10 … 1/100. Therefore minor inaccuracies of the other energy terms will have an 
immense impact on the estimation of the soil heat flux.

Figure 5: Estimated soil heat flux at station Wasserkuppe (for ) 99.00.18g/cm³,,90.0  s
depending on the soil heat flux used for snow depth simulation and on the combination of 
parameter estimates. Dark lines represent the median; grey areas range from 25th to 75th 
percentile; red line represents exact correspondence.

Another reason for the large estimation error of  is that the soil temperature that is relevant for B
the soil heat flux can be different. ESCIMO assumes a soil temperature equal to the snow 
temperature (of 273.15K), and this is just an approximate parameterization of the model. Further, 
the bias of the soil heat flux estimate towards lower values might be caused by the fact that we use 
the ESCIMO equations for daily time-steps. Originally it was designed for hourly time-steps and was 
able to account for reduced soil heat fluxes during the night. This makes the daily average soil heat 
flux smaller than the flux during the day-time.

Summarizing our validation study of all the four considered parameters, we conclude that snow 
density is estimated most accurately and this is in agreement with the good convergence of the 
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MCMC simulation (Figure 1). In contrast, the estimation of soil heat flux is very poor. Albedo and 
snow emissivity estimates interact and this suggests making a joint estimation in order to have 
reasonable values for both.

4.2 Model application to observational data

In an application of the suggested inverse modelling procedure, we estimated the four parameters 
( ) from real snow depth data recorded at three stations. For each station all parameters Bs ,,, 

have been estimated in different combinations. At the beginning, each parameter was estimated 
alone and the other parameters were set to fixed values. This was completed by pairs and triples of 
parameter estimates; finally all four parameters were estimated jointly and this procedure resulted 
in consistent estimates.

Extending the original ESCIMO model that calculates the snow water equivalent ( ), here we SWE
directly modelled the snow depth ( ). In the application study we observed that the ratio SD

 significantly depends on the state of the snow cover and, therefore, we included different SDSWE

snow densities for new snow ( ), for melting snow ( ), for sublimated snow ( ), and for frozen o M s
rain on snow cover ( ) into the mass balance (eq. 2). All snow densities are limited in their value by r

the density of ice that is  and this was taken into account in the inverse modelling ³/918.0 cmgice 

approach. Joint estimations of the four densities always resulted in . Generally iceMrs   ˆˆˆ

the estimated density of new snow is lower than for ice ( ); even for aged snow covered by iceo  ˆ
firn or ice the density is below .³/6.0 cmg

Estimating from our observational data the density of new snow (Tab. 2) we found station-specific 
values of  and  for Wasserkuppe and Erfurt-Weimar, respectively. ³/14.0ˆ cmgo  ³/05.0ˆ cmgo 

For Artern the snow density was consistently estimated as . Obviously, the snow ³/11.0ˆ cmgo 

density increases with the accumulation and ageing of snow and this occurs more likely at a 
mountain station (Wasserkuppe) as opposed to an urban lowland station (Erfurt-Weimar) where the 
time of snow cover is reduced due to urban heat island effects.

The snow emissivity  varies between stations (Table 2). The estimation of the soil heat flux  was s̂ B̂

very uncertain as a consequence of the dominance of the other parts in the energy balance. 
Nevertheless, our estimations indicated that a value of  is reasonable for the soil heat ²/0.1ˆ mWB 
flux in our study region; the default value in ESCIMO is . All achieved estimates are ²/0.2 mW
summarized in Table 2 as a recommendation for the application of ESCIMO with data relevant for 
subalpine regions.

The estimated albedo was site specific and decreased from Wasserkuppe ( ) to Erfurt-94.0ˆ 
Weimar ( ) to Artern ( ). These changes in the albedo correspond to the changes in 89.0ˆ  56.0ˆ 
the altitude of these stations ( ) a.s.l.. Stations at higher altitudes experience new mmm 164,316,921
snowfall more often and this is associated with a larger albedo. Strasser and Marke (2010) used 
albedo values between  and . Combining albedometer measurements with Landsat TM 45.0 90.0
images for an alpine glacier, Strasser et al. (2004) developed a parameterization of the albedo 
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 with  representing the number of days since the last considerable snowfall (i.e. kn
add e  min n

at least ) which causes an increase of the snow albedo to its maximum value hmmSWE /5.0

 (  is the minimum albedo of (old) snow,  is an additive albedo and  is a add min min add k
recession factor that is defined as -0.12 for positive temperatures and -0.05 for negative 
temperatures, (Strasser and Marke, 2010)).

This parameterization was also used in ESCIMO and specifies the maximum albedo to 0.95, but this 
level can be clearly exceeded by fresh snow in alpine regions (Fig. 17 in Strasser et al. (2004)). Our 
results for sub-alpine stations suggested that the albedo was often below this level. We also found 
that for our stations an ageing model for albedo changes was not significant (Tab. 2).

Table 2: Parameter values jointly estimated from measured snow depth data (generally , ²/1 mWB 
and ,)³/g918.0 cmMrs  

Parameter estimated Wasserkuppe (921 m a.s.l.) Erfurt-Weimar (316 m a.s.l.) Artern (164 m a.s.l.)
̂
; min̂ add̂

0.94±0.04
0.93±0.05; 0.03±0.03

0.89±0.05
0.89±0.08; 0.04±0.06

0.56±0.04
0.52±0.06; 0.05±0.05

³]/[ˆ cmgo 0.14±0.02 0.05±0.01 0.11±0.02

s̂ 0.88±0.01 0.92±0.03 0.99±0.01

An important observation is that the albedo estimation is based on the energy balance (eq. 5) of the 
ESCIMO model and this energy balance is involved merely in the amount of melting snow (eq. 4). 
That means albedo estimates are calculated only from observational data that refer to melting and, 
therefore,  is the albedo of melting snow! For new snow an estimation of  is not possible using ̂ 
the ESCIMO approach. This fact explains the unexpected small values of  and the insignificance of ̂
the snow ageing obtained from our observational data.

4.3 Performance assessment

Assessing the quality of the parameters estimated by an inverse modelling of the 2.5 years 
observational data, we used them to calculate predictions for 2.5-years and 51-years periods. While 
the former demonstrates the precision of model fit, the latter represents the model’s ability for 
generalization. We applied the following performance measures:
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While  measures the percentage of variance in observed snow depths explained by the statistical 2R
model, the  is not able to assess a bias between observed and predicted data (Willmott, 1982; 2R
Willmott et al., 1985). For a more comprehensive evaluation we included the index of agreement 
( ) that indicates a perfect prediction for . , , and  indicate systematic )1,0(IA 1IA MAE MBE FBE
errors. Default parameters in ESCIMO are . ²/0.20.10g/cm³,,99.0,90.0 mWBs  

Comparatively, the parameter values achieved from the Bayesian estimation procedure (summarized 
in Table 2) were used for snow depth predictions and an assessment of their quality (Table 3).

Table 3: Performance measures of forecasts based on different sets of parameters (default values are 
used to forecast the 2.5-years period in the first three lines; Bayesian estimates are used in light grey 
lines to predict the 2.5-years period and in dark grey lines for the 51-years period).

²R IA RMSE MAE MBE FBE
Wasserkuppe; default parameters; 2.5 years

²/0.2,99.0,g/cm³05.0
g/cm³,0.918,90.0

mWBso

srM





 0.324 0.0896 259 159 -159 -1.85

Erfurt-Weimar; default parameters; 2.5 years

²/0.2,99.0,g/cm³05.0
g/cm³,0.918,90.0

mWBso

srM





 0.634 0.303 41.7 16.1 -16.1 -1.68

Artern; default parameters; 2.5 years

²/0.2,99.0,g/cm³05.0
g/cm³,0.918,90.0

mWBso

srM





 0.64 0.312 20.6 6.98 -6.98 -1.63

Wasserkuppe; Table 2; 2.5 years

²/0.1,88.0g/cm³,14.0
g/cm³,0.918,94.0

mWBso

srM





 0.631 0.608 30.8 13.9 -12.8 -0.989

Erfurt-Weimar; Table 2; 2.5 years

²/0.1,92.0g/cm³,05.0
g/cm³,0.918,89.0

mWBso

srM





 0.73 0.404 31.7 11.3 -11.2 -1.57

Artern; Table 2; 2.5 years

²/0.1,99.0g/cm³,11.0
g/cm³,0.918,56.0

mWBso

srM





 0.845 0.801 4.34 1.02 -0.804 -0.678

Wasserkuppe; Table 2; 51 years

²/0.1,88.0g/cm³,14.0
g/cm³,0.918,94.0

mWBso

srM





 0.578 0.591 32.4 13.4 -12.1 -0.917

Erfurt-Weimar; Table 2; 51 years

²/0.1,92.0g/cm³,05.0
g/cm³,0.918,89.0

mWBso

srM





 0.56 0.33 17.3 5.41 -5.34 -1.51

Artern; Table 2; 51 years

²/0.1,99.0g/cm³,11.0
g/cm³,0.918,56.0

mWBso

srM





 0.709 0.782 2.91 0.709 -0.46 -0.557
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We found that the performance was clearly improved for the parameter values estimated by the 
suggested Bayesian procedure, referring to the 2.5-years period. Predictions for the 51-years period 
were slightly less precise. A conclusion is that the parameter estimation can be recommended for 
each specific site before ESCIMO is used to forecast the snow depth at this site. The sensitivity of 
forecasting performance on the soil heat flux was very low.

5 Conclusions and limitations

The ESCIMO model was utilized for an inverse approach assessing the model parameters on the basis 
of meteorological data gathered at three stations situated in the Central German Uplands. Referring 
to our research hypotheses, we conclude that the inverse modelling is suitable to estimate the model 
parameters for sub-alpine sites with urban influences and to calculate predictions of snow depth. 
Parameter values adequate for the low mountain range in Germany are summarized in Table 2 and 
are recommended for use in similar subalpine regions.

Extending the ESCIMO code from the snow water equivalent to the snow depth, we introduced the 
snow densities that need to be estimated. These additional parameter estimations are required 
because routine measurements provide just snow depths and the snow density can vary in time and 
space. Observational data of snow density are rare and therefore an advantage of the Bayesian 
approach is the possibility to assess this parameter specifically for each station. This estimate 
provides valuable information about site-specific conditions.

Our validation study clearly demonstrated how parameter estimates are mutually correlated and, 
therefore, a joint estimation of all parameters is recommended. This procedure guarantees that all 
parameter values are adequate to the prevailing state of the snow cover. The estimated site-specific 
parameters improve the performance of ESCIMO compared to the default parameter values 
suggested with ESCIMO.spread (see Table 3). The occurrence of site-specific values for the 
parameters suggested that the accumulation of snow depended on the altitude and the urban or 
mountain characteristic of a station.

Improvements are needed for the estimation of the soil heat flux. The parameterization applied here 
is rather simple and an involvement of the soil temperature profile might be beneficial. Possibly, the 
chosen exponential prior is not optimal and might be improved. A third problem to be solved with 
the estimation of  arises from its small value compared to the other terms in the energy balance.B

Originally, ESCIMO was developed for hourly time steps (Strasser and Marke, 2010). For compatibility 
with observed meteorological data, for which only daily data are available, we modified the time-
basis of ESCIMO from hourly to daily time-steps and this might have an impact on the interpretation 
of the parameter values. Especially the parameters  studied here represent daily values, Bso ,,, 

while, in the original ESCIMO code, they can vary during the day. This means, the parameters on a 
daily basis are certain averages of these hourly data and are attenuated in their extremes. For 
example, the ageing of snow appears smoothed in the daily parameters. Nevertheless, ESCIMO 
proved to be applicable to both hourly and daily data. As ESCIMO is a physically based point snow 
surface model, all estimated parameters refer to the location where the data have been gathered. 
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Our approach provides point values of snow density, albedo, snow emissivity, and soil heat flux. The 
model does not give any information about the changes of these parameters along the snow surface 
and with increasing distance to the observation site.

The extension of the original ESCIMO model by a parameterization of the long-wave radiation 
(eq. 11+12) proved to be beneficial, as this made the suggested inverse model applicable for routine 
monitoring data from which long-wave radiation is often not available. Including parameters for 
snow densities into the original ESCIMO model considerably improved the performance of the model 
because these parameters are mostly not available at the monitoring sites. Even the snow prediction 
for new datasets takes advantage of the parameters estimated by the suggested inverse model.

6 Software and data availability

The study is based on data gathered in the frame of the regional climate information system ReKIS. 
They were freely downloaded as text files from www.rekis.org for the stations Wasserkuppe, Erfurt-
Weimar, and Artern as daily values for a period of 51 years (January 1st, 1961 until December 31st, 
2012). For all calculations we used the free language R for statistical computing (www.r-project.org) 
in combination with the OpenBUGS software that is freely available at www.openbugs.net where all 
further information is provided. The code for the inverse model developed by the authors is provided 
in the supporting material.
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7 Supporting material (OpenBUGS code for inverse ESCIMO model)

model
 {  for(i in 2:N){
               a[i]<-17.08085*(TM[i]-273.16)
               b[i]<-234.175+(TM[i]-273.16)       
          DDL[i]<-6.1078*exp(a[i]/b[i])*(RF[i]/100)
         ObT[i]<-min(TM[i],273.16)
               c[i]<-17.08085*(ObT[i]-273.16)
               d[i]<-234.175+(ObT[i]-273.16)
         DDO[i]<-6.1078*exp(c[i]/d[i])
                 if_SWE1[i]<- 1-step(-SH[i-1])
                    DDO1[i]<- equals(if_SWE1[i],1)*DDO[i]               
         e[i]<-0.18+0.098*FF[i]
         f[i]<-DDL[i]-DDO[i]
         latW[i] <- 32.82*e[i]*f[i]
         Sub[i] <- (86400*latW[i])/2835500
                  if_RR[i] <- 1-step(-(TM[i]-275.16))
                       R[i]<- equals(if_RR[i],1)*RR[i]
                         
                  if_RR1[i] <- 1-step(-(TM[i]-275.16))
                        S[i]<- equals(if_RR1[i],0)*RR[i]  
                           
                  if_SWE[i] <- 1-step(-SH[i-1])
                     Sub1[i]<- equals(if_SWE[i],1)*Sub[i]       
                          
                  if_Schnee[i] <- 1-step(-S[i])
                    advekFS[i] <- equals(if_Schnee[i],1)*((TM[i]-273.16)*2100)*(S[i]/86400)
                         
                  if_Regen[i] <- 1-step(-R[i])
                   advekFR[i] <- equals(if_Regen[i],1)*((TM[i]-273.16)*4180)*(R[i]/86400)
                       
          g[i]<-0.18+0.098*FF[i]
          h[i]<-TM[i]-ObT[i]       
         senW[i] <- 18.85*g[i]*h[i]
         Dekl[i] <- 0.4102*sin((2*3.141592654/365)*(DoY[i]-80))
         Zenit[i] <- sin(0.881356366)*sin(Dekl[i])+cos(0.881356366)*cos(Dekl[i])*cos(0)
         m[i] <- 35*cos(arccos(Zenit[i]))*pow(1224*pow(cos(arccos(Zenit[i])), 2)+1, -0.5)
         TransRaypG[i] <-  1.021-(0.084*sqrt((m[i]*(0.00949*P[i]+0.051))))
         PrecipWat[i] <- 4650*DD[i]/TM[i]  
         TransWasser[i] <- 1-(0.077*(pow(m[i]*(PrecipWat[i]), 0.3)))
         TransAero[i] <- pow(0.935, m[i]) 
         cs_I[i] <- 1370*Zenit[i]*TransRaypG[i]*TransWasser[i]*TransAero[i] 
         G8[i] <- GS[i]/8.64
         s[i] <-  G8[i]/cs_I[i]  
         cs_Emi[i] <- 1-((1+PrecipWat[i])*exp(-sqrt(1.2+3*PrecipWat[i])))
         Bew_Emi[i] <- (1-s[i])+s[i]*cs_Emi[i] 
         Inc_long_rad[i] <- 5.67*pow(10, -8)*Bew_Emi[i]*pow(TM[i], 4)  
         longwave_rad_bal[i] <- Inc_long_rad[i] - Semmi*5.67*pow(10, -8)*pow(ObT[i], 4)
         EB[i] <-  (1-alb[i])*G8[i] + longwave_rad_bal [i]+ advekFS[i] + advekFR[i] + latW[i]
                                    + senW[i] + B
         alb[i] <- amin + add*exp(-0.1*NN[i])
                if_SWE2[i] <- 1- step(-SH[i-1]) - step(-EB[i]) 
                    Melt[i] <- equals(if_SWE2[i],1)*min(EB[i]*86400/337500, 10*rhom*SH[i-1]) 
                  if_SWE3[i] <- 1-step(-SH[i-1])
z[i] <- equals(if_SWE3[i],1)* max(10*SH[i-1]+R[i]/rhor+S[i]/rho0+Sub1[i]/rhos-Melt[i]/rhom,0) 
+ (1-equals(if_SWE3[i],1))*  max(S[i]/rho0,0)
                  lambda[i] <- 1/((z[i]/10)+0.000001)
                  SH[i] ~ dexp(lambda[i])
                      }
          amin ~ dunif(0,1)
          add <- (1-amin)*aadd
          aadd ~ dunif(0,1)
          amax <- amin+add
          Semmi ~ dunif(0,1)
          B<-1.0
          rhor <- 0.918*rrhor
          rhos <- 0.918*rrhos
          rhom <- 0.918*rrhom
          rho0 <- 0.918*rrho0
          rrhor <- 1.0
          rrhos <- 1.0
          rrhom <- 1.0
          rrho0 ~ dunif(0,1)        }
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